JPH03223597A - Fire heat insulator and fire resistive heat insulating container - Google Patents

Fire heat insulator and fire resistive heat insulating container

Info

Publication number
JPH03223597A
JPH03223597A JP2053452A JP5345290A JPH03223597A JP H03223597 A JPH03223597 A JP H03223597A JP 2053452 A JP2053452 A JP 2053452A JP 5345290 A JP5345290 A JP 5345290A JP H03223597 A JPH03223597 A JP H03223597A
Authority
JP
Japan
Prior art keywords
water
heat
heat insulating
fire
fireproof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2053452A
Other languages
Japanese (ja)
Inventor
Hiroyuki Atake
浩之 阿竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2053452A priority Critical patent/JPH03223597A/en
Publication of JPH03223597A publication Critical patent/JPH03223597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Packages (AREA)
  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain considerable fire resistive performance without excessive thickness by laminating a plate-like heat absorbing structure covering water or water-absorbed water absorptive polymer materials with water impermeable films and an inorganic fire resistive heat insulating sheet. CONSTITUTION:A plate-like heat absorbing structure 1 forms such small chambers that water or water-absorbed water absorptive polymer materials 11 may not be unevenly included through a connecting part 14 partially joining water impermeable films 12 facing each other, and then the structure is laminated with an inorganic fire resistive heat insulating sheet 2. When the ambient temperature is raised by a fire, in the initial stage, the refractory heat insulating sheet 2 on the surface withstands the temperature difference between both inner and outer sides, but with the lapse of time, the heat is conducted inward to evaporate the water absorbed in the water absorptive polymer materials 11. As the latent heat of evaporation is large, the temperature rise of the inside can be suppressed by the heat absorbing structure 1 for a moderate time. By making two layers or more of the heat absorbing structure 1, or by placing a metallic foil between the layers or on the surface, higher fire resistive heat insulating effect can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、軽量かつ可撓性であって良好な耐火断熱性を
もつ耐火断熱材と、それを使用した耐火断熱容器、とく
に袋および箱に関する。 [従来の技術1 諸官庁、会社あるいは各家庭で、重要な出題や紙幣を火
災から守るために、耐火金庫や耐火キレビネットが使用
されている。 それらは耐熱鋼と断熱レンガを組み合わ
せてつくったものであるから、きわめて重く、嵩高であ
って大きさのわりに収容力は小さく、しかも高価である
。 貴重品を保管するにしても、耐火金庫はど高性能でなく
ても、ある程度の耐火性能があればJ:い場合が少なく
ない。 このような場合には、無機質の軽量耐火材を板
状に成形したもの、あるいは無機繊維を不織布やフェル
ト状に成形したものか役に立つが、十分な断熱効果を発
揮させようとすればやはり相当の厚さが必要であって、
高張ることは避けられない。 一方、ナイロン織布にアルミニウムの蒸着を施したもの
が消防服の材料として使用され、よい評価を冑ているの
で、これを袋にして利用することが提案された(実開昭
62−141330号)。 しかし、この材料は輻射熱を反射する効果は高いか、高
温に持続的にざらされた場合には耐えられない。 ナイ
ロンは400℃で軟化するし、アルミニウムも660℃
で溶融するからである。 また、金属箔とプラスチックフィルムとの間に、流動性
のない高含水物、たとえば塩化カルシウムのような多量
の結晶水を含むものやポリアクリル酸共重合体架橋樹脂
の水和物を介在させたもので構成した耐火袋が提案され
ている(特開平2−47049号)。 この耐火袋の断
熱性は、上記のアルミ蒸着ナイロンの袋にくらべれば向
上しているものの、金属箔とプラスチックフィルムとの
間に存在する物質の含水量が少ないため、十分とはいえ
ない。 [発明が解決しようとする課題] 本発明の目的は、簡易に構成でき、軽量かつ可撓性であ
って対象物に合わせた加工が容易でありながら、ある程
度実用できる耐火性、具体的にはJIS−31037に
定める耐火試験法の1時間耐火の規格に合格する耐火性
をもった耐火断熱材と、それを使用した耐火断熱容器、
とくに袋および箱を提供することにある。 [課題を解決するための手段] 本発明の耐火断熱材は、第1図に基本的な態様を示すよ
うに、水または吸水した吸水性高分子材料(11)を水
不透過性フィルム(12)で包んで板状にした吸熱構造
体(1)と、無機材料の耐火断熱シート(2)とを積層
してなる。 水をそのまま用いた場合はもらろん、ゲル化した吸水性
高分子材料も多量の水を含んでいれば流動性があるため
、耐火断熱材を縦置きに使用すると、第2図に示すよう
に、吸熱構造体(1)の内容物が重力により次第に垂れ
下がり、そのふん上部の断熱性が低下してしまうことが
ある。 このような問題を未然に防ぐには、第3図およ
び第4図に示すように、板状の吸熱構造体(1)が、向
い合った水不透過性フィルム(12)どうしを部分的に
接合した接合部(14)により形成された複数の小室か
うなるものとし、水や吸水した吸水性高分子材料(11
)が偏在しないようにすればよい。 小室の人きざは、吸熱構造体の厚さやその内容物の流動
しやすさに応じて決定する。 厚さ1 cmのものの側
では、−辺が3〜20cmの正方形、長方形そのほか、
これに等価な大きざである。 小室に分けた態様においては、たとえば第5図Aに示す
ような形状をもった吸熱構造体を第5図Bにみるように
2枚組み合わせ、ひとつの吸熱構造体(1A)の接合部
(14A>と他の吸熱構造体(1B)の接合部(14B
>とが互いに重ならないようにすることが好ましい。 
このような構造にすると、吸熱構造体の接合部は断熱性
が低いという弱点をカバーできる。 吸水性高分子材料は、たとえばポリアクリル酸す]・リ
ウム架橋体のようなものである。 近年その用途は拡大
しつつあり、それに伴って種々の性能、グレードのもの
が市販されている。 吸水量も、容積にして10倍以上
500倍に及ぶものがあり、それらを任意に選択使用で
きるが、極度まで吸水させずに(10〜200侶)使用
するのが、シートの取扱い上適当である。 水不透過性フィルムは、ナイロンやポリエチレンのよう
な常用のプラスチックのフィルムでよく、もちろん積層
材も使用できる。 熱的性質は、むしろあまり耐熱性は
高くなくて、適宜の温度たとえば100〜150’Cで
軟化する一bのが好ましい。 第3図および第4図に示した態様においては、接合部が
熱で簡単に損われないように、水不透過性フィルムとし
て、プラスチックフィルムにアルミ箔およびヒートシー
ル性を有するプラスチックフィルムを順に積層した積層
フィルムを使用することが好ましい。 無機材料の耐火断熱シートしては、シリカやアルミナの
繊維を少量の6機バインダーたとえば有機質の糊材で固
めた不織布やニードルパンチ加工によりフェルト化した
もの、あるいは超微粒子シリカを圧縮成形した微細多孔
構造の板などが市販されており、それらを使用すればよ
い。 この発明の耐火断熱材がJ l5−31037の
1時間耐火試験に合格するためには、耐火断熱シートの
耐火温度が925℃以上であることを要する。 本発明の耐火断熱材は、第1図、第3図または第5図へ
に示したような、吸熱構造体(1)の片側に耐火断熱シ
ート(2)を貼り合わせただけのものでも有用であるが
、用途によっては、第6図に示したように、吸熱構造体
(1)の両側に耐火断熱+A(2)を貼り合わせ、ザン
ドイツチ構造にしたものの方がよいこともある。 もら
ろん、吸熱JfiS造体(1)と耐火断熱シート(2)
とを交互に何層か重ねでもよい。 好ましい態様においては、第6図に示したように、任意
の層の間に金属箔(3)を挟んだり、表面に金属箔を置
いた構成をとる。 図示した例では耐火断熱シート(2
)を各4枚重ねてそれらの間に3枚はさんである。 こ
の金属箔は、とくに高温の雰囲気に近い側に使用するも
のはそれに応じた耐熱性をもつことが望ましく、ステン
レスや鋼の箔が好適である。 用途によっては、アルミ
ニウムや銅の箔でもよく、外に近い側はステンレス、内
部は銅やアルミニウムと使い分けることもできる。 好
適な厚さは、材質によっても異なるか、一般に10〜1
00μTrLの範囲にある。 あまり薄くては火焔が当
ったとき孔があくし、厚すぎては製品の可撓性を乏しく
する。 本発明の耐火断熱容器は、上記の耐火断熱材を、無機材
料の耐火断熱シートの側が表に出るようにして、適宜の
接着剤や縁金具を用いて袋状や箱状に成形することによ
って1qられる。 袋状にする場合、耐火断熱材のブラ
ンクはなるべく接合部が少なくなるよう、たとえば第7
図および第8図にみるように、表面(41)、裏面(4
2)おにび惹の折り返しく43)を連続したシートで用
意し、両方の縁部分(44A、44B)を接合して耐火
断熱袋(4)とするようなつくり方が好ましい。 [作 用1 本発明の耐火断熱材は、耐火断熱シー1〜(2)の側か
表に出るようにして、火災から保護すべき対象物に適用
りる。 耐火断熱容器は、前記のように、これと同じ層
配置となっている。 火災のため雰囲気の温度が高くなったとき、その初期に
は表面の耐火断熱シートが内外温度差を保持り−るが、
それでも時間の経過に伴って熱は内部に伝わる。 する
と、吸水性高分子材料に吸収されていた水分が少しずつ
放出され、水蒸気となる。 よく知られているとおりこ
の気化潜熱は大きいから、吸熱構造体のところで温度の
上昇が相当長時間にわたって食い止められる。 吸熱M4構造の温度が上昇し、それにつれて水蒸気か多
量に蓄積するようになるころには、水不透過性のプラス
チックのフィルムが軟化して孔があき、水蒸気を逃1゜ 吸熱構造体を複数の小室に細分化した態様のものは、水
や多量の水を含んで低粘度のゲルになっている吸水性高
分子材料など、断熱性の高いしのを充填しても、それら
の垂れ下がりよる吸熱構造体の変形が実質上問題になら
ず、均一な耐火断熱効果が1qられる。 吸熱構造体を
2層以上、フィルムの接合部分が互いちがいになるよう
に積層することにより、接合部分番こお()る断熱性の
低下は防止できる。 金属箔を層間に挟んだり表面に置いたりした態様におい
ては、金属箔が輻射熱を反射するとともに熱い空気の移
動を防いで昇温を遅らせ、熱を全体に拡散させて局部的
な温度上昇を防ぐという機構により、いっそう高い耐火
断熱効果が1qられる。
[Industrial Field of Application] The present invention relates to a fireproof insulation material that is lightweight and flexible and has good fireproof insulation properties, and a fireproof and insulation container using the same, particularly bags and boxes. [Prior art 1] Fireproof safes and fireproof nets are used in various government offices, companies, and households to protect important questions and banknotes from fire. Because they are made from a combination of heat-resistant steel and insulating brick, they are extremely heavy, bulky, have a small storage capacity for their size, and are expensive. Even if you want to store valuables, a fireproof safe may not be very high-performance, but it is often a good idea to have a certain degree of fire resistance. In such cases, it may be useful to use inorganic lightweight fireproofing materials molded into plate shapes, or inorganic fibers molded into non-woven fabrics or felt, but if you want to achieve a sufficient insulation effect, it will take a considerable amount of time. Thickness is necessary,
Being excited is inevitable. On the other hand, woven nylon fabric coated with aluminum is used as a material for firefighting suits and has been well received, so it was proposed to use it in the form of bags (Utility Model Application No. 141330/1983). ). However, this material is either highly effective at reflecting radiant heat or cannot withstand sustained exposure to high temperatures. Nylon softens at 400℃, and aluminum softens at 660℃.
This is because it melts. In addition, a highly hydrated substance with no fluidity, such as a substance containing a large amount of crystallization water such as calcium chloride, or a hydrated polyacrylic acid copolymer crosslinked resin, is interposed between the metal foil and the plastic film. A fireproof bag made of a material has been proposed (Japanese Unexamined Patent Publication No. 2-47049). Although the heat insulation properties of this fireproof bag are improved compared to the aluminum vapor-deposited nylon bags described above, it cannot be said to be sufficient because the water content of the substance present between the metal foil and the plastic film is low. [Problems to be Solved by the Invention] The purpose of the present invention is to provide a structure that can be easily constructed, is lightweight and flexible, and can be easily processed to suit the object, while having a certain degree of practical fire resistance. A fireproof insulation material with fire resistance that passes the 1-hour fire resistance standard of the fire resistance test method specified in JIS-31037, and a fireproof insulation container using the same,
Especially in providing bags and boxes. [Means for Solving the Problems] As shown in the basic embodiment of the fireproof insulation material of the present invention in FIG. ) and a heat-absorbing structure (1) wrapped in a plate shape and a fire-resistant heat-insulating sheet (2) made of an inorganic material are laminated. Of course, if water is used as it is, gelled water-absorbing polymer material will also have fluidity if it contains a large amount of water, so if fireproof insulation is used vertically, it will be as shown in Figure 2. Moreover, the contents of the heat-absorbing structure (1) may gradually sag due to gravity, and the heat insulation properties of the upper part of the feces may deteriorate. In order to prevent such problems, as shown in Figures 3 and 4, the plate-shaped heat absorbing structure (1) partially connects the water-impermeable films (12) facing each other. A plurality of small chambers are formed by the joined joint parts (14), and water and water-absorbing water-absorbing polymer material (11) are formed by the joined joint parts (14).
) should be prevented from being unevenly distributed. The size of the chamber is determined depending on the thickness of the heat-absorbing structure and the ease with which its contents can flow. On the side of 1 cm thick, squares, rectangles, etc. with sides of 3 to 20 cm, etc.
The size is equivalent to this. In the embodiment divided into small chambers, for example, two heat-absorbing structures having the shape shown in FIG. 5A are combined as shown in FIG. 5B, and the joint part (14A > and another endothermic structure (1B) (14B)
> and preferably do not overlap with each other.
With such a structure, the weak point of low heat insulation at the joints of the heat absorbing structure can be covered. The water-absorbing polymeric material is, for example, a crosslinked polyacrylate. In recent years, its uses have been expanding, and accordingly, products with various performances and grades have become commercially available. The amount of water absorbed is 10 to 500 times the volume, and you can use any of them, but it is appropriate for the handling of the sheet to use it without absorbing water to the extreme (10 to 200 times). be. The water-impermeable film may be a conventional plastic film such as nylon or polyethylene, and of course a laminated material may also be used. In terms of thermal properties, it is preferable that the heat resistance is not very high, and that it softens at an appropriate temperature, for example, 100 to 150'C. In the embodiments shown in Figures 3 and 4, aluminum foil and a heat-sealable plastic film are sequentially laminated on a plastic film as a water-impermeable film so that the joints are not easily damaged by heat. It is preferable to use a laminated film that is Fire-resistant heat insulating sheets made of inorganic materials include non-woven fabric made of silica or alumina fibers hardened with a small amount of six-layer binder, such as an organic glue, felt made by needle punching, or microporous material made by compression molding of ultrafine silica particles. Structured plates are commercially available and can be used. In order for the fireproof heat insulating material of the present invention to pass the 1 hour fire resistance test of J15-31037, the fireproof temperature of the fireproof heat insulating sheet must be 925°C or higher. The fire-resistant heat insulating material of the present invention is also useful even if it is simply a heat-absorbing structure (1) with a fire-resistant heat insulating sheet (2) pasted on one side, as shown in FIG. 1, FIG. 3, or FIG. 5. However, depending on the application, as shown in FIG. 6, it may be better to attach fireproof insulation +A (2) to both sides of the heat-absorbing structure (1) to form a Sanderuch structure. Moraron, heat-absorbing JfiS structure (1) and fireproof insulation sheet (2)
It is also possible to alternately stack several layers. In a preferred embodiment, as shown in FIG. 6, a metal foil (3) is sandwiched between arbitrary layers or a metal foil is placed on the surface. In the illustrated example, the fireproof insulation sheet (2
) are stacked on top of each other and three are sandwiched between them. This metal foil, especially one used near a high temperature atmosphere, desirably has a corresponding heat resistance, and stainless steel or steel foil is suitable. Depending on the purpose, aluminum or copper foil may be used, and the outer side can be made of stainless steel, while the inside can be made of copper or aluminum. The suitable thickness varies depending on the material, and is generally 10 to 1
It is in the range of 00μTrL. If it is too thin, holes will open when the flame hits it, and if it is too thick, the product will have poor flexibility. The fireproof and insulated container of the present invention is produced by forming the above-mentioned fireproof and insulating material into a bag shape or a box shape using an appropriate adhesive or edge fittings, with the side of the inorganic fireproof heat insulating sheet exposed. 1q is received. When making a bag shape, the blank of fireproof insulation material should be made with as few joints as possible, for example,
As shown in the figure and Fig. 8, the front side (41), the back side (4
2) It is preferable to prepare a continuous sheet of folded flaps 43) and join both edges (44A, 44B) to form a fireproof and heat-insulating bag (4). [Function 1] The fireproof heat insulating material of the present invention is applied to an object to be protected from fire, with the fireproof heat insulating sheets 1 to (2) facing outward. The fireproof and insulated container has the same layer arrangement as described above. When the temperature of the atmosphere rises due to a fire, initially the fireproof insulation sheet on the surface maintains the temperature difference between the inside and outside, but
However, heat still transfers internally over time. Then, the water absorbed by the water-absorbing polymer material is released little by little and becomes water vapor. As is well known, this latent heat of vaporization is large, so that the temperature rise in the endothermic structure is prevented for a considerable period of time. As the temperature of the endothermic M4 structure rises and a large amount of water vapor accumulates, the water-impermeable plastic film softens and becomes porous, allowing water vapor to escape and forming multiple 1° endothermic structures. If the type is subdivided into small cells, even if it is filled with highly insulating material such as water or a water-absorbing polymer material that contains a large amount of water and becomes a low-viscosity gel, the material will sag. Deformation of the heat-absorbing structure is not a substantial problem, and a uniform fireproof and heat-insulating effect is achieved. By laminating two or more layers of heat-absorbing structures such that the bonded portions of the films are different from each other, it is possible to prevent a decrease in heat insulation properties due to damage to the bonded portions. In embodiments in which metal foil is sandwiched between layers or placed on the surface, the metal foil reflects radiant heat, prevents the movement of hot air, slows down the temperature rise, and diffuses the heat throughout, preventing local temperature rises. This mechanism provides an even higher fireproof insulation effect by 1q.

【実施例11 吸水性高分子材料「ダイパノウエット」 (三菱油化製
)のシートに水を容量で50倍吸収させたものを、表裏
からナイロンフィルム(東し製)で包み、第2図に示す
ような、1個が縦10cm×横15cmX厚さ1 cm
の単位が連続した吸熱構造体をつくった。 シリカ:アルミナ−51:49 (ffl!>の成分を
もつ無機l&雑の不織布[)Iインフレックスペパー1
300J (厚さ1M、ニチアス製)を10枚重ね、上
記の吸熱構造体と積層して高密度ポリエチレンシートで
包み一体化することにより、本発明の耐火断熱材を得た
。 この耐火断熱材を使用し、吸熱構造体が内側になるよう
にして箱をつくった。 箱の内部に新聞紙を入れ、箱ご
とJ l5−31037の耐火試験を行なった。 加熱
炉に入れて1時間後、雰囲気の温度は925℃に達した
が、内部は160℃以下に保たれていて、新聞紙に変色
などの変化は生じていなかった。 [実施例21 実施例1と同じ吸水性高分子材料とプラスチックフィル
ムで、厚さ3Mの吸熱構造体を用意した。 やはり実施例1で用いた無機繊維の不織155枚(従っ
て淳さ5履)をひとまとめとし、上記吸熱構造体とも3
層ずつ交互に重ね、全体を高密度ポリエチレンのフィル
ムで包んで、厚さ24#の耐火断熱材をjqた。 この耐火断熱材を用いて実施例1と同様な箱をつくり、
同じ耐火試験を行なった。 箱の内部の温度は、1時間
の後も100℃を超えていなかつた。 [実施例3] 実施例1の耐火断熱材を用い、第4図および第5図に示
す形状の袋(縦50cm×横30cIIt)を製作した
。 両側縁は、鋼製の金具でとじ合わせた。 この袋に対してJIS−31037の耐火試験を行なっ
たところ、十分に1時間耐火の性能を示した。 【実施例41 超微粒子シリカを圧縮成形して14た微多孔性材料の板
をガラス繊維の布で被覆した「マイクロサーム」 (日
本アエロジル製、厚さ5 mm )を耐火断熱シートと
して使用し、実施例1の吸熱構造体と積層し、フッ素樹
脂のフィルムで包み一体化することにより、本発明の耐
火断熱材を19だ。 この耐火断熱材を使用し、実施例1と同様に箱をつくっ
て耐火試験を行なったところ、実施例1と同程度の耐火
性能を示した。 【実施例5】 ポリエチレン15μ/A19μ/未延伸ポリプロピレン
70μのドライラミネートシートを真空成形し、正方形
の凹みが等間隔で並んだ成形品とした。 成形品は一辺
31C++正方形で、6×6−36個の凹みがある。 
凹みは未延伸ポリプロピレンが内側で、−辺が4cm、
深さが1.5cmで、間隔は1 cmである。 吸水性高分子[ダイA7ウエツ1〜5−IIJ  (三
菱油化製)に水を30重量倍吸収させたものを、上記の
成形品の凹みに243ずつ充填し、上記のトライラミネ
ートシー1〜と同じ−bのを重ね、ヒトシールを行なっ
て、多数の小室をもつ吸熱構造体とした。 シリカ:アルミナ−51:49 (I量)の割合でつく
った無機繊維不織布「ファインフレックスペーパー13
00J  にチアス製、厚さ2 mm >を3枚重ねた
6M厚のシートと1枚のシー1〜の間にはさみ、高密度
のポリエチレンで包み込んで耐火断熱材を得た。 この耐火断熱材で、外」が−辺32cmの立方体形の箱
をつくった。 JIS−31037に定める1時間耐火
試験を行なったところ、外側のポリエチレン層は溶けた
が内部は最高温度140℃に止まり、入れておいた新聞
紙が変色しなかった。 比較のため、真空成形による正方形の凹みを設りず、従
って小学がなく、−辺30cmの正方形の板状で内部に
1300gの吸水した吸水性高分子を充填した吸熱構造
体を用い、同様に耐火断熱材を得て粕をつくった。 こ
の箱の1時間耐火試験の結束では、新聞紙の変色はみら
れなかったか、内部温度が160℃に達した。 これは
、吸水性高分子が重力で垂れ下がって側面上部の耐熱性
能が低下°りるためと考えられる。 【実施例61 実施例5と同じ材料を用い同様な工程で成形品をつくっ
たが、凹みを、−辺が3.75cm、fiさ1.5cm
で間隔を3.75cmずつとしたしのを成形し、凹みに
吸水した吸水性高分子を充填し、ヒトシールして吸熱構
造体をつくり、第5図Aに示1ような耐火断熱材とした
。 これを第5図Bのように2枚凹凸を組み合わUて一体に
し、7ペての部分に吸水した吸水性高分子の層が存在す
るものにした。 この耐火断熱材で箱をつくり、1時間耐火試験を行なっ
た。 内部の新聞紙に変色はみられず、内部温度も10
0℃以下に保たれた。 [発明の効果1 本発明の耐火断熱材は、無機材料製のシートがもつ耐火
断熱作用に対して、吸水性高分子材料に吸収されている
水分の放出と気化によって雰囲気の熱を奪うという機構
を組み合わせたことにより、過大な厚さを要することな
く、かなりの耐火性能を発揮することができる。 全体
が薄くできるから軽量である。 また、構成材料として
可撓性のあるものをえらぺるので、製品もまた可撓性を
もっていて、火災から保護すべき対象物の表面形状に合
わせて変形させ、適用することができる。 この耐火断熱材でつくった袋や箱は、耐火キャビネット
に代って重要書類を火災から守ることができる。
[Example 11] A sheet of the water-absorbing polymer material "Daipanowet" (manufactured by Mitsubishi Yuka) was made to absorb 50 times more water by volume and was wrapped with nylon film (manufactured by Toshi) from the front and back. As shown in the figure, one piece is 10 cm long x 15 cm wide x 1 cm thick.
We created an endothermic structure with continuous units. Silica:Alumina-51:49 (ffl!) Inorganic & miscellaneous non-woven fabric with ingredients [)I Inflex Paper 1
The fireproof heat insulating material of the present invention was obtained by stacking 10 sheets of 300J (thickness: 1M, manufactured by Nichias), laminating them with the above-mentioned heat absorbing structure, and wrapping and integrating them with a high-density polyethylene sheet. Using this fireproof insulation material, a box was made with the heat-absorbing structure on the inside. Newspaper was placed inside the box, and the box was subjected to a J15-31037 fire resistance test. One hour after being placed in the heating furnace, the temperature of the atmosphere reached 925°C, but the temperature inside was kept below 160°C, and no changes such as discoloration occurred in the newspaper. [Example 21 A heat-absorbing structure with a thickness of 3M was prepared using the same water-absorbing polymer material and plastic film as in Example 1. Again, the 155 nonwoven inorganic fibers used in Example 1 (therefore 5 Junsa shoes) were grouped together, and 3 of the above heat absorbing structures were
Layers were stacked alternately, and the whole was wrapped with a high-density polyethylene film, followed by a 24# thick fireproof insulation material. A box similar to Example 1 was made using this fireproof insulation material,
The same fire resistance test was conducted. The temperature inside the box did not exceed 100°C even after one hour. [Example 3] Using the fireproof heat insulating material of Example 1, a bag (50 cm long x 30 cm wide) having the shape shown in FIGS. 4 and 5 was manufactured. The edges on both sides were held together with steel fittings. When this bag was subjected to a fire resistance test according to JIS-31037, it showed sufficient fire resistance performance for one hour. [Example 41] "Microtherm" (manufactured by Nippon Aerosil, thickness 5 mm), which was made by compression molding ultrafine silica and covering it with glass fiber cloth, was used as a fireproof heat insulating sheet. The fireproof heat insulating material of the present invention was obtained by laminating it with the heat absorbing structure of Example 1 and wrapping it with a fluororesin film and integrating it. Using this fireproof insulation material, a box was made in the same manner as in Example 1 and a fire resistance test was conducted, and the box showed fire resistance performance comparable to that in Example 1. Example 5 A dry laminate sheet of 15μ polyethylene/19μ A/70μ unstretched polypropylene was vacuum formed into a molded product having square depressions arranged at equal intervals. The molded product is 31C++ square on each side and has 6 x 6-36 indentations.
The recess is made of unstretched polypropylene on the inside, and the − side is 4 cm.
The depth is 1.5 cm and the spacing is 1 cm. A water-absorbing polymer [Die A7 Wets 1-5-IIJ (manufactured by Mitsubishi Yuka Co., Ltd.) that has absorbed 30 times more water by weight was filled in 243 times each into the dents of the above molded product, and the above tri-laminate sheets 1-5 The same material as -b was layered and sealed to form an endothermic structure with many small chambers. Fineflex Paper 13 is an inorganic fiber nonwoven fabric made with a ratio of silica:alumina of 51:49 (I amount).
A fireproof heat insulating material was obtained by sandwiching 00J made by Chias and having a thickness of 2 mm between three stacked 6M thick sheets and one sheet 1~ and wrapping it with high-density polyethylene. Using this fireproof insulation material, a cube-shaped box with an outer side of 32 cm was made. When a 1-hour fire resistance test was conducted as specified in JIS-31037, the outer polyethylene layer melted, but the internal temperature remained at a maximum of 140°C, and the newspaper placed inside did not change color. For comparison, we used a heat-absorbing structure in which a square plate shape with sides of 30 cm was filled with 1300 g of water-absorbing polymer without forming a square recess by vacuum forming, and therefore without any elementary school. We obtained fireproof insulation material and made lees. When this box was bundled in a 1-hour fire resistance test, no discoloration of the newspaper was observed or the internal temperature reached 160°C. This is thought to be because the water-absorbing polymer hangs down due to gravity, reducing the heat resistance of the upper side surface. [Example 61 A molded product was made using the same materials and the same process as in Example 5, but the recess was 3.75 cm on the sides and 1.5 cm on the fi.
Then, the holes were formed with a gap of 3.75 cm, and the hollows were filled with water-absorbing polymer, which was then sealed to create a heat-absorbing structure, which was then made into a fire-resistant insulation material as shown in Figure 5A. . As shown in FIG. 5B, the two sheets were integrated by combining the convex and convex portions, so that a layer of water-absorbing polymer that absorbed water was present in all seven portions. A box was made using this fireproof insulation material, and a fire resistance test was conducted for one hour. There is no discoloration of the newspaper inside, and the internal temperature is 10.
The temperature was kept below 0°C. [Effect of the invention 1] The fire-resistant heat insulating material of the present invention has a mechanism of removing heat from the atmosphere by releasing and vaporizing moisture absorbed in the water-absorbing polymer material, in contrast to the fire-resistant heat insulating effect of the inorganic material sheet. By combining these, it is possible to demonstrate considerable fire resistance performance without requiring excessive thickness. It is lightweight because the entire structure can be made thin. In addition, since flexible materials are selected as the constituent materials, the product also has flexibility and can be applied by deforming to match the surface shape of the object to be protected from fire. Bags and boxes made of this fireproof insulation material can replace fireproof cabinets to protect important documents from fire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の耐火断熱材の基本的な態様を説明す
るための断面図である。 第2図は、流動性の高い吸水した吸水性高分子材料を使
用した基本的態様の耐火断熱材を、縦置きにしたときに
生じる変形を示覆、第1図と同様な図である。 第3図a3よび第4図は、本発明の耐火断熱材の第二の
態様を説明するための図であって、第3図は断面図、第
4図は平面図である。 第5図は、本発明の耐火断熱材の第二の態様にJ5Gプ
る好ましい態様を説明り−るだめの、第3図と同様な図
である。 第6図は、本発明の耐火断熱材の別の態様を説明するた
めの、第1図と同様な図である。 第7図および第8図は、本発明の耐火断熱容器の一例で
ある袋についてその全体を示すものであって、第7図は
断面図、第8図は平面図でおる。 1.1A、1B・・・吸熱構造体 11・・・吸水した吸水性高分子材料 12・・・水不透過性フィルム 14.14A・・・接合部 2・・・耐火断熱シー1〜 3・・・金属箔 4・・・耐火断熱袋
FIG. 1 is a sectional view for explaining the basic aspect of the fireproof heat insulating material of the present invention. FIG. 2 is a diagram similar to FIG. 1, showing the deformation that occurs when a basic embodiment of a fireproof insulation material using a water-absorbing polymeric material with high fluidity is placed vertically. Figures 3a3 and 4 are diagrams for explaining the second embodiment of the fireproof heat insulating material of the present invention, with Figure 3 being a sectional view and Figure 4 being a plan view. FIG. 5 is a view similar to FIG. 3 for explaining a preferred embodiment of the J5G addition to the second embodiment of the refractory heat insulating material of the present invention. FIG. 6 is a diagram similar to FIG. 1 for explaining another embodiment of the fireproof heat insulating material of the present invention. 7 and 8 show the entirety of a bag which is an example of the fireproof and insulated container of the present invention, with FIG. 7 being a sectional view and FIG. 8 being a plan view. 1.1A, 1B... Endothermic structure 11... Water-absorbing polymer material 12... Water-impermeable film 14. 14A... Joint portion 2... Fireproof insulation sheet 1-3. ...Metal foil 4...Fireproof insulation bag

Claims (8)

【特許請求の範囲】[Claims] (1)水または吸水した吸水性高分子材料を水不透過性
フィルムで包んで板状にした吸熱構造体と、無機材料の
耐火断熱シートとを積層してなる耐火断熱材。
(1) A fire-resistant heat insulating material made by laminating a heat-absorbing structure in which water or a water-absorbing polymeric material that has absorbed water is wrapped in a water-impermeable film to form a plate, and a fire-resistant heat insulating sheet made of an inorganic material.
(2)板状の吸熱構造体が、向い合った水不透過性フィ
ルムどうしの部分的接合により形成された複数の小室か
らなる請求項1の耐火断熱材。
(2) The fireproof heat insulating material according to claim 1, wherein the plate-shaped heat absorbing structure comprises a plurality of small chambers formed by partially joining water-impermeable films facing each other.
(3)吸熱構造体を2層以上、フィルムの接合部が互い
に重ならないように積層した請求項2の耐火断熱材。
(3) The fireproof heat insulating material according to claim 2, wherein two or more layers of heat absorbing structures are laminated so that the bonded portions of the films do not overlap each other.
(4)吸熱構造体と耐火断熱シートの一方または両方を
2層以上積層した請求項1の耐火断熱材。
(4) The fireproof heat insulating material according to claim 1, wherein two or more layers of one or both of the heat absorbing structure and the fireproof heat insulating sheet are laminated.
(5)吸熱構造体と耐火断熱シートの間、およびそれら
の一方または両方を2層以上積層した場合はそれらの問
を含む任意の層間に金属箔を挟んだ請求項1または3の
耐火断熱材。
(5) The fire-resistant insulation material according to claim 1 or 3, wherein a metal foil is sandwiched between the heat-absorbing structure and the fire-resistant insulation sheet, or between any layer including one or both of them when two or more layers are laminated. .
(6)水不透過性フィルムとして、プラスチックフィル
ムにアルミ箔およびヒートシール性を有するプラスチッ
クフィルムを順に積層した積層フィルムを使用した請求
項2の耐火断熱材。
(6) The fireproof heat insulating material according to claim 2, wherein the water-impermeable film is a laminated film in which aluminum foil and a heat-sealable plastic film are laminated in order on a plastic film.
(7)耐火断熱シートとして、耐熱温度925℃以上の
ものを使用した請求項1ないし5のいずれかの耐火断熱
材。
(7) The fire-resistant heat insulating material according to any one of claims 1 to 5, wherein the fire-resistant heat insulating sheet has a heat-resistant temperature of 925° C. or higher.
(8)請求項1ないし7のいずれかの耐火断熱材を袋状
または箱状に加工してなる耐火断熱容器。
(8) A fireproof and insulated container formed by processing the fireproof and insulating material according to any one of claims 1 to 7 into a bag shape or a box shape.
JP2053452A 1989-11-07 1990-03-05 Fire heat insulator and fire resistive heat insulating container Pending JPH03223597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2053452A JPH03223597A (en) 1989-11-07 1990-03-05 Fire heat insulator and fire resistive heat insulating container

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-289289 1989-11-07
JP28928989 1989-11-07
JP2053452A JPH03223597A (en) 1989-11-07 1990-03-05 Fire heat insulator and fire resistive heat insulating container

Publications (1)

Publication Number Publication Date
JPH03223597A true JPH03223597A (en) 1991-10-02

Family

ID=26394167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2053452A Pending JPH03223597A (en) 1989-11-07 1990-03-05 Fire heat insulator and fire resistive heat insulating container

Country Status (1)

Country Link
JP (1) JPH03223597A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053999A1 (en) 1998-04-16 1999-10-28 Shigeru Andoh Sheet and cover for preventing burning by spreading fire, and combined fire-extinguishing sheet and disaster-preventing clothing
JP2001277396A (en) * 2000-03-31 2001-10-09 Dainippon Printing Co Ltd Heat insulation decorative material and heat insulation decorative member
JP2001287292A (en) * 2000-04-06 2001-10-16 Dainippon Printing Co Ltd Heat insulation decorative material and heat insulation decorative member
JP2002165347A (en) * 2000-09-14 2002-06-07 Ntt Infranet Co Ltd Fire and heat resistive thermal insulation mat for protect tube of communication cable, and fire and heat resistive thermal insulation mat for protect metal which holds said protect tube
JP2007016928A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
CN110613900A (en) * 2019-10-08 2019-12-27 重庆特斯联智慧科技股份有限公司 Wisdom thing allies oneself with fire control equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053999A1 (en) 1998-04-16 1999-10-28 Shigeru Andoh Sheet and cover for preventing burning by spreading fire, and combined fire-extinguishing sheet and disaster-preventing clothing
JP2001277396A (en) * 2000-03-31 2001-10-09 Dainippon Printing Co Ltd Heat insulation decorative material and heat insulation decorative member
JP4620211B2 (en) * 2000-03-31 2011-01-26 大日本印刷株式会社 Insulating decorative material and insulating insulating member
JP2001287292A (en) * 2000-04-06 2001-10-16 Dainippon Printing Co Ltd Heat insulation decorative material and heat insulation decorative member
JP2002165347A (en) * 2000-09-14 2002-06-07 Ntt Infranet Co Ltd Fire and heat resistive thermal insulation mat for protect tube of communication cable, and fire and heat resistive thermal insulation mat for protect metal which holds said protect tube
JP2007016928A (en) * 2005-07-08 2007-01-25 Matsushita Electric Ind Co Ltd Vacuum heat insulating material
CN110613900A (en) * 2019-10-08 2019-12-27 重庆特斯联智慧科技股份有限公司 Wisdom thing allies oneself with fire control equipment

Similar Documents

Publication Publication Date Title
US4258848A (en) Packaging material for photosensitive materials comprising polyolefin layers
US6037033A (en) Insulation panel
US4172915A (en) Thermal insulation
US5389420A (en) Heat insulator and method of making it
EP1457612A1 (en) Vacuum insulation article
MXPA99000365A (en) Insulation panel.
JPS63187084A (en) Vacuum heat-insulating panel
EP1624121A2 (en) Insulation structures and process for producing them
BG62144B1 (en) Insulating element and method for manifacturing the element
JP2018512544A5 (en)
US9487953B2 (en) Vacuum insulated panel
JPH03223597A (en) Fire heat insulator and fire resistive heat insulating container
JPS59146993A (en) Manufacture of heat insulative structure
JPS635936A (en) Heat-insulating material and manufacture thereof
JPS6133133Y2 (en)
CN107816601B (en) Vacuum heat insulation piece
JPS6047101B2 (en) Blanket for metal folded roof sheets
JPS6055148A (en) Heat insulating structure
JPS6213786Y2 (en)
FR2217954A5 (en) Thermally insulating packaging material - of polyethylene foam bonded to a stiff support
JP2624038B2 (en) Manufacturing method of material for liquid container
JP6878771B2 (en) Vacuum heat insulating material and its manufacturing method
KR0159717B1 (en) Preparation of vacuum insulatating panel filled with non-woven fabrics
JPS6210108Y2 (en)
CN115771318A (en) Vacuum heat insulating material and method for producing same