WO2015029952A1 - ネットワーク装置及びユーザ端末 - Google Patents

ネットワーク装置及びユーザ端末 Download PDF

Info

Publication number
WO2015029952A1
WO2015029952A1 PCT/JP2014/072177 JP2014072177W WO2015029952A1 WO 2015029952 A1 WO2015029952 A1 WO 2015029952A1 JP 2014072177 W JP2014072177 W JP 2014072177W WO 2015029952 A1 WO2015029952 A1 WO 2015029952A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
scheduling
terminal
communication
network device
Prior art date
Application number
PCT/JP2014/072177
Other languages
English (en)
French (fr)
Inventor
空悟 守田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US14/914,241 priority Critical patent/US9924496B2/en
Priority to JP2015534203A priority patent/JP6140292B2/ja
Publication of WO2015029952A1 publication Critical patent/WO2015029952A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a network device and a user terminal in a mobile communication system that supports D2D communication.
  • D2D communication a plurality of adjacent user terminals perform direct inter-terminal communication without going through a network.
  • cellular communication which is normal communication in a mobile communication system
  • user terminals communicate via a network.
  • a user terminal When a user terminal leads the allocation of radio resources used for D2D communication, a user terminal that allocates radio resources (hereinafter referred to as a scheduling terminal) and a user terminal to which radio resources are allocated (hereinafter referred to as a non-scheduling terminal) A case where there are a plurality of D2D groups to which the group belongs.
  • non-scheduling terminals that belong to a plurality of D2D groups and perform D2D communication are assigned radio resources from the respective scheduling terminals that belong to each D2D group. Since scheduling terminals generally allocate radio resources independently of each other, radio resources allocated to the non-scheduling terminals may overlap, which may hinder D2D communication.
  • a network device is a network device in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the network device includes: a transmission unit that transmits a search request for a peripheral user terminal to a plurality of user terminals; a reception unit that receives a search result of the peripheral user terminal based on the search request; and the search result And a control unit that determines a scheduling terminal that allocates radio resources used for the D2D communication from among the plurality of user terminals.
  • the transmission unit transmits a scheduling terminal request for requesting the user terminal determined as the scheduling terminal to become the scheduling terminal.
  • FIG. 1 is a configuration diagram of an LTE system.
  • FIG. 2 is a block diagram of the UE.
  • FIG. 3 is a block diagram of the eNB.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • FIG. 6 is a diagram illustrating a data path in cellular communication.
  • FIG. 7 is a diagram illustrating a data path in D2D communication.
  • FIG. 8 is an explanatory diagram for explaining an operation outline of the mobile communication system.
  • FIG. 9 is an explanatory diagram for explaining an operation outline of the mobile communication system.
  • FIG. 10 is a flowchart illustrating the operation of the eNB 200 according to the embodiment.
  • FIG. 10 is a flowchart illustrating the operation of the eNB 200 according to the embodiment.
  • FIG. 11 is a diagram plotting communication partners with which each UE 100 according to the embodiment is performing D2D communication.
  • FIG. 12 is a diagram in which UEs 100 located around each UE 100 according to the embodiment are plotted.
  • FIG. 13 is an explanatory diagram for describing an example of radio resources specified by the eNB 200 according to the embodiment.
  • FIG. 14 is an explanatory diagram for explaining an operation outline of the mobile communication system.
  • FIG. 15 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the first modification of the present embodiment.
  • FIG. 16 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the second modification of the present embodiment.
  • FIG. 17 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the third modification of the present embodiment.
  • FIG. 18 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the third modification of the present embodiment.
  • the network device is a network device in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the network device includes: a transmission unit that transmits a search request for a peripheral user terminal to a plurality of user terminals; a reception unit that receives a search result of the peripheral user terminal based on the search request; and the search result And a control unit that determines a scheduling terminal that allocates radio resources used for the D2D communication from among the plurality of user terminals.
  • the transmission unit transmits a scheduling terminal request for requesting the user terminal determined as the scheduling terminal to become the scheduling terminal.
  • control unit determines a user terminal to which the radio resource is allocated from the scheduling terminal from among the plurality of user terminals.
  • the transmission unit transmits identification information of other user terminals that can allocate the radio resource to the user terminal determined as the scheduling terminal together with the scheduling terminal request.
  • the search request is a request for transmission of a discovery signal used for discovery of the user terminal.
  • the reception unit receives a reception result of the discovery signal and / or a reception result of a response to the discovery signal as the search result.
  • control unit determines, as the scheduling terminal, a user terminal having a relatively large number of discovered user terminals from the plurality of user terminals based on the search result.
  • the control unit determines two or more user terminals as the scheduling terminal, the two or more users are arranged so that radio resources allocated by the two or more user terminals do not overlap each other. Each radio resource that can be allocated by the terminal is designated.
  • the two or more user terminals include a first user terminal and a second user terminal.
  • the control unit includes a first group to which a user terminal to which the radio resource is assigned from the first user terminal and the first user terminal belongs, and from the second user terminal and the second user terminal Only when the second group to which a user terminal to which radio resources are allocated belongs is adjacent to the first group, the first user terminal and the second user terminal do not overlap each other so that the radio resources to be allocated do not overlap each other. Radio resources that can be allocated by the user terminal and the second user terminal are designated.
  • the transmission unit receives the search request when the reception unit receives a rescue notification based on duplication of the radio resource from at least one user terminal among the plurality of user terminals. Send.
  • the rescue notification indicates that the at least one user terminal has detected interference from another D2D communication.
  • the rescue notification is performed based on allocation information of the radio resource of a second user terminal that is different from the first user terminal by a first user terminal that allocates the radio resource. Sent when the radio resource allocation of the user terminal is changed.
  • the user terminal is a user terminal in a mobile communication system that supports D2D communication that is direct inter-terminal communication.
  • the user terminal includes: a receiving unit that receives a search request for a peripheral user terminal from a network device; a control unit that performs control to start searching for the peripheral user terminal based on the search request; and the peripheral user terminal A transmission unit that transmits the search result to the network device.
  • the receiving unit requests scheduling that the user terminal becomes the scheduling terminal when the user terminal is determined as a scheduling terminal that allocates radio resources used for the D2D communication based on the search result. Receive a terminal request.
  • the receiving unit receives, together with the scheduling terminal request, identification information of another user terminal that can allocate the radio resource to the user terminal.
  • the search request is a request for transmission of a discovery signal used for discovery of the user terminal.
  • the transmission unit transmits a reception result of the discovery signal and / or a reception result of a response to the discovery signal as the search result to the network device.
  • the radio resource A remedy notification based on the duplication is transmitted to the network device.
  • the receiving unit receives the search request based on the rescue notification.
  • the transmission unit transmits the rescue notification to the network device when the control unit detects interference from the other D2D communication.
  • FIG. 1 is a configuration diagram of an LTE system according to the present embodiment.
  • the LTE system includes a plurality of UEs (User Equipment) 100, an E-UTRAN (Evolved Universal Terrestrial Radio Access Network) 10, an EPC (Evolved Packet Core) 20, and the like.
  • the E-UTRAN 10 and the EPC 20 constitute a network.
  • the UE 100 is a mobile radio communication device, and performs radio communication with a cell (serving cell) that has established a connection.
  • UE100 is corresponded to a user terminal.
  • the E-UTRAN 10 includes a plurality of eNBs 200 (evolved Node-B).
  • the eNB 200 corresponds to a base station.
  • the eNB 200 manages a cell and performs radio communication with the UE 100 that has established a connection with the cell.
  • cell is used as a term indicating a minimum unit of a radio communication area, and is also used as a term indicating a function of performing radio communication with the UE 100.
  • the eNB 200 has, for example, a radio resource management (RRM) function, a user data routing function, and a measurement control function for mobility control and scheduling.
  • RRM radio resource management
  • the EPC 20 includes MME (Mobility Management Entity) / S-GW (Serving-Gateway) 300 and OAM 400 (Operation and Maintenance).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • OAM 400 Operaation and Maintenance
  • the MME is a network node that performs various types of mobility control for the UE 100, and corresponds to a control station.
  • the S-GW is a network node that performs transfer control of user data, and corresponds to an exchange.
  • the eNB 200 is connected to each other via the X2 interface.
  • the eNB 200 is connected to the MME / S-GW 300 via the S1 interface.
  • the OAM 400 is a server device managed by an operator, and performs maintenance and monitoring of the E-UTRAN 10.
  • FIG. 2 is a block diagram of the UE 100.
  • the UE 100 includes an antenna 101, a radio transceiver 110, a user interface 120, a GNSS (Global Navigation Satellite System) receiver 130, a battery 140, a memory 150, and a processor 160.
  • the memory 150 and the processor 160 constitute a control unit.
  • the UE 100 may not have the GNSS receiver 130. Further, the memory 150 may be integrated with the processor 160, and this set (that is, a chip set) may be used as the processor 160 '.
  • the antenna 101 and the wireless transceiver 110 are used for transmitting and receiving wireless signals.
  • the antenna 101 includes a plurality of antenna elements.
  • the radio transceiver 110 converts the baseband signal output from the processor 160 into a radio signal and transmits it from the antenna 101. Further, the radio transceiver 110 converts a radio signal received by the antenna 101 into a baseband signal and outputs the baseband signal to the processor 160.
  • the user interface 120 is an interface with a user who owns the UE 100, and includes, for example, a display, a microphone, a speaker, and various buttons.
  • the user interface 120 receives an operation from the user and outputs a signal indicating the content of the operation to the processor 160.
  • the GNSS receiver 130 receives a GNSS signal and outputs the received signal to the processor 160 in order to obtain position information indicating the geographical position of the UE 100.
  • the battery 140 stores power to be supplied to each block of the UE 100.
  • the memory 150 stores a program executed by the processor 160 and information used for processing by the processor 160.
  • the processor 160 includes a baseband processor that modulates / demodulates and encodes / decodes a baseband signal, and a CPU (Central Processing Unit) that executes programs stored in the memory 150 and performs various processes. .
  • the processor 160 may further include a codec that performs encoding / decoding of an audio / video signal.
  • the processor 160 executes various processes and various communication protocols described later.
  • FIG. 3 is a block diagram of the eNB 200.
  • the eNB 200 includes an antenna 201, a radio transceiver 210, a network interface 220, a memory 230, and a processor 240.
  • the memory 230 and the processor 240 constitute a control unit.
  • the memory 230 may be integrated with the processor 240, and this set (that is, a chip set) may be used as the processor 240 '.
  • the antenna 201 and the wireless transceiver 210 are used for transmitting and receiving wireless signals.
  • the antenna 201 includes a plurality of antenna elements.
  • the wireless transceiver 210 converts the baseband signal output from the processor 240 into a wireless signal and transmits it from the antenna 201.
  • the radio transceiver 210 converts a radio signal received by the antenna 201 into a baseband signal and outputs the baseband signal to the processor 240.
  • the network interface 220 is connected to the neighboring eNB 200 via the X2 interface and is connected to the MME / S-GW 300 via the S1 interface.
  • the network interface 220 is used for communication performed on the X2 interface and communication performed on the S1 interface.
  • the memory 230 stores a program executed by the processor 240 and information used for processing by the processor 240.
  • the processor 240 includes a baseband processor that performs modulation / demodulation and encoding / decoding of a baseband signal, and a CPU that executes programs stored in the memory 230 and performs various processes.
  • the processor 240 executes various processes and various communication protocols described later.
  • FIG. 4 is a protocol stack diagram of a radio interface in the LTE system.
  • the radio interface protocol is divided into layers 1 to 3 of the OSI reference model, and layer 1 is a physical (PHY) layer.
  • Layer 2 includes a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol) layer.
  • Layer 3 includes an RRC (Radio Resource Control) layer.
  • the physical layer performs encoding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping.
  • the physical layer provides a transmission service to an upper layer using a physical channel. Data is transmitted between the physical layer of the UE 100 and the physical layer of the eNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (HARQ), and the like. Data is transmitted via the transport channel between the MAC layer of the UE 100 and the MAC layer of the eNB 200.
  • the MAC layer of the eNB 200 includes a MAC scheduler that determines an uplink / downlink transport format (transport block size, modulation / coding scheme, and the like) and an allocated resource block.
  • the RLC layer transmits data to the RLC layer on the receiving side using the functions of the MAC layer and the physical layer. Data is transmitted between the RLC layer of the UE 100 and the RLC layer of the eNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the RRC layer is defined only in the control plane. Control signals (RRC messages) for various settings are transmitted between the RRC layer of the UE 100 and the RRC layer of the eNB 200.
  • the RRC layer controls the logical channel, the transport channel, and the physical channel according to establishment, re-establishment, and release of the radio bearer. If there is an RRC connection between the RRC of the UE 100 and the RRC of the eNB 200, the UE 100 is in a connected state, otherwise, the UE 100 is in an idle state.
  • the NAS (Non-Access Stratum) layer located above the RRC layer performs session management and mobility management.
  • FIG. 5 is a configuration diagram of a radio frame used in the LTE system.
  • the LTE system uses OFDMA (Orthogonal Frequency Division Multiple Access) for the downlink, and SC-FDMA (Single Carrier Division Multiple Access) for the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Division Multiple Access
  • the radio frame is composed of 10 subframes arranged in the time direction, and each subframe is composed of two slots arranged in the time direction.
  • the length of each subframe is 1 ms, and the length of each slot is 0.5 ms.
  • Each subframe includes a plurality of resource blocks (RB) in the frequency direction and includes a plurality of symbols in the time direction.
  • a guard interval called a cyclic prefix (CP) is provided at the head of each symbol.
  • the resource block includes a plurality of subcarriers in the frequency direction.
  • a radio resource unit composed of one subcarrier and one symbol is called a resource element (RE).
  • RE resource element
  • frequency resources can be specified by resource blocks, and time resources can be specified by subframes (or slots).
  • the section of the first few symbols of each subframe is a control region mainly used as a physical downlink control channel (PDCCH).
  • the remaining section of each subframe is an area that can be used mainly as a physical downlink shared channel (PDSCH).
  • PDSCH physical downlink shared channel
  • CRS cell-specific reference signals
  • both ends in the frequency direction in each subframe are control regions mainly used as a physical uplink control channel (PUCCH). Further, the central portion in the frequency direction in each subframe is an area that can be used mainly as a physical uplink shared channel (PUSCH). Further, a demodulation reference signal (DMRS) and a sounding reference signal (SRS) are arranged in each subframe.
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • D2D communication Next, normal communication (cellular communication) of the LTE system and D2D communication will be compared and described.
  • FIG. 6 is a diagram showing a data path in cellular communication.
  • a data path means a transfer path of user data (user plane).
  • the data path of cellular communication goes through the network. Specifically, a data path passing through the eNB 200-1, the S-GW 300, and the eNB 200-2 is set.
  • FIG. 7 is a diagram showing a data path in D2D communication. Here, a case where D2D communication is performed between the UE 100-1 that has established a connection with the eNB 200-1 and the UE 100-2 that has established a connection with the eNB 200-2 is illustrated.
  • the D2D communication is started.
  • the UE 100 has a function of discovering another UE 100 existing in the vicinity of the UE 100 (Discover). Further, the UE 100 has a (Discoverable) function that is discovered from other UEs 100.
  • the data path of D2D communication does not go through the network. That is, direct radio communication is performed between UEs.
  • direct radio communication is performed between UEs.
  • the network traffic load and the battery consumption of the UE 100 are reduced by performing D2D communication between the UE 100-1 and the UE 100-2. The effect of doing etc. is acquired.
  • FIG. 8 is an explanatory diagram for explaining the operating environment of the mobile communication system.
  • the UE 100c performs D2D communication with each of the UE 100a, the UE 100b, the UE 100d, and the UE 100f.
  • Each of UE 100a, UE 100b, and UE 100f is a scheduling UE that allocates radio resources used for D2D communication, performs scheduling for its own D2D communication, and transmits a scheduling result indicating the allocated radio resources to UE 100c.
  • the UE 100c Based on the scheduling result received from each UE 100, the UE 100c arbitrates radio resources so that assigned radio resources do not overlap each other.
  • a radio resource allocated from a certain UE 100 for example, UE 100a
  • the UE 100c uses the radio resource as a response to the scheduling result.
  • the fact of acceptance is transmitted to the UE 100a to which the radio resource is assigned.
  • UE100a and UE100c perform D2D communication using the said radio
  • the UE 100c uses the radio resource as a response to the scheduling result.
  • the fact that the use is rejected is transmitted to the UE 100b to which the radio resource is assigned.
  • the UE 100b performs scheduling again in order to change the assigned radio resource.
  • the UE 100c accepts the use of the radio resource as a response to the scheduling result. A message to the effect is transmitted to the UE 100d.
  • the UE 100c is not limited to the method described above, and may arbitrate radio resources by other methods.
  • the UE 100e performs D2D communication with each of the UE 100d and the UE 100g.
  • Each of UE100d and UE100g performs the scheduling for D2D communication, and transmits each scheduling result to UE100e.
  • the UE 100e arbitrates radio resources.
  • UE100i is performing D2D communication with each of UE100g, UE100h, and UE100j.
  • Each of the UE 100g, the UE 100h, and the UE 100j performs scheduling for D2D communication, and transmits each scheduling result to the UE 100i.
  • the UE 100i arbitrates radio resources.
  • the number of scheduling UEs before transmitting a later-described relief notification is 7 (UE 100a, UE 100b, UE 100d, UE 100f, UE 100g, UE 100h, UE 100j).
  • FIG. 9 is an explanatory diagram for explaining an operation outline of the mobile communication system.
  • FIG. 10 is a flowchart illustrating the operation of the eNB 200 according to the embodiment.
  • FIG. 11 is a diagram plotting communication partners with which each UE 100 according to the embodiment is performing D2D communication.
  • FIG. 12 is a diagram in which UEs 100 located around each UE 100 according to the embodiment are plotted.
  • FIG. 13 is an explanatory diagram for describing an example of radio resources specified by the eNB 200 according to the embodiment.
  • FIG. 14 is an explanatory diagram for explaining an operation outline of the mobile communication system.
  • each of the UE 100c, the UE 100e, and the UE 100i transmits a rescue notification based on the overlap of radio resources to the eNB 200.
  • the eNB 200 receives the rescue notification (see step S101 in FIG. 10).
  • the rescue notification is transmitted by the UE 100 based on the overlap of radio resources.
  • each of the UE 100c, the UE 100e, and the UE 100i transmits a rescue notification when, for example, a scheduling result indicating that the use of the allocated radio resource is rejected is transmitted a predetermined number of times or more due to radio resource duplication. .
  • the rescue notification includes an identifier of the UE 100 that transmitted the rescue notification (hereinafter referred to as the rescue UE 100), and an identifier of the UE 100 that is the D2D communication partner of the rescue UE 100 (hereinafter referred to as the communication partner UE 100). Further, the rescue notification may include at least one of an identifier of the UE 100 that is a D2D communication partner of the communication partner UE 100, an identifier of the scheduling UE, and information indicating the scheduling capability of each of the rescue UE 100 and the communication partner UE 100.
  • the UE 100c transmits a rescue notification including the identifiers of the UE 100a, the UE 100b, the UE 100d, and the UE 100f as the identifier of the communication counterpart UE 100 in addition to the identifier of the UE (UE 100c).
  • UE100e transmits the relief notification containing each identifier of UE100d and UE100g as an identifier of communicating party UE100 other than an identifier of itself (UE100e).
  • the UE 100i transmits a rescue notification including the identifiers of the UE 100g, the UE 100h, and the UE 100j as the identifier of the communication counterpart UE 100 in addition to the identifier of the UE (UE 100i).
  • ENB200 performs the process of step S102 of FIG. 10 in response to the reception of the rescue notification.
  • eNB200 may perform the process of step S102, when the relief notification is received from the predetermined number or more user terminals.
  • the eNB 200 confirms whether or not the groups to which the rescue UE 100 belongs exist independently of each other. That is, the eNB 200 confirms whether or not the group exists independently based on the identifier of the rescue UE 100 and the communication partner UE 100 identifier included in the rescue notification received from each UE 100 (UE 100c, UE 100e, and UE 100i). .
  • step S103 when the eNB 200 determines that the groups to which the rescue UE 100 belongs exist independently of each other (in the case of “Yes” in step S103), the eNB 200 ends the operation. On the other hand, when the eNB 200 determines that the groups do not exist independently of each other, that is, a plurality of groups overlap (in the case of “No” in step S103), the eNB 200 executes the process of step S104. .
  • the eNB 200 can grasp the distribution status of the group to which the rescue UE 100 belongs based on the rescue notification.
  • the eNB 200 includes the group to which the UE 100c belongs. It is determined that the group to which the UE 100e belongs overlaps, and the group to which the UE 100e belongs and the group to which the UE 100i belong overlap. Therefore, in the present embodiment, the process of step S104 is executed.
  • the eNB 200 transmits a search request for neighboring UEs 100 to all the UEs 100 belonging to the group.
  • the UE 100 receives the search request.
  • requires transmission of the discovery signal (henceforth a Discovery signal) used for discovery of UE100 as a search request
  • eNB200 may transmit the timing which transmits / receives the allocation information of the radio
  • the UE 100 starts searching for neighboring UEs 100 based on the search request. Specifically, the UE 100 transmits a Discovery signal and receives a Discovery signal from another UE 100. Further, the UE 100 may transmit a Discovery response that is a response to the Discovery signal and receive a Discovery response from another UE 100.
  • the UE100 transmits the reception result of a Discovery signal and / or the reception result of a Discovery response to eNB200 as a search result.
  • the eNB 200 receives the reception result as a search result.
  • the UE 100 may transmit the reception result to the eNB 200 via the rescue UE 100 or the anchor UE.
  • the eNB 200 performs grouping based on the search result so that the number of scheduling UEs is reduced.
  • the eNB 200 includes, from among a plurality of UEs 100 to be grouped, a scheduling UE that assigns radio resources used for D2D communication, a non-scheduling UE to which radio resources are assigned from the scheduling UE, To decide.
  • the scheduling group which consists of scheduling UE and non-scheduling UE is determined.
  • the eNB 200 grasps the UE 100 located in the vicinity of each UE 100 based on the reception result of the Discovery signal of each UE 100 and / or the reception result of the Discovery response.
  • the eNB 200 determines a scheduling UE and a non-scheduling UE so that the number of scheduling UEs is reduced.
  • ENB 200 determines UE 100 having a relatively large number of discovered UEs 100 as a scheduling UE. Moreover, eNB200 determines scheduling UE and non-scheduling UE so that all UE100 may be allocated a radio
  • the eNB 200 when the eNB 200 has received at least one of the identifier of the UE 100 that is the D2D communication partner of the communication partner UE 100, the identifier of the scheduling UE, and information indicating the scheduling capability, And determine non-scheduled UEs. For example, the eNB 200 excludes the UE 100 having no scheduling capability from the scheduling UE candidate targets based on the identifier of the scheduling UE and / or information indicating the scheduling capability. That is, eNB200 determines UE100 which does not have scheduling capability to non-scheduling UE. Moreover, eNB200 determines scheduling UE from UE100 used as the candidate object of scheduling UE.
  • the eNB 200 determines the UE 100b, the UE 100e, and the UE 100i as scheduling UEs. Also, the eNB 200 determines the UE 100a and the UE 100c as non-scheduling UEs belonging to the scheduling group 1 of the UE 100b, determines the UE 100c, UE 100d, UE 100f, and UE 100g as non-scheduling UEs belonging to the scheduling group 2 of the UE 100e, and UE 100g, UE 100h, and UE 100j. Is determined as a non-scheduled UE belonging to the scheduling group 3 of the UE 100i. As a result, the number of scheduling UEs is reduced from 7 to 3.
  • the eNB 200 designates radio resources that can be allocated by the UE 100b, the UE 100e, and the UE 100i so that the radio resources allocated by the UE 100b, the UE 100e, and the UE 100i that are the scheduling UEs do not overlap each other.
  • the eNB 200 designates radio resources (bandwidth allocation) so that the scheduling groups do not overlap each other. Also, the eNB 200 may specify that the designated band allocation used between adjacent scheduling groups is not adjacent only when the scheduling groups are adjacent. Therefore, in the present embodiment, in FIG. 13, the radio resources may be specified so that the scheduling groups 1 and 3 can share the bandwidth allocation of the scheduling groups 1 and 3 in common.
  • eNB200 may determine with the said scheduling group adjoining, and when UE100 which belongs to a scheduling group has discovered UE100 which belongs to another scheduling group
  • the scheduling groups may be determined to be adjacent to each other.
  • step S107 the eNB 200 notifies each UE 100 of the determined scheduling group.
  • the eNB 200 transmits a scheduling UE request for requesting each of the determined scheduling UEs UE 100b, UE 100e, and UE 100i to become a scheduling UE.
  • UE 100b, UE 100e, and UE 100i receives a scheduling UE request.
  • eNB200 may transmit the identifier of other UE100 which can allocate a radio
  • the eNB 200 transmits the identifiers of the UE 100a and the UE 100c to the UE 100b, transmits the identifiers of the UE 100c, the UE 100d, the UE 100f, and the UE 100g to the UE 100e, and the UE 100g, the UE 100h, and the UE 100j to the UE 100i.
  • An identifier may be transmitted.
  • the eNB 200 may transmit the identifier of the UE 100 by unicast in order to inform each UE 100 that has been determined to be non-scheduled of the scheduling UE that allocates radio resources to each UE 100.
  • a list regarding UE 100 and scheduling UE (and non-scheduling UE) belonging to each scheduling group may be broadcast. Further, each scheduling UE may directly inform UE 100 belonging to the same scheduling group that it is a scheduling UE.
  • the eNB 200 transmits the scheduling UE request and the identifier of the scheduling UE for notifying the scheduling UE to the non-scheduling UE to each UE 100 via the rescue UE 100 or the anchor UE without directly transmitting the UE. May be.
  • Each UE 100 that has received the scheduling UE request starts scheduling. Specifically, the scheduling UE allocates radio resources to each UE 100 in the scheduling group to which the scheduling UE belongs. Each UE 100 performs D2D communication using the allocated radio resource.
  • FIG. 15 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the first modification of the present embodiment.
  • FIG. 16 is an explanatory diagram for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the second modification of the present embodiment.
  • 17 and 18 are explanatory diagrams for describing a case where the UE 100 transmits a rescue notification in the operating environment according to the third modification of the present embodiment.
  • Modification 1 In the above-described embodiment, the UE 100 that performs radio resource arbitration transmits a rescue notification. In this modification example, the UE 100 that has detected interference from another D2D communication transmits a rescue notification.
  • UE 100a and UE 100b belonging to scheduling group 1 perform D2D communication
  • UE 100c and UE 100d belonging to scheduling group 2 perform D2D communication.
  • the scheduling group 1 and the D2D communication group 2 are adjacent to each other.
  • the UE 100b is located in the vicinity of the UE 100c.
  • Each UE 100 performs D2D communication using the same frequency band.
  • the radio resource of the nth subframe is allocated to the UE 100a
  • the radio resource of the (n + 1) th subframe is allocated to the UE 100b
  • the radio resource of the nth subframe is allocated to the UE 100c. Is assigned, and the radio resource of the (n + 1) th subframe is assigned to the UE 100d.
  • the radio resource of the nth subframe is common to the UE 100a and the UE 100c
  • the UE 100a transmits data to the UE 100b using the radio resource of the nth subframe
  • Data is transmitted to the UE 100d using the radio resource of the first subframe.
  • the UE 100b cannot receive the data of the UE 100a because the transmission signal from the UE 100c becomes an interference signal.
  • the UE 100b determines that interference from another D2D communication has been detected, and transmits a notification indicating that the interference has been detected to the eNB 200 as a rescue notification.
  • the UE 100b may transmit a rescue notification to the eNB 200 when the interference is detected a predetermined number of times or more.
  • ENB200 transmits a search request
  • the eNB 200 may transmit a search request to the UE 100 located around the UE 100b based on the location information of the UE 100.
  • the UE 100 that has detected the interference from the UE 100 belonging to another scheduling group has transmitted a rescue notification.
  • the UE 100 that detects interference from the UEs 100 belonging to a plurality of scheduling groups transmits a rescue notification.
  • UE 100b belonging to scheduling group 1 is a scheduling UE
  • UE 100a and UE 100c are non-scheduling UEs
  • UE100d which belongs to the scheduling group 2 is a scheduling UE
  • UE100c is a non-scheduling UE.
  • Each UE 100 performs D2D communication using the same frequency band.
  • the UE 100b that is a scheduling UE transmits radio resource allocation information to each of the UE 100a and the UE 100c belonging to the scheduling group 1.
  • Each of the UE 100a and the UE 100c receives the allocation information.
  • the UE 100b transmits allocation information indicating the radio resource of the nth subframe to the UE 100a, and transmits allocation information indicating the radio resource of the (n + 1) th subframe to the UE 100c.
  • step S202 as in step S201, the UE 100d that is the scheduling UE transmits radio resource allocation information to the UE 100c belonging to the scheduling group 2.
  • the UE 100c receives the allocation information.
  • UE100d transmits the allocation information in which the radio
  • the UE 100c decides to perform D2D communication using these radio resources because the radio resources assigned from the UE 100b and the radio resources assigned from the UE 100d do not overlap.
  • step S203 the UE 100a transmits data to the UE 100b using the radio resource of the nth subframe, and at the same time, the UE 100c transmits data to the UE 100d using the radio resource of the nth subframe. Accordingly, the UE 100b cannot receive the data of the UE 100a because the transmission signal from the UE 100c becomes an interference signal. In this case, similarly to the above-described modification example 1, the UE 100b determines that interference from other D2D communication has been detected, and transmits a notification indicating that the interference has been detected to the eNB 200 as a rescue notification.
  • UE 100b belonging to scheduling group 1 is a scheduling UE, and UE 100a and UE 100c are non-scheduling UEs.
  • UE100d which belongs to the scheduling group 2 is a scheduling UE, and UE100c and UE100e are non-scheduling UEs.
  • Each UE 100 performs D2D communication using the same frequency band.
  • the UE 100b that is a scheduling UE transmits radio resource allocation information to each of the UE 100a and the UE 100c belonging to the scheduling group 1.
  • Each of the UE 100a and the UE 100c receives the allocation information.
  • the allocation information includes information on radio resources allocated to other UEs 100 belonging to the scheduling group 1. Accordingly, the UE 100b transmits, to each of the UE 100a and the UE 100c, allocation information indicating the radio resource of the nth subframe allocated to the UE 100a and the radio resource of the (n + 1) th subframe allocated to the UE 100c.
  • step S302 the UE 100d that is a scheduling UE transmits radio resource allocation information to each of the UE 100c and the UE 100e belonging to the scheduling group 2. Each of the UE 100c and the UE 100d receives the allocation information. Similarly to step S301, the UE 100d assigns allocation information indicating the radio resource of the nth subframe allocated to the UE 100c and the radio resource of the (n + 1) th subframe allocated to the UE 100e to each of the UE 100c and the UE 100e. Send to.
  • step S303 the UE 100c arbitrates radio resources based on the allocation information from each of the UE 100b and the UE 100d. Since the radio resource of the nth subframe is allocated to the UE 100a in the scheduling group 1, the UE 100c interferes with the UE 100b when the UE 100c transmits data to the UE 100d using the radio resource of the nth subframe. Is determined to be given. Therefore, the UE 100c determines not to accept the use of the radio resource allocated from the UE 100d.
  • step S304 the UE 100c transmits the allocation information in the scheduling group 1 to the UE 100d together with information indicating that the use of the radio resource allocated from the UE 100d is not accepted.
  • UE100d determines the change of the radio
  • step S305 the UE 100d changes the radio resource allocation, and transmits new radio resource allocation information to the UE 100c and the UE 100e.
  • the UE 100c and the UE 100d receive new radio resource information.
  • UE 100d changes radio resource allocation based on the allocation information in scheduling group 1 received in step S304. For example, when the radio resource of the (n + 1) th subframe is assigned to the UE 100c instead of the nth, the UE 100d determines that it overlaps with the radio resource of the (n + 1) th subframe assigned to the UE 100c in the scheduling group 1. Therefore, the UE 100d allocates the radio resource of the (n + 2) th subframe to the UE 100c, and allocates the radio resource of the (n + 3) th subframe to the UE 100e. UE100d transmits the allocation information in which the radio
  • the UE 100d (scheduling UE) that performs radio resource allocation changes the radio resource allocation in the scheduling group 2 based on the allocation information of the UE 100c (allocation information in the scheduling group 1), as in the first embodiment.
  • a rescue notification may be transmitted to the eNB 200.
  • the UE 100d may transmit a rescue notification to the eNB 200 when the number of radio resource allocation changes exceeds a predetermined number.
  • eNB200 (radio
  • eNB200 (radio
  • eNB200 (control part) determines scheduling UE from several UE100 based on a search result.
  • eNB200 (radio
  • UE100 (radio
  • the UE 100 (control unit) performs control to start searching for neighboring UEs 100 based on the search request.
  • UE100 (radio
  • the UE 100 (radio transceiver 110) receives the scheduling UE request. Thereby, since eNB200 receives the search result of surrounding UE100, it can grasp
  • eNB200 determines non-scheduling UE out of several UE.
  • eNB200 (radio
  • UE100 (radio
  • scheduling UE can grasp
  • the search request is a request for transmitting a Discovery signal.
  • the eNB 200 radio transceiver 210) receives the reception result of the Discovery signal and / or the reception result of the Discovery response as the search result.
  • UE100 (radio
  • eNB200 determines UE100 with relatively many number of discovered UE100 to scheduling UE among several UE100 based on a search result. Thereby, since the number of UE100 to which one scheduling UE allocates a radio
  • the eNB 200 designates radio resources that can be allocated by two or more UEs 100 so that radio resources allocated by the two or more UEs 100 do not overlap each other. To do. Thereby, since radio resources do not overlap between the scheduling groups, the occurrence of interference can be suppressed.
  • the eNB 200 can designate a radio resource to which a wide radio resource area can be allocated by reducing the number of scheduling UEs as compared with a case where the number of scheduling UEs is not reduced.
  • the eNB 200 (control unit) can assign radio resources to which scheduling UEs belonging to adjacent scheduling groups can be allocated so that radio resources allocated between adjacent scheduling groups do not overlap only when the scheduling groups are adjacent to each other. Specify each resource. Thereby, between scheduling groups that are not adjacent to each other, since the possibility of interference occurring is low even if the assigned radio resources overlap, the eNB 200 can specify a common radio resource. Therefore, the eNB 200 can designate a radio resource that can be allocated a wider radio resource region in a scheduling group that is not adjacent.
  • the eNB 200 when the eNB 200 (radio transceiver 210) receives a rescue notification based on duplication of radio resources from the UE 100, the eNB 200 transmits a search request. Moreover, UE100 (radio
  • UE100 radio
  • the rescue notification indicates that the UE 100 has detected interference from other D2D communication.
  • the rescue notification is transmitted when the scheduling UE changes the radio resource allocation based on the radio resource allocation information of the other scheduling UEs.
  • UE100 radio
  • UE100 radio
  • another network device may determine a scheduling UE or the like.
  • a higher-level device for example, MME
  • a server device for determining a scheduling UE may determine the scheduling UE.
  • the eNB 200 transmits a search request using a rescue notification as a trigger, but is not limited thereto.
  • the eNB 200 may transmit a search request when the mode is switched such that the UE 100 performs the radio resource assignment when the eNB 200 such as the eNB 200 performs the radio resource assignment.
  • the eNB 200 may switch the mode so that the UE 100 performs the radio resource assignment after the scheduling UE determined by the eNB 200 starts the radio resource assignment.
  • each UE 100 that has received the scheduling UE request may transmit an acknowledgment or a negative response to the scheduling UE request to the eNB 200.
  • the UE 100 agrees to become a scheduling UE, the UE 100 transmits an affirmative response to the eNB 200, and when it refuses to become a scheduling UE, the UE 100 transmits a negative response to the eNB 200.
  • UE100 which does not have scheduling capability transmits a negative response to eNB200, when a scheduling UE request
  • the eNB 200 that has received the negative response again determines the scheduling UE (see step S106).
  • eNB200 may perform the process of step S107 except transmission of a scheduling UE request
  • the eNB 200 determines a plurality of scheduling UEs, but only one UE 100 may be determined as a scheduling UE.
  • the present invention is not limited to the LTE system, and the present invention may be applied to a system other than the LTE system.
  • the number of scheduling terminals can be reduced and good D2D communication is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

 ネットワーク装置は、複数のユーザ端末に対して、周辺のユーザ端末の探索要求を送信する送信部と、探索要求に基づく周辺のユーザ端末の探索結果を受信する受信部と、探索結果に基づいて、複数のユーザ端末の中から、D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末を決定する制御部と、を備える。送信部は、スケジューリング端末に決定したユーザ端末にスケジューリング端末になることを要求するスケジューリング端末要求を送信する。

Description

ネットワーク装置及びユーザ端末
 本発明は、D2D通信をサポートする移動通信システムにおけるネットワーク装置及びユーザ端末に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)では、リリース12以降の新機能として、端末間(Device to Device:D2D)通信の導入が検討されている(非特許文献1参照)。
 D2D通信では、近接する複数のユーザ端末がネットワークを介さずに直接的な端末間通信を行う。一方、移動通信システムの通常の通信であるセルラ通信では、ユーザ端末がネットワークを介して通信を行う。
 なお、D2D通信に用いられる無線リソースの割り当てを、基地局などのネットワーク装置が主導で行うケースだけでなく、D2D通信を行うユーザ端末が主導で行うケースが想定される。D2D通信を行うユーザ端末自身が無線リソースの割り当てを行うことにより、基地局の負荷を軽減できる。
 ユーザ端末がD2D通信に用いられる無線リソースの割り当てを主導で行う場合において、無線リソースの割り当てを行うユーザ端末(以下、スケジューリング端末と称する)と無線リソースが割り当てられるユーザ端末(以下、非スケジューリング端末と称する)とが属するD2Dグループが複数存在するケースを想定する。この場合、複数のD2Dグループに属してD2D通信を行う非スケジューリング端末は、各D2Dグループに属する各スケジューリング端末からそれぞれ無線リソースを割り当てられる。スケジューリング端末は、一般的に、互いに独立して無線リソースを割り当てるため、当該非スケジューリング端末に割り当てられた無線リソースが重複し、D2D通信に支障を来す虞がある。
 また、非スケジューリング端末が複数のスケジューリング端末から無線リソースを割り当てられない場合であっても、複数のD2Dグループが混在して存在する場合には、複数のスケジューリング端末が割り当てる無線リソースの重複によって、やはりD2D通信に支障を来す虞がある。特に、D2Dグループの数、すなわち、スケジューリング端末の数が多くなるほど、無線リソースが重複する可能性が高くなる。
3GPP技術報告書 「TR 22.803 V12.1.0」 2013年3月
 一実施形態に係るネットワーク装置は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるネットワーク装置である。当該ネットワーク装置は、複数のユーザ端末に対して、周辺のユーザ端末の探索要求を送信する送信部と、前記探索要求に基づく前記周辺のユーザ端末の探索結果を受信する受信部と、前記探索結果に基づいて、前記複数のユーザ端末の中から、前記D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末を決定する制御部と、を備える。前記送信部は、前記スケジューリング端末に決定したユーザ端末に前記スケジューリング端末になることを要求するスケジューリング端末要求を送信する。
図1は、LTEシステムの構成図である。 図2は、UEのブロック図である。 図3は、eNBのブロック図である。 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。 図5は、LTEシステムで使用される無線フレームの構成図である。 図6は、セルラ通信におけるデータパスを示す図である。 図7は、D2D通信におけるデータパスを示す図である。 図8は、移動通信システムの動作概要を説明するための説明図である。 図9は、移動通信システムの動作概要を説明するための説明図である。 図10は、実施形態に係るeNB200の動作を示すフローチャートである。 図11は、実施形態に係る各UE100がD2D通信を行っている通信相手をプロットした図である。 図12は、実施形態に係る各UE100の周辺に位置するUE100をプロットした図である。 図13は、実施形態に係るeNB200が指定する無線リソースの一例を説明するための説明図である。 図14は、移動通信システムの動作概要を説明するための説明図である。 図15は、本実施形態の変更例1に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。 図16は、本実施形態の変更例2に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。 図17は、本実施形態の変更例3に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。 図18は、本実施形態の変更例3に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。
 [実施形態の概要]
 実施形態に係るネットワーク装置は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるネットワーク装置である。当該ネットワーク装置は、複数のユーザ端末に対して、周辺のユーザ端末の探索要求を送信する送信部と、前記探索要求に基づく前記周辺のユーザ端末の探索結果を受信する受信部と、前記探索結果に基づいて、前記複数のユーザ端末の中から、前記D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末を決定する制御部と、を備える。前記送信部は、前記スケジューリング端末に決定したユーザ端末に前記スケジューリング端末になることを要求するスケジューリング端末要求を送信する。
 実施形態に係るネットワーク装置において、前記制御部は、前記複数のユーザ端末の中から、前記スケジューリング端末から前記無線リソースを割り当てられるユーザ端末を決定する。前記送信部は、前記スケジューリング端末要求とともに、前記スケジューリング端末に決定したユーザ端末に前記無線リソースを割り当てられる他のユーザ端末の識別情報を送信する。
 実施形態に係るネットワーク装置において、前記探索要求は、前記ユーザ端末の発見に用いられる発見信号の送信の要求である。前記受信部は、前記探索結果として、前記発見信号の受信結果及び/又は前記発見信号に対する応答の受信結果を受信する。
 実施形態に係るネットワーク装置において、前記制御部は、前記探索結果に基づいて、前記複数のユーザ端末の中から、発見したユーザ端末の数が相対的に多いユーザ端末を前記スケジューリング端末に決定する。
 実施形態に係るネットワーク装置において、前記制御部は、前記スケジューリング端末として2以上のユーザ端末を決定する場合、前記2以上のユーザ端末が割り当てる無線リソースのそれぞれが重複しないように、前記2以上のユーザ端末が割り当て可能な無線リソースをそれぞれ指定する。
 実施形態において、前記2以上のユーザ端末は、第1のユーザ端末と第2のユーザ端末とを含む。前記制御部は、前記第1のユーザ端末及び前記第1のユーザ端末から前記無線リソースを割り当てられるユーザ端末が属する第1のグループと、前記第2のユーザ端末及び前記第2のユーザ端末から前記無線リソースを割り当てられるユーザ端末が属する第2のグループと、が隣接する場合にのみ、前記第1のユーザ端末及び前記第2のユーザ端末が割り当てる無線リソースのそれぞれが重複しないように、前記第1のユーザ端末及び前記第2のユーザ端末が割り当て可能な無線リソースをそれぞれ指定する。
 実施形態に係るネットワーク装置において、前記送信部は、前記複数のユーザ端末のうち、少なくとも1以上のユーザ端末から前記無線リソースの重複に基づく救済通知を前記受信部が受信した場合に、前記探索要求を送信する。
 実施形態において、前記救済通知は、前記少なくとも1以上のユーザ端末が他のD2D通信からの干渉を検知したことを示す。
 実施形態において、前記救済通知は、前記無線リソースの割り当てを行う第1のユーザ端末が、前記第1のユーザ端末と異なる第2のユーザ端末の前記無線リソースの割当情報に基づいて、前記第1のユーザ端末の前記無線リソースの割り当てを変更する場合に送信される。
 実施形態に係るユーザ端末は、直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末である。当該ユーザ端末は、ネットワーク装置から周辺のユーザ端末の探索要求を受信する受信部と、前記探索要求に基づいて前記周辺のユーザ端末の探索を開始する制御を行う制御部と、前記周辺のユーザ端末の探索結果を前記ネットワーク装置に送信する送信部と、を備える。前記受信部は、前記探索結果に基づいて前記D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末として前記ユーザ端末が決定された場合に、前記ユーザ端末が前記スケジューリング端末になることを要求するスケジューリング端末要求を受信する。
 実施形態に係るユーザ端末において、前記受信部は、前記スケジューリング端末要求とともに、前記ユーザ端末に前記無線リソースを割り当てられる他のユーザ端末の識別情報を受信する。
 実施形態において、前記探索要求は、前記ユーザ端末の発見に用いられる発見信号の送信の要求である。前記送信部は、前記探索結果として、前記発見信号の受信結果及び/又は前記発見信号に対する応答の受信結果を前記ネットワーク装置に送信する。
 実施形態に係るユーザ端末において、前記送信部は、前記ユーザ端末のD2D通信のために割り当てられた無線リソースと、他のD2D通信に用いられる無線リソースとの重複があった場合に、前記無線リソースの重複に基づく救済通知を前記ネットワーク装置に送信する。前記受信部は、前記救済通知に基づく前記探索要求を受信する。
 実施形態に係るユーザ端末において、前記送信部は、前記制御部が前記他のD2D通信からの干渉を検知した場合に、前記救済通知を前記ネットワーク装置に送信する。
 [実施形態]
 (LTEシステム)
 図1は、本実施形態に係るLTEシステムの構成図である。
 図1に示すように、LTEシステムは、複数のUE(User Equipment)100と、E-UTRAN(Evolved Universal Terrestrial Radio Access Network)10と、EPC(Evolved Packet Core)20と、を含む。E-UTRAN10及びEPC20は、ネットワークを構成する。
 UE100は、移動型の無線通信装置であり、接続を確立したセル(サービングセル)との無線通信を行う。UE100はユーザ端末に相当する。
 E-UTRAN10は、複数のeNB200(evolved Node-B)を含む。eNB200は基地局に相当する。eNB200は、セルを管理しており、セルとの接続を確立したUE100との無線通信を行う。
 なお、「セル」は、無線通信エリアの最小単位を示す用語として使用される他に、UE100との無線通信を行う機能を示す用語としても使用される。
 eNB200は、例えば、無線リソース管理(RRM)機能と、ユーザデータのルーティング機能と、モビリティ制御及びスケジューリングのための測定制御機能と、を有する。
 EPC20は、MME(Mobility Management Entity)/S-GW(Serving-Gateway)300と、OAM400(Operation and Maintenance)と)を含む。また、EPC20は、コアネットワークに相当する。
 MMEは、UE100に対する各種モビリティ制御等を行うネットワークノードであり、制御局に相当する。S-GWは、ユーザデータの転送制御を行うネットワークノードであり、交換局に相当する。
 eNB200は、X2インターフェイスを介して相互に接続される。また、eNB200は、S1インターフェイスを介してMME/S-GW300と接続される。
 OAM400は、オペレータによって管理されるサーバ装置であり、E-UTRAN10の保守及び監視を行う。
 次に、UE100及びeNB200の構成を説明する。
 図2は、UE100のブロック図である。図2に示すように、UE100は、アンテナ101と、無線送受信機110と、ユーザインターフェイス120と、GNSS(Global Navigation Satellite System)受信機130と、バッテリ140と、メモリ150と、プロセッサ160と、を有する。メモリ150及びプロセッサ160は、制御部を構成する。
 UE100は、GNSS受信機130を有していなくてもよい。また、メモリ150をプロセッサ160と一体化し、このセット(すなわち、チップセット)をプロセッサ160’としてもよい。
 アンテナ101及び無線送受信機110は、無線信号の送受信に用いられる。アンテナ101は、複数のアンテナ素子を含む。無線送受信機110は、プロセッサ160が出力するベースバンド信号を無線信号に変換してアンテナ101から送信する。また、無線送受信機110は、アンテナ101が受信する無線信号をベースバンド信号に変換してプロセッサ160に出力する。
 ユーザインターフェイス120は、UE100を所持するユーザとのインターフェイスであり、例えば、ディスプレイ、マイク、スピーカ、及び各種ボタンなどを含む。ユーザインターフェイス120は、ユーザからの操作を受け付けて、該操作の内容を示す信号をプロセッサ160に出力する。
 GNSS受信機130は、UE100の地理的な位置を示す位置情報を得るために、GNSS信号を受信して、受信した信号をプロセッサ160に出力する。
 バッテリ140は、UE100の各ブロックに供給すべき電力を蓄える。
 メモリ150は、プロセッサ160によって実行されるプログラムと、プロセッサ160による処理に使用される情報と、を記憶する。
 プロセッサ160は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ150に記憶されるプログラムを実行して各種の処理を行うCPU(Central Processing Unit)と、を含む。プロセッサ160は、さらに、音声・映像信号の符号化・復号を行うコーデックを含んでもよい。プロセッサ160は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図3は、eNB200のブロック図である。図3に示すように、eNB200は、アンテナ201と、無線送受信機210と、ネットワークインターフェイス220と、メモリ230と、プロセッサ240と、を有する。メモリ230及びプロセッサ240は、制御部を構成する。なお、メモリ230をプロセッサ240と一体化し、このセット(すなわち、チップセット)をプロセッサ240’としてもよい。
 アンテナ201及び無線送受信機210は、無線信号の送受信に用いられる。アンテナ201は、複数のアンテナ素子を含む。無線送受信機210は、プロセッサ240が出力するベースバンド信号を無線信号に変換してアンテナ201から送信する。また、無線送受信機210は、アンテナ201が受信する無線信号をベースバンド信号に変換してプロセッサ240に出力する。
 ネットワークインターフェイス220は、X2インターフェイスを介して隣接eNB200と接続され、S1インターフェイスを介してMME/S-GW300と接続される。ネットワークインターフェイス220は、X2インターフェイス上で行う通信及びS1インターフェイス上で行う通信に用いられる。
 メモリ230は、プロセッサ240によって実行されるプログラムと、プロセッサ240による処理に使用される情報と、を記憶する。
 プロセッサ240は、ベースバンド信号の変調・復調及び符号化・復号などを行うベースバンドプロセッサと、メモリ230に記憶されるプログラムを実行して各種の処理を行うCPUと、を含む。プロセッサ240は、後述する各種の処理及び各種の通信プロトコルを実行する。
 図4は、LTEシステムにおける無線インターフェイスのプロトコルスタック図である。
 図4に示すように、無線インターフェイスプロトコルは、OSI参照モデルのレイヤ1乃至レイヤ3に区分されており、レイヤ1は物理(PHY)レイヤである。レイヤ2は、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、を含む。レイヤ3は、RRC(Radio Resource Control)レイヤを含む。
 物理レイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。物理レイヤは、物理チャネルを用いて上位レイヤに伝送サービスを提供する。UE100の物理レイヤとeNB200の物理レイヤとの間では、物理チャネルを介してデータが伝送される。
 MACレイヤは、データの優先制御、及びハイブリッドARQ(HARQ)による再送処理などを行う。UE100のMACレイヤとeNB200のMACレイヤとの間では、トランスポートチャネルを介してデータが伝送される。eNB200のMACレイヤは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式など)、及び割り当てリソースブロックを決定するMACスケジューラを含む。
 RLCレイヤは、MACレイヤ及び物理レイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとeNB200のRLCレイヤとの間では、論理チャネルを介してデータが伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 RRCレイヤは、制御プレーンでのみ定義される。UE100のRRCレイヤとeNB200のRRCレイヤとの間では、各種設定のための制御信号(RRCメッセージ)が伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとeNB200のRRCとの間にRRC接続がある場合、UE100は接続状態であり、そうでない場合、UE100はアイドル状態である。
 RRCレイヤの上位に位置するNAS(Non-Access Stratum)レイヤは、セッション管理及びモビリティ管理などを行う。
 図5は、LTEシステムで使用される無線フレームの構成図である。LTEシステムは、下りリンクにはOFDMA(Orthogonal Frequency Division Multiple Access)、上りリンクにはSC-FDMA(Single Carrier Frequency Division Multiple Access)がそれぞれ使用される。
 図5に示すように、無線フレームは、時間方向に並ぶ10個のサブフレームで構成され、各サブフレームは、時間方向に並ぶ2個のスロットで構成される。各サブフレームの長さは1msであり、各スロットの長さは0.5msである。各サブフレームは、周波数方向に複数個のリソースブロック(RB)を含み、時間方向に複数個のシンボルを含む。各シンボルの先頭には、サイクリックプレフィックス(CP)と呼ばれるガード区間が設けられる。リソースブロックは、周波数方向に複数個のサブキャリアを含む。1つのサブキャリア及び1つのシンボルにより構成される無線リソース単位はリソースエレメント(RE)と称される。
 UE100に割り当てられる無線リソースのうち、周波数リソースはリソースブロックにより特定でき、時間リソースはサブフレーム(又はスロット)により特定できる。
 下りリンクにおいて、各サブフレームの先頭数シンボルの区間は、主に物理下りリンク制御チャネル(PDCCH)として使用される制御領域である。また、各サブフレームの残りの区間は、主に物理下りリンク共有チャネル(PDSCH)として使用できる領域である。さらに、各サブフレームには、セル固有参照信号(CRS)が分散して配置される。
 上りリンクにおいて、各サブフレームにおける周波数方向の両端部は、主に物理上りリンク制御チャネル(PUCCH)として使用される制御領域である。また、各サブフレームにおける周波数方向の中央部は、主に物理上りリンク共有チャネル(PUSCH)として使用できる領域である。さらに、各サブフレームには、復調参照信号(DMRS)及びサウンディング参照信号(SRS)が配置される。
 (D2D通信)
 次に、LTEシステムの通常の通信(セルラ通信)とD2D通信とを比較して説明する。
 図6は、セルラ通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でセルラ通信を行う場合を例示している。なお、データパスとは、ユーザデータ(ユーザプレーン)の転送経路を意味する。
 図6に示すように、セルラ通信のデータパスはネットワークを経由する。詳細には、eNB200-1、S-GW300、及びeNB200-2を経由するデータパスが設定される。
 図7は、D2D通信におけるデータパスを示す図である。ここでは、eNB200-1との接続を確立したUE100-1と、eNB200-2との接続を確立したUE100-2と、の間でD2D通信を行う場合を例示している。
 例えば、UE100-1及びUE100-2のうち一方のUE100が、近傍に存在する他方のUE100を発見することで、D2D通信が開始される。なお、D2D通信を開始するために、UE100は、自身の近傍に存在する他のUE100を発見する(Discover)機能を有する。また、UE100は、他のUE100から発見される(Discoverable)機能を有する。
 図7に示すように、D2D通信のデータパスはネットワークを経由しない。すなわち、UE間で直接的な無線通信を行う。このように、UE100-1の近傍にUE100-2が存在するのであれば、UE100-1とUE100-2との間でD2D通信を行うことによって、ネットワークのトラフィック負荷及びUE100のバッテリ消費量を削減するなどの効果が得られる。
 (移動通信システムの動作)
 (1)動作環境
 次に、本実施形態に係る移動通信システムの動作環境について、図8を用いて説明する。図8は、移動通信システムの動作環境を説明するための説明図である。
 図8に示すように、UE100cは、UE100a、UE100b、UE100d及びUE100fのそれぞれとD2D通信を行っている。UE100a、UE100b及びUE100fのそれぞれは、D2D通信に用いられる無線リソースの割り当てを行うスケジューリングUEであり、自身のD2D通信のためのスケジューリングを行い、割り当てた無線リソースを示すスケジューリング結果をUE100cに送信する。UE100cは、各UE100から受信したスケジューリング結果に基づいて、割り当てられた無線リソースが互いに重複しないように、無線リソースの調停を行う。具体的には、UE100cは、あるUE100(例えば、UE100a)から割り当てられた無線リソースが他のUE100から割り当てられた無線リソースと重複していなければ、スケジューリング結果の応答として、当該無線リソースの使用を承諾する旨を、当該無線リソースを割り当てたUE100aに送信する。UE100a及びUE100cは、当該無線リソースを使用してD2D通信を行う。
 一方、UE100cは、あるUE100(例えば、UE100b)から割り当てられた無線リソースが他のUE100(例えば、UE100d)から割り当てられた無線リソースと重複している場合、スケジューリング結果の応答として、当該無線リソースの使用を拒否する旨を、当該無線リソースを割り当てたUE100bに送信する。UE100bは、無線リソースの使用を拒否する旨のスケジューリング結果の応答を受信した場合、割り当てた無線リソースを変更するため、再びスケジューリングを行う。
 UE100cは、UE100bが再スケジューリングを行うことによって、UE100dから割り当てられた無線リソースが他のUE100から割り当てられた無線リソースと重複しなくなった場合、スケジューリング結果の応答として、当該無線リソースの使用を承諾する旨をUE100dに送信する。
 なお、上述の方法に限らず、UE100cは、他の方法によって無線リソースの調停を行ってもよい。
 また、UE100eは、UE100d及びUE100gのそれぞれとD2D通信を行っている。UE100d及びUE100gのそれぞれは、D2D通信のためのスケジューリングを行い、それぞれのスケジューリング結果をUE100eに送信する。UE100eは、上述で説明したように、無線リソースの調停を行う。
 また、UE100iは、UE100g、UE100h及びUE100jのそれぞれとD2D通信を行っている。UE100g、UE100h及びUE100jのそれぞれは、D2D通信のためのスケジューリングを行い、それぞれのスケジューリング結果をUE100iに送信する。UE100iは、上述で説明したように、無線リソースの調停を行う。
 なお、後述の救済通知を送信する前のスケジューリングUEの数は、7(UE100a、UE100b、UE100d、UE100f、UE100g、UE100h、UE100j)である。
 (2)動作概要
 次に、本実施形態に係る移動通信システムの動作概要について、図9から図14を用いて説明する。図9は、移動通信システムの動作概要を説明するための説明図である。図10は、実施形態に係るeNB200の動作を示すフローチャートである。図11は、実施形態に係る各UE100がD2D通信を行っている通信相手をプロットした図である。図12は、実施形態に係る各UE100の周辺に位置するUE100をプロットした図である。図13は、実施形態に係るeNB200が指定する無線リソースの一例を説明するための説明図である。図14は、移動通信システムの動作概要を説明するための説明図である。
 図9に示すように、UE100c、UE100e及びUE100iのそれぞれは、無線リソースの重複に基づく救済通知をeNB200に送信する。eNB200は、救済通知を受信する(図10のステップS101参照)。
 救済通知は、無線リソースの重複に基づいてUE100が送信するものである。本実施形態において、UE100c、UE100e及びUE100iのそれぞれは、例えば、無線リソースの重複によって、割り当てられた無線リソースの使用を拒否する旨のスケジューリング結果を所定回数以上送信した場合に、救済通知を送信する。
 救済通知は、救済通知を送信したUE100(以下、救済UE100と称する)の識別子、及び、救済UE100のD2D通信相手となるUE100(以下、通信相手UE100と称する)の識別子を含む。また、救済通知は、通信相手UE100のD2D通信相手となるUE100の識別子、スケジューリングUEの識別子及び救済UE100及び通信相手UE100それぞれのスケジューリング能力を示す情報の少なくとも1つを含んでもよい。
 本実施形態では、UE100cは、自身(UE100c)の識別子の他に、通信相手UE100の識別子として、UE100a、UE100b、UE100d及びUE100fのそれぞれの識別子を含む救済通知を送信する。UE100eは、自身(UE100e)の識別子の他に、通信相手UE100の識別子として、UE100d及びUE100gのそれぞれの識別子を含む救済通知を送信する。UE100iは、自身(UE100i)の識別子の他に、通信相手UE100の識別子として、UE100g、UE100h及びUE100jのそれぞれの識別子を含む救済通知を送信する。
 eNB200は、救済通知の受信に応じて、図10のステップS102の処理を実行する。なお、eNB200は、所定数以上のユーザ端末から救済通知を受信した場合に、ステップS102の処理を実行してもよい。
 図10に示すように、ステップS102において、eNB200は、救済UE100が属する集団どうしが互いに独立して存在しているか否かを確認する。すなわち、eNB200は、各UE100(UE100c、UE100e及びUE100i)から受信した救済通知に含まれる救済UE100の識別子及び通信相手UE100識別子に基づいて、当該集団が独立して存在しているか否かを確認する。
 ステップS103において、eNB200は、救済UE100が属する集団どうしが互いに独立して存在していると判定した場合(ステップS103の“Yes”の場合)、動作を終了する。一方、eNB200は、当該集団どうしが互いに独立して存在していない、すなわち、複数の集団が重複して存在すると判定した場合(ステップS103の“No”の場合)、ステップS104の処理を実行する。
 図11に示すように、eNB200は、救済通知に基づいて、救済UE100が属する集団の分布状況を把握できる。
 UE100c及びUE100eのそれぞれから受信した救済通知からUE100dが共通し、UE100e及びUE100iのそれぞれから受信した救済通知からUE100gが共通しているため、図11に示すように、eNB200は、UE100cが属する集団とUE100eが属する集団とが重複して存在し、UE100eが属する集団とUE100iが属する集団とが重複して存在すると判定する。従って、本実施形態では、ステップS104の処理を実行する。
 図10に戻り、ステップS104において、eNB200は、集団に属する全てのUE100に対して、周辺のUE100の探索要求を送信する。UE100は、探索要求を受信する。本実施形態において、eNB200は、探索要求として、UE100の発見に用いられる発見信号(以下、Discovery信号を称する)の送信を要求する。
 なお、eNB200は、探索要求とともに、Discovery信号を送信するための無線リソースの割当情報及び/又はDiscovery信号を送受信するタイミングを送信してもよい。また、eNB200は、集団に属する全てのUE100のそれぞれに対して、探索要求を直接送信せずに、救済UE100を介して探索要求を送信してもよいし、eNB200との通信を代表して行うアンカーUEを介して探索要求を送信してもよい。
 UE100は、探索要求に基づいて周辺のUE100の探索を開始する。具体的には、UE100は、Discovery信号の送信及び他のUE100からのDiscovery信号の受信を行う。また、UE100は、Discovery信号に対する応答であるDiscovery応答の送信及び他のUE100からのDiscovery応答の受信を行ってもよい。
 UE100は、探索結果として、Discovery信号の受信結果及び/又はDiscovery応答の受信結果をeNB200に送信する。ステップS105において、eNB200は、探索結果として、当該受信結果を受信する。なお、UE100は、救済UE100又はアンカーUEを介して当該受信結果をeNB200に送信してもよい。
 ステップS106において、eNB200は、探索結果に基づいて、スケジューリングUEの数が低減するように、グループ分けを行う。具体的には、eNB200は、グループ分けの対象となる複数のUE100の中から、D2D通信に用いられる無線リソースの割り当てを行うスケジューリングUEと、当該スケジューリングUEから無線リソースを割り当てられる非スケジューリングUEと、を決定する。これにより、スケジューリングUEと非スケジューリングUEとからなるスケジューリンググループが決定される。
 まず、図12に示すように、eNB200は、各UE100のDiscovery信号の受信結果及び/又はDiscovery応答の受信結果に基づいて、各UE100の周辺に位置するUE100を把握する。
 次に、eNB200は、スケジューリングUEの数が低減するように、スケジューリングUEと非スケジューリングUEとを決定する。
 eNB200は、発見したUE100の数が相対的に多いUE100をスケジューリングUEに決定する。また、eNB200は、全てのUE100が無線リソースを割り当てられるように、スケジューリングUE及び非スケジューリングUEを決定する。
 また、eNB200は、通信相手UE100のD2D通信相手となるUE100の識別子、スケジューリングUEの識別子及びスケジューリング能力を示す情報の少なくとも1つを受信していた場合、これらを総合的に考慮して、スケジューリングUE及び非スケジューリングUEを決定する。例えば、eNB200は、スケジューリングUEの識別子及び/又はスケジューリング能力を示す情報に基づいて、スケジューリング能力を有さないUE100をスケジューリングUEの候補対象から除外する。すなわち、eNB200は、スケジューリング能力を有さないUE100を非スケジューリングUEに決定する。また、eNB200は、スケジューリングUEの候補対象となったUE100の中からスケジューリングUEを決定する。
 本実施形態では、eNB200は、UE100b、UE100e及びUE100iをスケジューリングUEに決定する。また、eNB200は、UE100a及びUE100cをUE100bのスケジューリンググループ1に属する非スケジューリングUEに決定し、UE100c、UE100d、UE100f及びUE100gをUE100eのスケジューリンググループ2に属する非スケジューリングUEに決定し、UE100g、UE100h及びUE100jをUE100iのスケジューリンググループ3に属する非スケジューリングUEに決定する。これにより、スケジューリングUEの数が7から3に低減している。
 次に、eNB200は、スケジューリングUEであるUE100b、UE100e及びUE100iが割り当てる無線リソースのそれぞれが重複しないように、UE100b、UE100e及びUE100iが割り当て可能な無線リソースをそれぞれ指定する。
 図13に示すように、eNB200は、例えば、スケジューリンググループのそれぞれが互いに重複しないように無線リソース(帯域割当)を指定する。また、eNB200は、eNB200は、スケジューリンググループが隣接する場合にのみ、隣接するスケジューリンググループ間において用いられる指定された帯域割当が隣接しないように指定してもよい。従って、本実施形態において、図13において、スケジューリンググループ1及び3の帯域割当をスケジューリンググループ1及び3が共通して割り当て可能に無線リソースを指定してもよい。
 なお、eNB200は、スケジューリンググループに属するUE100が共通する場合に、当該スケジューリンググループどうしが隣接すると判定してもよいし、スケジューリンググループに属するUE100が他のスケジューリンググループに属するUE100を発見していた場合に、当該スケジューリンググループどうしが隣接すると判定してもよい。
 図10に戻り、ステップS107において、eNB200は、決定したスケジューリンググループを各UE100に通知する。
 具体的には、eNB200は、決定したスケジューリングUEであるUE100b、UE100e及びUE100iのそれぞれにスケジューリングUEになることを要求するスケジューリングUE要求を送信する。UE100b、UE100e及びUE100iのそれぞれは、スケジューリングUE要求を受信する。また、eNB200は、スケジューリングUE要求とともに、各スケジューリングUEに無線リソースを割り当てられる他のUE100の識別子を送信してもよい。具体的には、本実施形態では、eNB200は、UE100bに、UE100a及びUE100cの識別子を送信し、UE100eに、UE100c、UE100d、UE100f及びUE100gの識別子を送信し、UE100iに、UE100g、UE100h及びUE100jの識別子を送信してもよい。
 また、図14に示すように、eNB200は、決定した非スケジューリングである各UE100に、各UE100に無線リソースを割り当てるスケジューリングUEを知らせるために、当該UE100の識別子をユニキャストで送信してもよいし、各スケジューリンググループに属するUE100とスケジューリングUE(及び非スケジューリングUE)とに関するリストをブロードキャストしてもよい。また、各スケジューリングUEが、スケジューリングUEであることを同じスケジューリンググループに属するUE100に直接知らせてもよい。
 なお、eNB200は、スケジューリングUE要求、及び、スケジューリングUEを非スケジューリングUEに知らせるためのスケジューリングUEの識別子を、各UE100のそれぞれに対して、直接送信せずに、救済UE100又はアンカーUEを介して送信してもよい。
 スケジューリングUE要求を受信した各UE100は、スケジューリングを開始する。具体的には、スケジューリングUEは、自身の属するスケジューリンググループの各UE100に対して無線リソースの割り当てを行う。各UE100は、割り当てられた無線リソースを用いてD2D通信を行う。
 (実施形態の変更例)
 次に、実施形態の変更例について、図15から図18を用いて説明する。図15は、本実施形態の変更例1に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。図16は、本実施形態の変更例2に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。図17及び図18は、本実施形態の変更例3に係る動作環境において、UE100が救済通知を送信するケースを説明するための説明図である。
 上述した実施形態及び各変更例と異なる部分を中心に説明し、同様の部分は、説明を適宜省略する。
 (1)変更例1
 上述した実施形態では、無線リソースの調停を行うUE100が救済通知を送信していた。本変更例では、他のD2D通信からの干渉を検知したUE100が救済通知を送信する。
 まず、図15に示すように、スケジューリンググループ1に属するUE100aとUE100bとがD2D通信を行い、スケジューリンググループ2に属するUE100cとUE100dとがD2D通信を行っている。また、スケジューリンググループ1とD2D通信グループ2とは隣接している。具体的には、UE100bは、UE100cの近傍に位置している。また、各UE100は、同一の周波数帯域を用いてD2D通信を行っている。
 このような状況において、スケジューリンググループ1において、UE100aにn番目のサブフレームの無線リソースが割り当てられ、UE100bにn+1番目のサブフレームの無線リソースが割り当てられ、且つ、スケジューリンググループ2において、UE100cにn番目のサブフレームの無線リソースが割り当てられ、UE100dにn+1番目のサブフレームの無線リソースが割り当てられと仮定する。
 この場合、n番目のサブフレームの無線リソースは、UE100aとUE100cとで共通しているため、UE100aがn番目のサブフレームの無線リソースを用いてデータをUE100bに送信する場合に、同時にUE100cがn番目のサブフレームの無線リソースを用いてデータをUE100dに送信する。これにより、UE100bは、UE100cからの送信信号が干渉信号となり、UE100aのデータが受信できない。この場合、UE100bは、他のD2D通信からの干渉を検知したと判定して、救済通知として、干渉を検知したことを示す通知をeNB200に送信する。UE100bは、所定回数以上、当該干渉を検知した場合に救済通知をeNB200に送信してもよい。
 eNB200は、救済通知の受信した場合に、D2D通信を行う各UE100に対して探索要求を送信する。eNB200は、UE100の位置情報に基づいて、UE100bの周辺に位置するUE100に対して、探索要求を送信してもよい。
 (2)変更例2
 次に、上述した変更例1では、他のスケジューリンググループに属するUE100からの干渉を検知したUE100が救済通知を送信していた。本変更例では、複数のスケジューリンググループに属するUE100からの干渉を検知したUE100が救済通知を送信する。
 まず、図16に示すように、スケジューリンググループ1に属するUE100bがスケジューリングUEであり、UE100a及びUE100cが非スケジューリングUEである。また、スケジューリンググループ2に属するUE100dがスケジューリングUEであり、UE100cが非スケジューリングUEである。また、各UE100は、同一の周波数帯域を用いてD2D通信を行っている。
 図16に示すように、ステップS201において、スケジューリングUEであるUE100bは、スケジューリンググループ1に属するUE100a及びUE100cのそれぞれに無線リソースの割当情報を送信する。UE100a及びUE100cのそれぞれは、当該割当情報を受信する。UE100bは、UE100aに対して、n番目のサブフレームの無線リソースが示された割当情報を送信し、UE100cに対して、n+1番目のサブフレームの無線リソースが示された割当情報を送信する。
 ステップS202において、ステップS201と同様に、スケジューリングUEであるUE100dは、スケジューリンググループ2に属するUE100cに無線リソースの割当情報を送信する。UE100cは、当該割当情報を受信する。UE100dは、UE100cに対して、n番目のサブフレームの無線リソースが示された割当情報を送信する。
 UE100cは、UE100bから割り当てられた無線リソースとUE100dから割り当てられた無線リソースとが重複していないため、これらの無線リソースを用いてD2D通信を行うことを決定する。
 ステップS203において、UE100aが、n番目のサブフレームの無線リソースを用いてUE100bにデータを送信すると同時に、UE100cが、n番目のサブフレームの無線リソースを用いてデータをUE100dに送信する。これにより、UE100bは、UE100cからの送信信号が干渉信号となり、UE100aのデータが受信できない。この場合、上述の変更例1と同様に、UE100bは、他のD2D通信からの干渉を検知したと判定して、救済通知として、干渉を検知したことを示す通知をeNB200に送信する。
 (3)変更例3
 次に、上述した変更例1及び2では、干渉を検知した場合に、救済通知を送信していた。本変更例では、複数のUE100の間で無線リソースの調停が行われる。
 まず、図17に示すように、スケジューリンググループ1に属するUE100bがスケジューリングUEであり、UE100a及びUE100cが非スケジューリングUEである。また、スケジューリンググループ2に属するUE100dがスケジューリングUEであり、UE100c及びUE100eが非スケジューリングUEである。また、各UE100は、同一の周波数帯域を用いてD2D通信を行っている。
 図17に示すように、ステップS301において、スケジューリングUEであるUE100bは、スケジューリンググループ1に属するUE100a及びUE100cのそれぞれに無線リソースの割当情報を送信する。UE100a及びUE100cのそれぞれは、当該割当情報を受信する。本変更例では、上述の変更例1と異なり、割当情報は、スケジューリンググループ1に属する他のUE100に割り当てられた無線リソースの情報も含む。従って、UE100bは、UE100aに割り当てられたn番目のサブフレームの無線リソースと、UE100cに割り当てられたn+1番目のサブフレームの無線リソースとが示された割当情報をUE100a及びUE100cのそれぞれに送信する。
 ステップS302において、スケジューリングUEであるUE100dは、スケジューリンググループ2に属するUE100c及びUE100eのそれぞれに無線リソースの割当情報を送信する。UE100c及びUE100dのそれぞれは、当該割当情報を受信する。ステップS301と同様に、UE100dは、UE100cに割り当てられたn番目のサブフレームの無線リソースと、UE100eに割り当てられたn+1番目のサブフレームの無線リソースとが示された割当情報をUE100c及びUE100eのそれぞれに送信する。
 ステップS303において、UE100cは、UE100b及びUE100dのそれぞれからの割当情報に基づいて、無線リソースの調停を行う。スケジューリンググループ1においてn番目のサブフレームの無線リソースがUE100aに割り当てられているため、UE100cは、UE100cがn番目のサブフレームの無線リソースを用いてUE100dにデータを送信した場合、UE100bに対して干渉を与えると判定する。従って、UE100cは、UE100dから割り当てられた無線リソースの使用を承諾しないと判定する。
 図18に示すように、ステップS304において、UE100cは、UE100dから割り当てられた無線リソースの使用を承諾しない旨の情報とともに、スケジューリンググループ1における割当情報をUE100dに送信する。
 UE100dは、UE100cからの無線リソースの使用を承諾しない旨の情報に基づいて、UE100cに割り当てた無線リソースの変更を決定する。また、UE100dは、スケジューリンググループ1における割当情報に基づいて、UE100eに割り当てられた無線リソース(サブフレーム♯n+1)が、スケジューリンググループ2におけるUE100cに割り当てられた無線リソース(サブフレーム♯n+1)と重複すると判定する。これにより、UE100dは、UE100eに割り当てた無線リソースの変更を決定する。UE100dは、無線リソースの使用を承諾しない旨の情報を受信していないUE100eに対して、無線リソースの割り当てを取り消すための情報を送信する。
 ステップS305において、UE100dは、無線リソースの割り当てを変更し、新たな無線リソースの割当情報をUE100c及びUE100eに送信する。UE100c及びUE100dは、新たな無線リソース情報を受信する。
 UE100dは、ステップS304において受信したスケジューリンググループ1における割当情報に基づいて、無線リソースの割り当てを変更する。例えば、UE100dは、n番目ではなく、n+1番目のサブフレームの無線リソースをUE100cに割り当てた場合、スケジューリンググループ1におけるUE100cに割り当てられたn+1番目のサブフレームの無線リソースと重複すると判定する。従って、UE100dは、n+2番目のサブフレームの無線リソースをUE100cに割り当て、n+3番目のサブフレームの無線リソースをUE100eに割り当てる。UE100dは、UE100c及びUE100eのそれぞれに割り当てた無線リソースが示された割当情報をUE100c及びUE100eのそれぞれに送信する。 ここで、無線リソースの割り当てを行うUE100d(スケジューリングUE)は、第1実施形態と同様に、UE100cの割り当て情報(スケジューリンググループ1における割当情報)に基づいて、スケジューリンググループ2における無線リソースの割り当てを変更する場合、救済通知をeNB200に送信してもよい。また、UE100dは、無線リソースの割り当ての変更回数が所定回数を超えた場合に、救済通知をeNB200に送信してもよい。
 (実施形態のまとめ)
 本実施形態において、eNB200(無線送受信機210)は、複数のUE100に対して、周辺のUE100の探索要求を送信する。eNB200(無線送受信機210)は、探索要求に基づく周辺のUE100の探索結果を受信する。eNB200(制御部)は、探索結果に基づいて、複数のUE100の中から、スケジューリングUEを決定する。eNB200(無線送受信機210)は、スケジューリングUEに決定したUE100にスケジューリングUE要求を送信する。また、UE100(無線送受信機110)は、eNB200から探索要求を受信する。UE100(制御部)は、探索要求に基づいて周辺のUE100の探索を開始する制御を行う。UE100(無線送受信機110)は、周辺のUE100の探索結果をeNB200に送信する。UE100(無線送受信機110)は、スケジューリングUE要求を受信する。これにより、eNB200は、周辺のUE100の探索結果を受信するため、UE100の分布状況を把握できる。このため、UE100の分布状況に応じて、スケジューリングUEを決定できるため、スケジューリングUEの数を低減可能である。
 また、eNB200(制御部)は、複数のUEの中から、非スケジューリングUEを決定する。eNB200(無線送受信機210)は、スケジューリングUE要求とともにスケジューリングUEに決定したUE100に無線リソースを割り当てられる他のUE100の識別情報を送信する。また、UE100(無線送受信機110)は、スケジューリングUE要求とともに、UE100に無線リソースを割り当てられる他のUE100の識別情報を受信する。これにより、スケジューリングUEは、自身がスケジューリングすべきUE100が把握できるため、無線リソースの割り当てを効率的に行うことが可能である。
 また、探索要求は、Discovery信号の送信の要求である。eNB200(無線送受信機210)は、探索結果として、Discovery信号の受信結果及び/又はDiscovery応答の受信結果を受信する。また、UE100(無線送受信機110)は、探索結果として、Discovery信号の受信結果及び/又はDiscovery応答の受信結果をeNB200に送信する。これにより、周辺のUE100を探索するための新たな信号が規定されなくても、UE100は、周辺のUE100を探索できる。
 また、eNB200(制御部)は、探索結果に基づいて、複数のUE100の中から、発見したUE100の数が相対的に多いUE100をスケジューリングUEに決定する。これにより、1つのスケジューリングUEが無線リソースを割り当てるUE100の数が増えるため、スケジューリングUEの数をより低減できる。
 また、eNB200(制御部)は、スケジューリングUEとして2以上のUE100を決定する場合、2以上のUE100が割り当てる無線リソースのそれぞれが重複しないように、2以上のUE100が割り当て可能な無線リソースをそれぞれ指定する。これにより、各スケジューリンググループの間で、無線リソースが重複しないため、干渉の発生を抑制できる。
 なお、eNB200は、スケジューリングUEの数を低減することによって、スケジューリングUEの数を低減しない場合に比べて、広い無線リソース領域を割り当て可能な無線リソースに指定することが可能である。
 また、eNB200(制御部)は、スケジューリンググループが隣接する場合にのみ、隣接するスケジューリンググループ間において割り当てられる無線リソースが重複しないように、隣接するスケジューリンググループのそれぞれに属する各スケジューリングUEが割り当て可能な無線リソースをそれぞれ指定する。これにより、隣接しないスケジューリンググループ間においては、割り当てられた無線リソースが重複しても干渉が発生する可能性が低いため、eNB200は、共通の無線リソースを指定可能である。従って、eNB200は、隣接しないスケジューリンググループにおいてさらに広い無線リソース領域を割り当て可能な無線リソースに指定することが可能である。
 また、eNB200(無線送受信機210)は、UE100から無線リソースの重複に基づく救済通知を受信した場合に、探索要求を送信する。また、UE100(無線送受信機110)は、UE100のD2D通信のための割り当てられた無線リソースと、他のD2D通信に用いられる無線リソースとの重複があった場合に、救済通知をeNB200に送信する。UE100(無線送受信機110)は、救済通知に基づく探索要求を受信する。これにより、eNB200は、無線リソースの重複がなく、良好なD2D通信が行われている場合に、探索要求を送信することが抑制できる。
 また、UE100(無線送受信機110)は、UE100(制御部)が他のD2D通信からの干渉を検知した場合に、救済通知をeNB200に送信する。また、救済通知は、UE100が他のD2D通信からの干渉を検知したことを示す。これにより、干渉が発生した場合に、救済通知が送信されるため、干渉が発生する前にeNB200がスケジューリングUEを無駄に決定することを抑制できる。
 また、救済通知は、スケジューリングUEが、他のスケジューリングUEの無線リソースの割当情報に基づいて、無線リソースの割り当てを変更する場合に送信される。また、UE100(無線送受信機110)は、他のD2D通信に用いられる無線リソースの割当情報を受信する。UE100(無線送受信機110)は、UE100(制御部)が割当情報に基づいて無線リソースの割り当てを変更する場合に、救済通知をeNB200に送信する。これにより、UE100のスケジューリングが効率的でない場合に、救済通知が送信されるため、UE100のスケジューリングが効率的な場合に、eNB200がスケジューリングUEを無駄に決定することを抑制できる。
 [その他実施形態]
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。
 例えば、上述した実施形態におけるeNB200の代わりに、他のネットワーク装置がスケジューリングUEの決定等を行ってもよい。例えば、eNB200の上位装置(例えば、MME)又はスケジューリングUEを決定するためのサーバ装置が、スケジューリングUEを決定してもよい。
 また、上述した実施形態において、eNB200は、救済通知をトリガとして、探索要求を送信したが、これに限られない。eNB200は、eNB200などのeNB200が主導で無線リソースの割り当てを行っている場合に、UE100が主導で無線リソースの割り当てを行うようにモードを切り替える際に、探索要求を送信してもよい。eNB200は、eNB200が決定したスケジューリングUEが無線リソースの割り当てを開始した後に、UE100が主導で無線リソースの割り当てを行うようにモードを切り替えてもよい。
 また、上述した実施形態において、スケジューリングUE要求を受信した各UE100は、スケジューリングUE要求に対する肯定応答又は否定応答をeNB200に送信してもよい。UE100は、スケジューリングUEになることを承諾する場合、肯定応答をeNB200に送信し、スケジューリングUEになることを拒否する場合、否定応答をeNB200に送信する。例えば、スケジューリング能力を有さないUE100は、スケジューリングUE要求を受信した場合、否定応答をeNB200に送信する。否定応答を受信したeNB200は、改めてスケジューリングUEを決定する(ステップS106参照)。なお、eNB200は、スケジューリングUE要求を送信した全てのUE100から肯定応答を受信してから、スケジューリングUE要求の送信を除くステップS107の処理を行ってもよい。
 また、上述した実施形態において、eNB200は、複数のスケジューリングUEを決定したが、1つのUE100のみをスケジューリングUEに決定してもよい。
 また、上述した実施形態では、本発明をLTEシステムに適用する一例を説明したが、LTEシステムに限定されるものではなく、LTEシステム以外のシステムに本発明を適用してもよい。
 なお、日本国特許出願第2013-174322号(2013年8月26日出願)の全内容が、参照により、本願明細書に組み込まれている。
 本発明に係るネットワーク装置及びユーザ端末によれば、ユーザ端末がD2D通信に用いられる無線リソースの割り当てを主導で行う場合において、スケジューリング端末の数を低減し、良好なD2D通信が可能である。

Claims (15)

  1.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるネットワーク装置であって、
     複数のユーザ端末に対して、周辺のユーザ端末の探索要求を送信する送信部と、
     前記探索要求に基づく前記周辺のユーザ端末の探索結果を受信する受信部と、
     前記探索結果に基づいて、前記複数のユーザ端末の中から、前記D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末を決定する制御部と、を備え、
     前記送信部は、前記スケジューリング端末に決定したユーザ端末に前記スケジューリング端末になることを要求するスケジューリング端末要求を送信することを特徴とするネットワーク装置。
  2.  前記制御部は、前記複数のユーザ端末の中から、前記スケジューリング端末から前記無線リソースを割り当てられるユーザ端末を決定し、
     前記送信部は、前記スケジューリング端末要求とともに、前記スケジューリング端末に決定したユーザ端末に前記無線リソースを割り当てられる他のユーザ端末の識別情報を送信することを特徴とする請求項1に記載のネットワーク装置。
  3.  前記探索要求は、前記ユーザ端末の発見に用いられる発見信号の送信の要求であり、
     前記受信部は、前記探索結果として、前記発見信号の受信結果及び/又は前記発見信号に対する応答の受信結果を受信することを特徴とする請求項1に記載のネットワーク装置。
  4.  前記制御部は、前記探索結果に基づいて、前記複数のユーザ端末の中から、発見したユーザ端末の数が相対的に多いユーザ端末を前記スケジューリング端末に決定することを特徴とする請求項1に記載のネットワーク装置。
  5.  前記制御部は、前記スケジューリング端末として2以上のユーザ端末を決定する場合、前記2以上のユーザ端末が割り当てる無線リソースのそれぞれが重複しないように、前記2以上のユーザ端末が割り当て可能な無線リソースをそれぞれ指定することを特徴とする請求項1に記載のネットワーク装置。
  6.  前記2以上のユーザ端末は、第1のユーザ端末と第2のユーザ端末とを含み、
     前記制御部は、前記第1のユーザ端末及び前記第1のユーザ端末から前記無線リソースを割り当てられるユーザ端末が属する第1のグループと、前記第2のユーザ端末及び前記第2のユーザ端末から前記無線リソースを割り当てられるユーザ端末が属する第2のグループと、が隣接する場合にのみ、前記第1のユーザ端末及び前記第2のユーザ端末が割り当てる無線リソースのそれぞれが重複しないように、前記第1のユーザ端末及び前記第2のユーザ端末が割り当て可能な無線リソースをそれぞれ指定することを特徴とする請求項5に記載のネットワーク装置。
  7.  前記送信部は、前記複数のユーザ端末のうち、少なくとも1以上のユーザ端末から前記無線リソースの重複に基づく救済通知を前記受信部が受信した場合に、前記探索要求を送信することを特徴とする請求項1に記載のネットワーク装置。
  8.  前記救済通知は、前記少なくとも1以上のユーザ端末が他のD2D通信からの干渉を検知したことを示すことを特徴とする請求項7に記載のネットワーク装置。
  9.  前記救済通知は、前記無線リソースの割り当てを行う第1のユーザ端末が、前記第1のユーザ端末と異なる第2のユーザ端末の前記無線リソースの割当情報に基づいて、前記第1のユーザ端末の前記無線リソースの割り当てを変更する場合に送信されることを特徴とする請求項7に記載のネットワーク装置。
  10.  直接的な端末間通信であるD2D通信をサポートする移動通信システムにおけるユーザ端末であって、
     ネットワーク装置から周辺のユーザ端末の探索要求を受信する受信部と、
     前記探索要求に基づいて前記周辺のユーザ端末の探索を開始する制御を行う制御部と、
     前記周辺のユーザ端末の探索結果を前記ネットワーク装置に送信する送信部と、を備え、
     前記受信部は、前記探索結果に基づいて前記D2D通信に用いられる無線リソースの割り当てを行うスケジューリング端末として前記ユーザ端末が決定された場合に、前記ユーザ端末が前記スケジューリング端末になることを要求するスケジューリング端末要求を受信することを特徴とするユーザ端末。
  11.  前記受信部は、前記スケジューリング端末要求とともに、前記ユーザ端末に前記無線リソースを割り当てられる他のユーザ端末の識別情報を受信することを特徴とする請求項10に記載のユーザ端末。
  12.  前記探索要求は、前記ユーザ端末の発見に用いられる発見信号の送信の要求であり、
     前記送信部は、前記探索結果として、前記発見信号の受信結果及び/又は前記発見信号に対する応答の受信結果を前記ネットワーク装置に送信することを特徴とする請求項10に記載のユーザ端末。
  13.  前記送信部は、前記ユーザ端末のD2D通信のために割り当てられた無線リソースと、他のD2D通信に用いられる無線リソースとの重複があった場合に、前記無線リソースの重複に基づく救済通知を前記ネットワーク装置に送信し、
     前記受信部は、前記救済通知に基づく前記探索要求を受信することを特徴とする請求項10に記載のユーザ端末。
  14.  前記送信部は、前記制御部が前記他のD2D通信からの干渉を検知した場合に、前記救済通知を前記ネットワーク装置に送信することを特徴とする請求項13に記載のユーザ端末。
  15.  前記受信部は、前記他のD2D通信に用いられる無線リソースの割当情報を受信し、
     前記送信部は、前記制御部が前記割当情報に基づいて前記ユーザ端末のD2D通信のために割り当てられた前記無線リソースの割り当てを変更する場合に、前記救済通知を前記ネットワーク装置に送信することを特徴とする請求項13に記載のユーザ端末。
PCT/JP2014/072177 2013-08-26 2014-08-25 ネットワーク装置及びユーザ端末 WO2015029952A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/914,241 US9924496B2 (en) 2013-08-26 2014-08-25 Network apparatus and user terminal
JP2015534203A JP6140292B2 (ja) 2013-08-26 2014-08-25 ネットワーク装置及びユーザ端末

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013174322 2013-08-26
JP2013-174322 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029952A1 true WO2015029952A1 (ja) 2015-03-05

Family

ID=52586509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072177 WO2015029952A1 (ja) 2013-08-26 2014-08-25 ネットワーク装置及びユーザ端末

Country Status (3)

Country Link
US (1) US9924496B2 (ja)
JP (1) JP6140292B2 (ja)
WO (1) WO2015029952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213128A1 (ja) * 2019-04-18 2020-10-22 株式会社Nttドコモ 端末及び無線通信方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020075279A1 (ja) * 2018-10-11 2020-04-16 株式会社Nttドコモ ユーザ装置
WO2020140290A1 (zh) * 2019-01-04 2020-07-09 株式会社Ntt都科摩 无线通信方法及设备
US20220225447A1 (en) * 2019-05-13 2022-07-14 Telefonaktiebolaget Lm Ericsson (Publ) Handling of Radio Resource Between Terminal Devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481079B2 (ja) * 2003-06-12 2010-06-16 パナソニック株式会社 Bluetoothマスタ選択方法、Bluetoothマスタ選択プログラムおよびBluetooth装置
WO2010082084A1 (en) * 2009-01-16 2010-07-22 Nokia Corporation Apparatus and method ofscheduling resources for device-to-device communications
CN104113851B (zh) * 2013-04-16 2019-04-16 中兴通讯股份有限公司 一种d2d发现方法及基站、用户设备
WO2014183102A1 (en) * 2013-05-10 2014-11-13 Huawei Technologies Co., Ltd. Systems and methods for scalable device-to-device discovery via device grouping

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "D2D Broadcast communication", 3GPP TSG-RAN WG1 MEETING #74 RL-133031, 10 August 2013 (2013-08-10) *
LG ELECTRONICS: "Resource Management for D2D Communications", 3GPP TSG-RAN WG1 MEETING #74 RL-133791, 17 August 2013 (2013-08-17) *
NOKIA ET AL.: "D2D Communication without network coverage", 3GPP TSG-RAN WG1 MEETING #74 R1- 133495, 10 August 2013 (2013-08-10) *
ZTE: "Discussion on D2D Direct Communication", 3GPP TSG-RAN WG2 MEETING #83 R2-132681, 10 August 2013 (2013-08-10) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213128A1 (ja) * 2019-04-18 2020-10-22 株式会社Nttドコモ 端末及び無線通信方法
CN113692774A (zh) * 2019-04-18 2021-11-23 株式会社Ntt都科摩 终端以及无线通信方法

Also Published As

Publication number Publication date
US20160212730A1 (en) 2016-07-21
JP6140292B2 (ja) 2017-05-31
JPWO2015029952A1 (ja) 2017-03-02
US9924496B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6082153B2 (ja) ユーザ端末、基地局、プロセッサ及び通信制御方法
JP6328132B2 (ja) 移動通信システム及びユーザ端末
JP5826937B2 (ja) 移動通信システム、基地局、ユーザ端末、及びプロセッサ
JP6282705B2 (ja) ユーザ端末、プロセッサ及び通信制御方法
JP6026549B2 (ja) 移動通信システム、基地局及びユーザ端末
WO2014129465A1 (ja) 通信制御方法、ユーザ端末及び基地局
WO2014157398A1 (ja) 通信制御方法及びプロセッサ
US10425881B2 (en) User terminal, network apparatus, and processor
JP6042565B2 (ja) ユーザ端末、プロセッサ及び基地局
JP6615729B2 (ja) 通信方法、ユーザ端末及びプロセッサ
JP6140292B2 (ja) ネットワーク装置及びユーザ端末
JP6302129B1 (ja) 基地局及びプロセッサ
JP6140013B2 (ja) 移動通信システム、ユーザ端末、ネットワーク装置及びプロセッサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534203

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914241

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841042

Country of ref document: EP

Kind code of ref document: A1