JPS61217668A - Precipitated silica heat-insulating material - Google Patents

Precipitated silica heat-insulating material

Info

Publication number
JPS61217668A
JPS61217668A JP61024286A JP2428686A JPS61217668A JP S61217668 A JPS61217668 A JP S61217668A JP 61024286 A JP61024286 A JP 61024286A JP 2428686 A JP2428686 A JP 2428686A JP S61217668 A JPS61217668 A JP S61217668A
Authority
JP
Japan
Prior art keywords
silica
insulating material
heat insulating
water glass
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61024286A
Other languages
Japanese (ja)
Other versions
JPH0774718B2 (en
Inventor
ロバート・ウイリアム・バリト
ケネス・ルイス・ダウンズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPS61217668A publication Critical patent/JPS61217668A/en
Publication of JPH0774718B2 publication Critical patent/JPH0774718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L51/00Expansion-compensation arrangements for pipe-lines
    • F16L51/02Expansion-compensation arrangements for pipe-lines making use of bellows or an expansible folded or corrugated tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/122Insulation with respect to heat using an insulating packing material of loose fill type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/231Filled with gas other than air; or under vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/239Complete cover or casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/24998Composite has more than two layers

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 発明の背景 冷蔵構造体用の断熱材のような断熱材の設計と開発は、
広範囲に及ぶ技術である。断熱材料として種々の繊維状
および粉末状材料を用いた装置が多数開発されている。
DETAILED DESCRIPTION OF THE INVENTION Background of the Invention The design and development of insulation materials, such as insulation materials for refrigeration structures,
It is a widespread technology. A number of devices have been developed using various fibrous and powdered materials as insulation materials.

このような断熱材料を利用する方法は、排気シェルおよ
びバッグの使用、断熱材料の圧縮、材料の色々な配向を
含めて、多岐にわたっている。これまでに開発された断
熱材料の多くが、所期の目的に十分適切であることが確
かめられており、その例が米国特許第2768046号
、米国特許第2867035号および米国特許第317
9549号に開示されている。
There are a wide variety of ways to utilize such insulating materials, including the use of exhaust shells and bags, compression of the insulating material, and various orientations of the material. Many of the insulating materials developed to date have been found to be well suited for their intended purposes, examples include U.S. Pat. No. 2,768,046, U.S. Pat.
No. 9549.

上述したような従来技術では、粉末状断熱材料を適当な
型の容器に封入して用いることが開示されている。例え
ば、米国特許第2989156号に記載された冷蔵庫お
よび冷凍庫用の断熱パネルでは、パネルが2枚の金属シ
ートを密閉し、その中心部分を排気し、膨張パーライト
を充填することにより形成されている。米国特許第43
99175号には、外側容器に入れた粉末状断熱材料を
加圧成形して断熱板を形成することが記載されている。
The prior art as described above discloses the use of a powdered heat insulating material sealed in a container of an appropriate type. For example, in an insulated panel for refrigerators and freezers described in US Pat. No. 2,989,156, the panel is formed by sealing two metal sheets, evacuating the center, and filling with expanded perlite. US Patent No. 43
No. 99175 describes the use of pressure molding of a powdered insulating material placed in an outer container to form an insulating board.

剛固な外壁と可撓性の内壁との間の空間に粉末状断熱材
料をはさんだ断熱装置が米国特許第4349051号に
記載されている。同様の構造が米国特許第316651
1号に開示されている。
A thermal insulation device is described in U.S. Pat. No. 4,349,051 in which a powdered thermal insulation material is sandwiched in the space between a rigid outer wall and a flexible inner wall. A similar structure is disclosed in U.S. Patent No. 316651.
It is disclosed in No. 1.

さらに、粉末材料を充填した金属シェルを気密封じした
ものが米国特二′1第2f)67015号および第21
64143号に記載されている。
Furthermore, those in which a metal shell filled with a powder material is hermetically sealed are disclosed in U.S. Pat.
No. 64143.

人工的に製造したシリカ材料を断熱材料として用いるこ
とが、米国特許第4159359号に記載されている。
The use of artificially produced silica materials as insulation materials is described in US Pat. No. 4,159,359.

この特許に記載されているシリカ材料は、シラン材料を
熱処理して所望のシリカ粒子を生成することにより形成
したフユームドシリカ(fumed 5ilica)で
ある。このフユームドシリ力は、比較的高価な合成シリ
カであって、その具体的なパラメータは上記特許明細書
に記載されている。
The silica material described in this patent is fumed silica, which is formed by heat treating a silane material to produce the desired silica particles. This fumed silica is a relatively expensive synthetic silica, and its specific parameters are described in the above patent specification.

上記米国特許第4159359号で注目すべき点として
、その特許明細書に、沈降シリカ(prccipita
ted 5ilica )の粉末は熱伝導率が高すぎ、
従って断熱材料としてはまったく問題にならないと記載
しであることが挙げられる。
What is noteworthy about U.S. Pat. No. 4,159,359 is that the patent specification mentions that precipitated silica
ted 5ilica) powder has too high thermal conductivity,
Therefore, it is stated that it poses no problem as a heat insulating material.

本発明によれば、特に上記米国特許第4159359号
の開示内容からみて驚くべきことには、沈降シリカを用
いてすぐれた断熱材料を形成できることが見出された。
In accordance with the present invention, it has been surprisingly found, especially in light of the disclosure of the above-mentioned US Pat. No. 4,159,359, that precipitated silica can be used to form excellent thermal insulation materials.

沈降シリカは、断熱特性がフユームドシリカの断熱特性
よりしばしば優れていることに加えて、そのコストが著
しく低く、従ってもっと低いコストですぐれた性能を発
揮する。
In addition to the thermal insulation properties of precipitated silicas which are often superior to those of fumed silica, precipitated silicas are significantly lower in cost and therefore provide superior performance at lower cost.

本発明による沈降シリカは、アルカリ性水ガラスと鉱酸
との相互作用により、当業界で周知の手段で生成される
。こうして得た沈降シリカを次に、例えば噴霧乾燥およ
びミリング(milling )などにより機械的に処
理して、所望の粒度と表面積を得る。
Precipitated silica according to the invention is produced by means well known in the art by the interaction of alkaline water glass with mineral acids. The precipitated silica thus obtained is then mechanically processed, such as by spray drying and milling, to obtain the desired particle size and surface area.

こうして調製した沈降シリカを加熱して表面水をとばす
。場合によっては、この加熱処理の際、単なる容器を構
成する微孔質の袋(パウチ)の中にシリカを入れるのが
有利であることを確かめた。
The precipitated silica thus prepared is heated to drive off surface water. In some cases, it has been found advantageous to place the silica in a microporous pouch which constitutes a simple container during this heat treatment.

沈降シリカ粉末の乾燥後、この粉末をプラスチックの外
被、好ましくは金属被覆または金属箔層を設けたプラス
チックの外被の中に入れ、次に外被を排気し、封じする
。沈降シリカを微孔質の袋内で乾燥した場合には、その
微孔質の袋をそのま\プラスチックの外被に入れること
ができる。プラスチックの外被の排気前または排気中に
、沈降シリカを圧縮して所望の密度にし、これにより、
十分に薄い構造を有する優れた断熱材を低コストで得る
ことができる。圧縮および排気後、圧縮した沈降シリカ
を含むプラスチックの外被は本質的にボード状の形にな
り、従ってこのような外被を断熱が必要な構造体、例え
ば冷蔵庫や冷凍庫の壁や扉に簡単に配置することができ
る。
After the precipitated silica powder has dried, it is placed into a plastic jacket, preferably a plastic jacket provided with a metal coating or a metal foil layer, and then the jacket is evacuated and sealed. If the precipitated silica is dried in a microporous bag, the microporous bag can be placed directly into a plastic envelope. Before or during evacuation of the plastic envelope, the precipitated silica is compressed to the desired density, thereby
Excellent thermal insulation with a sufficiently thin structure can be obtained at low cost. After compression and evacuation, the plastic jacket containing the compressed precipitated silica is essentially in a board-like shape, and such jackets can therefore be easily attached to structures that require insulation, such as the walls and doors of refrigerators and freezers. can be placed in

本発明の材料と処理方法を用いることにより、同じ断熱
値なら従来の冷蔵庫および冷凍庫断熱材より薄く、同じ
厚さなら断熱効率が一層良い断熱4イが得られる。
By using the materials and processing methods of the present invention, insulation 4I can be obtained that is thinner than conventional refrigerator and freezer insulation for the same insulation value, and with better insulation efficiency for the same thickness.

発明の詳細な説明 前述したように、本発明の断熱材料は沈降シリカからつ
くられる。まずその沈降シリカを生成するには、アルカ
リ性珪酸塩を鉱酸で処理する。こうして得られた生成物
を噴霧乾燥しミリングし、次いで加熱して表面水をとば
す。こうして乾燥したシリカを次に本質的に気密で水密
な外被内に入れ、ここで真空にして加圧することにより
ボード状の堅さくコンシンテンシー)を有する材料を形
成する。この材料は通常厚さ0.5乃至1インチで、平
坦である。上記加工により得られるパネルの長さおよび
幅は、このパネルを挿入しようとする冷凍庫や冷蔵庫の
ような特定の装置の部材の寸法により制限されるだけで
ある。
DETAILED DESCRIPTION OF THE INVENTION As previously mentioned, the insulating material of the present invention is made from precipitated silica. To produce the precipitated silica, an alkaline silicate is first treated with a mineral acid. The product thus obtained is spray dried, milled and then heated to drive off the surface water. The thus dried silica is then placed within an essentially airtight and watertight envelope where it is vacuumed and pressurized to form a material having a board-like stiff consistency. This material is typically 0.5 to 1 inch thick and flat. The length and width of the panel obtained by the above process is limited only by the dimensions of the components of the particular device, such as a freezer or refrigerator, into which the panel is inserted.

本発明の断熱材料を」二連した通りに製造した場合、得
られるパネルはに値が約0.05 (BTU)(IN)
/(HR)(FT)2 (丁)以下となることを確かめ
た。この範囲のに値が冷蔵庫および冷凍庫の製造に望ま
しいことが以前から確かめられている。従って、本発明
に従って製造した断熱材料は、同じ熱漏洩なら壁を薄く
でき、従って断熱すべき装置の部材の外側寸法を小さく
するか内部容積を大きくすることができ、あるいは同じ
壁厚の場合には一層エネルギー効率のよい装置の部材を
形成することができる。
When the insulating material of the present invention is manufactured in duplicate, the resulting panels have a value of approximately 0.05 (BTU) (IN).
/ (HR) (FT) 2 (cho) or less was confirmed. It has previously been established that values in this range are desirable for refrigerator and freezer manufacturing. The insulation material produced according to the invention therefore allows for thinner walls for the same heat leakage and thus for smaller external dimensions or larger internal volumes of the parts of the equipment to be insulated, or for the same wall thickness. can form more energy efficient components of the device.

本発明の沈降シリカは、前述したように、アルカリ性水
ガラスと鉱酸との相互作用により生成する。アルカリ性
水ガラスをナトリウム水ガラスとし、鉱酸を硫酸とする
のが好ましい。両者の相互作用から生じる白色沈澱物を
)P遇し、洗い、乾燥すると、通常二酸化珪素含量86
乃至88%、残部の大部分が水であり、それに反応中に
形成された少量の塩残留物と痕跡量の金属酸化物を含む
生成物が得られる。反応原料の組成と比、反応時間、温
度および濃度に応じて特性が色々に異なる種々の沈降シ
リカが商業経路で人手可能である。白色沈澱物のその後
の処理も特性を左右し、そのような後処理としては一過
、種々の方法での乾燥、種々の方法での磨砕またはミリ
ング、そして分級がある。沈澱物の相互作用および後処
理の両方における処理の種類により影響を受ける特性に
は、表面積、粒度および密度がある。一般に、本発明に
は、BET法(DIN66 131)で1lll定して
、150m2 (平方メートル)/2(ダラム)以上の
表面積が有用であることを確かめた。さらに、使用する
シリカは通常中性が僅かにアルカリ性(pH6,0以上
)でなければならない。本発明により使用する沈降シリ
カの塊状粒(aggloa+erate)の粒度は50
μll1(マイクロメートル)以下、特に10μm以ド
であるのが好ましい。
As mentioned above, the precipitated silica of the present invention is produced by the interaction of alkaline water glass and mineral acid. Preferably, the alkaline water glass is sodium water glass and the mineral acid is sulfuric acid. When the white precipitate resulting from the interaction between the two is washed and dried, the silicon dioxide content is usually 86%.
A product is obtained in which the remainder is mostly water, with a small amount of salt residues formed during the reaction and traces of metal oxides. A variety of precipitated silicas are available commercially, with varying properties depending on the composition and ratio of reaction materials, reaction time, temperature and concentration. The subsequent treatment of the white precipitate also influences its properties; such post-treatments include passing, drying in various ways, grinding or milling in various ways, and classification. Properties influenced by the type of treatment, both in precipitate interaction and in post-treatment, include surface area, particle size and density. In general, a surface area of 150 m2 (square meter)/2 (Durham) or more has been found to be useful for the present invention, as determined by the BET method (DIN 66 131). Furthermore, the silica used must normally be neutral but slightly alkaline (pH 6.0 or higher). The particle size of the precipitated silica agglomerates (aggloa+erate) used according to the invention is 50
It is preferably less than μll1 (micrometer), particularly less than 10 μm.

本発明により断熱パネルを形成するには、まず最初、商
業経路で人手した沈降シリカを乾燥する。
To form an insulating panel according to the present invention, the hand precipitated silica is first dried by commercial routes.

希望に応じて、シリカを微孔質の袋の中に入れてもよい
。この袋は乾燥処理中シリカ粉末を保持しておく補助具
として用いるだけである。このような微孔質材料を用い
るのが望ましい場合、使用可能な材料として、セラニー
ズFf (celanese )から商品名「セルガー
ドJ  (celgard)として販売されているポリ
プロピレンが挙げられる。そのほか、濾紙として用いら
れる種類の紙を使用できる。
If desired, the silica may be placed in a microporous bag. This bag is only used as an aid to hold the silica powder during the drying process. If it is desirable to use such a microporous material, possible materials include polypropylene sold under the trade name Celgard by Celanese Ff. You can use different types of paper.

一般に、空気と水分を通すが、微細なシリカを保持する
ことができる材料ならどんな材料でもよい。
In general, any material that allows air and moisture to pass through, but is capable of retaining finely divided silica, will suffice.

、乾燥処理の際、微孔質の袋を使用するか否かにか〜わ
らず、温度は表面水をとばすのに十分でなければならな
い。一般にこれは、微孔質の袋を用いる場合には約10
0℃の温度を意味し、その−ト限は微孔質材料が炭化、
溶融もしくは分解しない温度である。
During the drying process, whether or not microporous bags are used, the temperature must be sufficient to drive off surface water. Generally this is about 10 when using microporous bags.
It refers to the temperature of 0°C, and its -t limit is the temperature at which the microporous material carbonizes.
This is the temperature at which it will not melt or decompose.

乾燥処理後、乾燥したシリカを加圧して、約10乃至2
0ポンド/立方フィート、好ましくは10乃至13ポン
ド/立方フィートの範囲の密度にしたケーキ(cake
)を形成する。本発明に従って使用する材料は、このよ
うな密度で、0.05(BTU)(IN)/(HR)(
FT)2  (”F)以下の望ましいに値ををする。乾
燥したシリカを別のプラスチックの外被または袋に入れ
る。このプラスチックの外被はガス洩れを防止するよう
に形成する。シリカを微孔質の袋内で乾燥した場合には
、微孔質の袋をそのま\プラスチックの外被内に入れる
。通常、プラスチックの外被でガス洩れを防止するには
、薄い金属箔層を用いるか、あるいは多層外被の1つ以
上のプラスチック層を金属波頂(メタライズ)する。例
えば、本発明に用いるプラスチックの外被としては、ポ
リプロピレンのような重合体の6層から形成され、うち
3層をアルミニウム被覆してガス障壁を形成した種類の
プラスチックの外被が有用であることを確かめた。
After the drying process, the dried silica is pressurized to about 10 to 2
Cake having a density in the range of 0 lbs/ft3, preferably 10 to 13 lbs/ft3.
) to form. The material used according to the invention has a density of 0.05 (BTU) (IN)/(HR) (
FT) 2 ("F) or less. Place the dried silica in a separate plastic jacket or bag. This plastic jacket should be shaped to prevent gas leaks. If it dries in a porous bag, place the microporous bag directly inside the plastic jacket.Usually, a thin metal foil layer is used to prevent gas leakage in the plastic jacket. For example, the plastic envelope used in the present invention may be formed from six layers of a polymer such as polypropylene, three of which are Plastic envelopes of the type in which the layers are coated with aluminum to form a gas barrier have been found to be useful.

プラスチックの外被の全体の厚さを十分に小さくして、
側縁を通っての熱伝導がほとんど起らないようにしなけ
ればならない。一般に、全体の厚さは約0.003乃至
0.020インチとした方がよい。より一層薄い材料で
もシリカを保持してその後の必要な処理に耐えることの
できる充分強度を何するが、この材料を配置した装置の
予想寿命が短くなることがある。しかし、外被の厚さが
0.003インチでも、5年以−Lの予想寿命が期待で
きる。
The overall thickness of the plastic jacket is small enough to
There should be little heat conduction through the side edges. Generally, the overall thickness should be about 0.003 to 0.020 inches. Although thinner materials may still be strong enough to retain the silica and withstand the necessary subsequent processing, the expected lifetime of equipment in which this material is placed may be shortened. However, even with a jacket thickness of 0.003 inches, an expected life of more than 5 years can be expected.

乾燥したシリカをプラスチックの外被に入れた後、外被
を排気し、適当な手段、例えばヒートシールまたは接着
剤で密閉する。10I10ll1以下の内圧とするのが
望ましいが、充填材料によっては、それより少し高い圧
力、例えば15fflff1程度の圧力でもさしつかえ
ない。必要な真空度は、前述したような0.005以下
にしなければならないに値に基づいて決められる。所望
に応じて、排気に先−γっで、二酸化炭素や窒素のよう
な不活性ガスを用いて外被から空気を追い出してもよい
After the dried silica is placed in the plastic envelope, the envelope is evacuated and sealed by suitable means, such as heat sealing or adhesive. It is desirable that the internal pressure be 10I10lll1 or less, but depending on the filling material, a slightly higher pressure, for example about 15fflff1, may be sufficient. The necessary degree of vacuum is determined based on the value, which must be 0.005 or less, as described above. If desired, an inert gas such as carbon dioxide or nitrogen may be used to drive air from the envelope prior to evacuation.

以下に本発明の実施例を示す。これらの実施例は例示と
してだけのものであり、いかなる意味でも本発明の範囲
を限定するものと考えるべきではない。
Examples of the present invention are shown below. These examples are illustrative only and should not be considered as limiting the scope of the invention in any way.

実施例 I 断熱パネルを製作するため、最初に約300牙の沈降シ
リカを微孔質の袋に入れた。微孔質の袋は商品名「セル
ガードJ  (celgard)として販売されている
材料でつくり、沈降シリカはデグサ社(D cguss
a)から商品名rFK−310Jとして販売されている
ものを用いた。この沈降シリカは表面積650m2/’
ン(BET法による)、平均塊状粒粒度5μ11タッピ
ング(tapping )密度130゛ン/I!、pH
7、DBP吸収210およびふるい残分0.01  (
DIN53 580による)である。沈降シリカを微孔
質の袋内に入れた後、微孔質の袋の開いた側辺を熱融着
し、次にこれをオーブンにれて96℃に16時間保持し
た。
Example I To make an insulating panel, approximately 300 pieces of precipitated silica were first placed in a microporous bag. The microporous bag is made of a material sold under the trade name Celgard, and the precipitated silica is manufactured by Degussa.
A product sold under the trade name rFK-310J from a) was used. This precipitated silica has a surface area of 650 m2/'
(by BET method), average aggregate particle size 5μ11, tapping density 130゛/I! , pH
7, DBP absorption 210 and sieve residue 0.01 (
according to DIN 53 580). After the precipitated silica was placed into the microporous bag, the open sides of the microporous bag were heat sealed and then placed in an oven and held at 96°C for 16 hours.

微孔質の袋中の乾燥したシリカを次に、排気孔を有する
金属被覆したプラスチックの外被に入れた。使用した外
被は、前述したように、積層重合体膜を6層有し、その
うち3層がアルミニウム被覆されており、外被の全体の
厚さが0.004インチであった。微孔質の袋を金属被
覆したプラスチックの外被内に入れた後、外被を、排気
孔を除いて封じし、0.7トルに排気している間に、こ
のパネルを密度19.4ポンド/立方フィートで厚さ0
.626インチに圧縮した。
The dried silica in the microporous bag was then placed in a metal coated plastic jacket with vent holes. The jacket used had six layers of laminated polymer membranes, three of which were coated with aluminum, as described above, and the total jacket thickness was 0.004 inches. After placing the microporous bag within a metallized plastic jacket, the jacket was sealed except for the exhaust vents and the panel was heated to a density of 19.4 while evacuated to 0.7 Torr. Thickness 0 in pounds per cubic foot
.. Compressed to 626 inches.

得られたパネルを熱伝導率テスタに入れて測定したとこ
ろ、C値は0. 066 (BTU) / (HR)(
FT)2 (下)であり、K値は0.041(BTU)
(IN)/(HR)(FT)2 (下)であった。
When the obtained panel was placed in a thermal conductivity tester and measured, the C value was 0. 066 (BTU) / (HR) (
FT)2 (bottom), and the K value is 0.041 (BTU)
(IN)/(HR)(FT)2 (bottom).

実施例 ■ 断熱特性に対する真空の影響を調べた。デグサ社から商
品名rFK500−LSJとして販売されている別の沈
降シリカを用い、これを実施例Iにおけると同様に調製
した。たたし最終生成物の密度は12ポンド/立方フィ
ートで、最終パネルの厚さは0.715インチであった
。ゆっくりと真空洩れを起させたところ、第1表に示す
データが得られた。第1表中、Cの単位は(BTU)/
(HR)(FT)2  (丁)であり、Kの単位は(B
TU)(IN)/(HR)(FT)2 (下)である。
Example ■ The influence of vacuum on insulation properties was investigated. Another precipitated silica sold by Degussa under the tradename rFK500-LSJ was prepared as in Example I. The density of the final drizzled product was 12 pounds per cubic foot and the final panel thickness was 0.715 inches. When a vacuum leak was slowly caused, the data shown in Table 1 was obtained. In Table 1, the unit of C is (BTU)/
(HR) (FT)2 (di), and the unit of K is (B
TU)(IN)/(HR)(FT)2 (bottom).

第1表 実施例 ■ 他の沈降シリカについて、そのほかは実施例Iで使用し
たのと同じ条件および材料を用いて、試験した。得られ
た結果を第■表に示す。第■表中、充填密度の単位は(
LB)/ (FT)3 、内圧の単位は111H′)、
Kの単位は(BTU)(IN)/(HR)(FT)2 
(下)である。
Table 1 Examples ■ Other precipitated silicas were tested using otherwise the same conditions and materials as used in Example I. The results obtained are shown in Table ①. In Table ■, the unit of packing density is (
LB)/(FT)3, unit of internal pressure is 111H'),
The unit of K is (BTU) (IN)/(HR) (FT)2
(bottom).

第■表 こ\で、ジベルナツト(S 1pcrnat )はデグ
サ社(D cgussa)の商品名。
In Table 2, Sibernut (S1pcrnat) is a product name of Degussa.

ハイシル(Hl−SIL)及びローベル(L o−vc
l)はPPG比の商品名である。
Hl-SIL and Lo-vc
l) is the trade name of PPG ratio.

なお、上記ジベルナツト22Sは、FK310の場合と
同じ試験を行ったところ、BET表面積1901平均塊
状粒粒度7、タッピング密度120含/1、pH6,3
、DBP吸収270、ふるい残分0.1である。ジベル
ナツト22LSは、BET表面積170、平均塊状粒粒
度465、タッピング密度80.pH5,3、DBP吸
収2701ふるい残分0,01である。ジベルナツト5
0は、BET表面積4501平均塊状粒粒度50、タッ
ピング密度200.pH7、DBP吸収340、ふるい
残分0.5である。ジベルナツト50Sは、BET表面
積450、平均塊状粒粒度8、タッピング密度100.
pH7、DBP吸収330、ふるい残分0.1である。
In addition, when the same test as FK310 was conducted, the above Gibelnut 22S had a BET surface area of 1901, an average lump particle size of 7, a tapping density of 120%/1, and a pH of 6.3.
, DBP absorption 270, sieve residue 0.1. Gibelnut 22LS has a BET surface area of 170, an average agglomerate particle size of 465, and a tapping density of 80. pH 5.3, DBP absorption 2701 sieve residue 0.01. Gibernut 5
0 means BET surface area: 4501, average lump grain size: 50, tapping density: 200. pH 7, DBP absorption 340, sieve residue 0.5. Gibelnut 50S has a BET surface area of 450, an average agglomerate particle size of 8, and a tapping density of 100.
pH 7, DBP absorption 330, sieve residue 0.1.

ハイシルT600はメジアン塊状粒粒度1.4μl、平
均最終粒度21nm(ナノメートル)、表面積150m
2/′)、pH7,0、バルク密度(タッピングによる
)3乃至4ポンド/立方フィートである。
Hisil T600 has a median bulk particle size of 1.4 μl, an average final particle size of 21 nm (nanometers), and a surface area of 150 m.
2/'), pH 7.0, and bulk density (by tapping) of 3 to 4 pounds per cubic foot.

本発明に従って、沈降シリカを各種装置、特に冷却装置
用の断熱材として用いることを以上で説明した。また多
種類の沈降シリカを示した。本発明は特定の実施例に限
定されると考えるべきでなく、特許請求の範囲に規定し
た通りに考えるべきである。
The use of precipitated silica as an insulating material for various devices, particularly cooling devices, has been described in accordance with the present invention. It also showed many types of precipitated silica. The invention should not be considered limited to the particular embodiments, but rather as defined in the claims.

Claims (1)

【特許請求の範囲】 1、(a)アルカリ性水ガラスと鉱酸との相互作用によ
りシリカを沈降させた後、乾燥させて乾燥した微細なシ
リカを形成することによって得た微細なシリカ材料と、 (b)この乾燥した微細なシリカを入れた気密で水密な
外被と、 を含む断熱用のボード状材料板。 2、上記アルカリ性水ガラスがナトリウム水ガラスであ
り、上記鉱酸が硫酸である特許請求の範囲第1項記載の
ボード状材料板。 3、上記微細なシリカが微孔質の袋に入れて乾燥されて
いる特許請求の範囲第1項記載のボード状材料板。 4、上記微孔質の袋が上記気密で水密な外被内に配置さ
れている特許請求の範囲第3項記載のボード状材料板。 5、上記乾燥した微細なシリカを入れた上記気密で水密
な外被が10乃至20ポンド/立方フィートの密度に圧
縮されている特許請求の範囲第1項記載のボード状材料
板。 6、上記密度が10乃至13ポンド/立方フィートであ
る特許請求の範囲第5項記載のボード状材料板。 7、(a)アルカリ性水ガラスと鉱酸との相互作用によ
り微細なシリカを沈降させ、 (b)この微細な沈降シリカを表面水をとばすのに十分
な温度で乾燥させ、 (c)この乾燥した沈降シリカを10乃至20ポンド/
立方フィートの密度に圧縮し、 (d)この乾燥したシリカを排気孔付きの気密で水密な
外被に入れ、 (e)上記気密で水密な外被を排気し、 (f)上記気密で水密な外被の排気孔を密封する各工程
を含む断熱材の形成方法。 8、上記アルカリ性水ガラスがナトリウム水ガラスであ
り、上記鉱酸が硫酸である特許請求の範囲第7項記載の
断熱材の形成方法。 9、上記沈降シリカを微孔質の袋に入れて乾燥させる特
許請求の範囲第7項記載の断熱材の形成方法。 10、上記気密で水密な外被が金属被覆層を含むプラス
チックの多層構造からなる特許請求の範囲第7項記載の
断熱材の形成方法。 11、上記乾燥させる温度が約100℃である特許請求
の範囲第7項記載の断熱材の形成方法。 12、上記金属被覆層の少くとも1層がアルミニウム被
覆プラスチック層である特許請求の範囲第10項記載の
断熱材の形成方法。 13、上記プラスチック層の少くとも1層がポリプロピ
レンで形成されている特許請求の範囲第10項記載の断
熱材の形成方法。 14、上記層の少くとも1層がアルミニウム箔層である
特許請求の範囲第10項記載の断熱材の形成方法。 15、排気により内圧を15トル以下にする特許請求の
範囲第7項記載の方法。 16、沈降による微細なシリカで構成した断熱材。 17、上記沈降によるシリカがアルカル性水ガラスと鉱
酸との相互作用により形成されたものである特許請求の
範囲第16項記載の断熱材。 18、上記水ガラスがナトリウム水ガラスであり、上記
鉱酸が硫酸である特許請求の範囲第17項記載の断熱材
。 19、上記シリカの塊状粒粒度が50μm以下である特
許請求の範囲第16項記載の断熱材。 20、上記微細なシリカが10乃至20ポンド/立方フ
ィートの密度に圧縮されている特許請求の範囲第16項
記載の断熱材。 21、上記密度が10乃至13ポンド/立方フィートで
ある特許請求の範囲第20項記載の断熱材。
[Scope of Claims] 1. (a) Fine silica material obtained by precipitating silica by interaction of alkaline water glass and mineral acid and then drying to form dry fine silica; (b) An airtight and watertight outer cover containing this dry fine silica, and a board-like material plate for insulation. 2. The board-like material sheet according to claim 1, wherein the alkaline water glass is sodium water glass and the mineral acid is sulfuric acid. 3. The board-like material plate according to claim 1, wherein the fine silica is placed in a microporous bag and dried. 4. The board-like material plate according to claim 3, wherein the microporous bag is arranged within the airtight and watertight jacket. 5. The board-like material of claim 1, wherein said airtight, watertight jacket containing said dry, finely divided silica is compressed to a density of 10 to 20 pounds per cubic foot. 6. The board-like material of claim 5, wherein said density is between 10 and 13 pounds per cubic foot. 7. (a) Precipitating fine silica by the interaction of alkaline water glass and mineral acid, (b) drying this fine precipitated silica at a temperature sufficient to drive off surface water, and (c) this drying. 10 to 20 pounds of precipitated silica
compressed to a density of cubic feet; (d) placing the dried silica in an air-tight, water-tight jacket with vents; (e) evacuating said air-tight, water-tight jacket; and (f) evacuating said air-tight, water-tight jacket. A method of forming a thermal insulation material including steps of sealing an exhaust hole in a jacket. 8. The method for forming a heat insulating material according to claim 7, wherein the alkaline water glass is sodium water glass and the mineral acid is sulfuric acid. 9. The method for forming a heat insulating material according to claim 7, wherein the precipitated silica is placed in a microporous bag and dried. 10. The method of forming a heat insulating material according to claim 7, wherein the airtight and watertight outer jacket is made of a multilayered plastic structure including a metal coating layer. 11. The method of forming a heat insulating material according to claim 7, wherein the drying temperature is about 100°C. 12. The method of forming a heat insulating material according to claim 10, wherein at least one of the metal coating layers is an aluminum-coated plastic layer. 13. The method of forming a heat insulating material according to claim 10, wherein at least one of the plastic layers is made of polypropylene. 14. The method for forming a heat insulating material according to claim 10, wherein at least one of the layers is an aluminum foil layer. 15. The method according to claim 7, in which the internal pressure is reduced to 15 torr or less by evacuation. 16. Insulating material composed of fine silica produced by sedimentation. 17. The heat insulating material according to claim 16, wherein the precipitated silica is formed by interaction between alkaline water glass and mineral acid. 18. The heat insulating material according to claim 17, wherein the water glass is sodium water glass and the mineral acid is sulfuric acid. 19. The heat insulating material according to claim 16, wherein the silica has a lump particle size of 50 μm or less. 20. The insulation of claim 16, wherein said finely divided silica is compressed to a density of 10 to 20 pounds per cubic foot. 21. The insulation material of claim 20, wherein said density is between 10 and 13 pounds per cubic foot.
JP2428686A 1985-02-08 1986-02-07 Precipitated silica insulation and method of forming same Expired - Lifetime JPH0774718B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US699930 1985-02-08
US06/699,930 US4636415A (en) 1985-02-08 1985-02-08 Precipitated silica insulation

Publications (2)

Publication Number Publication Date
JPS61217668A true JPS61217668A (en) 1986-09-27
JPH0774718B2 JPH0774718B2 (en) 1995-08-09

Family

ID=24811522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2428686A Expired - Lifetime JPH0774718B2 (en) 1985-02-08 1986-02-07 Precipitated silica insulation and method of forming same

Country Status (8)

Country Link
US (1) US4636415A (en)
EP (1) EP0190582B1 (en)
JP (1) JPH0774718B2 (en)
KR (1) KR940008642B1 (en)
CN (1) CN1005622B (en)
CA (1) CA1242564A (en)
DE (1) DE3650116T2 (en)
ES (1) ES8706885A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316816A (en) * 1989-05-10 1994-05-31 Degussa Aktiengesellschaft Form body for heat insulation and vacuum insulation panel with asymmetric design

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798753A (en) * 1986-12-19 1989-01-17 General Electric Company Insulating panels containing insulating powders and insulating gases
US5362541A (en) * 1988-08-24 1994-11-08 Degussa Aktiengesellschaft Shaped articles for heat insulation
DE3828668A1 (en) * 1988-08-24 1990-03-08 Degussa METHOD FOR TREATING FELLING SILICON AND THE USE THEREOF FOR HEAT INSULATION
DE3828669A1 (en) * 1988-08-24 1990-03-08 Degussa FORMKOERPER FOR HEAT INSULATION
US5032439A (en) * 1989-08-25 1991-07-16 Massachusetts Institute Of Technology Thermal insulations using vacuum panels
US5084320A (en) * 1990-01-22 1992-01-28 Barito Robert W Evacuated thermal insulation
DE4029405A1 (en) * 1990-03-16 1991-09-19 Degussa FORMKOERPER FOR HEAT INSULATION
US5066437A (en) * 1990-03-19 1991-11-19 Barito Robert W Method for insulating thermal devices
DE4019870A1 (en) * 1990-06-22 1992-01-09 Degussa VACUUM INSULATION PANEL WITH ASYMMETRIC CONSTRUCTION
US5090981A (en) * 1990-09-06 1992-02-25 Owens-Corning Fiberglas Corporation Method for making high R super insulation panel
US5500305A (en) * 1990-09-24 1996-03-19 Aladdin Industries, Inc. Vacuum insulated panel and method of making a vacuum insulated panel
US5252408A (en) * 1990-09-24 1993-10-12 Aladdin Industries, Inc. Vacuum insulated panel and method of forming a vacuum insulated panel
US5076984A (en) * 1990-10-10 1991-12-31 Raytheon Company Method for fabricating thermal insulation
FR2695981B1 (en) * 1992-09-18 1994-12-09 Rhone Poulenc Chimie Thermal and / or acoustic insulation panel and methods for obtaining it.
JP2994913B2 (en) * 1993-07-12 1999-12-27 三菱重工業株式会社 Wet flue gas desulfurization apparatus using magnesium oxide and desulfurization method thereof
US5327703A (en) * 1993-03-23 1994-07-12 Whirlpool Corporation Vacuum panel assembly method
US5331789A (en) * 1993-03-23 1994-07-26 Whirlpool Corporation Vacuum processing machine and method
US5364577A (en) * 1993-03-23 1994-11-15 Whirlpool Corporation Vacuum panel manufacturing process
US5347793A (en) * 1993-03-23 1994-09-20 Whirlpool Corporation Vacuum filling machine and method
US5478867A (en) * 1993-07-07 1995-12-26 The Dow Chemical Company Microporous isocyanate-based polymer compositions and method of preparation
US5376449A (en) * 1993-07-09 1994-12-27 Martin Marietta Energy Systems, Inc. Silica powders for powder evacuated thermal insulating panel and method
US5827385A (en) * 1994-07-15 1998-10-27 Vacupanel, Inc. Method of producing an evacuated insulated container
US6221456B1 (en) 1994-07-26 2001-04-24 Louis August Pogorski Thermal insulation
US6967051B1 (en) * 1999-04-29 2005-11-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal insulation systems
EP1179112B1 (en) * 1999-05-21 2005-02-02 Woschko, Gabriele Profile configuration for interrupting a heat conducting bridge between an inner side and an outer side
FR2795363B1 (en) * 1999-06-28 2001-08-17 Jean Jacques Thibault HIGH PERFORMANCE THERMAL INSULATION PROCESS AND PACKAGING
IT1318098B1 (en) * 2000-06-30 2003-07-23 Getters Spa THERMAL INSULATION CONTAINER
IT1318684B1 (en) * 2000-08-23 2003-08-27 Getters Spa THERMAL INSULATION BACKPACK.
US20030082357A1 (en) 2001-09-05 2003-05-01 Cem Gokay Multi-layer core for vacuum insulation panel and insulated container including vacuum insulation panel
FR2856680B1 (en) 2003-06-30 2005-09-09 Rhodia Chimie Sa SILICA-BASED THERMAL AND / OR ACOUSTIC INSULATION MATERIALS AND METHODS FOR OBTAINING SAME
JP3578172B1 (en) * 2003-12-19 2004-10-20 松下電器産業株式会社 Vacuum insulation, refrigerators and refrigerators
US20080014435A1 (en) * 2006-02-09 2008-01-17 Nanopore, Inc. Method for the manufacture of vacuum insulation products
US8453393B2 (en) 2006-08-25 2013-06-04 Raytheon Company Encapsulated and vented particulate thermal insulation
EP1916465B1 (en) * 2006-10-26 2013-10-23 Vestel Beyaz Esya Sanayi Ve Ticaret A.S. Vacuumed heat barrier
EP2218703B1 (en) 2009-02-13 2013-05-08 Evonik Degussa GmbH A thermal insulation material comprising precipitated silica
FR2969186B1 (en) 2010-12-15 2014-01-10 Saint Gobain Rech PROCESS FOR PREPARING INSULATING MATERIAL
US10593967B2 (en) 2016-06-30 2020-03-17 Honeywell International Inc. Modulated thermal conductance thermal enclosure
US11549635B2 (en) 2016-06-30 2023-01-10 Intelligent Energy Limited Thermal enclosure
DE202020104960U1 (en) * 2020-08-27 2020-09-09 Va-Q-Tec Ag Temperature stable vacuum insulation element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184880A (en) * 1981-04-27 1982-11-13 Matsushita Electric Ind Co Ltd Manufacture of powder vacuum heat insulating board
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012617A (en) * 1931-03-03 1935-08-27 Munters Carl Georg Heat insulation
US2164143A (en) * 1934-11-10 1939-06-27 Termisk Isolation Ab Insulation
US2188007A (en) * 1937-07-03 1940-01-23 Samuel S Kistler Inorganic aerogel compositions
US2193054A (en) * 1939-06-12 1940-03-12 Dugan L Bowen Motor head handle
US2474910A (en) * 1944-03-04 1949-07-05 Standard Oil Dev Co Preparation of spherical gel particles
US2513749A (en) * 1945-05-22 1950-07-04 Air Prod Inc Insulated container and method of insulating the same
US2867035A (en) * 1951-09-25 1959-01-06 Gen Electric Thermal insulation
US2779066A (en) * 1952-05-23 1957-01-29 Gen Motors Corp Insulated refrigerator wall
US2768046A (en) * 1952-07-09 1956-10-23 Gen Electric Insulating structures
US2961116A (en) * 1956-01-03 1960-11-22 Applied Radiation Corp Thermally insulated wall structure
US2989156A (en) * 1956-11-23 1961-06-20 Whirlpool Co Heat insulating panels
US3094071A (en) * 1959-06-30 1963-06-18 Union Carbide Corp Vacuum insulated storage tanks for missile use
US3166511A (en) * 1960-12-01 1965-01-19 Union Carbide Corp Thermal insulation
US3179549A (en) * 1964-06-10 1965-04-20 Gen Electric Thermal insulating panel and method of making the same
FR2360536A1 (en) * 1976-08-05 1978-03-03 Air Liquide LOW THERMAL CONDUCTIBILITY INSULATION MATERIAL CONSTITUTES A COMPACT GRANULAR STRUCTURE
DE2911416A1 (en) * 1979-03-23 1980-09-25 Erno Raumfahrttechnik Gmbh ELEMENT FOR HEAT INSULATION
DE2928695C2 (en) * 1979-07-16 1984-05-30 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Thermal insulation body and process for its manufacture
DE3033515A1 (en) * 1980-09-05 1982-04-29 Wacker-Chemie GmbH, 8000 München THERMAL INSULATION PLATE
US4380569A (en) * 1981-08-03 1983-04-19 Spenco Medical Corporation Lightweight preformed stable gel structures and method of forming
DE3144299A1 (en) * 1981-11-07 1983-05-19 Degussa Ag, 6000 Frankfurt PELLETIC SILES WITH A HIGH STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
JPS58145678A (en) * 1982-02-17 1983-08-30 松下冷機株式会社 Vacuum heat insulating material and manufacture
US4444821A (en) * 1982-11-01 1984-04-24 General Electric Company Vacuum thermal insulation panel
DE3418637A1 (en) * 1984-05-18 1985-11-21 Wacker-Chemie GmbH, 8000 München THERMAL INSULATION BODY WITH COVER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184880A (en) * 1981-04-27 1982-11-13 Matsushita Electric Ind Co Ltd Manufacture of powder vacuum heat insulating board
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316816A (en) * 1989-05-10 1994-05-31 Degussa Aktiengesellschaft Form body for heat insulation and vacuum insulation panel with asymmetric design

Also Published As

Publication number Publication date
CA1242564A (en) 1988-10-04
EP0190582A2 (en) 1986-08-13
CN86100942A (en) 1986-08-06
ES551759A0 (en) 1987-07-01
ES8706885A1 (en) 1987-07-01
US4636415A (en) 1987-01-13
EP0190582A3 (en) 1989-02-22
KR940008642B1 (en) 1994-09-24
JPH0774718B2 (en) 1995-08-09
KR860006661A (en) 1986-09-13
CN1005622B (en) 1989-11-01
EP0190582B1 (en) 1994-11-02
DE3650116T2 (en) 1995-05-24
DE3650116D1 (en) 1994-12-08

Similar Documents

Publication Publication Date Title
JPS61217668A (en) Precipitated silica heat-insulating material
JP2553564B2 (en) Method of manufacturing heat insulating material slab and heat insulating panel
JPS6116730B2 (en)
US5076984A (en) Method for fabricating thermal insulation
US5084320A (en) Evacuated thermal insulation
US4594279A (en) Heat insulator
US5236758A (en) Heat insulator and method of making same
KR100646146B1 (en) Vacuum thermal insulator
JPH05502431A (en) High insulation panel
JP2599515B2 (en) Insulating molded body, method for producing the same, container made of the molded body, and heat insulating material in refrigerator and freezer
US5316816A (en) Form body for heat insulation and vacuum insulation panel with asymmetric design
US5399397A (en) Calcium silicate insulation structure
WO2005040664A1 (en) Vacuum heat insulator, and refrigerating apparatus and cooling apparatus using the insulator
PT93988B (en) FOLDED BODY FOR THERMAL ISOLATION AND PROCESS FOR ITS PRODUCTION
JPS59225275A (en) Vacuum heat-insulating material
JPH08291892A (en) Lamination layer type vacuum heat insulating panel
JP7129979B2 (en) Vacuum insulation material manufacturing method
JPH10217413A (en) Vacuum heat insulating body, refrigerator, heat insulating panel, and manufacture of vacuum heat insulating panel
JPH0233917B2 (en) DANNETSUBAN
JPS608399B2 (en) insulation board
JP2006038122A (en) Vacuum heat insulating material and refrigerator having vacuum heat insulating material
JPS63190999A (en) Heat-insulating panel including heat-insulating powder and heat-insulating gas
AU2004233499B2 (en) Refrigerator
JP2006077910A (en) Vacuum heat insulating material and refrigerator including vacuum heat insulating material
JPS63279083A (en) Vacuum heat-insulating material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term