HRP920665A2 - Vacuum insulation panel with asymmetric structure - Google Patents

Vacuum insulation panel with asymmetric structure Download PDF

Info

Publication number
HRP920665A2
HRP920665A2 HR920665A HRP920665A HRP920665A2 HR P920665 A2 HRP920665 A2 HR P920665A2 HR 920665 A HR920665 A HR 920665A HR P920665 A HRP920665 A HR P920665A HR P920665 A2 HRP920665 A2 HR P920665A2
Authority
HR
Croatia
Prior art keywords
fibrous material
mixtures
powdery
metal
relative humidity
Prior art date
Application number
HR920665A
Other languages
Croatian (hr)
Inventor
Roland Reuter
Gerhard Sextl
Hans Strack
Original Assignee
Degussa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from YU58591A external-priority patent/YU47395B/en
Application filed by Degussa filed Critical Degussa
Publication of HRP920665A2 publication Critical patent/HRP920665A2/en
Publication of HRP920665B1 publication Critical patent/HRP920665B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Thermal Insulation (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Building Environments (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Mouldings, preferably in the form of boards, for use as thermal insulation are produced from a) a finely divided, pulverulent or fibrous substance which has a water absorbtion capacity of from 4 to 50% by weight at 23 DEG C and a relative humidity of 85%, b) a covering comprising two parts having an asymmetrical structure which contains this finely divided, pulverulent or fibrous substance, the first part of the covering being metal-free and being hollowed (thermoformed) in such a manner that this hollow is completely filled by the moulding, preferably in the form of a board, and the second part ("lid") optionally being metal-free or metal-containing and planar and being connected to the hollow in such a manner that a gas- and water vapour-tight seal is ensured, and the two parts having water vapour permeabilities of between 0 and 0.2 g/m<2>/d at 23 DEG C and a relative humidity of 85% and having gas permeabilities for N2, O2 and CO2 of in total 0 to 0.5 cm<3>/m<2>/d/bar at 23 DEG C, with the property of absorbing water up to an amount of from 2 to 15% by weight without its thermal conductivity simultaneously being impaired by more than 25%.

Description

Izum se odnosi na oblikovani dio, prvenstveno u obliku ploče, za primjenu kao toplinske izolacije kao i na postupak za njenu proizvodnju. The invention relates to a molded part, primarily in the form of a plate, for use as thermal insulation, as well as to the process for its production.

Poznata je proizvodnja toplinski izolacijskih ploča ili ravnih toplinskih izolacijskih ploča ili ravnih toplinskih izolacijskih tijela na osnovi istaložene silicijeve kiseline koja degazira i koje imaju jedan višeslojni oblog. The production of thermal insulation panels or flat thermal insulation panels or flat thermal insulation bodies based on precipitated silicic acid which degasses and which have a single multi-layer coating is known.

Tako patentni spisi EP-A 0 190 582 kao i EP-A 0 254 993 opisuju jedan omotač od veznih folija, koje dodatno sadrže i jednu metalnu foliju npr. od aluminija. Ove folije moraju biti nepropusne za zrak i vodu. Thus, the patent documents EP-A 0 190 582 as well as EP-A 0 254 993 describe an envelope made of bonding foils, which additionally contain a metal foil, for example, made of aluminum. These foils must be impermeable to air and water.

Patentni spis EP-B 0 164 006 opisuje toplinske izolacijske ploče koje sadrže fino raspodijeljene metalne okside koji degaziraju. Materijal za omotač može biti i jedna vezna folija slijedećeg redoslijeda slojeva: termoplastični materijal/metalna folija/termoplastični materijal. Patent document EP-B 0 164 006 describes thermal insulation panels containing finely divided metal oxides that degas. The sheathing material can also be one bonding foil in the following order of layers: thermoplastic material/metal foil/thermoplastic material.

Japanski patentni spis Sho 62-207 777 (12.09.1987.) opisuje toplinski izolacijske elemente koji se proizvode tako da se u jednu posudu od toplinski oplemenjenog sintetičkog laminata usipa perlit ili drugi laki porozni materijal, a unutrašnjost te posude se degazira. Japanese patent file Sho 62-207 777 (September 12, 1987) describes thermal insulation elements that are produced by pouring perlite or other light porous material into a container made of thermally refined synthetic laminate, and the interior of that container is degassed.

Toplinski oplemenjeni toplinski-izolacijski elementi sastoje se od sintetičkog laminata debljine 25 µm, čija propusnost vodene pare je 1,0 g/m2/d pri 38°C i 90% relativne vlage, a propusnost kisika je 2,0 cm3/m2/d pri 23°C i 90% relativne vlage. Laminati se sastoje od vinilidenklorid-vinilklorid kopolimera, na kojeg je bar s jedne strane nanesen aluminijski sloj debljine između 100 i 1000Å. Primjenjuje se najmanje jedan laminatni sloj. The thermally refined heat-insulating elements consist of a synthetic laminate with a thickness of 25 µm, the water vapor permeability of which is 1.0 g/m2/d at 38°C and 90% relative humidity, and the oxygen permeability is 2.0 cm3/m2/d at 23°C and 90% relative humidity. Laminates consist of vinylidene chloride-vinyl chloride copolymer, on which at least one side has an aluminum layer between 100 and 1000Å thick. At least one laminate layer is applied.

Poznata primjena veznih folija s metalnim slojevima ima tu lošu osobinu da se toplina može odvoditi paralelno s površinom folije. Kod primjene kao izolacijskih materijala to dovodi do stvaranja neželjenih toplinskih mostova na rubovima toplinski izolacijskog tijela između hladne i tople strane. The known application of bonding foils with metal layers has the disadvantage that heat can be dissipated parallel to the foil surface. When used as insulating materials, this leads to the creation of unwanted thermal bridges at the edges of the thermally insulating body between the cold and warm sides.

S ovim povezan negativan utjecaj na ukupnu toplinsku vodljivost nekog toplinski izolacijskog tijela nije obuhvaćen mjerenjima toplinske vodljivosti prema apsolutnom postupku s jednom pločom metodom zaštitnog prstena prema Kohlrauschu (F. Kohlausch: Praktična fizika, svezak 1, 22. izdanje, B.G. Tauberner Verlag, Stuttgart, 1968., strana 375). The associated negative influence on the overall thermal conductivity of a thermally insulating body is not covered by thermal conductivity measurements according to the absolute single-plate method of the protective ring method according to Kohlrausch (F. Kohlausch: Practical Physics, Volume 1, 22nd edition, B.G. Tauberner Verlag, Stuttgart, 1968, page 375).

Toplinski izolacijsko tijelo izrađeno prema patentnu EP-A 0 190 582, uz primjenu jedne folije koja sadrži metal, ima, mjereno prema gore navedenom postupku, pri 23°C, toplinsku vodljivost od 8 mW/m·K. Ako se izabere način mjerenja bez zaštitnog prstena, onda toplinska vodljivost raste djelomice do znatno viših vrijednosti, ovisno o geometriji oblikovanog komada i njegovoj veličini kao i o debljini metalnog sloja u foliji omotača. The thermal insulation body made according to patent EP-A 0 190 582, with the use of one foil containing metal, has, measured according to the above procedure, at 23°C, a thermal conductivity of 8 mW/m·K. If the measurement method is chosen without a protective ring, then the thermal conductivity increases partly to significantly higher values, depending on the geometry of the shaped piece and its size, as well as on the thickness of the metal layer in the sheath foil.

Dakle, izolacijski učinak cjelokupnog toplinski izolacijskog tijela odlučujuće ovisi o tome dali folija omotača primijenjena pri proizvodnji sadrži metal ili ne. Therefore, the insulating effect of the entire thermally insulating body decisively depends on whether the covering film used during production contains metal or not.

Iz starijih patentnih prijava DE-OS 39 15 170 i DE-OS 40 08 490.9 poznati su oblikovani komadi za primjenu u toplinskoj izolaciji, koji se sastoje od jednog fino raspodijeljenog praškastog odnosno vlaknastog materijala koji pri 23°C i 85% relativne vlage ima kapacitet upijanja vode od 4 do 50% tež. i jednog nemetalnog omotača koji omata ovaj fino raspodijeljeni praškasti odnosno vlaknasti materijal i pri tome pokazuje propusnost vodene pare od 0,1 do 0,5 g/m2/d odnosno 0,02 do 0,1 g/m2/d pri 23°C i 85% relativne vlage i propusnost za plinove od 0,1 do 0,5 cm3/m2/d/bar odnosno za plinove N2, O2 i CO2 u iznosu od 0,05 do 0,5 cm3/m2/d/bar pri 23°C. From the older patent applications DE-OS 39 15 170 and DE-OS 40 08 490.9, shaped pieces for use in thermal insulation are known, which consist of a finely divided powdery or fibrous material which at 23°C and 85% relative humidity has a capacity water absorption from 4 to 50% by weight. and one non-metallic sheath that wraps this finely divided powdery or fibrous material and shows a water vapor permeability of 0.1 to 0.5 g/m2/d or 0.02 to 0.1 g/m2/d at 23°C and 85% relative humidity and permeability for gases from 0.1 to 0.5 cm3/m2/d/bar, i.e. for gases N2, O2 and CO2 in the amount of 0.05 to 0.5 cm3/m2/d/bar at 23°C.

Ovi poznati oblikovani komadi mogu, pod navedenim uvjetima, zadržati svoju nisku toplinsku vodljivost samo tijekom 3 godine, odnosno tijekom 7,2 godine. These known shaped pieces can, under the stated conditions, retain their low thermal conductivity for only 3 years, i.e. 7.2 years.

Prilikom ugradnje u rashladne uređaje potrebno je međutim da toplinski izolacijska tijela svoju nisku toplinsku vodljivost zadrže i u jednom dužem vremenskom periodu. When installing in cooling devices, however, it is necessary that the heat insulating bodies retain their low thermal conductivity for a longer period of time.

Stoga je postavljen zadatak da se proizvede toplinski izolacijsko tijelo koje će imati dulji vijek trajanja i dalje, kod kojeg se zbog metalnih sastavnih dijelova ili obloge neće stvarati toplinski mostovi na rubovima toplinski izolacijskog tijela između hladne i tople strane. Therefore, the task was set to produce a heat insulating body that will have a longer service life and beyond, in which, due to metal components or lining, thermal bridges will not be created on the edges of the heat insulating body between the cold and warm side.

Predmet izuma je oblikovan komad, prvenstveno u obliku ploče, za primjenu kao toplinski izolator, a koji je proizveden od: The subject of the invention is a shaped piece, primarily in the form of a plate, for use as a heat insulator, which is produced from:

a) fino razdijeljenog praškastog odnosno vlaknastog materijala čiji kapacitet upijanja vode je pri 23°C i 85% relativne vlage od 4 do 50% tež., a) finely divided powdery or fibrous material whose water absorption capacity at 23°C and 85% relative humidity is from 4 to 50% by weight,

b) jednog omotača iz dva dijela, asimetrične strukture, koji sadrži ovaj fino razdijeljeni praškasti odnosno vlaknasti materijal, pri čemu prvi dio omotača je bez metala i tako duboko izvučen (prešan) da je ovo korito potpuno ispunjeno s prvenstveno pločastim oblikovanim komadom, a drugi dio (“poklopac”) je bez metala ili sadrži metal i može biti ravan i s koritom je vezan tako da je osiguran završetak koji je nepropustan za plin i vodu, pri čemu oba dijela imaju propusnost vodene pare između 0 i 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost za plinove N2, O2 i CO2 u iznosu od 0 do 0,5 cm3/m2/d/bar pri 23°C, b) one shell from two parts, asymmetrical structure, which contains this finely divided powdery or fibrous material, whereby the first part of the shell is metal-free and so deeply drawn (pressed) that this trough is completely filled with a primarily plate-shaped piece, and the second part (the "cap") is metal-free or metal-containing and may be flat and bonded to the trough to provide a gas- and water-tight finish, both parts having a water vapor permeability between 0 and 0.2 g/m2 /d at 23°C and 85% relative humidity and permeability for N2, O2 and CO2 gases in the amount of 0 to 0.5 cm3/m2/d/bar at 23°C,

s tom osobinom da upija vodu u količini od 2 do 15% tež., a da pri tome ne pogoršava svoju toplinsku vodljivost za više od 25%. with the property of absorbing water in the amount of 2 to 15% by weight, without deteriorating its thermal conductivity by more than 25%.

Omotač asimetrične strukture ima tu prednost što se kao pokrivna folija (drugi dio omotača) može primijeniti i ravna folija koja sadrži metal, pri čemu se kod ravnih folija ne pojavljuju toplinski mostovi, a ima vrlo nisku propusnost za vodenu paru, između 0 i 0,2 g/m2/d pri 23°C i 85% relativne vlage i neznatnu propusnost za plinove N2, O2 i CO2 u iznosu od 0 do 0,5 cm3/m2/d/bar pri 23°C, tako da se trajnost toplinski izolacionog tijela može znatno produžiti. The asymmetric structure jacket has the advantage that a flat foil containing metal can also be used as a covering film (the second part of the jacket), whereby thermal bridges do not appear with flat films, and it has a very low water vapor permeability, between 0 and 0, 2 g/m2/d at 23°C and 85% relative humidity and slight permeability for N2, O2 and CO2 gases in the amount of 0 to 0.5 cm3/m2/d/bar at 23°C, so that the thermal durability of the insulating body can be significantly extended.

Toplinski izolacijsko tijelo prema izumu može biti degazirano. Daje se prednost unutrašnjem pritisku koji iznosi oko 1 mbar. The heat insulating body according to the invention can be degassed. An internal pressure of around 1 mbar is preferred.

Tlačna gustoća fino razdijeljenog materijala sadržanog u toplinski izolacijskom tijelu može iznositi 40 do 200 g/l, a prvenstveno 50 do 120 g/l. The compressive density of the finely divided material contained in the heat insulating body can be 40 to 200 g/l, and primarily 50 to 120 g/l.

Fino razdijeljeni praškasti odnosno vlaknasti materijal može se uprešati u mikroporozni omotač. Finely divided powdery or fibrous material can be mixed into a microporous coating.

Fino razdijeljeni praškasti odnosno vlaknasti materijal može se sušiti u mikroporoznom omotaču. Finely divided powdery or fibrous material can be dried in a microporous casing.

U jednom izvedbenom obliku, kojem se daje prednost, mikroporozni omotač koji sadrži fino razdijeljeni praškasti odnosno vlaknasti materijal u isprešanom ili osušenom stanju, može se unijeti u dvodijelni omotač asimetrične strukture, pri čemu se kao pokrivna folija, s mnogo prednosti, primjenjuje folija koja sadrži metal. In one embodiment, which is preferred, a microporous sheath containing finely divided powdery or fibrous material in a washed or dried state can be inserted into a two-part sheath of an asymmetric structure, where as a cover film, with many advantages, a film containing metal.

Oblikovani komad prema izumu može se proizvesti tako da se: A shaped piece according to the invention can be produced by:

a) u danom slučaju razdijeljen praškasti odnosno vlaknasti materijal, koji ima kapacitet upijanja vode od 4 do 50% tež. (pri 23°C i 85% relativne vlage) suši pod takovim uvjetima koji omogućuju istiskivanje površinske vode, a) in the given case, divided powdery or fibrous material, which has a water absorption capacity of 4 to 50% by weight. (at 23°C and 85% relative humidity) dries under such conditions that allow surface water to be squeezed out,

b) praškasti odnosno vlaknasti materijal u danom slučaju preša se, pri čemu se eventualno može koristiti i jedan kalup za prešanje, b) the powdery or fibrous material is pressed in the given case, where one mold may also be used for pressing,

c) u danom slučaju osušen i eventualno isprešan praškasti odnosno vlaknasti materijal unosi se u koritasti (duboko izvučeni) dio omotača, koji ne sadrži metal, a koji ima propusnost vodene pare od 0,02 do 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost plinova N2, O2 i CO2 u iznosu od 0,05 do 0,5 cm3/m2/d/bar pri 23°C, c) in the given case, the dried and possibly pressed powder or fibrous material is introduced into the trough (deep drawn) part of the casing, which does not contain metal, and which has a water vapor permeability of 0.02 to 0.2 g/m2/d at 23 °C and 85% relative humidity and permeability of N2, O2 and CO2 gases in the amount of 0.05 to 0.5 cm3/m2/d/bar at 23°C,

d) u danom slučaju osušen i eventualno isprešan praškasti odnosno vlaknasti materijal u koritastom (duboko izvučenom) dijelu omotača degazira pod tlakom između 0,1 i 1 mbar, d) in the given case, the dried and possibly pressed powdery or fibrous material in the trough (deeply drawn) part of the casing is degassed under a pressure between 0.1 and 1 mbar,

e) drugi dio ravnog omotača, koji ne sadrži ili pak sadrži metal, a koji ima propusnost vodene pare od 0 i 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost plinova N2, O2 i CO2 od 0 do 0,5 cm3/m2/d/bar pri 23°C, u vakuumu povezuje se s pravim dijelom omotača, koji ne sadrži metal, tako da se zadržava vakuum u unutrašnjosti omotača i da nastaje jedan - ako je to moguće - priključak koji je nepropustan za plin i vodenu paru. e) the second part of the flat shell, which does not contain or contains metal, and which has a water vapor permeability of 0 and 0.2 g/m2/d at 23°C and 85% relative humidity and a gas permeability of N2, O2 and CO2 of 0 to 0.5 cm3/m2/d/bar at 23°C, in a vacuum it is connected to the real part of the casing, which does not contain metal, so that the vacuum is kept inside the casing and that one - if possible - connection is created which is impermeable to gas and water vapor.

U jednom izvedbenom obliku, prema postupku u skladu s izumom, a kojem se daje prednost, dvodjelni omotač asimetrične strukture može se degazirati u području između 0,1 i 1 mbar. In one embodiment, according to the method according to the invention, which is preferred, the two-part shell of asymmetric structure can be degassed in the range between 0.1 and 1 mbar.

U jednom izvedbenom obliku prema postupku u skladu s izumom, a kojem se daje prednost, fino razdijeljeni praškasti odnosno vlaknasti materijal može se sušiti u jednom mikroporoznom omotaču. In one embodiment according to the method according to the invention, which is preferred, the finely divided powdery or fibrous material can be dried in a microporous shell.

U jednom izvedbenom obliku, prema postupku u skladu s izumom, a kojem se daje prednost, fino razdijeljeni praškasti odnosno vlaknasti materijal može se uprešati u jedan mikroporozni omotač i nakon toga eventualno sušiti. In one embodiment, according to the method in accordance with the invention, which is preferred, the finely divided powdery or fibrous material can be mixed into a microporous shell and then possibly dried.

Sušenje fino razdijeljenog praškastog odnosno vlaknastog materijala u jednom izvedbenom obliku izuma, a kojem se daje prednost, može se provesti pomoću mikrovalova. Drying of the finely divided powdery or fibrous material in one embodiment of the invention, which is preferred, can be carried out using microwaves.

Kao mikroskopski omotač, koji načelno služi za to da se fino razdijeljeni praškasti materijal održi zajedno tijekom sušenja i prešanja, može se primijeniti jedna folija ili pak vuneni materijal od npr. polipropilena, poliestera ili filtar papira (celuloze). A single foil or a woolen material made of, for example, polypropylene, polyester or filter paper (cellulose) can be used as a microscopic cover, which basically serves to keep the finely divided powder material together during drying and pressing.

U općem slučaju u tu svrhu može se upotrijebiti neka folija ili neki materijal koji propušta plinove (npr. zrak) i vlagu, a zadržava fino razdijeljeni praškasti materijal. In the general case, a foil or some material that allows gases (eg air) and moisture, and retains finely divided powdery material, can be used for this purpose.

Kao fino razdijeljeni (fino mljeveni) praškasti materijal načelno se može upotrijebiti svaki materijal čije se kemijske značajke tijekom vremena ne mijenjaju i koji ima kapacitet upijanja vode od 4 do 50% tež. pri 23°C i 85% relativne vlage. Any material whose chemical properties do not change over time and which has a water absorption capacity of 4 to 50% by weight can be used as a finely divided (finely ground) powder material. at 23°C and 85% relative humidity.

Količina vode koju jedan oblikovani komad prema izumu smije upiti odgovara onoj količini vode kod koje se toplinska provodnost oblikovanog komada ne poveća za više od 25%. U smislu dozvoljenog sadržaja vode i oblikovanog komada podrazumijeva se količina koja iznosi 2 do 15% tež. i u općem slučaju ona je niža od kapaciteta upijanja vode praškastog materijala upotrijebljenog za proizvodnju oblikovanog komada. The amount of water that one shaped piece may absorb according to the invention corresponds to the amount of water in which the thermal conductivity of the shaped piece does not increase by more than 25%. In terms of the permitted water content and the shaped piece, it is understood that the amount is 2 to 15% by weight. and in the general case it is lower than the water absorption capacity of the powder material used to produce the shaped piece.

U jednom izvedbenom obliku, kojem se daje prednost, količina vode koja smije biti upijena u oblikovanom komadu smije iznositi 5 do 12% tež., a naročito 6 do 7% tež. In one preferred embodiment, the amount of water that may be absorbed in the shaped piece may be 5 to 12% by weight, and especially 6 to 7% by weight.

Količina plina koja smije biti propuštena u jedno toplinski izolacijsko tijelo prema izumu odgovara onoj količini plinova (kao npr. N2, O2 i CO2) kod koje se toplinska vodljivost ne povećava za više od 25%. The amount of gas that may be allowed to pass into one heat insulating body according to the invention corresponds to the amount of gases (such as N2, O2 and CO2) where the thermal conductivity does not increase by more than 25%.

U ovom smislu dozvoljeni unutrašnji tlak u toplinski izolacijskom tijelu iznosi maksimalno 20 mbara, uz početni tlak od 1 mbara. In this sense, the allowed internal pressure in the heat insulating body is a maximum of 20 mbar, with an initial pressure of 1 mbar.

Prednost se daje jednom fino razdijeljenom (mljevenom) materijalu silicijevog dioksida koji se proizvodi reakcijom alkalnog vodenog stakla i neke mineralne kiseline u cilju taloženja silicijevog oksida, koji može biti upotrijebljen sam ili u smjesi s drugim silicijevim kiselinama ili praškastim ili vlaknastim materijalima. Preference is given to a finely divided (ground) silica material produced by the reaction of alkaline water glass and some mineral acid in order to precipitate silicon oxide, which can be used alone or in a mixture with other silicic acids or powdered or fibrous materials.

Ove istaložene silicijeve kiseline opisane su na primjer u Ullmanovoj “Enciklopediji tehničke kemije”, IV. izdanje, svezak 21. str. 462. These precipitated silicic acids are described for example in Ullman's "Encyclopedia of Technical Chemistry", IV. edition, volume 21. p. 462.

Za proizvodnju oblikovanih komada prema izumu pogodne su npr. slijedeće taložne silicijeve kiseline: For the production of shaped pieces according to the invention, for example, the following precipitable silicic acids are suitable:

Sipernat 22 S, Sipernat 22 LS, Sipernat 50 S, FK 500 LS, FK 500 DS, FK 310, FK 700 DS. Sipernat 22 S, Sipernat 22 LS, Sipernat 50 S, FK 500 LS, FK 500 DS, FK 310, FK 700 DS.

Naročito se koriste taložne silicijeve kiseline koje se suše raspršivanjem i melju. In particular, precipitable silicic acids are used, which are spray-dried and ground.

Ovakve taložne kiseline mogu se dobiti na tržištu pod oznakom FK 500, FK 500 DS ili Sipernat 22 LS. Such precipitating acids can be obtained on the market under the designation FK 500, FK 500 DS or Sipernat 22 LS.

Ostale pogodne taložne kiseline opisane su u patentnom spisu US-PS 44 95 167 (Degussa). Other suitable precipitating acids are described in US-PS 44 95 167 (Degussa).

Mogu se također primijeniti slijedeći materijali ili kombinacije materijala eventualno nakon dodavanja organskih ili anorganskih vlaknastih materijala kao što su to npr. staklasta vlakna, keramička vlakna ili vlakna sintetičkih materijala, a u cilju mehaničke stabilizacije toplinski izolacijskih tijela: The following materials or combinations of materials can also be applied, possibly after the addition of organic or inorganic fiber materials such as glass fibers, ceramic fibers or fibers of synthetic materials, with the aim of mechanically stabilizing the heat insulating bodies:

Mješavine raznih istaloženih silicijevih kiselina, kao npr. Sipernat 22 LS i FK 500 LS, Sipernat 22 LS i FK 320 DS, FK 500 LS i FK 320 DS i FK 310. Mixtures of various precipitated silicic acids, such as Sipernat 22 LS and FK 500 LS, Sipernat 22 LS and FK 320 DS, FK 500 LS and FK 320 DS and FK 310.

Mješavine istaloženih i pirogenih silicijevih kiselina kao npr. Sipernat 22 LS, FK 320 DS, FK 310, FK 700 DS i/ili FK 500 LS s aerosilom A 200 i/ili aerosilom A 300. Mixtures of precipitated and pyrogenic silicic acids such as Sipernat 22 LS, FK 320 DS, FK 310, FK 700 DS and/or FK 500 LS with Aerosil A 200 and/or Aerosil A 300.

Mješavine istaloženih silicijevih kiselina i želea silicijevih kiselina, kao što su Sipernat 22 LS, FK 320 DS i/ili FK 500 LS sa želeima silicijevih kiselina (npr. tipovi Syloid 72 i Syloid 244 tvrtke Grace, Worms). Mixtures of precipitated silicic acids and silicic acid jellies, such as Sipernat 22 LS, FK 320 DS and/or FK 500 LS with silicic acid jellies (eg types Syloid 72 and Syloid 244 by Grace, Worms).

Mješavine istaloženih silicijevih kiselina i mineralnih tvari, kao npr. Sipernat 22 LS, FK 320 DS i/ili FK 500 LS s perlitima, kaolinitom, mintmorilonitom, tinjcem i/ili kalcij sulfatom (gipsom). Mixtures of precipitated silicic acids and mineral substances, such as Sipernat 22 LS, FK 320 DS and/or FK 500 LS with perlites, kaolinite, mintmorillonite, clay and/or calcium sulfate (gypsum).

Mješavine istaloženih silicijevih kiselina i mljevenih stakala ili staklenih materijala, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS sa staklenim brašnom i/ili vrlo finom staklenom vunom. Mixtures of precipitated silicic acids and ground glasses or glass materials, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with glass flour and/or very fine glass wool.

Mješavine istaloženih silicijevih kiselina i čađe, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS s pećnom čađom, plamenom čađom i/ili plinskom čađom. Mixtures of precipitated silicic acids and carbon black, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with furnace black, flame black and/or gas black.

Mješavine istaloženih silicijevih kiselina i sintetičkih ili prirodnih silikatnih materijala, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS sa sintetičkim ili prirodnim zeolitom ili aluminijevim silikatima ili drugim silikatnim amterijalima (kalcijev silikat, dijatomejska zemlja, ekstrusil). Mixtures of precipitated silicic acids and synthetic or natural silicate materials, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with synthetic or natural zeolite or aluminum silicates or other silicate materials (calcium silicate, diatomaceous earth, extrusil).

Mješavine istaloženih silicijevih kiselina i sintetičkih otpadnih materijala, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS s lebdećim prašinama, pepelom iz termoelektrana, pepelom iz postrojenja za sagorijevanje svih vrsta. Mixtures of precipitated silicic acids and synthetic waste materials, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with suspended dust, ash from thermal power plants, ash from combustion plants of all kinds.

Mješavine istaloženih silicijevih kiselina i nemetalnih elemenata, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS sa sumporom i/ili mljevenim ugljenom. Mixtures of precipitated silicic acids and non-metallic elements, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with sulfur and/or ground coal.

Mješavine istaloženih silicijevih kiselina i vlakana, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS s anrorganskim ili organskim vlaknima (celulozna vuna ili fina sintetička vlakna svih vrsta). Mixtures of precipitated silicic acids and fibers, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with inorganic or organic fibers (cellulose wool or fine synthetic fibers of all types).

Mješavine istaloženih silicijevih kiselina kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS i organski praškasti superpsorberi kao npr. poliakrilati. Mixtures of precipitated silicic acids such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS and organic powdered superabsorbers such as polyacrylates.

Mješavine istaloženih silicijevih kiselina i pirogenih metalnih oksida, kao npr. Sipernat 22 LS, FK 320 DS, FK 500 DS i/ili FK 500 LS s pirogenim aluminij oksidom, željezo oksidom i/ili titan dioksidom. Mixtures of precipitated silicic acids and pyrogenic metal oxides, such as Sipernat 22 LS, FK 320 DS, FK 500 DS and/or FK 500 LS with pyrogenic aluminum oxide, iron oxide and/or titanium dioxide.

Pirogene silicijeve kiselina kao npr. Aerosil 200, Aerosil 300, Aerosil 380, Aerosil 450, OX 50, naročiti prethodno obrađeni Aerosili, Aerosil MOX-tipovi, Aerosil COK 84. Fumed silicic acids such as Aerosil 200, Aerosil 300, Aerosil 380, Aerosil 450, OX 50, special pre-treated Aerosils, Aerosil MOX-types, Aerosil COK 84.

Mješavine raznih pirogenih silicijevih kiselina kao npr. Aerosil 200 ili Aerosil 300 sa naročitim prethodno obrađenim Aerosil. tipovima. Mixtures of various pyrogenic silicic acids such as Aerosil 200 or Aerosil 300 with special pre-treated Aerosil. types.

Mješavine pirogenih silicijevih kiselina i želea silicijevih kiselina, kao npr. Aerosil 200 i/ili Aerosil 300 sa želeima silicijevih kiselina (kao npr. tipovi Syloid 72 i Syloid 244 tvrtke Grace, Worms). Mixtures of fumed silicic acids and silicic acid jellies, such as Aerosil 200 and/or Aerosil 300 with silicic acid jellies (such as types Syloid 72 and Syloid 244 by Grace, Worms).

Mješavine pirogenih silicijevih kiselina i mineralnih tvari, kao npr. Aerosil 200 i/ili Aerosil 300 s perlitima, kaolinitom, montmorilonitom, cinjcem i/ili kalcij sulfatom (gipsom). Mixtures of pyrogenic silicic acids and mineral substances, such as Aerosil 200 and/or Aerosil 300 with pearlites, kaolinite, montmorillonite, zinc and/or calcium sulfate (gypsum).

Mješavine pirogenih silicijevih kiselina i mljevenih stakala ili staklastih tvari, kao npr. Aerosil 200 i/ili Aerosil 300 sa staklenim brašnom i/ili vrlo finom staklenom vunom. Mixtures of fumed silicic acids and ground glasses or vitreous substances, such as Aerosil 200 and/or Aerosil 300 with glass flour and/or very fine glass wool.

Mješavine pirogenih silicijevih kiselina i čađe, plinske čađe, kao npr. Aerosil 200 i/ili Aerosil 300 s pećnom čađom, plamenom čađom i/ili plinskom čađom. Mixtures of fumed silicic acids and carbon black, gas carbon black, such as Aerosil 200 and/or Aerosil 300 with furnace carbon black, flame carbon black and/or gas carbon black.

Mješavine pirogenih silicijevih kiselina i sintetičkih ili prirodnih silikatnih tvari, kao npr. Aerosil 200 i/ili Aerosil 300 sa sintetičkim ili prirodnim zeolitima ili aluminij silikatima ili drugim silikatnim tvarima (kalcij, silikat, dijatomejska zemlja, ekstrusil). Mixtures of pyrogenic silicic acids and synthetic or natural silicate substances, such as Aerosil 200 and/or Aerosil 300 with synthetic or natural zeolites or aluminum silicates or other silicate substances (calcium, silicate, diatomaceous earth, extrusil).

Mješavine pirogenih silicijevih kiselina i sintetičkih otpadnih tvari, kao npr. Aerosil 200 i/ili Aerosil 300 s lebdećim prašinama, pepelom iz termoelektrana, pepelom iz psotrojenja za sagorijevanje svih vrsta. Mixtures of pyrogenic silicic acids and synthetic waste materials, such as Aerosil 200 and/or Aerosil 300 with floating dust, ash from thermal power plants, ash from incineration of all kinds.

Mješavine pirogenih silicijevih kiselina i nemetalnih elemenata, kao npr. Aerosil 200 i/ili Aerosil 300 sa sumporom i/ili mljevenih ugljenom. Mixtures of fumed silicic acids and non-metallic elements, such as Aerosil 200 and/or Aerosil 300 with sulfur and/or ground coal.

Mješavine pirogenih silicijevih kiselina i vlakana, kao npr. Aerosil 200 i/ili Aerosil 300 s anorganskim ili organskim vlaknima (celulozna vuna ili fina sintetička vlakna). Mixtures of fumed silicic acids and fibers, such as Aerosil 200 and/or Aerosil 300 with inorganic or organic fibers (cellulose wool or fine synthetic fibers).

Mješavine pirogenih silicijevih kiselina, kao npr. Aerosil 200 i/ili Aerosil 300 i praškasti superapsorberi, kao npr. poliaktilati. Mixtures of pyrogenic silicic acids, such as Aerosil 200 and/or Aerosil 300 and powdered superabsorbers, such as polyactylates.

Mješavine pirogenih silicijevih kiselina i pirogenim metalnih oksida, kao npr. Aerosil 200 i/ili Aerosil 300 s pirogenim aluminij oksidom, željezo oksidom, titan dioksidom. Mixtures of pyrogenic silicic acids and pyrogenic metal oxides, such as Aerosil 200 and/or Aerosil 300 with pyrogenic aluminum oxide, iron oxide, titanium dioxide.

Mješavine čađe i želea silicijevih kiselina, kao npr. čađe ili mješavine čađe sa želeom silicijevih kiselina (npr. tipovi Syxloid 72 i Syloid 244 tvrtke Grace, Worms). Mixtures of carbon black and silicic acid jelly, such as carbon black or mixtures of carbon black with silicic acid jelly (eg types Syxloid 72 and Syloid 244 by Grace, Worms).

Mješavine čađe i mineralnih tvari, kao npr. čađe ili mješavine čađe s montmorilonitom i/ili kalcij sulfatom (gipsom). Mixtures of carbon black and mineral substances, such as carbon black or mixtures of carbon black with montmorillonite and/or calcium sulfate (gypsum).

Mješavine čađe i sintetičkih ili prirodnih silikatnih tvari, kao npr. čađe ili mješavine čađe sa sintetičkim ili prirodnim zeolitima ili aluminij silikatima ili drugim silikatnim tvarima (kalcije silikat, dijatomejska zemlja, ekstrusil). Mixtures of carbon black and synthetic or natural silicate substances, such as carbon black or mixtures of carbon black with synthetic or natural zeolites or aluminum silicates or other silicate substances (calcium silicate, diatomaceous earth, extrusil).

Mješavine čađe i praškastih superapsorbera kao i npr. poliakrilata. Mixtures of carbon black and powdered superabsorbers as well as, for example, polyacrylate.

Mješavine čađe i pirogenih metalnih oksida, kao npr. čađe ili mješavine čađe s pirogenim aluminij oksidom, željezo oksidom, titan dioksidom. Mixtures of carbon black and pyrogenic metal oxides, such as carbon black or mixtures of carbon black with pyrogenic aluminum oxide, iron oxide, titanium dioxide.

Zeoliti (zeolitska molekulna sita), kao npr. zeolit A zeolit Y, prethodno obrađeni zeoliti. Zeolites (zeolite molecular sieves), such as zeolite A zeolite Y, pre-treated zeolites.

Mješavine raznih zeolita, kao npr. zelit X sa zeolitom Y. Mixtures of various zeolites, such as zeolite X with zeolite Y.

Mješavine zeolita i želea silicijevih kiselina, kao npr. zeoliti ili mješavine zeolita sa želeima silicijevih kiselina (npr. tipovi Syloid 72 i Syloid 244 tvrtke Grace, Worms). Mixtures of zeolites and silicic acid jellies, such as zeolites or mixtures of zeolites with silicic acid jellies (eg types Syloid 72 and Syloid 244 from Grace, Worms).

Mješavine zeolita i mineralnih tvari, kao npr. zeoliti ili mješavine zeolita s perlitima, kaolinitom, montmorilonitom, tinjcem i/ili kalcij sulfatom (gipsom). Mixtures of zeolites and mineral substances, such as zeolites or mixtures of zeolites with perlites, kaolinite, montmorillonite, slag and/or calcium sulfate (gypsum).

Mješavine zeolita i mljevenih stakala ili staklastih tvari, kao npr. zeolita ili mješavine zeolita sa staklenim brašnom i/ili vrlo finom staklenom vunom. Mixtures of zeolites and ground glasses or glassy substances, such as zeolites or mixtures of zeolites with glass flour and/or very fine glass wool.

Mješavine zeolita i sintetičkih ili prirodnih silikatnih tvari, kao npr. zeoliti ili mješavine zeolita sa sintetičkim aluminij silikatima ili drugim silikatnim tvarima (kalcij silikat, dijatoomejska zemlja, ekstrusil). Mixtures of zeolites and synthetic or natural silicate substances, such as zeolites or mixtures of zeolites with synthetic aluminum silicates or other silicate substances (calcium silicate, diatomaceous earth, extrusil).

Mješavine zeolita i sintetničkih otpadnih tvari, kao npr. zeoliti ili mješavine zeolita s lebdećom prašinom, pepelom iz termoelektrana, pepelom iz postrojenja za sagorijevanje svih vrsta. Mixtures of zeolites and synthetic waste materials, such as zeolites or mixtures of zeolites with floating dust, ash from thermal power plants, ash from combustion plants of all kinds.

Mješavine zeolita i nemetalnih elemenata, kao npr. zeoliti ili mješavine zeolita sa sumporom i/ili mljevenim ugljenom. Mixtures of zeolites and non-metallic elements, such as zeolites or mixtures of zeolites with sulfur and/or ground coal.

Mješavine zeolita i vlakana, kao npr. zeolita i vlakana, kao npr. zeoliti i mješavine zeolita s anorganskim ili organskim vlaknima (celulozna vuna ili vrlo fina sistetička vlakna). Mixtures of zeolites and fibers, such as zeolites and fibers, such as zeolites and mixtures of zeolites with inorganic or organic fibers (cellulosic wool or very fine synthetic fibers).

Mješavine zeolita i praškastih superapsorbera, kao npr. poliakrilata. Mixtures of zeolite and powdered superabsorbers, such as polyacrylate.

Mješavine zeolita i pirogenih metalnih oksida, kao npr. zeoliti ili mješavine zeolita s pirogenim aluminij oskidom, željezo oksidom, titan dioksidom. Mixtures of zeolites and pyrogenic metal oxides, such as zeolites or mixtures of zeolites with pyrogenic aluminum oxide, iron oxide, titanium dioxide.

Silika geli, kao npr. Syloid 72 i Syloid 244 (tvrtke Grace, Worms). Silica gels, such as Syloid 72 and Syloid 244 (Grace, Worms).

Mješavine raznih želea silicijevih kiselina, kao npr. Syloida 72 sa Syloidom 244 (tvrtke Grace, Worms), razni prethodno obrađeni želei silicijevih kiselina. Mixtures of various silicic acid jellies, such as Syloid 72 with Syloid 244 (Grace, Worms), various pre-treated silicic acid jellies.

Mješavine silika gela i mineralnih tvari, kao npr. silika geli ili mješavine silka gela s perlitima, kaolinitom, monmorilonitom, tinjcem i/ili kalcij sulfatom (gipsom). Mixtures of silica gel and mineral substances, such as silica gels or mixtures of silica gel with perlite, kaolinite, montmorillonite, slag and/or calcium sulfate (gypsum).

Mješavine aluminij silikata i mljevenih stakala ili staklastih tvari, kao npr. aluminij silikata ili mješavine aluminij silikata sa staklenim brašnom i/ili vrlo finom staklenom vunom. Mixtures of aluminum silicate and ground glasses or vitreous substances, such as, for example, aluminum silicate or mixtures of aluminum silicate with glass flour and/or very fine glass wool.

Mješavine aluminij silikata i sintetičkih ili prirodnih silikatnih tvari, kao npr. aluminij silikati ili prirodnih silikatnih tvari, kao npr. aluminij silikati ili mješavine aluminij silikata s drugim silikatnim tvarima (kalcij siliakt, dijatomejska zemlja, ekstrusil). Mixtures of aluminum silicates and synthetic or natural silicate substances, such as aluminum silicates or natural silicate substances, such as aluminum silicates or mixtures of aluminum silicates with other silicate substances (calcium silicate, diatomaceous earth, extrusil).

Mješavine aluminij silikata i sintetičkih otpadnih tvari, kao npr. aluminij silikati ili mješavine aluminij silikata s lebdećom prašinom, pepelom iz termoelektrana, pepelom iz postrojenja za sagorijevanje svih vrsta. Mixtures of aluminum silicates and synthetic waste materials, such as aluminum silicates or mixtures of aluminum silicates with floating dust, ash from thermal power plants, ash from combustion plants of all kinds.

Mješavine aluminij silikata i nemetalnih elemenata, kao npr. aluminij silikata ili mješavine aluminij silikata sa sumporom i/ili mljevenim ugljenom. Mixtures of aluminum silicate and non-metallic elements, such as aluminum silicate or mixtures of aluminum silicate with sulfur and/or ground coal.

Mješavine aluminij silikata i vlakana, kao npr. aluminij silikati ili mješavine aluminij silikata sa anorganskim ili organskim vlaknima (celulozna vuna ili fina sintetička vlakna svih vrsta). Mixtures of aluminum silicates and fibers, such as aluminum silicates or mixtures of aluminum silicates with inorganic or organic fibers (cellulose wool or fine synthetic fibers of all kinds).

Mješavine aluminij silikata i pirogenih metalnih oksida, kao npr. aluminij silikata ili mješavine aluminij silikata s pirogenim aluminij oksidom, željezo oksidom, titan dioksidom. Mixtures of aluminum silicate and pyrogenic metal oxides, such as aluminum silicate or mixtures of aluminum silicate with pyrogenic aluminum oxide, iron oxide, titanium dioxide.

Metalni oksidi (pirogeni ili istaloženi), kao npr. aluminij oksid, željezo oksid, titan dioksid, cirkonij dioksid. Metal oxides (pyrogenic or precipitated), such as aluminum oxide, iron oxide, titanium dioxide, zirconium dioxide.

Mješavine raznih metalnih oksida (pirogenih ili istaloženih), kao npr. aluminij oksid s raznim željezo oksidima, aluminij oksid s titan dioksidom, titan dioksid s raznim željezo oksidima. Mixtures of various metal oxides (pyrogenic or precipitated), such as aluminum oxide with various iron oxides, aluminum oxide with titanium dioxide, titanium dioxide with various iron oxides.

Mješavine metalnih oksida (pirogenih ili istaloženih) i mineralnih tvari, kao npr. aluminij oksid, razni željezo oksidid, titan dioksid i/ili cirkonij dioksid s perlitima, kaolinitom, montmorilonitom, tinjcem i/ili kalcij sulfatom (gipsom). Mixtures of metal oxides (pyrogenic or precipitated) and mineral substances, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide with pearlites, kaolinite, montmorillonite, clay and/or calcium sulfate (gypsum).

Mješavine metalnih oksida (pirogenih ili istaloženih) i mljevenih stakala ili staklenih tvari, kao npr. aluminij oksid, titan dioksid i/ili cirkonij dioksid sa staklenim brašnom i/ili vrlo finom staklenom vunom. Mixtures of metal oxides (pyrogenic or precipitated) and ground glasses or glass substances, such as aluminum oxide, titanium dioxide and/or zirconium dioxide with glass flour and/or very fine glass wool.

Mješavine metalnih oksida (pirogenih ili istaloženih) i sintetičkih ili prirodnih silikatnih tvari, kao npr. aluminijev oksida, raznih željezo oksida, titan dioksida i/ili cirkonij dioksida sa silikatnim tvarima (kalcij silikat, dijatomejska zemlja, ekstrusil). Mixtures of metal oxides (pyrogenic or precipitated) and synthetic or natural silicate substances, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide with silicate substances (calcium silicate, diatomaceous earth, extrusil).

Mješavine metalnih oksida (pirogenih ili istaloženih) i sintetičkih otpadnih tvari, kao npr. aluminij oksida, raznih željezo oksida, titan dioksida i/ili cirkonij dioksida s lebdećom prašinom, pepelom iz termoelektrana, pepelom iz postrojenja za sagorijevanja svih vrsta. Mixtures of metal oxides (pyrogenic or precipitated) and synthetic waste substances, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide with floating dust, ash from thermal power plants, ash from combustion plants of all kinds.

Mješavine metalnih oksida (pirogenih ili istaloženih) i nemetalnih elemenata, kao npr. aluminij oksida, raznih željezo oksida, titan dioksida i/ili cirkonij dioksida sa sumporom i/ili mljevenim ugljenom. Mixtures of metal oxides (pyrogenic or precipitated) and non-metallic elements, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide with sulfur and/or ground coal.

Mješavine metalnih oksida (pirogenih ili istaloženih) i vlakana, kao npr. aluminij oksida, raznih željezo oksida, titan dioksida i/ili cirkonij dioksida s anorganskim ili organskim vlaknima (celulozna vuna ili fina sintetička vlakna svih vrsta). Mixtures of metal oxides (pyrogenic or precipitated) and fibers, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide with inorganic or organic fibers (cellulose wool or fine synthetic fibers of all kinds).

Mješavine metalnih oksida, kao npr. aluminij oksida, raznih željezo oksida, titan dioksida i/ili cirkonij dioksida (pirogenih ili istaloženih) i superapsorbera kao npr. poliaktilata. Mixtures of metal oxides, such as aluminum oxide, various iron oxides, titanium dioxide and/or zirconium dioxide (pyrogenic or precipitated) and superabsorbers such as polyactylate.

Kao istaložene silicijeve kiseline mogu se nadalje upotrijebiti još i: The following can also be used as precipitated silicic acids:

HISIL T 600 HISIL T 690 tvrtke PPG, HISIL T 600 HISIL T 690 by PPG,

Tixosil 333, tvrtke Rhone-Poulenc, Tixosil 333, Rhone-Poulenc company,

Hoesch SM 614, tvrtke AKZO, Hoesch SM 614, company AKZO,

Zeothix 265 i Zeothix 177, tvrtke Huber. Zeothix 265 and Zeothix 177, from Huber.

Omotači iz dva dijela asimetrične strukture, primjenjeni u skladu s izumom, u području nemetalnog i koritastog (duboko izvučenog) omotačem mogu imati propusnost vodene pare od 0,02 do 0,2 g/m2/d pri 23°C o 85% relativne vlage i propusnost plinova N2, O2 i CO2 od ukupno 0,05 do 0,5 cm3(m2/d/bar, a s druge strane u području ravnog pokrova koji sadrži metal mogu imati propusnost vodene pare od 0 do 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost plinova N2, O2 i CO2 od ukupno 0 do 0,5 cm3/m2/d/bar pri 23°C. Sheaths from two parts of asymmetric structure, applied in accordance with the invention, in the area of non-metallic and trough (deep drawn) sheath can have a water vapor permeability of 0.02 to 0.2 g/m2/d at 23°C at 85% relative humidity and gas permeability of N2, O2 and CO2 from a total of 0.05 to 0.5 cm3(m2/d/bar), and on the other hand, in the area of a flat cover containing metal, they can have water vapor permeability from 0 to 0.2 g/m2/ d at 23°C and 85% relative humidity and gas permeability of N2, O2 and CO2 from a total of 0 to 0.5 cm3/m2/d/bar at 23°C.

Propusnost plinova treba mjeriti tako da unutrašnji tlak u toplinski izolacijskom tijelu ne prekorači 20 mbara do isteka njegovog vijeka trajanja. Gas permeability should be measured so that the internal pressure in the thermal insulation body does not exceed 20 mbar until the end of its service life.

Budući da je propustnost plinova u odnosu na propustnost vodene pare niža za otprilike faktor 1000, maksimalni vijek trajanja toplinski izoalcijskog tijela dostignut je onda kad sredstvo za punjenje više ne može upijati vodenu paru ili ako pri daljem upijanju vodene pare toplinska vodljivost jako poraste. Since the permeability of gases is lower than the permeability of water vapor by approximately a factor of 1000, the maximum service life of the thermal insulation body is reached when the filling agent can no longer absorb water vapor or if the thermal conductivity increases greatly during further absorption of water vapor.

Uz mnogo prednosti, a u skladu s izumom, kao bezmetalni omotač može se primijeniti jedna višeslojna folija koja se može izraditi na slijedeći način: With many advantages, and in accordance with the invention, a multi-layered film can be used as a metal-free covering, which can be made in the following way:

LLDPE linearni polietilen LLDPE linear polyethylene

HV adhezijski sloj HV adhesion layer

EVOH kopolimer etilen-vinil alkohola EVOH copolymer of ethylene-vinyl alcohol

HV adhezijski sloj HV adhesion layer

LLDPE linearni polietilen LLDPE linear polyethylene

PVDC polivinilidenklorid PVDC polyvinylidene chloride

Višeslojna folija može se naročito izraditi na slijedeći način (primjer 1): Multi-layer film can be made in particular in the following way (example 1):

LLDPE linearni polietilen debljine 65 µm, LLDPE linear polyethylene with a thickness of 65 µm,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

HV adhezijski sloj, debljine 5 µm, HV adhesion layer, 5 µm thick,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

EVOH kopolimer etilen-vinil alkohola, debljine 10 µm, EVOH copolymer of ethylene-vinyl alcohol, 10 µm thick,

gustoća 1,17 g/cm3, density 1.17 g/cm3,

HV adhezijski sloj, debljine 5 µm, HV adhesion layer, 5 µm thick,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

LLDPE linearni polietilen, debljine 5 µm, LLDPE linear polyethylene, 5 µm thick,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

PVDC polivinilidenklorid, debljine 12 µm, PVDC polyvinylidene chloride, 12 µm thick,

gustoća 1,35 g/cm3. density 1.35 g/cm3.

Uz mnogo prednosti, a u skladu s izumom, kao “pokrov” koji sadrži metal može se primijeniti višeslojna folija izrađena na slijedeći način: With many advantages, and in accordance with the invention, as a "cover" containing metal, a multi-layer foil made in the following way can be used:

poliester polyester

HV HV

aluminijska folija aluminum foil

HV HV

polietilen. polyethylene.

Višeslojna folija može se naročito izraditi na slijedeći način (vidi H. Hinksen, Kunststoffe, 77, (5), 1987.): The multi-layer foil can be produced in particular in the following way (see H. Hinksen, Kunststoffe, 77, (5), 1987):

PETP polietilentereftalat, debljine 12 µm, PETP polyethylene terephthalate, 12 µm thick,

gustoća 1,37 g/cm3, density 1.37 g/cm3,

HV adhezijski sloj, debljine 5 µm, HV adhesion layer, 5 µm thick,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

Al-folija, aluminijska folija, Al-foil, aluminum foil,

debljina 9 µm, gustoća, thickness 9 µm, density,

HV adhezijski sloj, debljine 5 µm, HV adhesion layer, 5 µm thick,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

PE polietilen, debljina 75 µm, PE polyethylene, thickness 75 µm,

gustoća 0,92 g/cm3, density 0.92 g/cm3,

Za oblikovane komade u skladu s izumom pogodni su fino mljeveni praškasti odnosno vlaknasti materijali koji imaju kapacitet upijanja vode od 4 do 50% tež. pri 23°C i 85% relativne vlage. For shaped pieces in accordance with the invention, finely ground powdery or fibrous materials with a water absorption capacity of 4 to 50% by weight are suitable. at 23°C and 85% relative humidity.

Količina vode koju fino mljeveni materijal smije upiti pri primjeni u oblikovanom komadu u skladu s izumom u pravilu je manje od njegovog upijanja vode. Granična vrijednost dozvoljenog upijanja vode u toplinski izolacijskim tijelima odgovara količini vode koja kod oblikovanih komada ne povećava toplinsku vodljivost oblikovanog komada za više od 20% u odnosu na suhi oblikovani komad. Za proizvodnju jednog suhog oblikovanog komada koristi se jedan fino mljeveni materijal, koji se suši po propisima provedenim normom DIN 55 921. Odgovarajuća količina vode, prvenstveno, koju jedno toplinski izolacijsko tijelo ne smije upiti, je između 2 i 15% u odnosu na suho sredstvo za punjenje. The amount of water that the finely ground material is allowed to absorb when used in a shaped piece in accordance with the invention is generally less than its water absorption. The limit value of the permitted water absorption in heat insulating bodies corresponds to the amount of water which, in the case of molded pieces, does not increase the thermal conductivity of the molded piece by more than 20% compared to the dry molded piece. For the production of one dry shaped piece, one finely ground material is used, which is dried according to the regulations implemented by the norm DIN 55 921. The appropriate amount of water, primarily, which a heat insulating body must not absorb, is between 2 and 15% in relation to the dry agent for charging.

Toplinski izolacijska tijela u skladu s izumom imaju, u usporedbi s toplinski izolacijskim tijelima prema dosadašnjem stanju tehnike, tu prednost, što je primjenom bezmetalne folije za omatanje ili omotača asimetrične strukture, toplinska vodljivost u predjelu rubova toplinski izolacijskog tijela tako niska da ona nikako ili samo neznatno utječe na, vrlo dobru ukupnu toplinsku vodljivost oblikovanog komada od oko 8 mW/m·K (mjereno prema apsolutnom postupku s jednom pločom sa zaštitnim prstenom na toplinski izolacijskim materijalima, proizvedenim od taložne silicijeve kiseline FK 500 LS). Thermal insulation bodies in accordance with the invention have, in comparison with thermal insulation bodies according to the current state of the art, the advantage that, by using a metal-free wrapping film or a wrap of an asymmetric structure, the thermal conductivity in the area of the edges of the thermal insulation body is so low that it cannot or only slightly affects the very good overall thermal conductivity of the molded piece of about 8 mW/m·K (measured according to the absolute process with one plate with a protective ring on thermal insulation materials, produced from precipitated silicic acid FK 500 LS).

Na ovaj način od toplinski izolacijskih tijela u skladu s izumom mogu se proizvesti npr. izolacijski slojevi u hladnjacima i hladnjacima za duboko zamrzavanje. In this way, heat insulating bodies in accordance with the invention can be produced, for example, insulating layers in refrigerators and freezers.

U slijedećoj tablici navedeni su primjeri toplinske vodljivosti toplinski izolacijskih tijela koja su izrađena od bezmetalnih folija za omatanje ili omotača asimetrične strukture. Toplinske vodljivosti mjere se uvijek prema apsolutnom postupku s jednom pločom sa zaštitnim prstenom kao i prema postupku tehnike mjerenja bez zaštitnog prstena toplinske struje, koja kroz foliju za omatanje teče s jedne strane pločastog toplinski izolacijskog tijela ka drugoj strani, ne kompenzira se, jer se tako dobije vrijednost ukupne toplinske vodljivosti toplinski izolacijskog tijela (ovisno o geometriji i veličini oblikovanog komada). The following table lists examples of the thermal conductivity of thermally insulating bodies that are made of metal-free wrapping foils or wraps of an asymmetric structure. Thermal conductivities are always measured according to the absolute procedure with one plate with a protective ring, as well as according to the procedure of the measurement technique without a protective ring, the thermal current, which flows through the wrapping film from one side of the plate thermal insulation body to the other side, is not compensated, because obtains the value of the total thermal conductivity of the heat-insulating body (depending on the geometry and size of the shaped piece).

Sredstvo za punjenje: FK 500 LS Filling agent: FK 500 LS

Dimenzije: 250 mm y 250 mm x 20 mm Dimensions: 250 mm x 250 mm x 20 mm

Toplinske vodljivosti različitih toplinski izolacijskih tijela kao funkcija mjerne metode (srednja temperatura: oko 0°C). Thermal conductivities of different heat-insulating bodies as a function of the measurement method (average temperature: around 0°C).

[image] [image]

Prema izumu primijenjeni praškasti odnosno vlaknasti materijali primijenjeni u skladu s izumom, naznačeni su, na primjer, slijedećim fizičko-kemijskim značajkama, prema tablicama 1, 2, 3 i 4: According to the invention, the powder or fibrous materials used in accordance with the invention are indicated, for example, by the following physical and chemical characteristics, according to tables 1, 2, 3 and 4:

Tablica 1 Table 1

[image] [image]

Tablica 2 Table 2

[image] [image]

1) Prema DIN-u 66 131. 1) According to DIN 66 131.

2) Prema DIN ISO 787/XI, JIS K 5101/18 (neprosijano). 2) According to DIN ISO 787/XI, JIS K 5101/18 (unscreened).

3) Prema DIN ISO 787/II, ASTM D 280, JIS K 5101/21. 3) According to DIN ISO 787/II, ASTM D 280, JIS K 5101/21.

4) Prema DIN-u 55 921, ASTM D 1208, JIS K 5101/23. 4) According to DIN 55 921, ASTM D 1208, JIS K 5101/23.

5) Prema DIN ISO 787/IX, ASTM D 1208, JIS K 5101/24. 5) According to DIN ISO 787/IX, ASTM D 1208, JIS K 5101/24.

6) Prema DIN-u 53 601, ASTM D 2414. 6) According to DIN 53 601, ASTM D 2414.

7) Prema DIN ISO 787/XVIII, JIS K 5101/20. 7) According to DIN ISO 787/XVIII, JIS K 5101/20.

9) Coulter Counter, kapilara 50 µm. 9) Coulter Counter, capillary 50 µm.

10) Odnosi se na tvar sušenu 2 sata pri 105°C 10) Refers to a substance dried for 2 hours at 105°C

11) Odnosi se na tvar žarenu 2 sata pri 1000°C. 11) Refers to a substance annealed for 2 hours at 1000°C.

Tablica 3 Table 3

Tablica 4 Table 4

[image] [image]

1) odnosi se na tvar žarenu pri 1000°C. 1) refers to the substance annealed at 1000°C.

2) DIN 55 921 2) DIN 55 921

3) DIN 53 200. 3) DIN 53 200.

4) Coulter Cunter kapilara 100 µm. 4) Coulter Coulter capillary 100 µm.

5) Po Mockeru. 5) According to Mocker.

6) Istaložena silicijeva kiselina. 6) Precipitated silicic acid.

7) Slika gel. 7) Image gel.

Slijede primjeri koji pokazuju kako sadržaj vode u toplinski izolacijskom tijelu utječe na toplinsku vodljivost. The following are examples that show how the water content in a thermally insulating body affects thermal conductivity.

Mjerenje se vrši apsolutnim postupkom s jednom pločom postupkom sa zaštitnim prstenom po Kohlrauschu. The measurement is made by the absolute method with one plate and the protective ring method according to Kohlrausch.

(Hladna strana: -20°C; topla strana +20°C). (Cold side: -20°C; warm side +20°C).

1.) FK 500 LS 1.) FK 500 LS

Utjecaj sadržaja vlage na toplinsku vodljivost Effect of moisture content on thermal conductivity

Tlačna gustoća: 200 g/l Compression density: 200 g/l

Sadržaj vlage podešen mikrovalno. Moisture content adjusted by microwave.

[image] [image]

+) Sadržaj vlage u tež. % u odnosu prema suhoj tvari. +) Moisture content by weight. % in relation to dry matter.

++) Unutrašnji tlak (tlak u toplinski izolacijskom tijelu) izmjeren nakon mjerenja toplinske vodljivosti. Ovi rezultati grafički su prikazani na slici 1. ++) Internal pressure (pressure in the heat insulating body) measured after measuring the thermal conductivity. These results are graphically presented in Figure 1.

2) FK 500 LS 2) FK 500 LS

Utjecaj sadržaja vlage na toplinsku vodljivost Effect of moisture content on thermal conductivity

Tlačna gustoća: 200 g/l. Compression density: 200 g/l.

Sadržaj vlage podešava se sušenjem u sušioniku s optočnim zrakom (105 - 110°C). The moisture content is adjusted by drying in a dryer with circulating air (105 - 110°C).

[image] [image]

+) Sadržaj vlage u tež. % u odnosu prema suhoj tvari. +) Moisture content by weight. % in relation to dry matter.

++) Unutrašnji tlak (tlak u toplinski izolacijskom tijelu) izmjeren nakon mjerenja toplinske vodljivosti. Ovi rezultati grafički su prikazani na slici 2. ++) Internal pressure (pressure in the heat insulating body) measured after measuring the thermal conductivity. These results are graphically presented in Figure 2.

3.) FK 320 LS 3.) FK 320 LS

Utjecaj sadržaja vlage na toplinsku vodljivost Effect of moisture content on thermal conductivity

Tlačna gustoća: 210 g/l Compression density: 210 g/l

Sadržaj vlage podešava se sušenjem u sušioniku s optočnim zrakom (105 - 110°C). The moisture content is adjusted by drying in a dryer with circulating air (105 - 110°C).

[image] [image]

+) Sadržaj vlage u tež. % u odnosu prema suhoj tvari. +) Moisture content by weight. % in relation to dry matter.

++) Unutrašnji tlak (tlak u toplinski izolacijskom tijelu) izmjeren nakon mjerenja toplinske vodljivosti. Ovi rezultati grafički su prikazani na slici 3. ++) Internal pressure (pressure in the heat insulating body) measured after measuring the thermal conductivity. These results are shown graphically in Figure 3.

Budući da se unutrašnji tlak u toplinski izolacijskom oblikovanom dijelu postupno povećava zbog difundiranih plinova (zbroj propusnosti plina folije za omatanje je u području između 0 i 0,5 cm3/m3 · d bara), dati su primjeri o utjecaju tlaka u oblikovanom komadu na toplinsku vodljivost izolacijskog tijela. Since the internal pressure in the thermally insulating molded part gradually increases due to diffused gases (the sum of the gas permeability of the wrapping film is in the range between 0 and 0.5 cm3/m3 · d bar), examples are given about the influence of the pressure in the molded piece on the thermal conductivity of the insulating body.

1.) FK 500 LS 1.) FK 500 LS

Utjecaj sadržaja vlage na toplinsku vodljivost Effect of moisture content on thermal conductivity

Tlačna gustoća: 200 g/l Compression density: 200 g/l

[image] [image]

Ovi rezultati grafički su prikazani na slici 4. These results are shown graphically in Figure 4.

2.) FK 320 DS 2.) FK 320 DS

Utjecaj tkaka na toplinsku vodljivost Influence of fabric on thermal conductivity

Tlačna gustoća: 210 g/l Compression density: 210 g/l

[image] [image]

Ovi rezultati grafički su prikazani na slici 4. These results are shown graphically in Figure 4.

Primjeri obračuna vijeka trajanja toplinski izolacijskih tijela Examples of calculating the lifetime of heat insulating bodies

Grafičkim prikazom ovisnosti toplinske vodljivosti o sadržaju vlage može se za svako sredstvo za punjenje odrediti granična vrijednost upijanja vode. By graphical representation of the dependence of thermal conductivity on moisture content, the limit value of water absorption can be determined for each filling agent.

Toplinska izolacijska tijela sa silicijevom kiselinom kao sredstvom za punjenje i sadržajem vlage koji odgovara graničnoj vrijednosti ima još uvijek dobre izolacijske značajke. Kod povećanog sadržaja vlage raste kako toplinska vodljivost tako i unutrašnji tlak (tlak u toplinski izolacijskom tijelu). Posljedica ovoga je postupno opadanje izolacijskih značajki. Thermal insulating bodies with silicic acid as a filling agent and a moisture content corresponding to the limit value still have good insulating properties. With increased moisture content, both the thermal conductivity and the internal pressure (pressure in the heat insulating body) increase. The consequence of this is a gradual decline in insulating properties.

Iz crteža 1, 2 i 3 mogu se dobiti podaci o sadržaju vlage za silicijeve kiseline FK 500 LS i FK 320 DS, koji su dozvoljeni i kod kojih se s upijanjem vode toplotna vodljivost toplinski izolacijskih materijala smije pogoršati za najviše 25%. Pri tome polazi se od silicijevih kiselina koje su osušene u skladu s normom DIN 55 921. From drawings 1, 2 and 3, data can be obtained on the moisture content for silicic acids FK 500 LS and FK 320 DS, which are permitted and where, with water absorption, the thermal conductivity of thermal insulation materials may deteriorate by a maximum of 25%. The starting point is silicic acids that have been dried in accordance with DIN 55 921.

Rezultati the results

FK 500 LS: granična vrijednost pri sadržaju vlage od 7%. FK 500 LS: limit value at a moisture content of 7%.

FK 320 DS: granična vrijednost pri sadržaju vlage od 6%. FK 320 DS: limit value at a moisture content of 6%.

Kod poznatih omjera silicijeve kiseline i dimenzija toplinski izolacijskog tijela ove granične vrijednosti (maksimalno dozvoljena količina vode) računaju se prema jednadžbi: With known proportions of silicic acid and the dimensions of the heat insulating body, these limit values (maximum allowed amount of water) are calculated according to the equation:

[image] [image]

1.) FK 500 LS 1.) FK 500 LS

Granična vrijednost: sadržaj vlage 7%. Limit value: moisture content 7%.

a) tlačna gustoća: 180 g/l (dimenzije 100 x 50 x 2 cm) a) compressive density: 180 g/l (dimensions 100 x 50 x 2 cm)

volumen: 10 l volume: 10 l

masa silicijeve kiseline: 1800 g mass of silicic acid: 1800 g

maksimalna količina vode: 126 g maximum amount of water: 126 g

b) tlačna gustoća: 200 g/l (dimenzije 100 x 50 x 2 cm) b) compressive density: 200 g/l (dimensions 100 x 50 x 2 cm)

volumen: 10 l volume: 10 l

masa silicijeve kiseline: 2000 g mass of silicic acid: 2000 g

maksimalna količina vode: 140 g maximum amount of water: 140 g

2.) FK 320 DS 2.) FK 320 DS

Granična vrijednost: sadržaj vlage 6%. Limit value: moisture content 6%.

a) tlačna gustoća: 200 g/l (dimenzije 100 x 50 x 2 cm) a) compressive density: 200 g/l (dimensions 100 x 50 x 2 cm)

volumen: 10 l volume: 10 l

masa silicijeve kiseline: 2000 g mass of silicic acid: 2000 g

maksimalna količina vode: 120 g maximum amount of water: 120 g

b) tlačna gustoća: 220 g/l (dimenzije 100 x 50 x 2 cm) b) compressive density: 220 g/l (dimensions 100 x 50 x 2 cm)

volumen: 10 l volume: 10 l

masa silicijeve kiseline: 2200 g mass of silicic acid: 2200 g

maksimalna količina vode: 132 g maximum amount of water: 132 g

Pomoću slijedeće jednadžbe može se kod poznate propusnosti vodene pare folije procijeniti vijek trajanja toplinski izolacijskog tijela iz granične vrijednosti: With the help of the following equation, the lifetime of the thermal insulation body can be estimated from the limit value with the known water vapor permeability of the film:

[image] [image]

Dimenzije: Dimensions:

Granična vrijednost (maksimalna količina vode): (g) Limit value (maximum amount of water): (g)

Površina razmjene: (m2) Exchange area: (m2)

Propusnost vodene pare: g/m2 · d Water vapor permeability: g/m2 · d

Vijek trajanja: (d) Shelf life: (d)

S jednom folijom za ometanje koja ima propusnost vodene pare g/m2 · d With one barrier foil that has a water vapor permeability of g/m2 · d

od 0,05 pri 23°C i 85% relativne vlage, može se npr. za jedino toplinski izolacijsko tijelo, a koje je izrađeno od FK 500 LS, izračunati slijedeći vijek trajanja: of 0.05 at 23°C and 85% relative humidity, the following service life can be calculated, for example, for a single thermal insulation body, which is made of FK 500 LS:

Sredstvo za punjenje: FK 500 LS Filling agent: FK 500 LS

Tlačna gustoća: 180 g/l Compression density: 180 g/l

Dimenzije: dimenzije 100 cm x 50 cm x 2 cm Dimensions: dimensions 100 cm x 50 cm x 2 cm

Granična vrijednost (sadržaj vlage): 7% tež. (=126 g) Limit value (moisture content): 7% by weight. (=126 g)

Maksimalna količina vode: 126 g Maximum amount of water: 126 g

Površina razmjene: 1,06 m2 Exchange area: 1.06 m2

Propusnost vodene pare: 0,05 g/m2/d Water vapor permeability: 0.05 g/m2/d

Vijek trajanja = 126 g m2 · d = 2377 d = 6,5 a 1,06 m2+ =,05 Lifetime = 126 g m2 · d = 2377 d = 6.5 a 1.06 m2+ =.05

pri 23°C i 85% relativne vlage. at 23°C and 85% relative humidity.

U slijedećim tabelama dati su primjeri koliki se vijek trajanja može postići kod bezmetalnih folija i pokrivala od poznatih folija koje sadrže metal (niske propusnosti vodene pare) za toplinski izolacijska tijela proizvedena od taložnih silicijevih kiselina FK 500 LS i FK 320 DS. The following tables give examples of the service life that can be achieved with metal-free foils and covers made of known foils containing metal (low water vapor permeability) for thermal insulation bodies produced from precipitated silicic acids FK 500 LS and FK 320 DS.

Ovi proračuni vrijede najprije za toplinski izolacijsko tijelo izrađeno s asimetričnom strukturom omotača. Pri primjeni ravnog pokrivala koje sadrži metal dobivaju se slijedeći podaci: These calculations are valid first for a thermally insulating body made with an asymmetric shell structure. When applying a flat cover containing metal, the following data are obtained:

Maksimalna količina vode: 126 Maximum amount of water: 126

Površina razmjene: korito: ≅ 0,56 m2 Exchange surface: trough: ≅ 0.56 m2

pokrivalo: ≅ 0,50 m2 cover: ≅ 0.50 m2

Propusnost vodene pare: Water vapor permeability:

korito: 0,05 g/m2 · d bed: 0.05 g/m2 · d

pokrivalo: 0 g/m2 · d cover: 0 g/m2 · d

Vijek trajanja = 126 m2 · d = 4500 d = 12,5 a Lifetime = 126 m2 · d = 4500 d = 12.5 a

0,56 m2 · 0,05 g + 0,5 m2 · 0 g 0.56 m2 · 0.05 g + 0.5 m2 · 0 g

Vijek trajanja toplinski izolacijskog tijela ovisno o propusnosti vodene pare različitih folija The lifetime of the thermal insulation body depends on the water vapor permeability of different foils

FK 500 LS: maksimalno dozvoljen sadržaj vlage: 7% Dimenzije: 100 cm x 50 cm x 2 cm FK 500 LS: maximum allowed moisture content: 7% Dimensions: 100 cm x 50 cm x 2 cm

FK 320 DS: maksimalno dozvoljen sadržaj vlage: 6% Površina razmjene; 1,06 m2 FK 320 DS: maximum allowed moisture content: 6% Exchange area; 1.06 m2

[image] [image]

+) Izmjereno pri temperaturi 23°C i 85% relativne vlage. +) Measured at a temperature of 23°C and 85% relative humidity.

Vijek trajanja toplinski izolacijskog tijela ovisno o propusnosti vodene pare različitih folija The lifetime of the thermal insulation body depends on the water vapor permeability of different foils

FK 500 LS: maksimalno dozvoljen sadržaj vlage: 7% Dimenzije: 100 cm x 50 cm x 2 cm FK 500 LS: maximum allowed moisture content: 7% Dimensions: 100 cm x 50 cm x 2 cm

FK 320 DS: maksimalno dozvoljen sadržaj vlage: 6% Površina razmjene; 1,06 m2 FK 320 DS: maximum allowed moisture content: 6% Exchange area; 1.06 m2

[image] [image]

+) Izmjereno pri temperaturi 23°C i 85% relativne vlage. +) Measured at a temperature of 23°C and 85% relative humidity.

Claims (8)

1. Oblikovan komad, prvenstveno kao ploča, za primjenu kao toplinski izolator, naznačen time, da je proizveden od jednog fino mljevenog praškastog odnosno vlaknastog materijala, čiji kapacitet upijanja vode je od 4 do 50% tež. pri 23°C i 85% relativne vlage, i jednog omotača iz dva dijela asimetrične strukture, koji sadrži ovaj fino mljeveni praškasti odnosno vlaknasti materijal, pri čemu je prvi dio omotača bez metala i tako je duboko izvučen da je to korito potpuno ispunjeno s prvenstveno pločasto oblikovanim komadom, a drugi dio (pokrov) je bez metala ili sadrži metal i može biti ravan i s koritom je vezan tako da je osiguran završetak koji je nepropustan za plinove i vodenu paru i pri čemu oba dijela imaju propusnost vodene pare između 0 i 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost za plinove N2, O2 i CO2 u ukupnom iznosu od 0 do 0,5 cm3/m2/d/bar pri 23°C, s tom osobinom da upija vodu u količini od 2 do 15% tež., a da pri tome ne pogoršava svoju toplinsku provodljivost za više od 25%.1. A shaped piece, primarily as a plate, for use as a heat insulator, indicated by the fact that it is produced from a finely ground powder or fibrous material, whose water absorption capacity is from 4 to 50% by weight. at 23°C and 85% relative humidity, and one jacket of two parts of an asymmetric structure, which contains this finely ground powdery or fibrous material, where the first part of the jacket is metal-free and is drawn so deeply that the trough is completely filled with primarily plate-shaped piece, and the other part (cover) is metal-free or contains metal and can be flat and is connected to the trough so that an end is provided that is impermeable to gases and water vapor and both parts have a water vapor permeability between 0 and 0 .2 g/m2/d at 23°C and 85% relative humidity and permeability for N2, O2 and CO2 gases in the total amount from 0 to 0.5 cm3/m2/d/bar at 23°C, with the characteristic that absorbs water in the amount of 2 to 15% by weight, without deteriorating its thermal conductivity by more than 25%. 2. Oblikovan komad prema zahtjevu 1, naznačen time, da se praškasti odnosno vlaknasti materijal suši u jednom mikroporoznom omotaču.2. Shaped piece according to claim 1, characterized in that the powdery or fibrous material is dried in a single microporous envelope. 3. Oblikovan komad prema zahtjevu 2, naznačen time, da se mikroporozni omotač ubacuje u dvodijelni omotač asimetrične strukture.3. Shaped piece according to claim 2, characterized in that the microporous shell is inserted into a two-part shell of asymmetric structure. 4. Postupak za proizvodnju oblikovanog komada za toplinsku izolaciju prema zahtjevu 1, naznačen time, da se u danom slučaju jedan fino mljeven praškasti odnosno vlaknasti materijal, koji ima kapacitet upijanja vode od 4 do 50% tež.; (pri 23°C i 85% relativne vlage), suši pod takovim uvjetima koji omogućuju istiskivanje površinske vode, praškasti odnosno vlaknasti materijal u datom slučaju preša se, pri čemu se eventualno može koristiti i kalup za prešanje, u danom slučaju osušen i eventualno isprešan praškasti odnosno vlaknasti materijal unosi se u koritasti (duboko izvučen) dio omotača koji ne sadrži metal, a koji ima propusnost vodene pare od 0,02 do 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost za plinove N2, O2 i CO2 ukupno od 0, 05 do 0, 5 cm3/m3/d/bar pri 23°C, u danom slučaju osušen i eventualno isprešan praškasti odnosno vlaknasti materijal u koritastom (duboko izvučenom) dijelu omotača degazira pod tlakom između 0,1 i 1 mbara, drugi dio ravnog omotača, koji ne sadrži ili pak sadrži metal, a koji ima propusnost vodene pare od 0 do 0,2 g/m2/d pri 23°C i 85% relativne vlage i propusnost za plinove N2, O2 i C02 ukupno od 0,05 do 0,5 cm3/m3/d/bar pri 23°C u vakuumu se povezuje s prvim dijelom omotača koji ne •sadrži metal tako da se zadržava vakuum u unutrašnjosti omotača i da nastaje jedan - ako je to moguće - priključak koji je nepropustan za plin i vodenu paru.4. Process for the production of a shaped piece for thermal insulation according to claim 1, characterized by the fact that in this case one finely ground powdery or fibrous material, which has a water absorption capacity of 4 to 50% by weight; (at 23°C and 85% relative humidity), dries under such conditions that allow surface water to be squeezed out, the powdery or fibrous material is pressed in the given case, where a pressing mold can also be used, in the given case dried and possibly pressed The powdery or fibrous material is introduced into the trough (deep drawn) part of the casing that does not contain metal, and which has a water vapor permeability of 0.02 to 0.2 g/m2/d at 23°C and 85% relative humidity and a permeability for gases N2, O2 and CO2 in total from 0.05 to 0.5 cm3/m3/d/bar at 23°C, in the given case dried and possibly pressed powdery or fibrous material in the trough (deeply drawn) part of the casing degasses under a pressure between 0.1 and 1 mbar, the second part of the flat jacket, which does not contain or contains metal, and which has a water vapor permeability of 0 to 0.2 g/m2/d at 23°C and 85% relative humidity and gas permeability N2, O2 and C02 in total from 0.05 to 0.5 cm3/m3/d/bar at 23°C in vacuum is connected to the first part of the casing which does not •contain metal so that a vacuum is maintained inside the casing and that a - if possible - connection is created that is impervious to gas and water vapor. 5. Postupak prema zahtjevu 4, naznačen time, da se praškasti odnosno vlaknasti materijal suši u jednom mikroporoznom omotaču.5. The method according to claim 4, characterized in that the powdery or fibrous material is dried in one microporous envelope. 6. Postupak prema zahtjevu 4, naznačen time, da se praškasti odnosno vlaknasti materijal preša u jedan mikroporozni omotač i eventualno poslije toga suši.6. The method according to claim 4, indicated by the fact that the powdery or fibrous material is pressed into a microporous casing and eventually dried afterwards. 7. Primjena oblikovanog komada prema zahtjevu 1 kao posude za uskladištenje, pakiranje i/ili transport robe osjetljive prema temperaturi.7. Application of the shaped piece according to claim 1 as a container for storage, packaging and/or transport of temperature-sensitive goods. 8. Primjena jednog ili više oblikovanih komada prema zahtjevu 1 za toplinsku izolaciju u hladnjacima i hladnjacima za duboko zamrzavanje.8. Application of one or more shaped pieces according to claim 1 for thermal insulation in refrigerators and freezers.
HRP-585/91A 1990-06-22 1992-09-30 Vacuum insulating panel of asymmetrical structure HRP920665B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4019870A DE4019870A1 (en) 1990-06-22 1990-06-22 VACUUM INSULATION PANEL WITH ASYMMETRIC CONSTRUCTION
YU58591A YU47395B (en) 1990-06-22 1991-04-02 SAFETY PIECE, PRIMARY IN THE FORM OF A PLATE, FOR APPLICATION AS A THERMAL INSULATOR
SG28294A SG28294G (en) 1990-06-22 1994-02-22 Asymmetrical evacuated insulating panel.

Publications (2)

Publication Number Publication Date
HRP920665A2 true HRP920665A2 (en) 1994-10-31
HRP920665B1 HRP920665B1 (en) 1998-04-30

Family

ID=25894354

Family Applications (1)

Application Number Title Priority Date Filing Date
HRP-585/91A HRP920665B1 (en) 1990-06-22 1992-09-30 Vacuum insulating panel of asymmetrical structure

Country Status (13)

Country Link
EP (1) EP0463311B1 (en)
JP (1) JP2599515B2 (en)
AT (1) ATE94602T1 (en)
DE (2) DE4019870A1 (en)
DK (1) DK0463311T3 (en)
ES (1) ES2044642T3 (en)
HK (1) HK95694A (en)
HR (1) HRP920665B1 (en)
HU (1) HU214844B (en)
PT (1) PT98038B (en)
SG (1) SG28294G (en)
SI (1) SI9110585B (en)
TR (1) TR25532A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327703A (en) * 1993-03-23 1994-07-12 Whirlpool Corporation Vacuum panel assembly method
DE4324996C1 (en) * 1993-07-26 1994-10-06 Degussa Foamfree insulation for refrigerators
DE4407026A1 (en) * 1994-03-04 1995-09-07 Heraeus Industrietechnik Gmbh Thermal insulation, method of thermal insulation, thermally insulating housing and its use
DE4443082A1 (en) * 1994-12-03 1996-06-05 Huels Chemische Werke Ag Insulating pouch
HRP970104A2 (en) * 1996-03-22 1998-02-28 Bayer Ag Vacuum insulating panels wraped on both sides by a foil containing metal or by a metal covering layer
DE19758219A1 (en) * 1997-12-31 1999-07-01 Uvt Umwelt Und Verfahrens Tech Vacuum insulation panel for domestic refrigerator
DE19915311A1 (en) * 1999-04-03 2000-10-05 Bayer Ag Vacuum insulating panel, especially for refrigerators, has a microporous core encased in a 7-layer plastic foil with a polyolefin sealing layer, a gas barrier, a polyolefin layer and a metallised polymer layer
DE19923057A1 (en) * 1999-05-20 2000-11-23 Schueco Int Kg Heat insulating panel for windows, doors and building faces houses in its interior at least one insulating unit in a metal-coated metal cover whose interior is subjected to vacuum before its closure by welding
DE19928011A1 (en) * 1999-06-19 2000-12-21 Porextherm Daemmstoffe Gmbh Insulating board, especially for the low temperature range, e.g. in refrigeration plant, refrigerators and refrigerated technical equipment, preferably based on metal oxide powder, contains desiccant
DE10058566C2 (en) * 2000-08-03 2002-10-31 Va Q Tec Ag Foil-wrapped, evacuated thermal insulation body and manufacturing process for it
DE10125964A1 (en) * 2001-05-29 2002-12-12 Oesterr Heraklith Gmbh moldings
DE10308581A1 (en) * 2003-02-27 2004-09-16 Wacker-Chemie Gmbh Thermal insulation for underwater components for oil and gas production
ES2424219T3 (en) 2009-02-13 2013-09-30 Evonik Degussa Gmbh A thermal insulation material comprising precipitated silica
DE102010029513A1 (en) * 2010-05-31 2011-02-24 Wacker Chemie Ag Insulation with layer structure
AT511686A1 (en) * 2011-06-28 2013-01-15 Schoby Michael ASH-INSULATION PANEL

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2745173A (en) * 1951-07-14 1956-05-15 Gen Electric Method of thermal insulation
BE639626A (en) * 1963-05-06
GB1268626A (en) * 1968-07-10 1972-03-29 British Aircraft Corp Ltd Improvements in and relating to thermal insulation elements
US3790243A (en) * 1972-03-30 1974-02-05 Beverage Air Sales Co Closure for refrigerated housing
FR2360536A1 (en) * 1976-08-05 1978-03-03 Air Liquide LOW THERMAL CONDUCTIBILITY INSULATION MATERIAL CONSTITUTES A COMPACT GRANULAR STRUCTURE
DE2911416A1 (en) * 1979-03-23 1980-09-25 Erno Raumfahrttechnik Gmbh ELEMENT FOR HEAT INSULATION
US4284674A (en) * 1979-11-08 1981-08-18 American Can Company Thermal insulation
DE3033515A1 (en) * 1980-09-05 1982-04-29 Wacker-Chemie GmbH, 8000 München THERMAL INSULATION PLATE
US4444821A (en) * 1982-11-01 1984-04-24 General Electric Company Vacuum thermal insulation panel
EP0114687B1 (en) * 1983-01-24 1987-05-06 Grünzweig + Hartmann und Glasfaser AG Heat insulation slab with an envelope and highly dispersed particulate heat insulation material compressed in the envelope, method of manufacturing it and device for carrying out the method
JPS6071881A (en) * 1983-09-28 1985-04-23 松下電器産業株式会社 Heat-insulating structure
DE3418637A1 (en) * 1984-05-18 1985-11-21 Wacker-Chemie GmbH, 8000 München THERMAL INSULATION BODY WITH COVER
JPS61101789A (en) * 1984-10-23 1986-05-20 松下冷機株式会社 Heat-insulating material pack and manufacture thereof
US4636415A (en) * 1985-02-08 1987-01-13 General Electric Company Precipitated silica insulation
US4681788A (en) * 1986-07-31 1987-07-21 General Electric Company Insulation formed of precipitated silica and fly ash
JPS6343669A (en) * 1986-08-08 1988-02-24 帝人株式会社 Production of blood treatment device
US4726974A (en) * 1986-10-08 1988-02-23 Union Carbide Corporation Vacuum insulation panel
DE3737459A1 (en) * 1987-11-05 1989-05-18 Wacker Chemie Gmbh THERMAL INSULATION BODY WITH COATING BASED ON COMPRESSED, MICROPOROUS HEAT INSULATION
DE3816979A1 (en) * 1988-05-18 1989-11-30 Wacker Chemie Gmbh THERMAL INSULATION BODIES BASED ON COMPRESSED, MICROPOROUS HEAT INSULATION WITH A COVER BASED ON METALS
DE3828669A1 (en) * 1988-08-24 1990-03-08 Degussa FORMKOERPER FOR HEAT INSULATION
DE3915170A1 (en) * 1989-05-10 1990-11-15 Degussa FORMKOERPER FOR HEAT INSULATION
JPH03246265A (en) * 1990-02-22 1991-11-01 Kao Corp Production of fatty acid amide
EP0551375B2 (en) * 1990-09-28 2003-06-11 The Procter & Gamble Company Polyhydroxy fatty acid amides in zeolite/layered silicate built detergents
DE69129152T2 (en) * 1990-09-28 1998-10-08 Procter & Gamble POLYHYDROXYFETTSAUREAMIDTENSIDE IN FASTENER DETERGENT COMPOSITIONS

Also Published As

Publication number Publication date
DE59100376D1 (en) 1993-10-21
EP0463311B1 (en) 1993-09-15
SG28294G (en) 1994-06-10
HK95694A (en) 1994-09-16
PT98038A (en) 1993-08-31
SI9110585B (en) 1998-10-31
EP0463311A1 (en) 1992-01-02
DE4019870A1 (en) 1992-01-09
DK0463311T3 (en) 1993-10-18
PT98038B (en) 1998-12-31
ATE94602T1 (en) 1993-10-15
JP2599515B2 (en) 1997-04-09
HRP920665B1 (en) 1998-04-30
SI9110585A (en) 1997-10-31
HU912088D0 (en) 1991-12-30
JPH04231795A (en) 1992-08-20
HUT62074A (en) 1993-03-29
HU214844B (en) 1998-06-29
TR25532A (en) 1993-05-01
ES2044642T3 (en) 1994-01-01

Similar Documents

Publication Publication Date Title
US5389420A (en) Heat insulator and method of making it
HRP920665A2 (en) Vacuum insulation panel with asymmetric structure
JP2553564B2 (en) Method of manufacturing heat insulating material slab and heat insulating panel
US8474386B2 (en) Fire resistant containment system having a light weight portable removable enclosure
WO2016047041A1 (en) Fireproof construction and method for using same
US20160185068A1 (en) Insulating member and its attaching method
JPS61217668A (en) Precipitated silica heat-insulating material
DE202011050486U1 (en) insulating element
US5316816A (en) Form body for heat insulation and vacuum insulation panel with asymmetric design
HRP920745A2 (en) Formed body for thermal insulation
JP5905861B2 (en) Endothermic material using inorganic porous material
JP2008232372A (en) Vacuum heat insulating material and heat insulating structure using the same
US5362541A (en) Shaped articles for heat insulation
JP2008215492A (en) Vacuum heat insulation material
RU120437U1 (en) VACUUM HEAT-INSULATING PANEL
TWI680942B (en) Heat absorbing material using magnesium phosphate hydrate
JPH03223597A (en) Fire heat insulator and fire resistive heat insulating container
JP2018203565A (en) Adiabatic material and vacuum heat insulation material
CZ319094A3 (en) Fiber-free heat-insulating composite board
CN213886971U (en) Heat reflection anti-mold coating structure for outer wall of petrochemical storage tank
TWI659177B (en) Vacuum insulation material, insulation box and manufacturing method of vacuum insulation material
JPS6213786Y2 (en)
JP2010151280A (en) Insulating container and manufacturing method for insulator of insulating container
KR20180099141A (en) Vacuum insulation using slag wool
JPH02242768A (en) Heat insulating container

Legal Events

Date Code Title Description
A1OB Publication of a patent application
AIPI Request for the grant of a patent on the basis of a substantive examination of a patent application
B1PR Patent granted
ODRP Renewal fee for the maintenance of a patent

Payment date: 20030327

Year of fee payment: 13

PNAN Change of the applicant name, address/residence

Owner name: DEGUSSA AG, DE

PBON Lapse due to non-payment of renewal fee

Effective date: 20040403