WO2015029381A1 - Heat absorbing material using inorganic porous body - Google Patents

Heat absorbing material using inorganic porous body Download PDF

Info

Publication number
WO2015029381A1
WO2015029381A1 PCT/JP2014/004257 JP2014004257W WO2015029381A1 WO 2015029381 A1 WO2015029381 A1 WO 2015029381A1 JP 2014004257 W JP2014004257 W JP 2014004257W WO 2015029381 A1 WO2015029381 A1 WO 2015029381A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
molded body
endothermic
inorganic porous
water
Prior art date
Application number
PCT/JP2014/004257
Other languages
French (fr)
Japanese (ja)
Inventor
中間 茂
晴子 佐々木
晃史 坂本
和樹 山本
大輔 津村
中島 孝
暁生 都竹
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2015029381A1 publication Critical patent/WO2015029381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0406Details thereof
    • H02G3/0412Heat or fire protective means
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details
    • H02G3/04Protective tubing or conduits, e.g. cable ladders or cable troughs
    • H02G3/0437Channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/30Installations of cables or lines on walls, floors or ceilings
    • H02G3/34Installations of cables or lines on walls, floors or ceilings using separate protective tubing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the present invention relates to an endothermic material using an inorganic porous material and a method for producing the same.
  • the endothermic material made of the polymer absorber has no self-supporting property and no retention. Therefore, although it can respond to the construction which is wound around or pasted on the construction site, the construction which is self-supporting on the wall surface or the construction in the space is very difficult. Furthermore, such an endothermic material has to be replaced, and the cost and labor have become enormous.
  • the endothermic material using hydrate has a problem that the cable breaks before the hydrate is decomposed because the decomposition temperature of the hydrate is higher than the heat resistance temperature of the cable.
  • JP 59-102856 A JP-A-61-186256
  • An object of the present invention is to provide a novel endothermic material.
  • the inventors of the present invention have added water with a high heat of vaporization to the inorganic porous molded body, which is excellent as an endothermic material because of its strong endothermic action and high shape retention, and further, water has evaporated. After that, it discovered that it functions as a heat insulating material, and completed this invention.
  • An endothermic material comprising an inorganic porous molded body that has absorbed water.
  • the inorganic porous molded body is a molded body containing one or more inorganic powders selected from calcium silicate, silica, alumina, vermiculite, mica, cement, and pearlite.
  • the endothermic material according to 1 or 2 wherein the inorganic porous molded body is a molded body containing one or more inorganic fibers selected from glass fibers, rock wool, ceramic fibers, and biosoluble inorganic fibers. 4).
  • the resin is a thermoplastic resin.
  • a novel endothermic material can be provided.
  • FIG. 3 is a schematic cross-sectional view showing a fireproof structure manufactured in Example 2.
  • FIG. 3 is a schematic longitudinal sectional view showing a fireproof structure manufactured in Example 2.
  • FIG. 6 is a schematic longitudinal sectional view showing a fireproof structure manufactured in Example 3.
  • FIG. 3 is a schematic cross-sectional view showing a fireproof structure manufactured in Example 2.
  • the endothermic material of the present invention includes an inorganic porous molded body in which water is absorbed (impregnated).
  • the molded body to be used is a self-standing molded body such as a board, for example.
  • Examples of the inorganic porous molded body include a molded body obtained by mixing and processing one or more inorganic powders such as calcium silicate, silica, alumina, vermiculite, mica, pearlite, and cement.
  • the inorganic fiber molded object which mixed and processed 1 type or 2 types or more of inorganic fibers, such as glass fiber, rock wool, a ceramic fiber, and a biosoluble inorganic fiber, is mentioned.
  • biosoluble fibers having high heat resistance can be used.
  • the biosoluble fiber is generally composed of silica and / or alumina as a main component, alkali metal oxide (Na 2 O, K 2 O, etc.), alkaline earth metal oxide (CaO, etc.), magnesia, zirconia, titania. 1 or more selected from. Other oxides can also be included.
  • compositions can be exemplified.
  • Total of SiO 2 , ZrO 2 , Al 2 O 3 and TiO 2 50 wt% to 82 wt% Total of 18% to 50% by weight of alkali metal oxide and alkaline earth metal oxide
  • composition 1 70 to 82% by weight of SiO 2 CaO 1-9% by weight MgO 10-29% by weight Less than 3% by weight of Al 2 O 3
  • composition 2 70 to 82% by weight of SiO 2 CaO 10-29% by weight MgO 1 wt% or less Al than 2 O 3 3% by weight
  • a calcium silicate molded body and a ceramic fiber molded body are particularly preferable, and a calcium silicate molded body is more preferable.
  • a calcium silicate molded body is more preferable.
  • xonotlite 6CaO ⁇ 6SiO 2 ⁇ H 2 O is wollastonite CaSiO 3
  • particularly preferred is a high heat resistance xonotlite. Since the calcium silicate molded body is light and has small pores, water is easily retained uniformly.
  • the inorganic porous molded body can contain an inorganic binder, particles, and the like.
  • a manufacturing method of a calcium silicate molded object it can manufacture by the method of patent document 1,2. Specifically, silica stone, slaked lime or the like is dispersed in water to form a slurry, which is hydrothermally synthesized in a stirring pressure vessel to synthesize secondary particles of calcium silicate hydrate. This slurry can be produced by wet suction dehydration molding.
  • the inorganic fiber molded body can be manufactured by molding an inorganic fiber manufactured by a rotor method, a blowing method, a melt spinning method, or the like using a binder or the like.
  • various fibers, binders, and the like are dispersed in water to form a slurry, and this slurry can be manufactured by wet suction dehydration molding.
  • the density of the inorganic porous molded body is 40 to 400 kg / m 3 for the purpose of being lightweight, containing a large amount of water, and having a strength capable of maintaining good shape retention even after holding water. A degree is preferred. More preferably, it is 80 to 300 kg / m 3 , more preferably 100 to 200 kg / m 3 .
  • the molded body can contain water having a weight of 100 to 400% of the weight of the molded body.
  • the shaped body preferably contains 130-300%, more preferably 150-250% water.
  • the water absorbed by the inorganic porous molded body can contain various additives such as antifreeze, preservative, and pH adjuster. Since water may expand in volume and damage the packing material when frozen, it preferably contains an antifreeze. Also, depending on the environment, the pH of impregnated water may change due to trace elution components from the inorganic porous molded body due to long-term storage, which may alter the inorganic porous molded body, the packing material, and even the water itself. It is preferable that a pH adjuster is contained. The thing to include in water is not restricted to this, It can add as needed.
  • the inorganic porous molded body containing water is preferably packed with a packing material (package).
  • the sealing property of the packing material may be a level that prevents evaporation of water from the water-containing molded body in a normal state.
  • the packing material is damaged by heating, and water is evaporated. At that time, the heat is absorbed by heat of vaporization.
  • the breakage temperature due to heating is preferably the boiling point of water (below). If the boiling point is exceeded, the packing material may explode, and if it is much lower than the boiling point of water, the packing material will be damaged at an early stage, and the water will evaporate, thereby effectively obtaining an endothermic effect. Can not. Therefore, the breakage temperature of the packing material is more preferably 70 ° C to 130 ° C. More preferably, it is 80 ° C to 120 ° C, and still more preferably 90 ° C to 110 ° C. If it breaks at such a temperature, water evaporates along with the breakage, and an endothermic effect can be
  • Metal or resin can be used as a packing material for packing the water-containing inorganic porous molded body.
  • a laminate obtained by laminating a metal and a resin is preferable because of high heat resistance and strength.
  • the laminate of metal and resin is preferably a laminate of three or more layers including a resin layer, a metal layer, and a resin sealant layer.
  • Examples of the metal used include aluminum foil, copper foil, tin foil, nickel foil, stainless steel foil, lead foil, tin-lead alloy foil, bronze foil, silver foil, iridium foil, and phosphor bronze.
  • aluminum foil, copper foil, and nickel foil are preferable, and aluminum foil is more preferable.
  • thermosetting resin or a thermoplastic resin can be used as the resin.
  • examples thereof include polyethylene, polypropylene, polystyrene, nylon, acrylic, epoxy resin, polyurethane, polyether ether ketone, polyethylene terephthalate, polyphenyl sulfide, fluorine, polycarbonate, and aramid.
  • a resin that is broken at a temperature of about 100 ° C. is preferable.
  • the thickness of the packing material is not particularly limited, but is, for example, 5 ⁇ m to 200 ⁇ m.
  • the metal foil can be 3 ⁇ m to 12 ⁇ m, and the resin layer can be 2 ⁇ m to 60 ⁇ m.
  • the packing material may be partially provided with a mechanism and a structure for releasing the pressure in the package generated by heating.
  • a part that lowers the adhesive strength of the film fusion part is provided in a part of the packing material by changing the film type and structure.
  • a hole is made in a part of the film, and a film thinner than the package film is pasted or melt-formed. Thereby, when the pressure in the package rises, the packing material does not swell more than necessary, and the original dimensions can be maintained to some extent.
  • the endothermic material of the present invention can be produced by absorbing water into a porous body and wrapping it with a packing material containing one or two kinds of metal and / or resin.
  • FIG. 1 shows a cross-sectional view of an example of the endothermic material of the present invention.
  • the endothermic material 1 has a packing material 13 for packing the inorganic porous molded body 11 containing water.
  • the packing material is fused at the fusion part 15.
  • the size of the endothermic material is not limited and can be appropriately determined depending on the application.
  • FIG. 1 may be used as it is, or a plurality of endothermic materials shown in FIG. 1 may be connected as shown in FIG.
  • the two or more connected endothermic materials shown in FIG. 2 are convenient because they can be folded and rolled when being carried in a small place. Moreover, it can arrange
  • the endothermic material of the present invention functions as an endothermic material, it becomes an inorganic porous molded body free from water, and also functions as an excellent heat insulating material.
  • the endothermic material of the present invention can be used alone as a heat insulating material, but may be combined with other heat insulating materials. By combining them, a more effective heat insulation structure can be constructed, and strong heat insulation and fire resistance can be exhibited.
  • Example 1 Zonotolite calcium silicate molded product (Keical Ace Super Silica, Nippon Kayal Co., Ltd.) (density 120 kg / m 3 , thermal conductivity at 500 ° C. of 0.114 W / (m ⁇ K) or less) (length 600 mm ⁇ width 300 mm ⁇ thickness) 50 mm) was used. This molded body was cut into a size suitable for use in the examples described later, and water twice as much as the molded body (200% by weight) was included. The resulting water-containing molding is composed of a laminate of nylon (15 ⁇ m), aluminum foil (7 ⁇ m), and linear low-density polyethylene (LLDPE) (40 ⁇ m) from the surface. Got.
  • LLDPE linear low-density polyethylene
  • Example 2 (1) Assembly of fireproof structure Using the endothermic material (thickness 50 mm) manufactured in Example 1 and the following first and second heat insulating materials, the fireproof structure shown in FIGS. Carried out.
  • First heat insulating material Microporous fumed silica molded body (Roslim board GH, NICHIAS Corporation) (800 ° C. thermal conductivity 0.04 W / (m ⁇ K))
  • Second heat insulating material biosoluble fiber blanket (biosoluble fiber composition: about 73 mass% SiO 2 content, about 25 mass% CaO content, about 0.3 mass% MgO content, Al 2 O 3 Content approx. 2% by mass) (Shrinkage rate at 1000 ° C. for 24 hours 0.6%)
  • the procedure for assembling the fireproof structure 400 shown in FIG. 3 is shown below.
  • the step 105 of the cable rack was fixed to a frame attached to the cable rack, and the cable rack 103 was assembled.
  • a case (not shown) containing cables was placed on the stage 105 of the cable rack.
  • the angle of the heat insulating material casing was assembled, the inner metal panel was attached, and a rectangular parallelepiped heat insulating material casing (not shown) in which only the lower surface was released was assembled.
  • a cable rack 103 was installed in the vertical furnace 500, and a heat insulating material casing (not shown) was attached around the cable rack 103.
  • An endothermic material 401 was attached to a metal panel for the inside of the heat insulating material box.
  • One or three layers of the first heat insulating material 405 were attached to the heat absorbing material 401.
  • the second heat insulating material 403 was wound around the first heat insulating material 405.
  • a metal panel (not shown) for the outside of the heat insulating material casing was attached to the outside of the second heat insulating material 403, and the fireproof structure 400 was assembled.
  • FIG. 4 is a schematic longitudinal cross-sectional view of a fireproof structure, and is a figure which shows the installation position of a thermocouple.
  • the thermocouple includes an outer surface of the second heat insulating material (551, 555, and 559 in FIG. 4), a space between the heat absorbing material and the first heat insulating material (555, 557, and 561 in FIG. 4), and an inner surface of the heat absorbing material. (In FIG. 4, 554, 558 and 562).
  • heating was performed for 3 hours with an ISO standard fire resistance curve by a burner, and then allowed to cool for 2 hours.
  • Table 1 shows the measured temperatures (° C.) after 1, 2, 3 and 5 hours at the respective thermocouple installation positions.
  • FIG. 5 is a schematic longitudinal sectional view of the fireproof structure 600 assembled in the third embodiment.
  • the cable rack 103 suspended from the ceiling was used.
  • the cable rack 103 has a plurality of steps, and a case containing the cables 101 is placed on the steps.
  • the heat-absorbing material 601 (thickness 25 mm) manufactured in Example 1 surrounded the periphery of the case containing the cable 101 in the step of the cable rack. Further, the periphery was surrounded by a laminated heat insulating material 603.
  • the laminated heat insulating material 603 is formed by laminating the following third heat insulating material 1 layer (20 mm) and the following second heat insulating material 3 layers (25 mm ⁇ 3) from the inner side where the cable is present, and the entire outside is made of silica cloth. Wrapped. ⁇
  • Third heat insulating material Aerogel / Inorganic fiber composite (Pyrogel, Aspen Co., Ltd.)
  • Second heat insulating material biosoluble fiber blanket (biosoluble fiber composition: about 73 mass% SiO 2 content, about 25 mass% CaO content, about 0.3 mass% MgO content, Al 2 O 3 Content about 2% by mass)
  • thermocouple was installed near the cable 101 outside the laminated heat insulating material 603, between the blanket layers of the laminated heat insulating material 603, between the laminated heat insulating material 603 and the heat absorbing material 601.
  • the mixture was heated on the ISO standard fire resistance curve for 3 hours and then allowed to cool for 2 hours.
  • Table 2 shows the measured temperatures (° C.) after 1, 2, 3 and 5 hours at the respective thermocouple installation positions.
  • the heat-absorbing material of the present invention can be used as a heat-absorbing material used in a place or facility where fire resistance is required, such as a nuclear power plant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Insulation (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Electric Cable Installation (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

Provided is a heat absorbing material (1) which comprises an inorganic porous molded body (11) that has absorbed water.

Description

無機多孔質体を用いた吸熱材Endothermic material using inorganic porous material
 本発明は、無機多孔質体を用いた吸熱材及びその製造方法に関する。 The present invention relates to an endothermic material using an inorganic porous material and a method for producing the same.
 原子力発電所、火力発電所、その他火事等の災害により施設内のケーブルに耐熱性又は耐火性を持たせなければならない施設がある。
 通常、これらのケーブルに吸熱材を被覆することで耐熱性又は耐火性を実現しているが、従来の吸熱材は、加熱された際に、高分子吸収体に水を含ませたもので吸熱させるか、又は水和物に含まれる水分子(結晶水)を用いて吸熱させるかによって吸熱していた(特許文献1,2)。
 しかしながら、従来の吸熱材は、かさ張ること及び重量が重いこと、又はケーブルを敷設した後ではケーブル被覆を行うだけのスペースが狭いことからケーブル被覆の交換が困難であることが問題となっていた。
There are facilities that require heat resistance or fire resistance to cables in facilities due to disasters such as nuclear power plants, thermal power plants, and other fires.
Normally, heat resistance or fire resistance is realized by coating these cables with heat absorbing materials. However, conventional heat absorbing materials are made by adding water to a polymer absorber when heated. Or endothermic using water molecules (crystal water) contained in the hydrate (Patent Documents 1 and 2).
However, the conventional heat-absorbing material has been problematic in that it is difficult to replace the cable covering because it is bulky and heavy, or after the cable is laid, the space for covering the cable is narrow.
 高分子吸収体による吸熱材は高分子吸収体が成形体ではないため、自立性や保形成がなかった。従って施工部位に巻きつけるもしくは貼り付けるような施工には対応できるが、壁面に自立させる施工や空間部への施工は非常に困難であった。さらに、このような吸熱材は交換が必要となり、コストも労力も膨大となってしまっていた。
 水和物を用いた吸熱材は、水和物の分解温度がケーブルの耐熱温度よりも高いため、水和物が分解される前にケーブルが破損してしまうといった問題があった。
Since the polymer absorber is not a molded body, the endothermic material made of the polymer absorber has no self-supporting property and no retention. Therefore, although it can respond to the construction which is wound around or pasted on the construction site, the construction which is self-supporting on the wall surface or the construction in the space is very difficult. Furthermore, such an endothermic material has to be replaced, and the cost and labor have become enormous.
The endothermic material using hydrate has a problem that the cable breaks before the hydrate is decomposed because the decomposition temperature of the hydrate is higher than the heat resistance temperature of the cable.
 そこで、交換不要、狭い場所にも施工可能、軽量、効率的に吸熱する吸熱材が求められていた。
 一方、ゾノトライトケイ酸カルシウム成形体が断熱材として知られている(特許文献1,2)。
Therefore, there has been a demand for an endothermic material that does not require replacement, can be installed in a narrow space, is lightweight, and absorbs heat efficiently.
On the other hand, zonotlite calcium silicate molded bodies are known as heat insulating materials (Patent Documents 1 and 2).
特開昭59-102856号公報JP 59-102856 A 特開昭61-186256号公報JP-A-61-186256
 本発明の目的は、新規な吸熱材を提供することである。 An object of the present invention is to provide a novel endothermic material.
 本発明者らは、鋭意研究の結果、気化熱が高い水を無機多孔質成形体に含水させたものが、吸熱作用が強く保形性が高いため吸熱材として優れ、さらに、水が蒸発した後も断熱材として機能することを見出し、本発明を完成させた。 As a result of diligent research, the inventors of the present invention have added water with a high heat of vaporization to the inorganic porous molded body, which is excellent as an endothermic material because of its strong endothermic action and high shape retention, and further, water has evaporated. After that, it discovered that it functions as a heat insulating material, and completed this invention.
 本発明によれば、以下の吸熱材及びその製造方法が提供される。
1.吸水した無機多孔質成形体からなる吸熱材。
2.前記無機多孔質成形体が、ケイ酸カルシウム、シリカ、アルミナ、バーミキュライト、マイカ、セメント、及びパーライトから選択される1種又は2種以上の無機粉体を含む成形体である1記載の吸熱材。
3.前記無機多孔質成形体が、ガラス繊維、ロックウール、セラミック繊維、及び生体溶解性無機繊維から選択される1種又は2種以上の無機繊維を含む成形体である1又は2記載の吸熱材。
4.前記無機多孔質成形体の密度が、40~400kg/mである1~3のいずれか記載の吸熱材。
5.前記吸水された水が、不凍液、防腐剤、及びpH調整剤から選択される1種又は2種以上の添加剤を含む1~4のいずれか記載の吸熱材。
6.パッキング材により包まれている1~5のいずれか記載の吸熱材。
7.前記パッキング材が、金属箔と樹脂のラミネート体である6記載の吸熱材。
8.前記金属箔が、アルミニウム箔、アルミニウム箔、銅箔、錫箔、ニッケル箔、ステンレス箔、鉛箔、錫鉛合金箔、青銅箔、銀箔、イリジウム箔、又は燐青銅である7記載の吸熱材。
9.前記樹脂が、熱可塑性樹脂である7又は8記載の吸熱材。
10.前記パッキング材が、70℃~130℃で破損する6~9のいずれか記載の吸熱材。
11.無機多孔質成形体に水を吸水させ、パッキング材で包む、吸熱材の製造方法。
According to the present invention, the following endothermic material and method for producing the same are provided.
1. An endothermic material comprising an inorganic porous molded body that has absorbed water.
2. 2. The endothermic material according to 1, wherein the inorganic porous molded body is a molded body containing one or more inorganic powders selected from calcium silicate, silica, alumina, vermiculite, mica, cement, and pearlite.
3. The endothermic material according to 1 or 2, wherein the inorganic porous molded body is a molded body containing one or more inorganic fibers selected from glass fibers, rock wool, ceramic fibers, and biosoluble inorganic fibers.
4). 4. The endothermic material according to any one of 1 to 3, wherein the density of the inorganic porous molded body is 40 to 400 kg / m 3 .
5. 5. The endothermic material according to any one of 1 to 4, wherein the absorbed water contains one or more additives selected from antifreeze, preservative, and pH adjuster.
6). 6. The endothermic material according to any one of 1 to 5, which is wrapped with a packing material.
7). The endothermic material according to 6, wherein the packing material is a laminate of a metal foil and a resin.
8). 8. The endothermic material according to 7, wherein the metal foil is an aluminum foil, aluminum foil, copper foil, tin foil, nickel foil, stainless steel foil, lead foil, tin-lead alloy foil, bronze foil, silver foil, iridium foil, or phosphor bronze.
9. The endothermic material according to 7 or 8, wherein the resin is a thermoplastic resin.
10. The endothermic material according to any one of 6 to 9, wherein the packing material breaks at 70 ° C to 130 ° C.
11. A method for producing an endothermic material, wherein water is absorbed in an inorganic porous molded body and wrapped with a packing material.
 本発明によれば、新規な吸熱材を提供できる。 According to the present invention, a novel endothermic material can be provided.
本発明の一実施形態にかかる吸熱材を示す図である。It is a figure which shows the endothermic material concerning one Embodiment of this invention. 本発明の他の実施形態にかかる吸熱材を示す図である。It is a figure which shows the endothermic material concerning other embodiment of this invention. 実施例2で製造した耐火構造を示す概略横断面図である。3 is a schematic cross-sectional view showing a fireproof structure manufactured in Example 2. FIG. 実施例2で製造した耐火構造を示す概略縦断面図である。3 is a schematic longitudinal sectional view showing a fireproof structure manufactured in Example 2. FIG. 実施例3で製造した耐火構造を示す概略縦断面図である。6 is a schematic longitudinal sectional view showing a fireproof structure manufactured in Example 3. FIG.
 本発明の吸熱材は、水を吸水(含浸)した無機多孔質成形体を含む。
 用いる成形体は、例えば、ボード等の自立成形体である。
The endothermic material of the present invention includes an inorganic porous molded body in which water is absorbed (impregnated).
The molded body to be used is a self-standing molded body such as a board, for example.
 無機多孔質成形体の例としては、ケイ酸カルシウム、シリカ、アルミナ、バーミキュライト、マイカ、パーライト、セメント等の無機粉体等を1種もしくは2種以上混合し加工した成形体が挙げけられる。 Examples of the inorganic porous molded body include a molded body obtained by mixing and processing one or more inorganic powders such as calcium silicate, silica, alumina, vermiculite, mica, pearlite, and cement.
 また、無機多孔質成形体の例としては、ガラス繊維、ロックウール、セラミック繊維、生体溶解性無機繊維等の無機繊維等を1種もしくは2種以上混合し加工した無機繊維成形体が挙げられる。
 セラミック繊維は、主としてシリカとアルミナからなる繊維(シリカ:アルミナ=40:60~0:100)であり、具体的には、シリカ・アルミナ繊維、ムライト繊維、アルミナ繊維を用いることができる。
Moreover, as an example of an inorganic porous molded object, the inorganic fiber molded object which mixed and processed 1 type or 2 types or more of inorganic fibers, such as glass fiber, rock wool, a ceramic fiber, and a biosoluble inorganic fiber, is mentioned.
The ceramic fibers are fibers mainly composed of silica and alumina (silica: alumina = 40: 60 to 0: 100), and specifically, silica / alumina fibers, mullite fibers, and alumina fibers can be used.
 また、作業者の健康上の安全性を考慮して、耐熱性の高い生体溶解性繊維を用いることができる。
 生体溶解性繊維は、一般に、主成分として、シリカ及び/又はアルミナに、アルカリ金属酸化物(NaO,KO等)、アルカリ土類金属酸化物(CaO等)、マグネシア、ジルコニア、チタニアから選択される1以上を含む。他の酸化物も含むことができる。
Moreover, in view of the health safety of the worker, biosoluble fibers having high heat resistance can be used.
The biosoluble fiber is generally composed of silica and / or alumina as a main component, alkali metal oxide (Na 2 O, K 2 O, etc.), alkaline earth metal oxide (CaO, etc.), magnesia, zirconia, titania. 1 or more selected from. Other oxides can also be included.
 例えば、以下の組成が例示できる。
 SiOとZrOとAlとTiOとの合計 50重量%~82重量%
 アルカリ金属酸化物とアルカリ土類金属酸化物との合計 18重量%~50重量%
For example, the following compositions can be exemplified.
Total of SiO 2 , ZrO 2 , Al 2 O 3 and TiO 2 50 wt% to 82 wt%
Total of 18% to 50% by weight of alkali metal oxide and alkaline earth metal oxide
 より具体的には、以下の組成1又は組成2が例示できる。
[組成1]
 SiO  70~82重量%
 CaO   1~9重量%
 MgO   10~29重量%
 Al 3重量%未満
[組成2]
 SiO  70~82重量%
 CaO   10~29重量%
 MgO   1重量%以下
 Al 3重量%未満
More specifically, the following composition 1 or composition 2 can be illustrated.
[Composition 1]
70 to 82% by weight of SiO 2
CaO 1-9% by weight
MgO 10-29% by weight
Less than 3% by weight of Al 2 O 3 [Composition 2]
70 to 82% by weight of SiO 2
CaO 10-29% by weight
MgO 1 wt% or less Al than 2 O 3 3% by weight
 無機多孔質成形体としては、特に、ケイ酸カルシウム成形体、セラミック繊維成形体が好ましく、ケイ酸カルシウム成形体がより好ましい。ケイ酸カルシウムの種類の中では、ゾノトライト6CaO・6SiO・HO、トバモライト5CaO・6SiO・5HO、ワラストナイトCaSiOが好ましく、特に好ましいのは耐熱性が高いゾノトライトである。ケイ酸カルシウム成形体は軽く細孔が小さいため水が均一に保水され易い。 As the inorganic porous molded body, a calcium silicate molded body and a ceramic fiber molded body are particularly preferable, and a calcium silicate molded body is more preferable. Among the kinds of calcium silicate, xonotlite 6CaO · 6SiO 2 · H 2 O , tobermorite 5CaO · 6SiO 2 · 5H 2 O , is wollastonite CaSiO 3 Preferably, particularly preferred is a high heat resistance xonotlite. Since the calcium silicate molded body is light and has small pores, water is easily retained uniformly.
 無機多孔質成形体は、上記の他に、無機バインダー、粒子等を含むことができる。 In addition to the above, the inorganic porous molded body can contain an inorganic binder, particles, and the like.
 ケイ酸カルシウム成形体の製造方法としては、特許文献1,2に記載の方法で製造できる。具体的には、珪石や消石灰等を水中に分散させスラリーとし、攪拌式圧力容器で水熱合成し、ケイ酸カルシウム水和物の2次粒子を合成する。このスラリーを湿式吸引脱水成形し製造できる。 As a manufacturing method of a calcium silicate molded object, it can manufacture by the method of patent document 1,2. Specifically, silica stone, slaked lime or the like is dispersed in water to form a slurry, which is hydrothermally synthesized in a stirring pressure vessel to synthesize secondary particles of calcium silicate hydrate. This slurry can be produced by wet suction dehydration molding.
 また、無機繊維成形体は、ローター法及びブローイング法、溶融紡糸法等により製造された無機繊維をバインダー等を用いて成形して製造することができる。具体的には、各種繊維やバインダー等を水中に分散させスラリーとし、このスラリーを湿式吸引脱水成形して製造できる。 In addition, the inorganic fiber molded body can be manufactured by molding an inorganic fiber manufactured by a rotor method, a blowing method, a melt spinning method, or the like using a binder or the like. Specifically, various fibers, binders, and the like are dispersed in water to form a slurry, and this slurry can be manufactured by wet suction dehydration molding.
 軽量であること、多量の水を含ませること、及び水を保持した後でも良好な保形性を維持できる強度を有することを目的として、無機多孔質成形体の密度は40~400kg/m程度のものが好ましい。さらに好ましくは80~300kg/m、より好ましくは100~200kg/mである。 The density of the inorganic porous molded body is 40 to 400 kg / m 3 for the purpose of being lightweight, containing a large amount of water, and having a strength capable of maintaining good shape retention even after holding water. A degree is preferred. More preferably, it is 80 to 300 kg / m 3 , more preferably 100 to 200 kg / m 3 .
 成形体は、成形体の重量の100~400%の重量の水を含むことができる。成形体は、好ましくは130~300%、より好ましくは150~250%の水を含む。 The molded body can contain water having a weight of 100 to 400% of the weight of the molded body. The shaped body preferably contains 130-300%, more preferably 150-250% water.
 無機多孔質成形体に吸水させる水には、不凍液、防腐剤、pH調整剤等の各種添加剤を含むことができる。
 水は、凍結すると体積が膨張してパッキング材を破損する恐れがあるため、不凍液を含むと好ましい。また、環境によっては長期保存により無機多孔質成形体からの微量溶出成分等により、含浸水のpHが変化し、無機多孔質成形体やパッキング材さらには水自体を変質させたりする恐れがあるため、pH調整剤を含むと好ましい。水に含めるものはこれに限られず、必要に応じて追加することができる。
The water absorbed by the inorganic porous molded body can contain various additives such as antifreeze, preservative, and pH adjuster.
Since water may expand in volume and damage the packing material when frozen, it preferably contains an antifreeze. Also, depending on the environment, the pH of impregnated water may change due to trace elution components from the inorganic porous molded body due to long-term storage, which may alter the inorganic porous molded body, the packing material, and even the water itself. It is preferable that a pH adjuster is contained. The thing to include in water is not restricted to this, It can add as needed.
 含水した無機多孔質成形体は、パッキング材(パッケージ)によりパッキングされていることが好ましい。
 パッキング材の密封性は、常態で、含水成形体からの水の蒸発を防ぐ程度でよい。加熱によりパッキング材は破損し、水が蒸発し、その際、気化熱により吸熱する。
 加熱による破損温度は、水の沸点(以下)であることが好ましい。沸点以上だと、パッキング材が爆発してしまうおそれがあり、水の沸点よりもかなり低いと早い段階でパッキング材が破損し、水が蒸発してしまうことで効率的に吸熱効果を得ることができない。したがって、パッキング材の破損温度は、70℃~130℃がより好ましい。より好ましくは、80℃~120℃、さらに好ましくは、90℃~110℃である。このような温度で破損すれば、破損と共に水が蒸発し、吸熱作用を発揮できる。
The inorganic porous molded body containing water is preferably packed with a packing material (package).
The sealing property of the packing material may be a level that prevents evaporation of water from the water-containing molded body in a normal state. The packing material is damaged by heating, and water is evaporated. At that time, the heat is absorbed by heat of vaporization.
The breakage temperature due to heating is preferably the boiling point of water (below). If the boiling point is exceeded, the packing material may explode, and if it is much lower than the boiling point of water, the packing material will be damaged at an early stage, and the water will evaporate, thereby effectively obtaining an endothermic effect. Can not. Therefore, the breakage temperature of the packing material is more preferably 70 ° C to 130 ° C. More preferably, it is 80 ° C to 120 ° C, and still more preferably 90 ° C to 110 ° C. If it breaks at such a temperature, water evaporates along with the breakage, and an endothermic effect can be exhibited.
 含水した無機多孔質成形体をパックするパッキング材としては、金属、樹脂を用いることができる。金属と樹脂を積層したラミネートしたものが、耐熱性および強度が高いため好ましい。金属と樹脂のラミネート体としては、樹脂層、金属層、樹脂シーラント層を含む3層以上のラミネート体が好ましい。 Metal or resin can be used as a packing material for packing the water-containing inorganic porous molded body. A laminate obtained by laminating a metal and a resin is preferable because of high heat resistance and strength. The laminate of metal and resin is preferably a laminate of three or more layers including a resin layer, a metal layer, and a resin sealant layer.
 用いられる金属としては、アルミニウム箔、銅箔、錫箔、ニッケル箔、ステンレス箔、鉛箔、錫鉛合金箔、青銅箔、銀箔、イリジウム箔、燐青銅等が挙げられる。特に、アルミニウム箔、銅箔、ニッケル箔が好ましく、さらに好ましくはアルミニウム箔である。 Examples of the metal used include aluminum foil, copper foil, tin foil, nickel foil, stainless steel foil, lead foil, tin-lead alloy foil, bronze foil, silver foil, iridium foil, and phosphor bronze. In particular, aluminum foil, copper foil, and nickel foil are preferable, and aluminum foil is more preferable.
 樹脂として、熱硬化性樹脂又は熱可塑性樹脂を用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、アクリル、エポキシ樹脂、ポリウレタン、ポリエーテルエーテルケトン、ポリエチレンテレフタレート、ポリフェニルサイファイド、フッ素、ポリカーボネート、アラミド等が挙げられる。これらのうち100℃前後の温度で破損される樹脂が好ましい。 As the resin, a thermosetting resin or a thermoplastic resin can be used. Examples thereof include polyethylene, polypropylene, polystyrene, nylon, acrylic, epoxy resin, polyurethane, polyether ether ketone, polyethylene terephthalate, polyphenyl sulfide, fluorine, polycarbonate, and aramid. Of these, a resin that is broken at a temperature of about 100 ° C. is preferable.
 パッキング材の厚みは特に限定されないが、例えば5μm~200μmである。上記の積層体の場合、金属箔を3μm~12μm、樹脂層を2μm~60μmとできる。これにより、金属箔の耐熱性、耐火性及び低水蒸気透過性を発揮させるとともに、樹脂により密封性を向上させることができる。 The thickness of the packing material is not particularly limited, but is, for example, 5 μm to 200 μm. In the case of the above laminate, the metal foil can be 3 μm to 12 μm, and the resin layer can be 2 μm to 60 μm. Thereby, while exhibiting the heat resistance of a metal foil, fire resistance, and low water vapor permeability, sealing property can be improved with resin.
 また、パッキング材は加熱により発生するパッケージ内圧力を逃がす機構及び構造を部分的に設けてもよい。例えば、パッキング材の一部にフィルム種類や構造を変えてフィルム融着部の接着力を低くする部位を設ける。又はフィルムの一部に穴を開けて、そこにパッケージフィルムより厚さの薄いフィルムを貼ったり溶融形成したりする。これにより、パッケージ内圧力が上昇した際に、パッキング材が必要以上に膨らまず、原寸法をある程度維持することが可能である。 Further, the packing material may be partially provided with a mechanism and a structure for releasing the pressure in the package generated by heating. For example, a part that lowers the adhesive strength of the film fusion part is provided in a part of the packing material by changing the film type and structure. Alternatively, a hole is made in a part of the film, and a film thinner than the package film is pasted or melt-formed. Thereby, when the pressure in the package rises, the packing material does not swell more than necessary, and the original dimensions can be maintained to some extent.
 本発明の吸熱材は、多孔質体に水を吸水させ、金属及び/又は樹脂の1種又は2種を含むパッキング材で包んで製造できる。 The endothermic material of the present invention can be produced by absorbing water into a porous body and wrapping it with a packing material containing one or two kinds of metal and / or resin.
 図1に本発明の吸熱材の一例の断面図を示す。吸熱材1は、含水した無機多孔質成形体11をパックするパッキング材13を有する。図1の吸熱材1において、パッキング材は融着部15で融着している。吸熱材の大きさは限定されず、用途により適宜定められる。 FIG. 1 shows a cross-sectional view of an example of the endothermic material of the present invention. The endothermic material 1 has a packing material 13 for packing the inorganic porous molded body 11 containing water. In the endothermic material 1 of FIG. 1, the packing material is fused at the fusion part 15. The size of the endothermic material is not limited and can be appropriately determined depending on the application.
 図1に示すような吸熱材をそのまま使用してもよいし、図2に示すように、図1に示す吸熱材を複数連結してもよい。図2に示す複数連結した吸熱材は、狭い場所に持ち運ぶとき、畳んだり丸めたりして運べるため便利である。また、対象物の形状に合わせて、配置できる。 1 may be used as it is, or a plurality of endothermic materials shown in FIG. 1 may be connected as shown in FIG. The two or more connected endothermic materials shown in FIG. 2 are convenient because they can be folded and rolled when being carried in a small place. Moreover, it can arrange | position according to the shape of a target object.
 本発明の吸熱材は、吸熱材として機能した後は、水が無くなった無機多孔質成形体となり、優れた断熱材としても機能する。
 本発明の吸熱材は、それだけで断熱材として利用できるが、他の断熱材と組み合わせてもよい。組み合わせることにより、さらに効果的な断熱構造を構成でき、強力な断熱性及び耐火性を発揮できる。
After the endothermic material of the present invention functions as an endothermic material, it becomes an inorganic porous molded body free from water, and also functions as an excellent heat insulating material.
The endothermic material of the present invention can be used alone as a heat insulating material, but may be combined with other heat insulating materials. By combining them, a more effective heat insulation structure can be constructed, and strong heat insulation and fire resistance can be exhibited.
実施例1
 ゾノトライトケイ酸カルシウム成形体(ケイカルエース・スーパーシリカ、日本ケイカル株式会社)(密度120kg/m、500℃の熱伝導率0.114W/(m・K)以下)(縦600mm×横300mm×厚み50mm)を用いた。
 この成形体を後述する実施例に用いるのに適した大きさに切断して、成形体の2倍(200重量%)の水を含ませた。
 得られた含水成形を、表面よりナイロン(15μm)、アルミ箔(7μm)、リニアローデンシティポリエチレン(LLDPE)(40μm)の積層体で構成されラミネートフィルムを脱気・ヒートシールで密封して吸熱材を得た。
Example 1
Zonotolite calcium silicate molded product (Keical Ace Super Silica, Nippon Kayal Co., Ltd.) (density 120 kg / m 3 , thermal conductivity at 500 ° C. of 0.114 W / (m · K) or less) (length 600 mm × width 300 mm × thickness) 50 mm) was used.
This molded body was cut into a size suitable for use in the examples described later, and water twice as much as the molded body (200% by weight) was included.
The resulting water-containing molding is composed of a laminate of nylon (15 μm), aluminum foil (7 μm), and linear low-density polyethylene (LLDPE) (40 μm) from the surface. Got.
実施例2
(1)耐火構造の組み立て
 実施例1で製造した吸熱材(厚み50mm)、及び以下の第1及び第2の断熱材を用いて、図3,4に示す耐火構造を組み立てて、耐火試験を実施した。
・第1の断熱材:微孔性ヒュームドシリカ成形体(ロスリムボードGH、ニチアス(株))(800℃の熱伝導率0.04W/(m・K))
・第2の断熱材:生体溶解性繊維ブランケット(生体溶解性繊維組成:SiO含有量約73質量%、CaO含有量約25質量%、MgO含有量約0.3質量%、Al含有量約2質量%)(1000℃24時間の収縮率0.6%)
Example 2
(1) Assembly of fireproof structure Using the endothermic material (thickness 50 mm) manufactured in Example 1 and the following first and second heat insulating materials, the fireproof structure shown in FIGS. Carried out.
First heat insulating material: Microporous fumed silica molded body (Roslim board GH, NICHIAS Corporation) (800 ° C. thermal conductivity 0.04 W / (m · K))
Second heat insulating material: biosoluble fiber blanket (biosoluble fiber composition: about 73 mass% SiO 2 content, about 25 mass% CaO content, about 0.3 mass% MgO content, Al 2 O 3 Content approx. 2% by mass) (Shrinkage rate at 1000 ° C. for 24 hours 0.6%)
 図3に示す耐火構造400の組み立て手順を以下に示す。
 ケーブルラックの段105を、ケーブルラック付属の架台に固定し、ケーブルラック103を組み立てた。ケーブルラックの段105に、ケーブルが入ったケース(図示せず)を載せた。
 断熱材ケーシングのアングルを組み、内側用金属パネルを取り付け、下面のみが解放された直方体状の断熱材ケーシング(図示せず)を組み立てた。
 縦型炉500中に、ケーブルラック103を設置し、ケーブルラック103を囲んで断熱材ケーシング(図示せず)を取り付けた。
The procedure for assembling the fireproof structure 400 shown in FIG. 3 is shown below.
The step 105 of the cable rack was fixed to a frame attached to the cable rack, and the cable rack 103 was assembled. A case (not shown) containing cables was placed on the stage 105 of the cable rack.
The angle of the heat insulating material casing was assembled, the inner metal panel was attached, and a rectangular parallelepiped heat insulating material casing (not shown) in which only the lower surface was released was assembled.
A cable rack 103 was installed in the vertical furnace 500, and a heat insulating material casing (not shown) was attached around the cable rack 103.
 断熱材ボックスの内側用の金属パネルに、吸熱材401を貼り付けた。
 吸熱材401に第1の断熱材405を1又は3層貼り付けた。
 第1の断熱材405に第2の断熱材403を巻き付けた。
 第2の断熱材403の外側に、断熱材ケーシングの外側用の金属パネル(図示せず)を取り付け、耐火構造400を組み立てた。
An endothermic material 401 was attached to a metal panel for the inside of the heat insulating material box.
One or three layers of the first heat insulating material 405 were attached to the heat absorbing material 401.
The second heat insulating material 403 was wound around the first heat insulating material 405.
A metal panel (not shown) for the outside of the heat insulating material casing was attached to the outside of the second heat insulating material 403, and the fireproof structure 400 was assembled.
(2)耐火構造の評価
 図4は、耐火構造の概略縦断面図であり、熱電対の設置位置を示す図である。
 熱電対は、第2の断熱材の外面(図4中、551、555及び559)、吸熱材と第1の断熱材の間(図4中、553、557及び561)、及び吸熱材の内面(図4中、554、558及び562)に設置した。
 縦型炉500において、バーナーにより、ISO標準耐火曲線で3時間加熱を行った後、2時間放冷した。それぞれの熱電対の設置位置における、1,2,3及び5時間後の測定温度(℃)を、表1に示す。
(2) Evaluation of fireproof structure FIG. 4 is a schematic longitudinal cross-sectional view of a fireproof structure, and is a figure which shows the installation position of a thermocouple.
The thermocouple includes an outer surface of the second heat insulating material (551, 555, and 559 in FIG. 4), a space between the heat absorbing material and the first heat insulating material (555, 557, and 561 in FIG. 4), and an inner surface of the heat absorbing material. (In FIG. 4, 554, 558 and 562).
In the vertical furnace 500, heating was performed for 3 hours with an ISO standard fire resistance curve by a burner, and then allowed to cool for 2 hours. Table 1 shows the measured temperatures (° C.) after 1, 2, 3 and 5 hours at the respective thermocouple installation positions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例3
(1)耐火構造の組み立て
 図5は、実施例3で組み立てた耐火構造600の概略縦断面図である。
 実施例3では、天井から吊り下げられたケーブルラック103を用いた。ケーブルラック103は、複数の段を有し、ケーブル101が入ったケースを段に載せた。
 実施例1で製造した吸熱材601(厚み25mm)で、ケーブルラックの段に有るケーブル101が入ったケースの周囲を囲んだ。さらに、その周囲を、積層断熱材603で囲った。積層断熱材603は、ケーブルのある内側から、以下の第3の断熱材1層(20mm)、及び以下の第2の断熱材3層(25mm×3)を積層し、外側全体をシリカクロスで包んだものである。
・第3の断熱材:エアロゲル・無機繊維複合材(パイロジェル、アスペン(株))
・第2の断熱材:生体溶解性繊維ブランケット(生体溶解性繊維組成:SiO含有量約73質量%、CaO含有量約25質量%、MgO含有量約0.3質量%、Al含有量約2質量%)
Example 3
(1) Assembly of fireproof structure FIG. 5 is a schematic longitudinal sectional view of the fireproof structure 600 assembled in the third embodiment.
In Example 3, the cable rack 103 suspended from the ceiling was used. The cable rack 103 has a plurality of steps, and a case containing the cables 101 is placed on the steps.
The heat-absorbing material 601 (thickness 25 mm) manufactured in Example 1 surrounded the periphery of the case containing the cable 101 in the step of the cable rack. Further, the periphery was surrounded by a laminated heat insulating material 603. The laminated heat insulating material 603 is formed by laminating the following third heat insulating material 1 layer (20 mm) and the following second heat insulating material 3 layers (25 mm × 3) from the inner side where the cable is present, and the entire outside is made of silica cloth. Wrapped.
・ Third heat insulating material: Aerogel / Inorganic fiber composite (Pyrogel, Aspen Co., Ltd.)
Second heat insulating material: biosoluble fiber blanket (biosoluble fiber composition: about 73 mass% SiO 2 content, about 25 mass% CaO content, about 0.3 mass% MgO content, Al 2 O 3 Content about 2% by mass)
(2)耐火構造の評価
 熱電対を、積層断熱材603の外側、積層断熱材603のブランケット層の間、積層断熱材603と吸熱材601の間、ケーブル101の付近に設置した。
 実施例2と同様に、ISO標準耐火曲線で3時間加熱を行った後、2時間放冷した。それぞれの熱電対の設置位置における、1,2,3及び5時間後の測定温度(℃)を、表2に示す。
(2) Evaluation of fireproof structure A thermocouple was installed near the cable 101 outside the laminated heat insulating material 603, between the blanket layers of the laminated heat insulating material 603, between the laminated heat insulating material 603 and the heat absorbing material 601.
In the same manner as in Example 2, the mixture was heated on the ISO standard fire resistance curve for 3 hours and then allowed to cool for 2 hours. Table 2 shows the measured temperatures (° C.) after 1, 2, 3 and 5 hours at the respective thermocouple installation positions.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の吸熱材は、原子力発電所等、耐火性が求められる場所又は設備に用いる吸熱材として使用できる。 The heat-absorbing material of the present invention can be used as a heat-absorbing material used in a place or facility where fire resistance is required, such as a nuclear power plant.
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Although several embodiments and / or examples of the present invention have been described in detail above, those skilled in the art will appreciate that these exemplary embodiments and / or embodiments are substantially without departing from the novel teachings and advantages of the present invention. It is easy to make many changes to the embodiment. Accordingly, many of these modifications are within the scope of the present invention.
The contents of the documents described in this specification and the specification of the Japanese application that is the basis of Paris priority of the present application are all incorporated herein.

Claims (11)

  1.  吸水した無機多孔質成形体からなる吸熱材。 An endothermic material composed of an inorganic porous molded body that has absorbed water.
  2.  前記無機多孔質成形体が、ケイ酸カルシウム、シリカ、アルミナ、バーミキュライト、マイカ、セメント、及びパーライトから選択される1種又は2種以上の無機粉体を含む成形体である請求項1記載の吸熱材。 The endothermic structure according to claim 1, wherein the inorganic porous molded body is a molded body containing one or more inorganic powders selected from calcium silicate, silica, alumina, vermiculite, mica, cement, and pearlite. Wood.
  3.  前記無機多孔質成形体が、ガラス繊維、ロックウール、セラミック繊維、及び生体溶解性無機繊維から選択される1種又は2種以上の無機繊維を含む成形体である請求項1又は2記載の吸熱材。 The heat absorption according to claim 1 or 2, wherein the inorganic porous molded body is a molded body including one or more inorganic fibers selected from glass fibers, rock wool, ceramic fibers, and biosoluble inorganic fibers. Wood.
  4.  前記無機多孔質成形体の密度が、40~400kg/mである請求項1~3のいずれか記載の吸熱材。 The endothermic material according to any one of claims 1 to 3, wherein the density of the inorganic porous molded body is 40 to 400 kg / m 3 .
  5.  前記水が、不凍液、防腐剤、及びpH調整剤から選択される1種又は2種以上の添加剤を含む請求項1~4のいずれか記載の吸熱材。 The endothermic material according to any one of claims 1 to 4, wherein the water contains one or more additives selected from antifreeze, preservative, and pH adjuster.
  6.  パッキング材により包まれている請求項1~5のいずれか記載の吸熱材。 The endothermic material according to any one of claims 1 to 5, which is wrapped with a packing material.
  7.  前記パッキング材が、金属箔と樹脂のラミネート体である請求項6記載の吸熱材。 The endothermic material according to claim 6, wherein the packing material is a laminate of metal foil and resin.
  8.  前記金属箔が、アルミニウム箔、アルミニウム箔、銅箔、錫箔、ニッケル箔、ステンレス箔、鉛箔、錫鉛合金箔、青銅箔、銀箔、イリジウム箔、又は燐青銅である請求項7記載の吸熱材。 The heat absorbing material according to claim 7, wherein the metal foil is an aluminum foil, an aluminum foil, a copper foil, a tin foil, a nickel foil, a stainless steel foil, a lead foil, a tin-lead alloy foil, a bronze foil, a silver foil, an iridium foil, or phosphor bronze. .
  9.  前記樹脂が、熱可塑性樹脂である請求項7又は8記載の吸熱材。 The heat absorbing material according to claim 7 or 8, wherein the resin is a thermoplastic resin.
  10.  前記パッキング材が、70℃~130℃で破損する請求項6~9のいずれか記載の吸熱材。 The endothermic material according to any one of claims 6 to 9, wherein the packing material is damaged at 70 ° C to 130 ° C.
  11.  無機多孔質成形体に水を吸水させ、パッキング材で包む、吸熱材の製造方法。 A method for producing an endothermic material, in which water is absorbed in an inorganic porous molded body and wrapped with a packing material.
PCT/JP2014/004257 2013-09-02 2014-08-20 Heat absorbing material using inorganic porous body WO2015029381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-180923 2013-09-02
JP2013180923A JP5905861B2 (en) 2013-09-02 2013-09-02 Endothermic material using inorganic porous material

Publications (1)

Publication Number Publication Date
WO2015029381A1 true WO2015029381A1 (en) 2015-03-05

Family

ID=52585973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004257 WO2015029381A1 (en) 2013-09-02 2014-08-20 Heat absorbing material using inorganic porous body

Country Status (2)

Country Link
JP (1) JP5905861B2 (en)
WO (1) WO2015029381A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863917B1 (en) * 2014-09-22 2016-02-17 ニチアス株式会社 Refractory structure and method of use
JP2016166503A (en) * 2015-03-10 2016-09-15 清水建設株式会社 Fire door
CN108175974A (en) * 2017-12-01 2018-06-19 国家电网公司 Blasting type cable run extinguishing device
CN110047620A (en) * 2019-05-22 2019-07-23 卢文杰 Composite fireproof cable
CN111386627A (en) * 2017-11-30 2020-07-07 三菱化学株式会社 Partition member and battery pack
CN111386628A (en) * 2017-11-30 2020-07-07 三菱化学株式会社 Partition member and battery pack

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331489B2 (en) * 2014-03-05 2018-05-30 中国電力株式会社 Fireproof structure of cables in nuclear power plants.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432246B2 (en) * 1976-09-06 1979-10-13
JPS635400U (en) * 1986-06-27 1988-01-14
JPH03130219U (en) * 1990-12-04 1991-12-27
JPH09192162A (en) * 1996-01-19 1997-07-29 Doukai Kagaku Kogyo Kk Cold insulator component
JPH09192158A (en) * 1996-01-19 1997-07-29 Oumi Kogyo Kk Pack for heat/cold insulation
JP2000102557A (en) * 1998-09-29 2000-04-11 Dokai Chemical Industries Co Ltd Cold accumulating tool
JP2008302050A (en) * 2007-06-08 2008-12-18 K-Wan:Kk Cold insulator and cold insulating device using cold insulator
JP2009057811A (en) * 2007-08-30 2009-03-19 Sukeshiro Hori Water retentive, cold reserving and heat insulating panel optimal for heat reservation on rooftop

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432246B2 (en) * 1976-09-06 1979-10-13
JPS635400U (en) * 1986-06-27 1988-01-14
JPH03130219U (en) * 1990-12-04 1991-12-27
JPH09192162A (en) * 1996-01-19 1997-07-29 Doukai Kagaku Kogyo Kk Cold insulator component
JPH09192158A (en) * 1996-01-19 1997-07-29 Oumi Kogyo Kk Pack for heat/cold insulation
JP2000102557A (en) * 1998-09-29 2000-04-11 Dokai Chemical Industries Co Ltd Cold accumulating tool
JP2008302050A (en) * 2007-06-08 2008-12-18 K-Wan:Kk Cold insulator and cold insulating device using cold insulator
JP2009057811A (en) * 2007-08-30 2009-03-19 Sukeshiro Hori Water retentive, cold reserving and heat insulating panel optimal for heat reservation on rooftop

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5863917B1 (en) * 2014-09-22 2016-02-17 ニチアス株式会社 Refractory structure and method of use
JP2016166503A (en) * 2015-03-10 2016-09-15 清水建設株式会社 Fire door
CN111386627A (en) * 2017-11-30 2020-07-07 三菱化学株式会社 Partition member and battery pack
CN111386628A (en) * 2017-11-30 2020-07-07 三菱化学株式会社 Partition member and battery pack
CN111386628B (en) * 2017-11-30 2023-10-24 三菱化学株式会社 Separator and battery pack
CN108175974A (en) * 2017-12-01 2018-06-19 国家电网公司 Blasting type cable run extinguishing device
CN110047620A (en) * 2019-05-22 2019-07-23 卢文杰 Composite fireproof cable

Also Published As

Publication number Publication date
JP5905861B2 (en) 2016-04-20
JP2015048405A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
WO2015029381A1 (en) Heat absorbing material using inorganic porous body
TWI671389B (en) Refractory structure and method of use thereof
RU2009130470A (en) FIREPROOF FILM LAMINATE
JP6355790B1 (en) Fireproof insulation sheet
KR101618352B1 (en) Heat resistant thermal storage materials using paraffin phase change materials and preparation method thereof
CN107988851A (en) Soluble ceramic fiber plate and preparation method thereof
Peng et al. Structure, mechanism, and application of vacuum insulation panels in Chinese buildings
HRP920665A2 (en) Vacuum insulation panel with asymmetric structure
JP6276231B2 (en) Fire and heat insulation system and fire and heat insulation sheet using the same
JP5890943B2 (en) Endothermic material using magnesium phosphate hydrate
CN208602016U (en) A kind of high performance silicon aeroge insulation quilt
US9984794B1 (en) Refractory insulating sheet
JP2007016806A (en) Vacuum heat insulating material
JP6684261B2 (en) Laminated heat insulating material and manufacturing method thereof
EP2990554B1 (en) Internal insulation element
Berardi et al. Aerogel-enhanced blankets: state-of-the-art, market readiness, and future challenges
JP7163330B2 (en) LAMINATED INSULATION MATERIAL AND METHOD FOR MANUFACTURING THE SAME
JP2005344871A (en) Vacuum heat insulating material and production system of vacuum heat insulating material
Shatat et al. The state of the art: Superinsulation construction materials under the UK’s domestic energy building: Aerogel and vacuum insulation technology applications
RU2269166C1 (en) Device for thermal and mechanical protection of object
JP4997353B2 (en) Thermal insulation structure
JP2017129237A (en) Vacuum heat insulating material, device using vacuum heat insulating material, and manufacturing method of core material
CN104653893A (en) Ventilating duct resistant to high temperature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840013

Country of ref document: EP

Kind code of ref document: A1