WO2015030597A1 - Pompe à chaleur multifonctionnelle - Google Patents

Pompe à chaleur multifonctionnelle Download PDF

Info

Publication number
WO2015030597A1
WO2015030597A1 PCT/NO2014/000039 NO2014000039W WO2015030597A1 WO 2015030597 A1 WO2015030597 A1 WO 2015030597A1 NO 2014000039 W NO2014000039 W NO 2014000039W WO 2015030597 A1 WO2015030597 A1 WO 2015030597A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat
heat pump
hot water
heat exchanger
Prior art date
Application number
PCT/NO2014/000039
Other languages
English (en)
Inventor
John Magne LANGÅKER
Original Assignee
Langåker John Magne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Langåker John Magne filed Critical Langåker John Magne
Publication of WO2015030597A1 publication Critical patent/WO2015030597A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/021Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Definitions

  • This invention is a heat pump based on an existing air-to-air heat pump design with an external component consisting of a refrigerant circuit with a compressor and an evaporator/condenser, and an internal component (room unit) with a con- denser/evaporator.
  • Air-to-air heat pumps are affordable, reasonably easy to install and are very efficient. However, they can only provide indoor heating. Air-to-water and water-to-water heat pumps can be used to heat both rooms and water, but these solutions are expensive to purchase and install. There are a few ventilation heat pumps with a hot water storage tanks, but these are inefficient and do not provide a sufficiently comfortable environment.
  • a hot water storage tank can be connected to an air-to- air heat pump, with minor alterations, creating an air-to-water-to-air heat pump.
  • the hot water storage tank must have a specific design, but the solution would be inexpensive to produce, easy to install and very efficient. Thus the demand for both room heating (or cooling), as well as hot water, would be fulfilled.
  • the invention provides a heat pump including the features listed in the introduction of requirement 1, which are the characteristic features of requirement 1. More specifically this entails that the external component has a connector for an extra heat exchanger element mounted to a hot water storage tank, since the extra heat exchanger element is positioned between the outlet of the compressor and a 4-way valve.
  • the heat pump of the present invention is divided into three main components.
  • This embodiment is illustrated in the drawing provided.
  • a techni- cian will understand that the drawing is a principle diagram and does not necessarily depict the components on an accurate scale. It is thus only intended to display the most important features of one embodiment of the invention. Furthermore, a technician will understand that additional components beyond what is displayed in the principle diagram may be required.
  • the illustration shows an external component including a compressor module 1 consisting of a compressor 4, a heat exchanger element 5, a 4-way (reversing) valve 6, two expansion valves 7 and two one-way valves 8.
  • the internal component 2 consists of a heat exchanger element 20 and a fan 21.
  • the hot water storage tank 3 is a container with at least one intake 17 and one outlet 19, and a preferred model will also contain a mixing valve 18. Furthermore the tank will contain at least one heat exchanger element 9 and 10, or optionally several heat exchange elements 9 and 10 connected in a daisy chain as illustrated by the drawing.
  • the latter heat exchange elements 9 and 10 are connected to the heat pump's compressor component between the compressor 4 and the 4-way valve 6, and will transmit heat to the tank 3 when the compressor 4 is in operation regardless of the position of the 4-way valve 6.
  • the tank 3 also contains a heat exchanger element 11 that when aided by a circulator pump allows the tank to be used as a heat source for an external heat distribution system 14, such as underfloor heating or radiators.
  • an additional heat exchanger element 12 that can transmit heat to the tank from an alternate energy source, such as a solar panel 16, when aided by a circulator pump.
  • the compressor module's 1 compressor 4 pumps the refrigerant to the upper heat exchanger element 9 in tank 3, on to the next heat exchanger element 10, which is located further down in tank 3, to the 4-way valve 6, which when heat is needed on the internal component 2 will lead the refrigerant to the heat exchanger element 20 in the inner component 2, and on to an expansion valve 7 and a one-way valve 8, then on to the heat exchanger element 5 which will then function as an evaporator before going through the 4-way valve 6 again before finally being led back into the compressor 4.
  • the refrigerant coming from the heat exchanger elements 9 and 10 in the tank 3 will be led by the 4-way valve 6 to the heat exchanger element 5 before continuing through the expansion valve 7 and the one-way valve 8, before then continuing to the heat exchanger element 20 in the internal component 2, which will then function as an evaporator.
  • At least one extra heat exchanger element can be connected in a daisy chain between the compressor's outlet and the 4-way valve.
  • This heat exchanger element will then always function as an evaporator/hot gas heat exchanger, while the heat exchangers on the other side of the 4-way valve will alternate between heating and cooling.
  • the extra heat exchanger element connected the compressor and the 4-way valve can transmit heat to a tank filled with water, and will transmit heat regardless of whether the rest of the heat pump is cooling or heating.
  • a traditional heat pump with a reversing valve/4-way valve will normally have two heat exchanger elements where the 4-way valve will make them alternate between being condensers (heat) and evaporators (cooling).
  • the tank contains at least one heat exchanger element connected to the compres- sor module, and a preferred model will possess two heat exchanger elements connected in a daisy chain. Heated refrigeration from the compressor will first enter the upper heat exchanger element and heat the upper part of the tank. Gradually as the heat rises in the upper part of the tank, the heat output will decrease, and more and more heat will be produced in the lower part of the tank. Should the internal component require heat, a fan in the internal component will start as soon as the condenser temperature has been sufficiently raised. The remaining heat in the refrigeration will be transferred as room heating through the internal component.
  • the internal component When cooling is required, the internal component will cool, with heat initially being emitted in the tank. When the water in the tank is hot enough for the condenser temperature to become critically high, the remaining heat will be dumped into the compressor module. Thus, when cooling is required for the internal component, a maximum of the excess heat will always be stored in the tank, and excess heat will only be dumped when the tank has reached its maximum temperature.
  • the tank also contains a heat exchanger element that allows for the transfer of heat from the tank to a heat distribution system.
  • heat distribution systems include radiators and underfloor heating systems.
  • an additional heat exchanger element that can be used to allow an alternate heat source to heat the contents of the tank, such as a solar panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

La présente invention concerne une pompe à chaleur basée sur une conception de pompe à chaleur air-air existante comprenant un élément externe consistant en un circuit de réfrigération comportant un compresseur et un évaporateur/condenseur, et un élément interne (unité de pièce) comportant un condenseur/évaporateur. Le chauffage des maisons modernes requiert moins d'énergie. De ce fait, il est stimulant de trouver de bonnes solutions qui permettent de maintenir le chauffage de l'eau et de l'intérieur de la maison à un niveau suffisant tout en utilisant une énergie renouvelable à un coût suffisamment faible pour les rendre économiquement rentables. Les nouvelles exigences techniques imposent également qu'une partie minimale de l'énergie provienne de sources d'énergie renouvelables. Les pompes à chaleur air-air classiques sont abordables, raisonnablement faciles à installer et très efficaces. Toutefois, elles n'assurent que le chauffage intérieur. Les pompes à chaleur air-eau et eau-eau peuvent être utilisées pour chauffer les pièces et l'eau, mais ces solutions sont onéreuses à acheter et à installer. Il existe quelques pompes à chaleur à ventilation comprenant des ballons d'eau chaude, mais elles ne sont pas efficaces et n'assurent pas un environnement suffisamment confortable. Il a été découvert qu'un ballon d'eau chaude peut être raccordé à une pompe à chaleur air-air, en y apportant des modifications mineures, créant ainsi une pompe à chaleur air-eau-air. Le ballon d'eau chaude doit avoir une conception spécifique, mais la solution serait peu coûteuse à produire, facile à installer et très efficace. La demande en chauffage (ou refroidissement) des pièces, ainsi qu'en eau chaude, serait ainsi satisfaite.
PCT/NO2014/000039 2013-08-27 2014-08-24 Pompe à chaleur multifonctionnelle WO2015030597A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20131147A NO20131147A1 (no) 2013-08-27 2013-08-27 Multifunksjons varmepumpe
NO20131147 2013-08-27

Publications (1)

Publication Number Publication Date
WO2015030597A1 true WO2015030597A1 (fr) 2015-03-05

Family

ID=51753449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2014/000039 WO2015030597A1 (fr) 2013-08-27 2014-08-24 Pompe à chaleur multifonctionnelle

Country Status (2)

Country Link
NO (1) NO20131147A1 (fr)
WO (1) WO2015030597A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060425A1 (fr) 2017-09-19 2019-03-28 Massachusetts Institute Of Technology Compositions pour la thérapie par lymphocytes t à récepteur antigénique chimérique et leurs utilisations
WO2020068261A1 (fr) 2018-09-28 2020-04-02 Massachusetts Institute Of Technology Molécules immunomodulatrices localisées dans le collagène et leurs procédés
WO2020263399A1 (fr) 2019-06-26 2020-12-30 Massachusetts Institute Of Technology Complexes protéine de fusion-hydroxyde métallique immunomodulateurs et leurs procédés
WO2021061648A1 (fr) 2019-09-23 2021-04-01 Massachusetts Institute Of Technology Méthodes et compositions pour la stimulation de réponses de lymphocytes t endogènes
WO2021183675A2 (fr) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Procédés de génération de cellules nk de type mémoire modifiées et compositions de celles-ci
WO2021183207A1 (fr) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Compositions et procédés pour l'immunothérapie du cancer positif à npm1c
WO2021221782A1 (fr) 2020-05-01 2021-11-04 Massachusetts Institute Of Technology Ligands chimériques ciblant des récepteurs antigéniques et leurs utilisations
WO2023081715A1 (fr) 2021-11-03 2023-05-11 Viracta Therapeutics, Inc. Association d'une thérapie de lymphocytes car t avec des inhibiteurs de tyrosine kinase de bruton et procédés d'utilisation associés

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108826517A (zh) * 2018-04-28 2018-11-16 广东美的暖通设备有限公司 用于制冷装置的热回收切换装置和具有其的制冷装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219277A1 (de) 1981-05-22 1982-12-16 Mitsubishi Electric Corp Klimaanlage fuer raeume mit heisswasserversorgung
DE3403337A1 (de) 1983-02-26 1984-08-30 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Vorrichtung zum erwaermen von wasser
EP0151493A2 (fr) * 1984-02-09 1985-08-14 Mitsubishi Denki Kabushiki Kaisha Pompe à chaleur pour chauffer ou refroidir des pièces et pour fournir de l'eau chaude
EP0240441A2 (fr) * 1986-03-27 1987-10-07 Phenix Heat Pump Systems, Inc. Système et procédé de pompe à chaleur à fonction triple
DE10058273A1 (de) 2000-11-23 2002-05-29 Woelfle Gmbh Vorrichtung zur Lüftung von Gebäuden nach dem Oberbegriff des Anspruchs 1
DE202004008964U1 (de) * 2004-06-05 2004-09-09 Dietz, Erwin Niedrigenergie-Haus
JP2006029668A (ja) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd ソーラー発電システム
JP2007218463A (ja) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd ヒートポンプ給湯冷暖房装置
WO2009097819A1 (fr) * 2008-02-04 2009-08-13 Zhengyi Feng Climatiseur à eau chaude et son procédé de commande
EP2333457A2 (fr) * 2009-12-11 2011-06-15 LG ELectronics INC. Appareil de circulation d'eau associé à un système réfrigérant
WO2012100781A2 (fr) 2011-01-28 2012-08-02 Heatgear Professional Aps Système de chauffage catalytique
EP2557377A1 (fr) * 2010-04-05 2013-02-13 Mitsubishi Electric Corporation Système composite de conditionnement d'air et d'alimentation en eau chaude
GB2497171A (en) 2012-11-02 2013-06-05 Asd Entpr Ltd Building hot water system having a heat pump and a hot water tank

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3219277A1 (de) 1981-05-22 1982-12-16 Mitsubishi Electric Corp Klimaanlage fuer raeume mit heisswasserversorgung
DE3403337A1 (de) 1983-02-26 1984-08-30 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Vorrichtung zum erwaermen von wasser
EP0151493A2 (fr) * 1984-02-09 1985-08-14 Mitsubishi Denki Kabushiki Kaisha Pompe à chaleur pour chauffer ou refroidir des pièces et pour fournir de l'eau chaude
EP0240441A2 (fr) * 1986-03-27 1987-10-07 Phenix Heat Pump Systems, Inc. Système et procédé de pompe à chaleur à fonction triple
DE10058273A1 (de) 2000-11-23 2002-05-29 Woelfle Gmbh Vorrichtung zur Lüftung von Gebäuden nach dem Oberbegriff des Anspruchs 1
DE202004008964U1 (de) * 2004-06-05 2004-09-09 Dietz, Erwin Niedrigenergie-Haus
JP2006029668A (ja) * 2004-07-15 2006-02-02 Sanyo Electric Co Ltd ソーラー発電システム
JP2007218463A (ja) * 2006-02-15 2007-08-30 Matsushita Electric Ind Co Ltd ヒートポンプ給湯冷暖房装置
WO2009097819A1 (fr) * 2008-02-04 2009-08-13 Zhengyi Feng Climatiseur à eau chaude et son procédé de commande
EP2333457A2 (fr) * 2009-12-11 2011-06-15 LG ELectronics INC. Appareil de circulation d'eau associé à un système réfrigérant
EP2557377A1 (fr) * 2010-04-05 2013-02-13 Mitsubishi Electric Corporation Système composite de conditionnement d'air et d'alimentation en eau chaude
WO2012100781A2 (fr) 2011-01-28 2012-08-02 Heatgear Professional Aps Système de chauffage catalytique
GB2497171A (en) 2012-11-02 2013-06-05 Asd Entpr Ltd Building hot water system having a heat pump and a hot water tank

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019060425A1 (fr) 2017-09-19 2019-03-28 Massachusetts Institute Of Technology Compositions pour la thérapie par lymphocytes t à récepteur antigénique chimérique et leurs utilisations
WO2020068261A1 (fr) 2018-09-28 2020-04-02 Massachusetts Institute Of Technology Molécules immunomodulatrices localisées dans le collagène et leurs procédés
WO2020263399A1 (fr) 2019-06-26 2020-12-30 Massachusetts Institute Of Technology Complexes protéine de fusion-hydroxyde métallique immunomodulateurs et leurs procédés
WO2021061648A1 (fr) 2019-09-23 2021-04-01 Massachusetts Institute Of Technology Méthodes et compositions pour la stimulation de réponses de lymphocytes t endogènes
WO2021183675A2 (fr) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Procédés de génération de cellules nk de type mémoire modifiées et compositions de celles-ci
WO2021183207A1 (fr) 2020-03-10 2021-09-16 Massachusetts Institute Of Technology Compositions et procédés pour l'immunothérapie du cancer positif à npm1c
WO2021221782A1 (fr) 2020-05-01 2021-11-04 Massachusetts Institute Of Technology Ligands chimériques ciblant des récepteurs antigéniques et leurs utilisations
WO2023081715A1 (fr) 2021-11-03 2023-05-11 Viracta Therapeutics, Inc. Association d'une thérapie de lymphocytes car t avec des inhibiteurs de tyrosine kinase de bruton et procédés d'utilisation associés

Also Published As

Publication number Publication date
NO335489B1 (no) 2014-12-22
NO20131147A1 (no) 2014-12-22

Similar Documents

Publication Publication Date Title
WO2015030597A1 (fr) Pompe à chaleur multifonctionnelle
EP2464924B1 (fr) Système de réfrigération à refroidissement naturel
US9310106B2 (en) Heat pump system
US10330349B2 (en) Thermal energy system and method of operation
CN203011004U (zh) 单元式空调地暖机
CN203364317U (zh) 一种热管空调一体机
CN103047796A (zh) 单元式空调地暖机及其电气控制方法
CN103415749B (zh) 二元制冷循环装置
CN103884068A (zh) 一种新型机房节能空调
CN102980234B (zh) 一种高温地热水串联供暖方法
CN203442994U (zh) 一种热管空调一体机
CN103822319A (zh) 热泵空调系统及其控制方法
US10578345B2 (en) Heat transfer and hydronic systems
CN202282922U (zh) 一种节能散热机柜
CN103939994A (zh) 一种机房节能空调
CN211146778U (zh) 冷暖双供应系统
CN201897275U (zh) 节能机柜空调器
CN202973314U (zh) 一种高温地热水串联供暖系统
JP2014115032A (ja) 空気調和機および加熱ユニット
CN102853490A (zh) 管道冷热循环系统
CN102809247A (zh) 变频风冷冷水热泵空调热水系统
CN108489095A (zh) 太阳能热泵系统及供热水系统
CN204176833U (zh) 一种利用自然冷源的节能中央空调
CN204176811U (zh) 一种双循环动力热管式中央空调
CN203396152U (zh) 多功能热泵空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14786731

Country of ref document: EP

Kind code of ref document: A1