WO2015032012A1 - 垂直线性振动电机 - Google Patents

垂直线性振动电机 Download PDF

Info

Publication number
WO2015032012A1
WO2015032012A1 PCT/CN2013/001048 CN2013001048W WO2015032012A1 WO 2015032012 A1 WO2015032012 A1 WO 2015032012A1 CN 2013001048 W CN2013001048 W CN 2013001048W WO 2015032012 A1 WO2015032012 A1 WO 2015032012A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
plate
magnetic
yoke
fixed
Prior art date
Application number
PCT/CN2013/001048
Other languages
English (en)
French (fr)
Inventor
王健
Original Assignee
Wang Jian
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Jian filed Critical Wang Jian
Priority to PCT/CN2013/001048 priority Critical patent/WO2015032012A1/zh
Priority to KR1020157008091A priority patent/KR20160053837A/ko
Publication of WO2015032012A1 publication Critical patent/WO2015032012A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Definitions

  • the present invention relates to a motor, and more particularly to a vertical linear vibration motor.
  • the vertical linear vibration motor of the present invention is produced by an electromagnetic field generated by a coil by a vibration component fixed between the casing and the frame. a forced vibration relative to the vertical direction of the bottom surface of the base; when the predetermined frequency of the electromagnetic field is equal to the natural frequency of the vibration component, resonance occurs, and the vertical linear vibration motor of the present invention maximizes the internal space of the motor for vibration
  • the assembly has sufficient weight and produces maximum vibration amplitude in space.
  • the vertical linear vibration motor of the present invention is designed by the unique structure of the sheet elastic member. Achieving a stable vibration waveform and a simplified motor structure; the optimized design of the local stress of the chip elastic element allows the motor to have an extended life. Background technique
  • the invention is mainly applied to a device that needs to generate vibration after emitting a signal, for example, in the field of wireless mobile communication devices, touch screen feedback technology, adult health care products and the like.
  • the vibration motor is a component that converts electrical energy into mechanical energy by using the principle of generating electromagnetic force.
  • the linear vibration motor is a vibration motor that generates a vibration force in a one-dimensional direction.
  • the bottom surface of the motor base is a horizontal reference datum
  • the vertical linear vibration The motor is a linear vibration motor that generates a vibration force in a direction perpendicular to the bottom surface of the motor frame and is a horizontal reference datum.
  • the horizontal linear vibration motor is a linear vibration motor that generates a vibration force in a direction parallel to the bottom surface of the motor frame as a horizontal reference datum. .
  • the flat type conventional vibration motor 1 includes a stator assembly 101, a rotor assembly 102 rotatably assembled around a shaft 103, and a casing 104 for accommodating the stator assembly 101 and the rotor assembly 102;
  • the stator assembly 101 has a circle a base 105 in the form of a plate, A lower substrate circuit component 106 attached to the upper surface of the base 105, a pair of brushes 107 attached to the lower substrate circuit component 106, a ring magnet 108 concentrically mounted on the upper surface of the base 105 around the lower substrate circuit component 106, and a vertical
  • the fixed shaft 103 is mounted at the center of the base 105; the rotor assembly 102 is rotatably disposed around the shaft 103, having a bearing 109, a coil winding 1 10, a weight 11 1 , an injection molded insulating material 12 12 , an upper substrate circuit component 1
  • the rotor assembly 102 rotates about the axis 103 due to the interaction between the electric field caused by the current of the coil winding 110 and the magnetic field caused by the magnet 108 mounted to the upper surface of the housing 105.
  • the rotor assembly 102 rotates every revolution, and the contact between the brush 107 and the sheet of the commutator 1 14 that is in contact with the brush 107 continuously changes, causing the polarity of the power source to continuously change, and the current after rectification is supplied to
  • the coil windings 110 of the rotor assembly 102 are placed to produce the same directional rotational force. Therefore, when continuously rotating, the rotor assembly 102 having the weight 1 1 1 generates centrifugal force to cause mechanical vibration of the motor 1.
  • the cylindrical conventional vibration motor 2 is a cross-sectional view of a cylindrical conventional vibration motor (or a hollow cup conventional vibration motor) 2.
  • the cylindrical conventional vibration motor 2 includes a stator assembly 201 and a rotor assembly 202.
  • the stator assembly 201 has a casing 203 and a base 204 fixed to the bottom end of the casing 203.
  • the casing 203 has a hollow cup shape and a hollow cylinder.
  • the body magnet 205 is concentrically mounted to the outside of the inner hollow wall of the casing 203, and at the same time, two bearings 206 are respectively attached to both ends of the inner hollow wall of the casing 203, and the inside of the casing 204 has a pair of brushes 207 fixed thereto.
  • the brush 207 is connected to the commutator 208 and the power supply lead 209 to supply a voltage thereto:
  • the rotor assembly 202 has a weight 210 mounted in an unbalanced position, a fixing member 211, a connecting block 210, and a shaft 212 of the fixing member 211 a commutator 208 fixedly attached to one side of the fixing member 211 and divided into a plurality of segments, and a rotating coil winding 213 fixed to the fixing member 211, and the inner diameter of the rotating coil winding 213 is larger than that of the hollow cylindrical magnet The outer diameter of 205.
  • the above-described cylindrical conventional vibration motor 2 is usually supplied with a ri pressure to the rotating coil winding 213 by the commutation of the brush 207 and the commutator contact 208 to generate a rotational force for rotation.
  • the stator assembly 201 of the weight 210 of the equilibrium position generates a centrifugal force, thereby causing mechanical vibration of the motor 2.
  • the bearing of the rotor assembly when driving a motor having the above two structures, the bearing of the rotor assembly generates mechanical friction and wear when the shaft surrounding the stator assembly (or the shaft of the rotor assembly is in the bearing of the stator assembly) is rotated for a long time;
  • the brush passes through a small gap between the sheets of the commutator, mechanical friction, electric spark and wear are generated therein, thereby generating foreign matter and shortening the life of the motor: due to the mutual contact between the components and
  • the relative motion generated results in an increase in the start-up time and braking time of the motor, reducing the high quality application of touch feedback technology.
  • Fig. 3 is a cross-sectional view showing a structure 3 of a vertical linear vibration motor.
  • the vertical linear vibration motor structure-3 includes a vibration assembly 301 and an excitation assembly 302.
  • the vibration assembly 301 includes: a casing 303 having a space defining a predetermined size; a vertically magnetized magnet 304 having a plate 305 mounted on a lower surface of the magnet 304; a yoke 306 mounted on an upper surface of the magnet 304 to form a magnetic circuit;
  • the element 307 is mounted between the casing 303 and the yoke 306 to vertically vibrate the vibrating body including the weight 308 mounted to the yoke 306.
  • the excitation assembly 302 includes: a base 309 for closing a lower opening of the casing 303, the upper surface of the base 309 having a substrate circuit component 311 connected to the vibration coil 310 for providing power, the vibration coil 310 being embedded in A magnetic ic gap is formed between the circumference of the side wall of the magnet 304 and the electrode plate 305 and the inner side wall of the yoke 306, and the damping element 312 is concentrically attached to the upper surface of the base 309.
  • the upper side magnetic fluid 313 is applied to the upper surface of the elastic member 307 corresponding to the magnet 304, and is fixed at an appropriate position by the magnetic flux leaking from the magnet 304; the casing 303 has at least one injection hole formed by perforating the hole And the inner diameter of the injection hole is smaller than the outer diameter of the magnet 304; the injection hole is closed by the tape member 314 attached to the casing 303.
  • the lower side magnetic fluid 315 is applied to the circumference of the magnet 304 in combination with the pole piece 305, and the lower side magnetic fluid 315 is just in contact with the inner wall of the vibrating coil 310 to minimize system residual vibration.
  • Fig. 4 is a three-dimensional view of the elastic member 307 used in the structure of the vertical linear vibration motor.
  • the elastic member 307 is a conical spring, and includes: a fixing ring having an upper end fixed to a closed lower surface of the casing 303; and a plurality of elastic arms connected to the fixing ring at one end for generating an elastic force;
  • the fixed disk is attached to the other end of the resilient arm while being fixed to the upper surface of the yoke 306 or to the upper surface of the weight 308.
  • the driving of the above-structured vertical linear vibration motor structure-3 will be performed in such a manner that when power is applied from the external power source to the vibration coil 310, a periodically varying current is induced in the vibration coil 310 at the neodymium magnet 304.
  • the vibrating body In the magnetic field generated by the magnetic circuit composed of the plate 305 and the yoke 306, the vibrating body generates a reverse electromagnetic force equivalent to the periodically varying electromagnetic force generated by the vibrating coil 310, and is generated in the elastic element 307. Under the combined force of the elastic forces, the vibration is vertically forced, wherein the vibrating body including the magnet 304, the plate 305, the yoke 306, and the weight 308 is suspended in the casing 303 by the elastic member 307.
  • the upper side magnetic fluid 313 on the upper portion of the vibrating body is continuously received by the elastic member 307 and the inner wall of the casing 303.
  • the surface is pressed, and during the pressing, the upper magnetic fluid 313 may ooze out from the upper surface of the casing 303 and the gap of the tape 314.
  • the loss of the magnetic fluid is reduced, and the vertical vibration displacement of the vibrating body reaches or exceeds a predetermined maximum value, and the vibrating body including the elastic member 307 is in direct contact with the casing 303 of the upper structure to generate contact noise (Noi se touch This contact noise is the main source of noise associated with the reduction of the upper magnetic fluid during vertical vibration.
  • Figure 5 is a cross-sectional view of a vertical linear vibration motor structure 2-4.
  • the vertical linear vibration motor structure 2 includes a vibration assembly 401 and an excitation assembly 402.
  • the excitation component 402 includes: a housing having a space defining a predetermined size 403; a vertically magnetized magnet 404 having a plate 405 mounted on a lower surface of the magnet 404; an upper surface of the magnet 404 is concentrically mounted in an annular convex groove of an inner wall of the upper surface of the casing 403, and the annular projection is concave
  • the inner circumference of the groove is slightly larger than the outer diameter of the magnet 404.
  • the vibrating assembly 401 includes: a base 406 for closing the lower opening of the casing 403: an elastic member 407 is mounted between the base 406 and the lower surface of the weight 408 to vertically vibrate the yoke 409 including the mounting to the weight 408
  • the vibrating body; the weight 408 is formed with a center hole having a locking groove, and the yoke 409 has a locking jaw formed outward at a lower end thereof, so that when the yoke 409 is inserted into the weight 408 through the center hole, the yoke 409 The latching pawl is placed on the locking groove of the center hole to prevent the weight 408 from being separated.
  • the latching jaw is located above the lower surface of the weight 408; the vibrating coil 410 is mounted on the yoke 409 In the center hole, a lower surface of the latching claw of the yoke 409 is attached with a substrate circuit component 41 1 connected to a terminal of the vibration coil 410 for supplying power.
  • the substrate-circuit-element 411 includes: a fixed disk having a latching claw or a lower surface of the weight 408 fixed to the yoke 409, at least one coiled conductive circuit, one end of which is connected to the fixed disk, and the other end is connected to the attached machine
  • the terminal 406 is used on the terminal for supplying power.
  • a damping element 412 is concentrically attached to the lower surface of the fixed disk of the substrate circuit component 41 1 .
  • the magnetic fluid 413 is applied to the circumference of the magnet 404 in combination with the pole piece 405, and the magnetic fluid 413 is just in contact with the inner wall of the vibration coil 410 to minimize the residual vibration of the system, and the inner circumference of the vibration coil 410 is slightly larger than the magnet 404 and the pole piece.
  • Fig. 6 is a three-dimensional view of the elastic member 407 used in the structure of the vertical linear vibration motor.
  • the elastic member 407 is a conical spring, and includes: a fixing ring having a lower end fixed to an upper surface of the base 406; and a plurality of elastic arms connected to the fixing ring at one end for generating an elastic force; a disk, coupled to the other end of the resilient arm, fixed to the lower surface of the weight 408 or to the lower surface of the latching jaw of the yoke 409, the fixed disk having an opening formed by perforating it for exposing the yoke The center hole of the 409.
  • the above-described vertical linear vibration motor structure 2 generally generates a magnetic field by a magnetic circuit composed of a neodymium magnet 404, a plate 405, a yoke 409, and a casing 403, and when power is applied
  • the vibrating body is forcedly vibrated, wherein the vibrating coil 410, the fixed disc of the substrate circuit component 411, the damping element 412, the yoke 409, and the weight 408 are included.
  • the vibrating body is supported by the upper surface of the base 406 by the elastic member 407.
  • the elastic members of the above-mentioned vertical linear vibration motor structure 3 and 2 are limited by the design and processing technology, and the height of the elastic members may be different after the forming, which may cause the asymmetry of the upper and lower vibration displacements; Moreover, the parallelism of the fixing plate of the elastic member with respect to the fixing ring may also be differently distributed.
  • the lower surface of the vibrating body may have a certain inclination angle with respect to the upper surface of the bracket or the lower surface of the inner wall of the casing. S straight reciprocating motion will cause mechanical contact between the sidewall of the weight and the inner wall of the casing to produce contact noise (Noise touch), which is related to the poor parallelism of the elastic component itself during vertical vibration.
  • the elastic elements of the vertical linear vibration motor structure- 3 and the structure 2 are conical springs. Due to the inherent properties of the conical spring, as shown in FIG. 7, the upper surface of the fixing plate of the elastic element is in an equilibrium position. With reference to the reference plane, the fixing ring is fixed, the elastic force generated when the fixed disk moves at a constant speed on one side opposite to the fixed ring (relative force is pressure) and the elastic force generated when moving to the opposite side of the opposite fixed ring (relative action) Force is tension) is nonlinearly symmetric. Therefore, the acceleration received by the vibrating body in the vertical reciprocating motion is asymmetrical, and an asymmetrical vibration waveform is exhibited in the period. This characteristic reduces the stability of the vibration motor, and at the same time increases the manufacturing difficulty and reduces the production yield.
  • Fig. 8 is a cross-sectional view showing the structure 3 of the vertical linear vibration motor.
  • the vertical linear vibration motor structure 3 includes a vibration component 501 and an excitation component 502.
  • the vibration assembly 501 includes: a casing 503 having a space defining a predetermined size; a magnet 504 vertically magnetized, having a plate 505 mounted on a lower surface of the magnet 504; a yoke 506 mounted on an upper surface of the magnet 504 to form a magnetic circuit;
  • the support member 507 and the lower support member 508 just support at least one elastic member 509 in the casing 503, and the fixed disk of the elastic member 509 and the weight 510 are connected to vertically vibrate the yoke 506 including the inner space of the weight 510.
  • the upper damping element 51 1 is concentrically attached to the upper surface of the inner wall of the casing 503.
  • the excitation assembly 502 includes: a housing 512 for closing the lower opening of the housing 503 and supporting the lower support member 508, the upper surface of the housing 512 having a substrate circuit component 514 connected to the terminal of the vibration coil 513 for providing power,
  • the vibrating coil 513 is embedded in the magnetic ic gap between the circumference of the side wall of the magnet 504 and the plate 505 and the inner side wall of the yoke 506, and the lower damping element is concentrically attached to the upper surface of the base 512. 515.
  • the magnetic fluid 516 is applied to the circumference of the magnet 504 in combination with the plate 505, and the magnetic fluid 516 is just in contact with the inner wall of the vibrating coil 513 to minimize system residual vibration.
  • Fig. 9 is a three-dimensional view of the elastic member 509 used in the structure 3 of the vertical linear vibration motor.
  • the elastic member 509 is a leaf spring, comprising: a fixing ring supported by the annular upper supporting member 507 and the annular lower supporting member 508 in the casing 503; and a plurality of elastic arms, one end of which is fixed to the fixed a ring for generating an elastic force; a fixed disk attached to the other end of the elastic arm while being fixed to the upper surface of the weight 510, the fixed disk having an opening formed by punching it.
  • the driving principle is the same as that of the vertical linear vibration motor structure 3, and will not be described here.
  • the above-mentioned vertical linear vibration motor structure 3 has a large number of component parts, which inevitably increases the material cost of the component; further, the chip elastic component 509 and the upper support component 507 are generally connected by laser welding. Supported by the lower support member 508 in the casing 503, this structure increases the difficulty of assembly of the machine, and reduces the stability of the motor structure when the machine produces a drop impact.
  • the elastic element 509 of the vertical linear vibration motor structure 3 is a leaf spring, and a plurality of elastic arms are circumferentially arranged between the fixed ring and the fixed disk, and the elastic arm extends in a unidirectional arc shape, due to space volume limitation.
  • the extension length of the elastic arm is limited to a certain extent, thereby affecting the elastic modulus of the elastic member and the vibration amplitude of the vibrating body; when a large vibration amplitude is to be achieved, the elastic arm will have a large displacement, which will cause elasticity.
  • An object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a vertical linear vibration motor having a small number of components and a simple linear structure, stable performance, and improved product quality.
  • a vertical linear vibration motor comprising a vibration component, an excitation component and a casing buckle integrated body, wherein the casing has a cavity cylindrical shape, a space therein, a side wall having a groove, and a closed upper portion a surface and an open lower surface for covering the vibrating assembly and the excitation assembly located therebelow;
  • the vibrating assembly comprising an elastic member, a magnetic gas circuit and a weight, the magnetic circuit comprising the yoke and being fixed to the inner surface of the yoke a magnet that is perpendicularly magnetized, and a plate that is fixed to a lower surface of the magnet, the yoke is a hollow cylinder, the upper portion of which closes the lower opening, and the lower end of the mouth is provided with an outwardly formed locking claw, and the magnet is perpendicularly magnetized forever
  • the magnetic cylinder itself has high magnetic energy, the upper and lower portions have opposite polarities, the upper surface of the magnet is coupled to the center of the closed inner surface of the upper portion of the
  • the block is a hollow cylinder which is coupled to the outer periphery of the yoke, the inner diameter of which forms a tight fit with the outer diameter of the yoke, and the lower surface of which is coupled to the locking jaw of the yoke and the fixed disk of the elastic member, the upper surface of the weight is higher than The upper surface of the upper portion of the yoke is closed, the outer diameter of the weight is smaller than the inner diameter of the casing, and the outer space of the lower portion of the weight has an annular space groove, and the upper damping element and the lower damping element are repulsive pieces, and the yoke
  • the upper surface is provided with an upper damping element, and a lower damping element is mounted on the lower surface of the plate.
  • the excitation component includes a base and a vibration coil fixed to the upper surface of the base.
  • the base is a substrate component, and the upper strap is attached thereto.
  • the substrate circuit component having the external terminal may also be a fiber substrate circuit component, and the vibration coil is coupled to the upper surface of the base and the substrate circuit component, directly under the magnetic circuit, embedded in the magnetic gap, and the magnetic fluid is There are certain viscosity a colloidal fluid, the magnetic fluid is attached to the combined circumference of the lower surface of the magnet and the plate, and the elastic element is a leaf spring, comprising: a fixed end, having an upper surface fixed to the outer edge of the base and a recess of the side wall of the casing a terminal of the surface; a plurality of serpentine elastic arms, one end of which is connected to the terminal of the fixed end, the fixing plate is connected to the other end of the serpentine elastic arm, and is fixed to the lower surface of the weight, and the fixing plate is provided with a hole, A hole is formed in the hole, and the
  • the vertical linear vibration machine wherein the magnetic circuit can also include: a yoke, a plate, and a magnet.
  • a vertical linear vibration motor includes a vibration component, an excitation component, a casing and a magnetic fluid, wherein the vibration component, the excitation component and the casing buckle are integrated, wherein the casing is a cylindrical cavity having a cavity therein a space, the side wall is grooved, and has a closed upper surface and an open lower surface for covering the vibration component and the excitation component located therebelow, the vibration component comprising an elastic component, a magnetic gas circuit and a weight, the magnetic gas
  • the circuit includes a bracket and a magnet fixed to the inner wall surface of the bracket to generate a perpendicular magnetization, an upper plate fixed to the upper surface of the magnet, and a lower plate fixed to the lower surface of the magnet, the bracket has a hollow cup shape, and the upper portion and the lower portion are both smashed
  • the lower outer side mouth portion is provided with an outwardly formed locking claw
  • the magnet is a vertically magnetized permanent magnet cylinder, which has high magnetic energy itself, and the upper and lower portions have opposite polarities which generate
  • the weight is a non-magnetic hollow cylinder, and is coupled to the outer periphery of the hollow outer wall of the bracket, and the inner diameter thereof is tightly matched with the outer diameter of the hollow outer wall of the bracket, and the lower surface thereof is coupled to the bracket
  • the locking jaws and the fixing plate of the elastic member, the upper surface of the weight is higher than the annular upper surface closed by the upper portion of the bracket, and the end difference is formed; the outer diameter of the weight is smaller than the inner diameter of the casing, and the outer portion of the lower portion of the weight has
  • the annular space groove, the upper damping element and the lower damping element are repulsive sheets, and the upper damping plate is mounted on the annular upper surface of the bracket and the upper surface of the upper plate, in the lower plate
  • the lower surface is provided with a damping element, and the excitation component
  • the base is a substrate component, the substrate circuit component with the external terminal is attached thereto, and the vibration coil is coupled to The upper surface of the base and the circuit component of the substrate is located directly under the magnetic circuit, and is embedded in the magnetic gap.
  • the magnetic fluid is a gel-like fluid having a certain viscosity, and the magnetic fluid is attached to the hollow inner wall of the bracket, and the elastic component is a piece.
  • the spring includes a fixed end, a terminal having a lower surface fixed to an outer surface of the outer edge of the base and a lower surface of the groove of the side wall of the casing, and a plurality of serpentine elastic arms, one end of which is connected to the terminal of the fixed end, the fixed disc is connected to The other end of the serpentine elastic arm is fixed to the lower surface of the weight, and the fixing plate is provided with a hole, and an opening is formed in the hole.
  • the serpentine elastic arm is circumferentially arrayed between the fixed end terminal and the fixed disc, and the serpentine elastic arm is once Or one or more curved arc extensions, wherein the one-way curved elastic arms of the serpentine elastic arms are generally designed to be equiangular arcs.
  • the vertical linear vibration motor wherein the magnetic circuit can also include a bracket, an upper plate, a lower plate, and a magnet.
  • the beneficial effects of the present invention are that the vertical linear vibration motor of the present invention maximizes the internal space of the motor so that the vibration assembly can have sufficient weight and generate a maximum vibration amplitude in the space. More specifically, in a vertical linear vibration motor that does not use a conventional vibration motor mechanism based on a shafting structure and a brush commutator structure, the vertical linear vibration motor of the present invention is designed by the unique structure of the sheet elastic member. Achieving a stable vibration waveform and a simplified motor structure; the optimized design of the local stress of the chip elastic element allows the motor to have an extended life.
  • Figure 1 is a cross-sectional view of a flat type conventional vibration motor
  • Figure 2 is a cross-sectional view of a cylindrical conventional vibration motor
  • Figure 3 is a cross-sectional view showing the structure of a vertical linear vibration motor
  • Figure 4 is a three-dimensional view of the elastic member used in the structure of the vertical linear vibration motor
  • Figure 5 is a cross-sectional view showing the structure of a vertical linear vibration motor
  • Figure 6 is a three-dimensional view of the elastic member used in the structure 2 of the vertical linear vibration motor
  • Figure 7 is a graph of pressure and tensile force when the elastic element of the vertical linear vibration motor structure 1 and the structure 2 are moved at different displacements;
  • Figure 8 is a cross-sectional view showing the structure 3 of the vertical linear vibration motor
  • Figure 9 is a three-dimensional view of the elastic member used in the structure 3 of the vertical linear vibration motor
  • Figure 10 is a cross-sectional structural view showing a first embodiment of a vertical linear vibration motor according to the present invention.
  • Figure 11 is an exploded three-dimensional view of a first embodiment of a vertical linear vibration motor in accordance with the present invention.
  • Figure 12 is a three-dimensional view of a resilient member used in a first embodiment of a vertical linear vibration motor according to the present invention
  • Figure 13 is a cross-sectional view showing a second embodiment of a vertical linear vibration motor according to the present invention.
  • FIG 10 is a cross-sectional view showing a first embodiment of a vertical linear vibration motor according to the present invention.
  • a vertical linear vibration motor 6 includes a vibration assembly 601, and the excitation assembly 602 and the casing 603 are snap-fitted together; This includes magnetic fluid 614.
  • the casing 603 is characterized in that the casing 603 has a cylindrical shape with a predetermined thickness and has a predetermined thickness therein. There is a predetermined size of space, a groove having a predetermined height in the side wall, a closed upper surface and an open lower surface for covering the vibration assembly 601 and the excitation assembly 602 located thereunder.
  • the vibration assembly 601 includes a resilient member 604, a magnetic circuit portion and a weight 605.
  • the magnetic circuit portion includes a yoke 607 and a magnet 606 fixed to the inner surface of the yoke 607 to generate a perpendicular magnetization, and a plate 608 fixed to the lower surface of the magnet 606.
  • the yoke 607 is substantially a hollow cylinder having an upper portion closed to the lower portion and a lower end opening portion in which an outwardly formed latching claw is disposed.
  • the magnet 606 is a vertically magnetized permanent magnet cylinder which itself has a high magnetic energy of a predetermined size, the upper and lower portions thereof having opposite polarities, and generating a magnetic force of a predetermined magnitude.
  • the upper surface of the magnet 606 is bonded to the center of the inner surface of the upper portion of the yoke 607 by a bonding material, and the plate 608 is bonded to the center of the lower surface of the magnet 606 by a bonding material.
  • the plates 608 used in the above-described vertical linear vibration motor are generally circular, trigeminal or elliptical. More preferably, the bonding surface of the yoke 607 and the magnet 606 or the bonding surface of the plate 608 and the magnet 606 is uniformly provided with a print to increase the bonding force therebetween.
  • the inner diameter of the yoke 607 is larger than the outer diameter of the magnet 606, and a magnetic ic gap of a predetermined size is formed between the inner surface of the yoke 607 and the outer surface of the magnet 606; more preferably, the yoke 607 and the plate 608 Both are made of a magnetically permeable material, so that the magnetic lines of force pass vertically through the interior of the magnet 606 and through the yoke 607 and the plate 608, resulting in maximum passage of the magnetic gap, ultimately forming a closed magnetic circuit.
  • the lower surface of the plate 608 and the lower surface of the yoke 607 latching claw are substantially in the same plane.
  • the weight 605 is a hollow cylinder made of a non-magnetic high-specific gravity material, and is bonded to the outer periphery of the yoke 607 by a bonding material, the inner diameter of which forms a tight fit with the outer diameter of the yoke 607, and the lower surface thereof is tightly coupled to the yoke 607.
  • the locking jaws and the fixing plate 6043 of the elastic member 604 are disposed to prevent the weight 605 from being separated from the yoke 607; the upper surface of the weight 605 is slightly higher than the upper closed upper surface of the yoke 607 to form a predetermined size end
  • the outer diameter of the weight 605 is smaller than the inner diameter of the casing 603, and has an annular space groove of a predetermined depth outside the lower portion of the weight 605, so that the snake does not contact the inner wall of the casing 603 and the elastic member 604 during vertical vibration.
  • the elastic arm 6042 is vertically vibrated in the case of the shape.
  • the upper damping element 609 and the lower damping element 610 are sheets made of a rubber material having a certain resilient force, and an upper damping member 609 is mounted on the upper surface of the yoke 607, and the upper damping element is mounted thereon.
  • the damper element 610 is mounted on the lower surface of the plate 608 with the lower damper element 610, and the lower damper element 610 is formed on the lower surface of the plate 608.
  • the optimum outer diameter is 70% to 80% of the outer diameter of the plate 608, and the upper damping element 609 and the lower damping element 610 function to limit the vibration amplitude of the vibration component 601 to be excessive with the upper surface of the casing 603 and the machine.
  • Contact noise (Noi se touch) is generated on the lower surface of the seat 602.
  • the excitation component 602 includes a base 611 and a vibration coil 612 fixed to an upper surface of the base 611.
  • the base 611 is a substrate component to which a substrate circuit component 613 having an external terminal is attached, and the base 611 is generally made of a metal plate.
  • the fiber substrate circuit component, the iron substrate circuit component or the ceramic substrate circuit can also be used. Component Instead of the base 611 and the substrate circuit component 613.
  • the vibration coil 612 is bonded to the upper surface of the base 611 and the substrate circuit component 613 by a bonding material, is located directly under the magnetic circuit, is embedded in the magnetic gap, and generates a predetermined strength when the rated power is input.
  • the vertical electromagnetic force ensures a smooth interaction between the magnetic field generated by the vibrating assembly 601 and the electric field generated by the vibrating coil 612 of the excitation assembly 602.
  • the magnetic fluid 614 is a colloidal fluid made of a magnetic powder having a certain viscosity and stably and uniformly dispersed in a liquid.
  • the magnetic fluid 614 is attached thereto by a magnetic flux leaking from the combined circumference of the lower surface of the magnet 606 and the plate 608 in such a manner that it is in contact with the inner wall of the vibrating coil 612 to minimize the residual vibration of the system.
  • Figure 12 is a three-dimensional view of the elastic member 604 used in the first embodiment of the vertical linear vibration motor according to the present invention.
  • the elastic member 604 is a leaf spring, comprising: a fixed end 6040, and a terminal 6041 having a lower surface fixed to the outer edge of the outer edge of the seat 611 and a recess of the side wall of the casing 603;
  • the elastic arm 6042 has one end connected to the terminal 6041 of the fixed end 6040 for generating an elastic force;
  • the fixed disk 6043 is connected to the other end of the serpentine elastic arm 6042, and is fixed to the lower surface of the weight 605, and the fixed disk 6043 Having an opening formed by perforating the opening, the inner wall of the opening abuts exactly with the locking jaw of the yoke 607, and the disk 6043 and the yoke 607 are fixed by the laser splicing elastic member 604 to close the annular contact surface of the claw;
  • the serpentine elastic arm 6042 is circumferentially array
  • the vibrating assembly 601 vibrates vertically linearly under the interaction of the magnetic force generated by the magnet 606 and the electromagnetic force generated by the coil assembly; the vibrating assembly 601 produces maximum vertical linearity when the input frequency of the electromagnetic force is equal to the natural frequency of the vibrating assembly 601 vibration.
  • FIG 13 is a cross-sectional view showing a second embodiment of a vertical linear vibration motor according to the present invention.
  • a vertical linear vibration motor 7 includes a vibration assembly 601, an excitation assembly 602, and a machine.
  • the shell 603 is snap-fitted into one body; it includes a magnetic fluid 614.
  • the casing 603 is characterized in that the casing 603 has a cavity cylindrical shape, has a predetermined thickness, has a predetermined size space therein, and has a groove of a predetermined height on the side wall, and is provided with a closed upper surface. The surface and the open lower surface are used to cover the vibrating assembly 601 and the excitation assembly 602 located thereunder.
  • the vibration assembly 601 includes a resilient member 604, a magnetic circuit portion and a weight 605.
  • the magnetic circuit portion includes a bracket 701 and a magnet 606 fixed to the inner wall surface of the bracket 701 to generate a perpendicular magnetization, and an upper plate 702 fixed to the upper surface of the magnet 606 and a lower plate 703 fixed to the lower surface of the magnet 606.
  • the bracket 701 has a substantially hollow cup shape, the upper portion and the lower portion of which are open, and an outwardly formed locking claw is disposed at an opening portion of the lower end thereof.
  • the magnet 606 is a permanent magnet cylinder that is perpendicularly magnetized, and has a high magnetic energy of a predetermined size, and the upper and lower portions thereof have It has the opposite polarity and produces a magnetic force of a predetermined size.
  • the side wall of the magnet 606 is bonded to the hollow inner wall of the bracket 701 by a bonding material bonded to the center of the upper surface of the magnet 606 by a bonding material, and the lower plate 703 is bonded to the center of the lower surface of the magnet 606 by a bonding material.
  • the bonding surface of the upper plate 702 and the magnet 606 or the bonding surface of the lower plate 703 and the magnet 606 are uniformly provided with a print to increase the bonding force therebetween.
  • the inner diameter of the hollow inner wall of the bracket 701 is slightly larger than the outer diameter of the magnet 606, and a magnetic gap of a predetermined size is formed between the hollow outer wall of the bracket 701 and the hollow inner wall; more preferably, the bracket 701 is made of a non-magnetic material, Both the plate 702 and the lower plate 703 are made of a magnetically permeable material, so that the magnetic lines pass vertically through the inside of the magnet 606 and maximize through the upper plate 702 and the lower plate 703, resulting in maximum magnetic clearance, ultimately A closed geomagnetic circuit is formed.
  • the upper surface of the upper plate 702 and the upper surface of the bracket 701 are substantially in the same plane, and the lower surface of the lower plate 703 and the lower surface of the locking claw of the bracket 701 are substantially in the same plane.
  • the weight 605 is a hollow cylinder made of a non-magnetic high-specific gravity material, and is bonded to the outer periphery of the hollow outer wall of the bracket 702 by a bonding material, and the inner diameter thereof is tightly matched with the outer diameter of the hollow outer wall of the bracket 702, and the lower surface thereof is tightly coupled to
  • the locking claw of the bracket 701 and the fixing plate 6043 of the elastic member 604 are disposed to prevent the weight 605 from being separated from the bracket 701; the upper surface of the weight 605 is slightly higher than the annular upper surface of the upper portion of the bracket 701 to form a predetermined size.
  • the outer diameter of the weight 605 is smaller than the inner diameter of the casing 603, and has an annular space groove of a predetermined depth outside the lower portion of the weight 605, so as not to contact the inner wall of the casing 603 and the elastic member 604 during vertical vibration.
  • the serpentine elastic arm 6042. vibrates vertically.
  • the upper damping element 609 and the lower damping element 610 are sheets made of a rubber material having a certain resilient force, and the upper surface of the upper surface of the bracket 702 and the upper surface of the upper plate 702 are reduced. 2 ⁇
  • the lower surface of the lower plate 703 is mounted with a lower damping element 610.
  • the lower surface of the lower plate 703 is mounted on the lower surface of the lower plate 703.
  • the optimal outer diameter of the lower damping element 610 is 70% to 80% of the outer diameter of the lower plate 703, and the upper damping element 609 and the lower damping element 610 function to limit the vibration amplitude of the vibration component 601 to be excessive.
  • Contact noise is generated with the upper surface of the inner wall of the casing 603 and the lower surface of the casing 602.
  • the excitation component 602 includes a base 611 and a vibration coil 612 fixed to an upper surface of the base 611.
  • the base 61 1 is a substrate component to which a substrate circuit component 613 having an external terminal is attached, and the base 611 is generally made of a metal plate, and a fiber substrate circuit component, an iron substrate circuit component or a ceramic substrate can also be used.
  • the circuit component replaces the base 61 1 and the substrate circuit component 613.
  • the vibration coil 612 is bonded to the upper surface of the base 61 1 and the substrate circuit component 613 by a bonding material, is located directly below the magnetic circuit, is embedded in a magnetic ic gap, and is generated at a rated power input.
  • a vertical electromagnetic force of a predetermined intensity is ensured to ensure a smooth interaction between the magnetic field generated by the vibrating assembly 601 and the electric field generated by the vibrating coil 612 of the excitation assembly 602.
  • the magnetic fluid 614 is a gel-like fluid made of a magnetic powder having a certain viscosity and stably and uniformly dispersed in a liquid.
  • the magnetic fluid 614 is attached to the hollow inner wall of the bracket 701 by the magnetic flux leaking from the combined circumference of the lower surface of the magnet 606 and the lower plate 703, and the amount of injection is just enough to contact the inner wall of the vibrating coil 612 to minimize the residual vibration of the system. .
  • Figure 12 is a three-dimensional view of the elastic member 604 used in the first embodiment of the vertical linear vibration motor according to the present invention.
  • the elastic member 604 is a leaf spring, comprising: a fixed end 6040, a terminal 6041 having a lower surface fixed to an outer edge of the housing 611 and a lower surface of the sidewall of the casing 603; a plurality of serpentine shapes
  • the elastic arm 6042 has one end connected to the terminal 6041 of the fixed end 6040 for generating an elastic force;
  • the fixed disk 6043 is connected to the other end of the serpentine elastic arm 6042 and fixed to the lower surface of the weight 605, and the fixed disk 6043 has An opening formed by perforating the opening, the inner wall of the opening just abuts the locking claw of the bracket 701, and the disk 6043 is fixed by the laser welding elastic member 604 and the bracket 701 closes the annular contact surface of the claw;
  • the 6042 circumferential array is between the fixed end 6040 terminal 6041 and the
  • the vibrating assembly 601 vertically linearly vibrates under the interaction of the magnetic force generated by the neodymium magnet 606 and the electromagnetic force generated by the coil assembly; the vibrating assembly 601 produces maximum vertical linearity when the input frequency of the electromagnetic force is equal to the natural frequency of the vibrating assembly 601 vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种垂直线性振动电机,包括振动组件(601)、激励组件(602)及机壳(603)扣合成一体,所述机壳(603)呈空腔圆柱形,其内具有空间,侧壁开有凹槽,具有封闭的上表面和敞开的下表面,供覆盖振动组件(601)和位于其下方的激励组件(602);所述振动组件(601)包括弹性元件(604)、磁气回路及重块(605),所述磁气回路包括磁轭(607)和固定到磁轭(607)内表面产生垂直磁化的磁体(606)、及固定到磁体(606)下表面的极板(608),磁轭(607)是中空圆柱体。所述垂直线性振动电机最大化的利用了电机内部空间,通过片式弹性元件(604)的独特结构设计,来实现稳定的振动波形和简单化的电机结构;通过片式弹性元件(604)的局部应力的最优化设计,使得电机具有延长的寿命。

Description

垂直线性振动电机
技术领域
本发明涉及一种电机, 特别涉及一种垂直线性振动电机, 具体地说, 本发明的垂直线 性振动电机是通过固定在机壳和机座间的振动组件在线圈产生的电磁场的作用下, 产生的 一种相对于机座底面垂直方向的受迫振动; 当电磁场的预定频率与振动组件的固有频率相 等时, 产生共振,本发明的垂直线性振动电机最大化的利用了电机内部空间, 以便振动组 件能有足够的重量和在空间内产生最大化的振动幅度。
更具体地说,在不使用基于轴系结构和电刷换向器结构的传统振动电机机制的垂直线 性振动电机中, 本发明的垂直线性振动电机, 通过片式弹性元件的独特结构设计, 來实现 稳定的振动波形和简单化的电机结构; 通过片式弹性元件的局部应力的最优化设计, 使得 电机具有延长的寿命。 背景技术
本发明主要应用在发出一个信号后需要产生振动的装置単.,例如,无线移动通讯设备, 触摸屏反馈技术领域, 成人保健用品等领域中。
目前, 随着无线移动通讯设备产品功能的多样化发展和触摸反馈技术的大规模应用, 传统振动电机由于本身固有性能的局限性, 已不能满足这种发展和应用的需要; 同时, 现 有的垂直线性振动电机 ώ于本身固有的设计缺陷, 不能为这种发展和应用提供高品质的持 续稳定的产品; 在这种情况下, 在该领域中需要开发这种产品: 该产品能够解决传统振动 电机本身固有性能的局限性和现有垂直线性振动电机本身设计缺陷的新结构, 要显著提高 性能稳定性和产品品质的新的垂直线性振动电机。
振动电机是通过使用产生电磁力的原理将电能转变为机械能的元件,线性振动电机是 指产生振动力的方向为一维方向的振动电机, 以电机机座底面为水平参考基准面, 垂直线 性振动电机是指产生振动力的方向垂直于电机机座底面为水平参考基准面的线性振动电 机, 水平线性振动电机是指产生振动力的方向平行于电机机座底面为水平参考基准面的线 性振动电机。
图 1是扁平型传统振动电机 (或者硬币型传统振动电机) 1的剖面图。 如图 1所示, 扁平型传统振动电机 1包括定子组件 101、 可旋转地绕着轴 103装配的转子组件 102和用 于容纳定子组件 101和转子组件 102的机壳 104 ; 定子组件 101具有圆板形式的机座 105、 附着在机座 105上表面的下基板电路元件 106、 附着在下基板电路元件 106上的一对电刷 107、 绕着下基板电路元件 106同心地安装在机座 105上表面的环形磁体 108和垂直地安 装在机座 105中心的固定轴 103 ; 转子组件 102可旋转地位于轴 103四周, 具有轴承 109、 线圈绕组 1 10、 重块 11 1、 注塑绝缘材料 1 12、 上基板电路元件 1 13和附着在上基板电路元 件下表面的换向器 1 14。
当从外部电源将功率施加到安装在定子组件 101的下基板电路元件 106上的一对电刷 107上时, 在该对电刷 107中引起相对极化的电流。 此时, 由于电刷 0的上端有弹性地与 设置在转子组件 102的上基板电路元件 113的下表面上的换向器 114接触, 所以功率通过 与电刷 107接触的换向器 114被供应到设置在转子组件 102中的线圈绕阻 110上。 由于由 线圈绕组 110的电流引起的电场和 ώ安装到机座 105上表面的磁体 108引起的磁场之间的 交互作用, 转子组件 102以绕着轴 103旋转。 转子组件 102旋转每一圈, 在电刷 107和与 电刷 107接触的换向器 1 14的片之间的接触连续地改变, 引起电源的极性连续地改变, 整 流之后的电流被供应到转子组件 102的线圈绕组 110上, 从而产生同一方向性的旋转力。 所以, 连续地旋转时, 具有重块 1 1 1的转子组件 102产生离心力引起电机 1的机械振动。
图 2是圆柱型传统振动电机 (或者空心杯传统振动电机) 2的剖面图。 如图 2所示, 圆柱型传统振动电机 2包括定子组件 201和转子组件 202: 定子组件 201具有机壳 203和 固定到机壳 203底端的机座 204, 机壳 203呈空心杯状, 空心圆柱体磁体 205同心地安装 到机壳 203的内部空心壁外侧, 同时, 两个轴承 206分别安装到机壳 203的内部空心壁两 端, 机座 204内侧具有固定到其上的一对电刷 207, 其中电刷 207连接到换向器 208和电 源引线 209以便向其提供电压: 转子组件 202具有安装在不平衡位置的重块 210、 固定构 件 211、 连接重块 210和固定构件 211的轴 212, 在固定地附着在固定构件 211的一个侧 面上并分成多个段的换向器 208, 以及固定到固定构件 211上的旋转线圈绕组 213, 并且 该旋转线圈绕组 213的内径大于空心圆柱体磁体 205的外径。
与扁平型传统振动电机 1的驱动原理相同,上述圆柱型传统振动电机 2通常通过电刷 207和换向器接触 208的换向, 将 r i压提供到旋转线圈绕组 213产生旋转力以便转动 有 不平衡位置的重块 210的定子组件 201产生离心力, 从而引起电机 2的机械振动。
但是, 当驱动具有以上两种结构的电机, 转子组件的轴承在围绕定子组件的轴(或者 转子组件的轴在定子组件的轴承内)长时间接触旋转时, 会产生机械摩擦和磨损; 同样地, 电刷穿过换向器的片之间的小缝隙时, 在其中产生机械摩擦、 电火花和磨损, 从而产生外 来物质, 并缩短电机的寿命: 由于存在零部件之间的相互接触配合及产生的相对运动, 从 而导致了电机的启动时间和制动时间的延长, 降低了触摸反馈技术的高品质应用。
因此, 为了克服以上这种基于轴系结构和电刷换向器结构的传统振动电机的缺点, 开 发了现有的三种结构的垂直线性振动电机。
图 3是垂直线性振动电机结构一 3的剖面图。 如图 3所示, 垂直线性振动电机结构一 3包括振动组件 301和激励组件 302。 振动组件 301包括: 具有限定预定大小空间的机壳 303; 垂直磁化的磁体 304, 具有安装在磁体 304的下表面的极板 305; 磁轭 306安装在磁 体 304的上表面以形成磁路; 弹性元件 307安装在机壳 303和磁轭 306之间以垂直地振动 包括安装到磁轭 306上的重块 308的振动体。 激励组件 302包括: 用于封闭机壳 303下部 开口的机座 309, 该机座 309的上表面具有连接到振动线圈 310用于提供功率的端子的基 板电路元件 311, 该振动线圈 310内嵌于磁体 304和极板 305的侧壁圆周与磁轭 306内侧 壁之间形成磁间隙(magnet i c gap )之中,在机座 309上表面上同心地附着有减振元件 312。
上侧磁流体 313被施加到与磁体 304对应的弹性元件 307的上表面上, 通过从磁体 304泄漏的磁通量而固定在适当的位置;机壳 303具有至少一个将其打孔而形成的注入孔, 并且该注入孔的内经小于磁体 304的外径; 注入孔被附着到机壳 303上的胶带元件 314封 闭。 下侧磁流体 315被施加到磁体 304与极片 305结合地圆周, 下侧磁流体 315恰好与振 动线圈 310的内壁接触, 以最大化地减少系统余振。
图 4是垂直线性振动电机结构一 3中使用的弹性元件 307的三维图。如图 4所示, 弹 性元件 307为锥形弹簧, 包括: 固定环, 具有固定到机壳 303的封闭下表面的上端; 多个 弹性臂, 其一端连接到固定环, 用于产生弹性力; 固定盘, 连接到弹性臂的另一端, 同时 固定到磁轭 306的上表面或者固定到重块 308的上表面。
上述构造的垂直线性振动电机结构一 3的驱动将以下述方式被执行:当从外部电源将 功率施加到振动线圈 310上时,在该振动线圈 310中引起周期性变化的电流,在 ώ磁体 304、 极板 305和磁轭 306组成的磁路产生的磁场作用中, 振动体产生与振动线圈 310产生的周 期性变化的电磁力反向等值的反向电磁力, 并且在和弹性元件 307产生的弹力的合力作用 下, 垂直地受迫振动, 其中, 包括磁体 304、 极板 305、 磁轭 306和重块 308的振动体通 过弹性元件 307被悬挂在机壳 303内。
但是, 上述垂直线性振动电机结构一 3 ώ于振动体随着使用寿命的不断增长, 在垂直 地往复运动中, 振动体上部的上侧磁流体 313不断地被弹性元件 307和机壳 303内壁上表 面挤压, 在挤压的过程中, 上侧磁流体 313有可能从机壳 303上表面及胶带 314的间隙中 渗出。 这种磁流体的流失减少, 会使振动体的垂直振动位移达到或者超出预定的最大值, 则包括弹性元件 307的振动体通过与上部结构的机壳 303直接接触而产生接触噪音(Noi se touch ) , 这种接触噪音是与垂直振动时上部磁流体的减少有关的噪音的主要来源。
图 5是垂直线性振动电机结构二 4的剖面图。如图 4所示, 垂直线性振动电机结构二 4包括振动组件 401和激励组件 402。 激励组件 402包括: 具有限定预定大小空间的机壳 403; 垂直磁化的磁体 404, 具有安装在磁体 404的下表面的极板 405; 磁体 404的上表面 同心地安装在机壳 403上表面内壁的环形凸起凹槽内, 并且该环形凸起凹槽的内经略大于 磁体 404的外径。 振动组件 401包括: 用于封闭机壳 403下部开口的机座 406: 弹性元件 407安装在机座 406和重块 408下表面之间以垂直地振动包括安装到重块 408上的磁轭 409 的振动体; 重块 408形成有具有闭锁槽的中心孔, 磁轭 409具有在其下端向外形成的闭锁 卡爪 ( jaw), 从而当磁轭 409通过中心孔插入重块 408时, 磁轭 409的闭锁卡爪被放置在 中心孔的闭锁槽上, 从而防止重块 408被分离, 更好地, 闭锁卡爪位于高于重量块 408的 下表面的位置上; 振动线圈 410安装在磁轭 409的中心孔内, 该磁轭 409的闭锁卡爪下表 面附着有连接到振动线圈 410用于提供功率的端子的基板电路元件 41 1。基板.电路-元件 411 包括: 具有固定到磁轭 409的闭锁卡爪或重块 408的下表面的固定盘, 至少一条盘旋的导 通电路, 其一端连接固定盘, 另一端连接到附着在机座 406上用于提供功率的端子上。 在 基板电路元件 41 1的固定盘下表面上同心地附着有减振元件 412。
磁流体 413被施加到磁体 404与极片 405结合地圆周, 磁流体 413恰好与振动线圈 410的内壁接触, 以最大化地减少系统余振, 并且振动线圈 410的内经略大于磁体 404和 极片 405的外径。
图 6是垂直线性振动电机结构二 4中使用的弹性元件 407的三维图。如图 6所示, 弹 性元件 407为锥形弹簧, 包括: 固定环, 具有固定到机座 406的上表面的下端; 多个弹性 臂, 其一端连接到固定环, 用于产生弹性力; 固定盘, 连接到弹性臂的另一端, 同时固定 到重块 408的下表面或者固定到磁轭 409的闭锁卡爪的下表面, 固定盘具有将其打孔而形 成的开口, 用于暴露磁轭 409的中心孔。
与垂直线性振动电机结构一 3的驱动原理相同,上述垂直线性振动电机结构二 4通常 通过 ώ磁体 404、 极板 405、 磁轭 409和机壳 403组成的磁路产生的磁场和当将功率施加 到振动线圈 410产生的电场之 I'nj的交互作用, 振动体垂 地受迫振动, 其中, 包括振动线 圈 410、 基板电路元件 411的固定盘、 减振元件 412、 磁轭 409和重块 408的振动体通过 弹性元件 407被支撑于机座 406的上表面。
但是,上述垂直线性振动电机结构一 3和结构二 4的弹性元件由于设计和加工工艺的 限制, 在成形后, 弹性元件的高度会有不同的散布, 这样会导致上下振动位移的非对称性; 并且弹性元件的固定盘相对于固定环的平行度也会有不同的散布, 在组装振动体后, 会导 致振动体下表面相对于支架上表面或机壳内壁下表面有一定的倾斜角度, 在 S直地往复运 动中, 会造成重量块侧壁与机壳内壁发生机械性的碰撞接触而产生接触噪音 (Noise touch ) , 这种碰撞噪音是与垂直振动时弹性元件的本身平行度较差有关的噪音的主要來 另外, 上述垂直线性振动电机结构一 3和结构二 4的弹性元件为锥形弹簧, 由于锥形 弹簧本身的固有属性, 如图 7所示, 以弹性元件的固定盘的上表面为平衡位置的参考基准 面, 固定环固定不动, 固定盘向相对固定环方向一侧匀速移动时产生的弹力 (相对作用力 为压力) 和向相对固定环反方向一侧匀速移动时产生的弹力 (相对作用力为拉力) 为非线 性对称。 因此, 振动体在垂直地往复运动中所受到的加速度为非对称, 周期内表现出非对 称的振动波形。 此种特性降低了振动电机的稳定性, 同时, 也增加了制造难度, 降低了生 产成品率。
图 8是垂直线性振动电机结构三 5的剖面图。如图 8所示, 垂直线性振动电^ I结构三 5包括振动组件 501和激励组件 502。 振动组件 501包括: 具有限定预定大小空间的机壳 503; 垂直磁化的磁体 504, 具有安装在磁体 504的下表面的极板 505 ; 磁轭 506安装在磁 体 504的上表面以形成磁路; 上支撑元件 507和下支撑元件 508恰好将至少一个弹性元件 509支撑在机壳 503内, 弹性元件 509的固定盘和重块 510连接以垂直地振动包括安装到 重块 510内部空间的磁轭 506的振动体: 在机壳 503内壁上表面同心地附着有上减振元件 51 1。 激励组件 502包括: 用于封闭机壳 503下部开口和支撑下支撑元件 508的机座 512, 该机座 512的上表面具有连接到振动线圈 513用于提供功率的端子的基板电路元件 514, 该振动线圈 513内嵌于磁体 504和极板 505的侧壁圆周与磁轭 506内侧壁之间形成磁间隙 ( magnet i c gap ) 之中, 在机座 512上表面上同心地附着有下减振元件 515。
磁流体 516被施加到磁体 504与极板 505结合地圆周, 磁流体 516恰好与振动线圈 513的内壁接触, 以最大化地减少系统余振。
图 9是垂直线性振动电机结构三 5中使用的弹性元件 509的三维图。如图 9所示, 弹 性元件 509为片式弹簧,包括: 固定环,被环形的上支撑元件 507和环形的下支撑元件 508 支撑在机壳 503内; 多个弹性臂, 其一端连接到固定环, 用于产生弹性力; 固定盘, 连接 到弹性臂的另一端, 同时固定到重块 510的上表面, 固定盘具有将其打孔而形成的开口。
与垂直线性振动电机结构一 3的驱动原理相同, 此处不再叙述。
但是, 上述垂直线性振动电机结构三 5的组成零部件数量较多, 这就必然增加了零部 件的材料成本; 还有, 片式弹性元件 509与上支撑元件 507—般采用激光焊连接后, 被下 支撑元件 508支撑在机壳 503内,此结构增加了 ¾机组装的难度,在屯机产生跌落冲击时, 降低了电机结构的稳定性。
另外, 上述垂直线性振动电机结构三 5的弹性元件 509为片式弹簧, 多个弹性臂圆周 阵列于固定环与固定盘之间, 且弹性臂为单向弧形延伸, 由于空间体积的限制, 弹性臂的 延伸长度受到一定程度的限制, 从而, 影响到弹性元件的弹性系数和振动体的振动幅度; 当要达到较大的振动幅度时, 弹性臂会产生较大的变位, 会使弹性臂与固定环或固定盘的 结合部位的局部应力增大, 这样长期动作时, 增加了弹性元件的疲劳性, 会严重降低弹性 元件的寿命, 会导致弹性元件的断裂, 并缩短电机的寿命。
目前, 在垂直线性振动电机的制造组装中, 多采用工装来确定振动体与机壳之间的间 隙, 由于零部件实体本身存在着尺寸的散歩, 再加上工装长期使用的磨损, 会造成组装后 振动体偏心, 圆周间隙不均, 会导致在往复振动的过程中, 振动线圈磨损断线或与机壳侧 壁的接触碰撞噪音。
以上所述存在的不足均会影响垂直线性振动电机整体品质; 会使生产工 复杂化, 降 低生产效率, 且产品组装的一致性较差。
为了提高垂直线性振动电机整机的品质, 使其装配工艺、 结构设计更加合理化, 不断 开发更加节能高效的新型产品, 提高市场占有率, 已成为该领域科技人员急需解决的新的 课题之一。
发明内容
本发明的目的在于克服上述现有技术的不足之处, 提供一种垂直线性振动电机,其具 有少量零部件和简单合理结构、 性能稳定、 提高产品品质的垂直线性振动电机。
本发明解决其技术问题所采用的技术方案是:
一种垂直线性振动电机,包括振动组件、 激励组件及机壳扣合成一体, 其特征在于, 所述机壳呈空腔圆柱形, 其内具有空间, 侧壁开有凹槽, 具有封闭的上表面和敞开的下表 面, 供覆盖振动组件和位于其下方的激励组件; 所述振动组件包括弹性元件、 磁气回路及 重块, 所述磁气回路包括磁轭和固定到磁轭内表面产生垂直磁化的磁体、 及固定到磁体下 表面的极板, 磁轭是中空圆柱体, 其上部封闭下部幵启, 其下端幵口部设置有向外形成的 闭锁卡爪,磁体是垂直磁化的永磁性圆柱体, 本身具有高磁能, 其上下部具有相反的极性, 磁体的上表面结合到磁轭上部封闭的内表面中心, 极板结合到磁体的下表面中心,磁轭和 磁体的结合面或极板和磁体的结合面均匀设有印纹,磁轭的内径大于磁体的外径, 磁轭的 内表面和磁体的外表面之间形成磁间隙,磁感线垂直通过磁体内部和通过磁轭和极板, 并 通过磁间隙而形成闭合磁气回路,此时极板的下表面和磁轭闭锁卡爪的下表面在同一平面 上,重块是中空圆柱体, 结合到磁轭的外围, 其内径与磁轭外径形成紧配合, 其下表面结 合到磁轭的闭锁卡爪和弹性元件的固定盘上, 重块的上表面高于磁轭上部封闭的上表面, 重块的外径小于机壳的内径, 在重块的下部外侧具有环形空间凹槽, 上减振元件和下减振 元件是具有回弹力的片体, 磁轭的上表面安装有上减振元件, 在极板的下表面安装有下减 振元件, 激励组件包括机座和固定到机座上表面的振动线圈,机座是基片元件, 其上附着 带有外接端子的基板电路元件, 也可采用纤维基板电路元件,振动线圈结合到机座和基板 电路元件的上表面, 位于磁气回路正下方, 内嵌于磁间隙之中, 磁流体是具有一定粘度的 胶状流体,磁流体附着在磁体下表面和极板的结合圆周上,弹性元件为片式弹簧, 包括: 固 定端、 具有固定到机座外沿的上表面和机壳侧壁凹槽的下表面的端子; 多个蛇形弹性臂, 其一端连接到固定端的端子, 固定盘, 连接到蛇形弹性臂的另一端, 并固定到重块的下表 面, 该固定盘上设有孔,该孔上形成有丌 Π, 该开 Π内壁与磁轭的闭锁卡爪对接, 弹性元 件固定盘和磁轭闭锁卡爪的环形接触面恰好连接: ¾蛇形弹性臂圆周阵列于固定端端子和 固定盘之间, 且蛇形弹性臂为一次或一次以上回转弧形延伸, 蛇形弹性臂其中的单向弧形 弹性臂一般设计成等角度弧形。
所述垂直线性振动机, 其中,该磁气回路亦可包括:磁轭、 极板和磁体。
本发明还可采用如下技术方案:
一种垂直线性振动电机, 包括振动组件、 激励组件、 机壳及磁流体, 其中振动组件、 激励组件及机壳扣合成一体, 其特征在于, 所述机壳是空腔圆柱形, 其内具有空间, 侧壁 开有凹槽,设有封闭的上表面和敞开的下表面,供覆盖振动组件和位于其下方的激励组件, 该振动组件包括弹性元件、 磁气回路及重块,该磁气回路, 包括支架和固定到支架内壁表 面产生垂直磁化的磁体、 及固定到磁体上表面的上极板和固定到磁体下表面的下极板,支 架呈空心杯状, 其上部和下部均打丌, 其下端外侧丌口部设置有向外形成的闭锁卡爪,磁 体是垂直磁化的永磁性圆柱体,本身具有高磁能,其上下部具有相反的并产生磁力的极性, 磁体的侧壁结合到支架的空心内壁上, 上极板结合到磁体的上表面中心, 下极板结合到磁 体的下表面中心, 在上极板和磁体的结合面或下极板和磁体的结合面均匀设有印纹,支架 的空心内壁内径大于磁体的外径, 在支架的空心外壁和空心内壁之间形成磁间隙; 磁感线 垂直通过磁体内部和通过导磁的上极板和下极板, 并通过磁间隙, 最终形成闭合的磁气回 路,此时, 上极板的上表面和支架的上表面在同一平面上, 下极板的下表面和支架闭锁卡 爪的下表面在同一平面上,重块是非导磁的中空圆柱体, 结合到支架空心外壁的外围, 其 内径与支架空心外壁的外径形成紧配合, 其下表面结合到支架的闭锁卡爪和弹性元件的固 定盘上, 重块的上表面高于支架上部封闭的环形上表面, 并形成端差; 重块的外径小于机 壳的内径, 在重块的下部外侧具有环形空间凹槽,上减振元件和下减振元件是具有回弹力 的片体, 在支架的环形上表面和上极板的上表面安装有上减振元件, 在下极板的下表面安 装有卜'减振元件,激励组件包括机座和固定到机座上表面的振动线圈,机座是基片元件, 其 上附着带有外接端子的基板电路元件,振动线圈结合到机座和基板电路元件的上表面, 位 于磁气回路正下方, 内嵌于磁间隙之中,磁流体是具有一定粘度的胶状流体,磁流体附着在 支架的空心内壁上,弹性元件为片式弹簧, 包括固定端、 具有固定到机座外沿的上表面和 机壳侧壁凹槽的下表面的端子, 多个蛇形弹性臂, 其一端连接到固定端的端子, 固定盘, 连接到蛇形弹性臂的另一端, 并固定到重块的下表面, 固定盘上设有孔,孔上形成开口, 该开口内壁与支架的闭锁卡爪恰好对接, 弹性元件固定盘和支架闭锁卡爪的环形接触面连 接; 蛇形弹性臂圆周阵列于固定端端子和固定盘之间, 且蛇形弹性臂为一次或一次以上回 转弧形延伸, 蛇形弹性臂其中的单向弧形弹性臂一般设计成等角度弧形。
所述垂直线性振动电机, 其中,该磁气回路亦可包括支架、 上极板、 下极板和磁体。 本发明的有益效果是,本发明的垂直线性振动电机最大化的利用了电机内部空间, 以 便振动组件能有足够的重量和在空间内产生最大化的振动幅度。 更具体地说, 在不使用基 于轴系结构和电刷换向器结构的传统振动电机机制的垂直线性振动电机中, 本发明的垂直 线性振动电机, 通过片式弹性元件的独特结构设计, 来实现稳定的振动波形和简单化的电 机结构; 通过片式弹性元件的局部应力的最优化设计, 使得电机具有延长的寿命。
附图说明
下面结合附图和实施例对本发明进一歩说明。
图 1是扁平型传统振动电机的剖面图;
图 2是圆柱型传统振动电机的剖面图;
图 3是垂直线性振动电机结构一的剖面图;
图 4是垂直线性振动电机结构一中使用的弹性元件的三维图;
图 5是垂直线性振动电机结构一.的剖面图;
图 6是垂直线性振动电机结构二中使用的弹性元件的三维图;
图 7是垂直线性振动电机结构一和结构二的弹性元件移动不同位移时,压力和拉力的 曲线图;
图 8是垂直线性振动电机结构三的剖面图;
图 9是垂直线性振动电机结构三中使用的弹性元件的三维图;
图 10是根据本发明的垂直线性振动电机第一实施方式的剖面结构图;
图 11是根据本发明的垂直线性振动电机第一实施方式的分解三维图;
图 12是根据本发明的垂直线性振动电机第一实施方式中使用的弹性元件的三维图; 图 13是根据本发明的垂直线性振动电机第二实施方式的剖面图。
具体实施方式
以下结合附图和较佳实施例, 对依据本发明提供的具体实施方式、 结构、特征详述如 下:
图 10是根据本发明的垂直线性振动电机第一实施方式的剖面图, 如图 10所示, 一种 垂直线性振动电机 6, 包括振动组件 601, 激励组件 602及机壳 603扣合形成一体; 其中 包括磁流体 614。
所述机壳 603, 其特征在于所述机壳 603呈空腔圆柱形, 具有预定的厚度, 在其内具 有预定大小的空间, 在侧壁幵有预定高度的凹槽, 设置了封闭的上表面和敞开的下表面, 用于覆盖振动组件 601和位于其下的激励组件 602。
所述振动组件 601, 包括弹性元件 604, 磁气回路部分及重块 605。
所述磁气回路部分, 包括磁轭 607和固定到磁轭 607 的内表面产生垂直磁化的磁体 606, 及固定到磁体 606下表面的极板 608。 磁轭 607基本上呈中空圆柱体, 其上部封闭下 部打开, 在其下端开口部布置有向外形成的闭锁卡爪。 磁体 606是垂直磁化的永磁性圆柱 体, 本身具有预定大小的高磁能, 其上下部具有相反的极性, 并产生预定大小的磁力。 磁 体 606的上表面通过结合材料结合到磁轭 607上部封闭的内表面中心, 极板 608通过结合 材料结合到磁体 606的下表面中心。
以上所述的垂直线性振动电机中所使用的极板 608通常为圆形、 三叉形或椭圆形等。 更好地,在磁轭 607和磁体 606的结合面或极板 608和磁体 606的结合面均匀设有印 纹, 以增大其之间的结合力。
磁轭 607的内经大于磁体 606的外径,在磁轭 607的内表面和磁体 606的外表面之间 形成预定大小的磁间隙 (magnet ic gap ) ; 更好地, 磁轭 607和极板 608均采用导磁材料 制成, 因此, 磁感线垂直通过磁体 606内部和最大化地通过磁轭 607和极板 608, 导致最 大化地通过磁间隙, 最终形成闭合地磁气回路。 此时, 极板 608的下表面和磁轭 607闭锁 卡爪的下表面基本在同一平面上。
重块 605 是由非导磁高比重材料制成的中空圆柱体, 通过结合材料结合到磁轭 607 的外围, 其内径与磁轭 607外径形成紧配合, 其下表面紧密结合到磁轭 607的闭锁卡爪和 弹性元件 604的固定盘 6043上, 从而防止重块 605从磁轭 607上分离; 重块 605的上表 面略高于磁轭 607上部封闭的上表面, 以形成预定大小的端差; 重块 605的外径小于机壳 603的内径, 在重块 605的下部外侧具有预定深度的环形空间凹槽, 从而在垂直振动时, 在不接触机壳 603内壁和弹性元件 604的蛇形弹性臂 6042的情况下垂直地振动。
上减振元件 609和下减振元件 610是由具有一定回弹力的橡胶材料贴合结合材料制成 的片体, 在磁轭 607的上表面安装有上减振元件 609, 并且上减振元件 609的最佳厚度为 重块 605与磁轭 607形成预定大小端差的 2. 2〜2. 5倍, 在极板 608的下表面安装有下减振 元件 610, 并且下减振元件 610的最佳外径为极板 608外径的 70 %〜80 %, 上减振元件 609 和下减振元件 610的作用在于限制振动组件 601的振动幅度过大而与机壳 603内壁上表面 和机座 602下表面产生接触噪音 (Noi se touch )。
所述激励组件 602, 包括机座 611和固定到机座 611上表面的振动线圈 612。
机座 611是基片元件, 在其上附着由带有外接端子的基板电路元件 613, 机座 611— 般采用金属板材制成, 也可采用纤维基板电路元件、 铁基板电路元件或陶瓷基板电路元件 代替机座 611和基板电路元件 613。
振动线圈 612是通过结合材料结合到机座 611和基板电路元件 613的上表面,位于磁 气回路正下方, 内嵌于磁间隙 (magnetic gap ) 之中, 且在输入额定功率时, 产生预定强 度的垂直的电磁力, 从而保证由振动组件 601产生的磁场和 激励组件 602的振动线圈 612 产生的电场之间平稳的交互作用。
磁流体 614是具有一定粘度、 在液体中稳定均匀分散的磁粉末而制成的胶状流体。 磁流体 614依靠从磁体 606下表面和极板 608的结合圆周泄漏的磁通量而附着在其上, 其 注入量恰好满足与振动线圈 612的内壁相接触, 以最大化减少系统余振。
图 12是根据本发明的垂直线性振动电机第一实施方式中使用的弹性元件 604的三维 图。 如图 12所示, 弹性元件 604为片式弹簧, 包括: 固定端 6040, 具有固定到^ I座 611 外沿的上表面和机壳 603侧壁凹槽的下表面的端子 6041 ; 多个蛇形弹性臂 6042, 其一端 连接到固定端 6040的端子 6041, 用于产生弹性力; 固定盘 6043, 连接到蛇形弹性臂 6042 的另一端, 同时固定到重块 605的下表面, 固定盘 6043具有将其打孔而形成的开口, 开 口内壁与磁轭 607的闭锁卡爪恰好对接, 通过激光悍接弹性元件 604固定盘 6043和磁轭 607闭锁卡爪的环形接触面而恰好连接; 所述蛇形弹性臂 6042圆周阵列于固定端 6040端 子 6041和固定盘 6043之间, 且蛇形弹性臂 6042为一次或一次以上回转弧形延伸, 为最 人化利用片式弹性元件 604的平面空间, 蛇形弹性臂 6042其中的单向弧形弹性臂一般设 计成等角度弧形。
在由磁体 606 产生的磁力和由线圈组件产生的电磁力的相互作用下, 振动组件 601 垂直线性振动; 当电磁力的输入预定频率与振动组件 601固有频率相等时, 振动组件 601 产生最大垂直线性振动。
图 13是根据本发明的垂直线性振动电机第二实施方式的剖面图, 如图 13所示, 与第 一实施方式一样, 一种垂直线性振动电机 7, 包括振动组件 601 , 激励组件 602及机壳 603 扣合形成一体; 其中包括磁流体 614。
所述机壳 603, 其特征在于所述机壳 603呈空腔圆柱形, 具有预定的厚度, 在其内具 有预定大小的空间, 在侧壁开有预定高度的凹槽, 设置了封闭的上表面和敞开的下表面, 用于覆盖振动组件 601和位于其下的激励组件 602。
所述振动组件 601, 包括弹性元件 604, 磁气回路部分及重块 605。
所述磁气回路部分, 包括支架 701和固定到支架 701 内壁表面产生垂直磁化的磁体 606, 及固定到磁体 606上表面的上极板 702和固定到磁体 606下表面的下极板 703。 支架 701 基本上呈空心杯状, 其上部和下部均打开, 在其下端外侧开口部布置有向外形成的闭 锁卡爪。 磁体 606是垂直磁化的永磁性圆柱体, 本身具有预定大小的高磁能, 其上下部具 有相反的极性, 并产生预定大小的磁力。 磁体 606的侧壁通过结合材料结合到支架 701的 空心内壁上, 上极板 702通过结合材料结合到磁体 606的上表面中心, 下极板 703通过结 合材料结合到磁体 606的下表面中心。
更好地,在上极板 702和磁体 606的结合面或下极板 703和磁体 606的结合面均匀设 有印纹, 以增大其之间的结合力。
支架 701的空心内壁内径略大于磁体 606的外径,在支架 701的空心外壁和空心内壁 之间形成预定大小的磁间隙 ( magnetic gap ) ; 更好地, 支架 701 采用非磁性材料制成, 上极板 702和下极板 703均采用导磁材料制成, 因此, 磁感线垂直通过磁体 606内部和最 大化地通过上极板 702和下极板 703, 导致最大化地通过磁间隙, 最终形成闭合地磁气回 路。 此时, 上极板 702的上表面和支架 701的上表面基本在同一平面上, 下极板 703的下 表面和支架 701闭锁卡爪的下表面基本在同一平面上。
重块 605 是由非导磁高比重材料制成的中空圆柱体, 通过结合材料结合到支架 702 空心外壁的外围, 其内径与支架 702空心外壁的外径形成紧配合, 其下表面紧密结合到支 架 701的闭锁卡爪和弹性元件 604的固定盘 6043上, 从而防止重块 605从支架 701上分 离;重块 605的上表面略高于支架 701上部封闭的环形上表面,以形成预定大小的端差;重 块 605的外径小于机壳 603的内径,在重块 605的下部外侧具有预定深度的环形空间凹槽, 从而在垂直振动时, 在不接触机壳 603内壁和弹性元件 604的蛇形弹性臂 6042 .的情况下 垂直地振动。 - 上减振元件 609和下减振元件 610是由具有一定回弹力的橡胶材料贴合结合材料制成 的片体, 在支架 702的环形上表面和上极板 702的上表面安装有上减振元件 609, 并且上 减振元件 609的最佳厚度为重块 605与支架 701形成预定大小端差的 2. 2〜2. 5倍, 在下极 板 703的下表面安装有下减振元件 610, 并且下减振元件 610的最佳外径为下极板 703外 径的 70%〜80%, 上减振元件 609和下减振元件 610的作用在于限制振动组件 601的振动 幅度过大而与机壳 603内壁上表面和机座 602下表面产生接触噪音 (Noi se touch)。
所述激励组件 602, 包括机座 611和固定到机座 611上表面的振动线圈 612。
机座 61 1是基片元件, 在其上附着 ώ带有外接端子的基板电路元件 613, 机座 611— 般采用金属板材制成, 也可采用纤维基板电路元件、 铁基板电路元件或陶瓷基板电路元件 代替机座 61 1和基板电路元件 613。
振动线圈 612是通过结合材料结合到机座 61 1和基板电路元件 613的上表面,位于磁 气回路正下方, 内嵌于磁间隙 (magnet i c gap ) 之中, 且在输入额定功率时, 产生预定强 度的垂直的电磁力, 从而保证 ώ振动组件 601产生的磁场和由激励组件 602的振动线圈 612 产生的电场之间平稳的交互作用。 磁流体 614是具有一定粘度、 在液体中稳定均匀分散的磁粉末而制成的胶状流体。 磁流体 614依靠从磁体 606下表面和下极板 703的结合圆周泄漏的磁通量而附着在支架 701 空心内壁上, 其注入量恰好满足与振动线圈 612的内壁相接触, 以最大化减少系统余振。
图 12是根据本发明的垂直线性振动电机第一实施方式中使用的弹性元件 604的三维 图。 如图 12所示, 弹性元件 604为片式弹簧, 包括: 固定端 6040, 具有固定到机座 611 外沿的上表面和机壳 603侧壁凹槽的下表面的端子 6041 ; 多个蛇形弹性臂 6042, 其一端 连接到固定端 6040的端子 6041, 用于产生弹性力; 固定盘 6043, 连接到蛇形弹性臂 6042 的另一端, 同时固定到重块 605的下表面, 固定盘 6043具有将其打孔而形成的开口, 开 口内壁与支架 701 的闭锁卡爪恰好对接, 通过激光焊接弹性元件 604固定盘 6043和支架 701闭锁卡爪的环形接触面而恰好连接; 所述蛇形弹性臂 6042圆周阵列于固定端 6040端 子 6041和固定盘 6043之间, 且蛇形弹性臂 6042为一次或一次以上回转弧形延伸, 为最 大化利用片式弹性元件 604的平面空间, 蛇形弹性臂 6042其中的单向弧形弹性臂一般设 计成等角度弧形。
在 ώ磁体 606 产生的磁力和由线圈组件产生的电磁力的相互作用下, 振动组件 601 垂直线性振动; 当电磁力的输入预定频率与振动组件 601 固有频率相等时, 振动组件 601 产生最大垂直线性振动。
上述参照实施例对该垂直线性振动电机进行的详细描述, 是说明性的而不是限定性 的, 因此在不脱离本发明总体构思下的变化和修改, 应属本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种垂直线性振动电机,包括振动组件(601)、 激励组件 (602)及机壳(603) 扣 合成一体, 其特征在于, 所述机壳 (603) 呈空腔圆柱形, 其内具有空间, 侧壁开有凹槽, 具有封闭的上表面和敞开的下表面, 供覆盖振动组件 (601) 和位于其下方的激励组件
(602); 所述振动组件 (601) 包括弹性元件 (604)、 磁气回路及重块 (605), 所述磁气 回路包括磁轭 (607) 和固定到磁轭 (607) 内表面产生垂直磁化的磁体 (606)、 及固定到 磁体 (606) 下表面的极板 (608), 磁轭 (607) 是中空圆柱体, 其上部封闭下部丌启, 其 下端丌口部设置有向外形成的闭锁卡爪,磁体 (606) 是垂直磁化的永磁性圆柱体, 本身具 有高磁能, 其上下部具有相反的极性,磁体 (606) 的上表面结合到磁轭 (607) 上部封闭 的内表面中心, 极板 (608) 结合到磁体 (606) 的下表面中心,磁轭 (607) 和磁体 (606) 的结合面或极板 (608) 和磁体 (606) 的结合面均匀设有印纹,磁轭 (607) 的内径大于磁 体 (606) 的外径, 磁轭 (607) 的内表面和磁体 (606) 的外表面之间形成磁间隙,磁感线 垂直通过磁体 (606) 内部和通过磁轭 (607) 和极板 (608), 并通过磁间隙而形成闭合磁 气回路,此时极板(608)的下表面和磁轭(607)闭锁卡爪的下表面在同一平面上,重块(605) 是中空圆柱体, 结合到磁轭 (607) 的外围, 其内径与磁轭 (607) 外径形成紧配合, 其下 表面结合到磁轭 (607) 的闭锁卡爪和弹性元件 (604) 的固定盘 (6043) 上, 重块 (605) 的上表面高于磁轭 (607) 上部封闭的上表面, 重块 (605) 的外径小于机壳 (603) 的内 径, 在重块 (605)的下部外侧具有环形空间凹槽, 上减振元件 (609)和下减振元件 (610) 是具有回弹力的片体, 磁轭 (607) 的上表面安装有上减振元件 (609), 在极板 (608) 的 下表面安装有下减振元件 (610), 激励组件 (602) 包括机座 (611) 和固定到机座 (611) 上表面的振动线圈 (612) ,机座 (611) 是基片元件, 其上附着带有外接端子的基板电路 元件 (613), 或采用纤维基板电路元件,振动线圈 (612) 结合到机座 (611) 和基板电路 元件 (613) 的上表面, 位于磁气回路正下方, 内嵌于磁间隙之中, 磁流体 (614) 是具有 一定粘度的胶状流体,磁流体(614)附着在磁体 (606)下表面和极板(608)的结合圆周上,弹 性元件 (604) 为片式弹簧, 包括: 固定端 (6040)、 具有固定到机座 (611) 外沿的上表 面和机壳 (603) 侧壁凹槽的下表面的端子 (6041); 多个蛇形弹性臂 (6042), 其一端连 接到固定端 (6040) 的端子 (6041), 固定盘 (6043), 连接到蛇形弹性臂 (6042) 的另一 端, 并 1ί|定到重块 (605) 的下表面, 该固定盘 (6043) 上设有孔, ¾孔上形成有丌口, 该 开口内壁与磁轭 (607) 的闭锁卡爪对接, 弹性元件 (604) 固定盘 (6043) 和磁轭 (607) 闭锁卡爪的环形接触面恰好连接; 该蛇形弹性臂 (6042) 圆周阵列于固定端 (6040) 端子
(6041)和固定盘(6043)之间, 且蛇形弹性臂 (6042)为一次或一次以上回转弧形延伸, 蛇形弹性臂 (6042) 其中的单向弧形弹性臂设计成等角度弧形。
2、 根据权利要求 1 所述的垂直线性振动电机, 其特征在于, 所述磁气回路还包括: 磁轭(607)、 极板(608)和磁体(606)。
3、 一种垂直线性振动电机, 包括振动组件 (601)、 激励组件 (602)、 机壳 (603) 及 磁流体 (614), 其中振动组件 (601)、 激励组件 (602) 及机壳 (603) 扣合成一体, 其特 征在于, 所述机壳 (603) 是空腔圆柱形, 其内具有空间, 侧壁开有凹槽, 设有封闭的上 表面和敞开的下表面, 供覆盖振动组件 (601) 和位于其下方的激励组件 (602), 该振动 组件(601)包括弹性元件(604)、 磁气回路及重块(605),该磁气回路, 包括支架(701) 和固定到支架 (701) 内壁表面产生垂直磁化的磁体 (606)、 及固定到磁体 (606) 上表 面的上极板 (702) 和固定到磁体 (606) 下表面的下极板 (703) ,支架 (701) 呈空心杯 状, 其上部和下部均打幵, 其下端外侧开口部设置有向外形成的闭锁卡爪,磁体 (606) 是 垂直磁化的永磁性圆柱体, 本身具有高磁能, 其上下部具有相反的并产生磁力的极性,磁 体 (606) 的侧壁结合到支架 (701) 的空心内壁上, 上极板 (702) 结合到磁体 (606) 的 上表面中心, 下极板 (703) 结合到磁体 (606) 的下表面中心, 在上极板 (702) 和磁体
(606) 的结合面或下极板 (703) 和磁体 (606) 的结合面均匀设有印纹,支架 (701) 的 空心内壁内径大于磁体 (606) 的外径, 在支架 (701) 的空心外壁和空心内壁之间形成磁 间隙; 磁感线垂直通过磁体 (606) 内部和通过导磁的上极板 (702) 和下极板 (703), 并 通过磁间隙, 最终形成闭合的磁气回路,此时, 上极板 (702) 的上表面和支架 (701) 的 上表面在同一平面上, 下极板 (703) 的下表面和支架 (701) 闭锁卡爪的下表面在同一平 面上,重块 (605) 是非导磁的中空圆柱体, 结合到支架 (701) 空心外壁的外围, 其内径 与支架 (701) 空心外壁的外径形成紧配合, 其下表面结合到支架 (701) 的闭锁卡爪和弹 性元件 (604) 的固定盘 (6043) 上, 重块 (605) 的上表面高于支架 (701) 上部封闭的 环形上表面, 并形成端差; 重块 (605) 的外径小于机壳 (603) 的内径, 在重块 (605) 的下部外侧具有环形空间凹槽,上减振元件 (609) 和下减振元件 (610) 是具有回弹力的 片体, 在支架 (701) 的环形上表面和上极板 (702) 的上表面安装有上减振元件 (609), 在下极板 (703) 的下表面安装有下减振元件 (610) ,激励组件 (602) 包括机座 (611) 和固定到机座 (611) 上表面的振动线圈 (612) ,机座 (611) 是基片元件, 其上附着带有 外接端子的基板电路元件(613) ,振动线圈(612)结合到机座(611)和基板电路元件(613) 的上表面, 位于磁气回路正下方, 内嵌于磁间隙之中,磁流体 (614) 是具有一定粘度的胶 状流体,磁流体 (614) 附着在支架 (701) 的空心内壁上,弹性元件 (604) 为片式弹簧, 包括固定端 (6040)、 具有固定到机座 (611) 外沿的上表面和机壳 (603) 侧壁凹槽的下 表面的端子(6041),多个蛇形弹性臂(6042),其一端连接到固定端(6040)的端子(6041), 固定盘 (6043), 连接到蛇形弹性臂 (6042) 的另一端, 并固定到重块 (605) 的下表面, 固定盘(6043)上设有孔,孔上形成开口, 该开口内壁与支架(701) 的闭锁卡爪恰好对接, 弹性元件 (604) 固定盘 (6043) 和支架 (701) 闭锁卡爪的环形接触面连接; 蛇形弹性臂 (6042) 圆周阵列于固定端 (6040) 端子 (6041) 和固定盘 (6043) 之间, 且蛇形弹性臂 (6042) 为一次或一次以上回转弧形延伸, 蛇形弹性臂 (6042) 其中的单向弧形弹性臂设 计成等角度弧形。
4、 根据权利要求 3所述的垂直线性振动电机, 其特征在于, 所述磁气回路还包括支 架 (701)、 上极板 (702)、 下极板 (703) 和磁体 (606)。
PCT/CN2013/001048 2013-09-06 2013-09-06 垂直线性振动电机 WO2015032012A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/001048 WO2015032012A1 (zh) 2013-09-06 2013-09-06 垂直线性振动电机
KR1020157008091A KR20160053837A (ko) 2013-09-06 2013-09-06 수직 선형 진동 모터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001048 WO2015032012A1 (zh) 2013-09-06 2013-09-06 垂直线性振动电机

Publications (1)

Publication Number Publication Date
WO2015032012A1 true WO2015032012A1 (zh) 2015-03-12

Family

ID=52627664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001048 WO2015032012A1 (zh) 2013-09-06 2013-09-06 垂直线性振动电机

Country Status (2)

Country Link
KR (1) KR20160053837A (zh)
WO (1) WO2015032012A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021035829A1 (zh) * 2019-08-28 2021-03-04 领先科技(东台)有限公司 一种线圈内嵌套铁芯的线性振动马达
US11031856B2 (en) * 2018-02-28 2021-06-08 Minebea Mitsumi, Inc. Vibration actuator
CN113346651A (zh) * 2021-07-09 2021-09-03 金龙机电(东莞)有限公司 空心杯电机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020204930A1 (de) 2020-04-17 2021-10-21 Mando Corporation Rückholfeder zum Zurückziehen eines Bremsklotzes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2657275Y (zh) * 2003-03-31 2004-11-17 冼文基 永磁直线振动电机
JP2005341771A (ja) * 2004-05-31 2005-12-08 Matsushita Electric Works Ltd 振動型リニアアクチュエータ
CN101404437A (zh) * 2008-11-11 2009-04-08 天津三星电机有限公司 线性振动电机
CN102237773A (zh) * 2010-04-26 2011-11-09 Lg伊诺特有限公司 具有宽带的线性振动器
CN102522874A (zh) * 2012-01-05 2012-06-27 王健 垂直线性振动电机
CN202488328U (zh) * 2012-01-05 2012-10-10 王健 垂直线性振动电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2657275Y (zh) * 2003-03-31 2004-11-17 冼文基 永磁直线振动电机
JP2005341771A (ja) * 2004-05-31 2005-12-08 Matsushita Electric Works Ltd 振動型リニアアクチュエータ
CN101404437A (zh) * 2008-11-11 2009-04-08 天津三星电机有限公司 线性振动电机
CN102237773A (zh) * 2010-04-26 2011-11-09 Lg伊诺特有限公司 具有宽带的线性振动器
CN102522874A (zh) * 2012-01-05 2012-06-27 王健 垂直线性振动电机
CN202488328U (zh) * 2012-01-05 2012-10-10 王健 垂直线性振动电机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11031856B2 (en) * 2018-02-28 2021-06-08 Minebea Mitsumi, Inc. Vibration actuator
WO2021035829A1 (zh) * 2019-08-28 2021-03-04 领先科技(东台)有限公司 一种线圈内嵌套铁芯的线性振动马达
CN113346651A (zh) * 2021-07-09 2021-09-03 金龙机电(东莞)有限公司 空心杯电机

Also Published As

Publication number Publication date
KR20160053837A (ko) 2016-05-13

Similar Documents

Publication Publication Date Title
KR101746007B1 (ko) 자계 폐회로 형성 케이스를 포함하는 리니어 타입 상하진동모터
US7038335B2 (en) Vertical vibrator
KR101046003B1 (ko) 선형 진동자
KR101046044B1 (ko) 선형 진동자
KR100541113B1 (ko) 패턴코일형 수직진동자
CN102522874B (zh) 垂直线性振动电机
KR101525654B1 (ko) 선형 진동자
JP2013085438A (ja) 線形振動子
JP2011019384A (ja) 線形振動子
JP2006020484A (ja) 分銅内蔵型垂直振動子
US9515540B2 (en) Linear vibrator
KR20100119970A (ko) 선형 진동 장치
US20140070633A1 (en) Linear vibrator
TW515221B (en) Multifunction acoustic device
JP3869336B2 (ja) 軸方向駆動の振動体
WO2015032012A1 (zh) 垂直线性振动电机
JP2005012988A (ja) 偏平型振動モータ
KR101354518B1 (ko) 리니어 진동모터
JP4422354B2 (ja) 電気−機械−音響変換器
KR101171706B1 (ko) 선형 진동자
KR101198978B1 (ko) 통신단말기용 수평형 리니어 진동모터
US20130057088A1 (en) Linear vibrator
KR100804023B1 (ko) 진동발생장치
JP3835740B2 (ja) 軸方向駆動の振動体
KR20150121553A (ko) 선형 진동자

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20157008091

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13892892

Country of ref document: EP

Kind code of ref document: A1