WO2015029255A1 - Information control device, mounting system, and information control method - Google Patents

Information control device, mounting system, and information control method Download PDF

Info

Publication number
WO2015029255A1
WO2015029255A1 PCT/JP2013/073559 JP2013073559W WO2015029255A1 WO 2015029255 A1 WO2015029255 A1 WO 2015029255A1 JP 2013073559 W JP2013073559 W JP 2013073559W WO 2015029255 A1 WO2015029255 A1 WO 2015029255A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting
information
inspection
reflow
component
Prior art date
Application number
PCT/JP2013/073559
Other languages
French (fr)
Japanese (ja)
Inventor
中山 大輔
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2015533922A priority Critical patent/JP6262237B2/en
Priority to PCT/JP2013/073559 priority patent/WO2015029255A1/en
Publication of WO2015029255A1 publication Critical patent/WO2015029255A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops

Definitions

  • the present invention relates to an information control device, a mounting system, and an information control method.
  • the optimal value is selected when the ratio of the total to the total number of substrates reaches the overlook rate or overlook rate specified by the user. For this reason, it is possible to easily set a determination criterion that allows the frequency of inconsistency between the inspection result in the intermediate process and the inspection result in the final process to be within the allowable value.
  • the present invention has been made in view of such problems, and a main object of the present invention is to provide an information control apparatus and an information control method that can further improve the processing efficiency of the mounting system.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the information control apparatus of the present invention A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board
  • a mounting processing apparatus a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow.
  • An information control device of a mounting system comprising a reflow inspection device for executing processing, Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process; Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated; Reference setting means for setting at least one of a print determination standard of the print inspection process and a mounting determination standard of the mounting inspection process based on the generated correspondence information; It is equipped with.
  • the information control apparatus acquires measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and acquires the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, Then, correspondence information that associates the result information of the reflow inspection process is generated. Next, the information control apparatus sets at least one of a print determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information. Then, the mounting system executes a print inspection process and a mounting inspection process using the set printing determination standard and mounting determination standard.
  • the processing executed by the mounting system includes, for example, a printing process for printing solder on a board, a mounting process for placing components on a board on which solder is printed, and a reflow process for reflowing solder. For example, even if the solder formation position is shifted and the component placement position is shifted, the heated solder may be moved during the reflow process and the component may be in a normal position. As described above, the state of solder, the arrangement state of components, and the like may be related to the final state after reflow.
  • the information control device generates correspondence information in which measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process are associated with each other, and sets a determination criterion based thereon.
  • the information control apparatus of the present invention outputs the set print determination standard to the print inspection apparatus when the print determination standard is set, and outputs the set mounting determination standard when the mounting determination standard is set.
  • Information output means for outputting to the mounting inspection apparatus may be provided.
  • the information generation means includes one or more types of solder measurement values as the measurement information of the print inspection process, one or more types of component measurement values as the measurement information of the mounting inspection process, and the reflow.
  • the correspondence information is generated by associating the pass / fail result determined after the reflow of the component as the result information of the inspection process, and the solder measurement value includes the solder height, the solder area, and the solder volume (quantity). )
  • the position of the solder, and the component measurement value is one of the component displacement amount with respect to the substrate, the component displacement amount with respect to the printed solder, and the rotation angle of the component. It is good also as what contains a seed or more.
  • one type of solder measurement value, one type of component measurement value, and a pass / fail result may be associated with each other.
  • correspondence information can be generated with a relatively simple process.
  • a plurality of types of solder measurement values, a plurality of types of component measurement values, and good / bad results may be associated with each other. In this way, more detailed correspondence information can be generated.
  • the information generating means is included in a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a predetermined range of the solder measurement value, and a predetermined range of the component measurement value.
  • the correspondence relationship information may be generated by associating the statistical values of the pass / fail results of the above parts with a plurality of the predetermined ranges. In this way, it is possible to further improve the processing efficiency of the mounting system by using the predetermined range of measurement values and statistical values.
  • the statistical value may be, for example, a defect rate.
  • the reference setting unit may include the print determination standard and / or the statistical value of the pass / fail result satisfying a predetermined pass / fail value according to the range of the solder measurement value and the range of the component measurement value.
  • the mounting determination criterion may be set.
  • the “predetermined pass / fail value” may be set to, for example, the maximum defect rate allowable by the user.
  • the information generation unit sets the upper limit value of the range of the solder measurement value that satisfies the predetermined pass / fail statistical value as the print determination criterion, and the pass / fail statistical value is the predetermined pass / fail.
  • the upper limit value of the component measurement value range that satisfies the value may be set as the mounting determination criterion.
  • the information generation unit may include a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and measurement information of the mounting inspection process.
  • a part measurement value indicating the state of the part at the specific position is associated with a plurality of the specific positions, as the result information of the reflow inspection process, the pass / fail result after the reflow of the part at the specific position is determined.
  • the correspondence relationship information may be generated. In this way, it is possible to set a determination criterion for each specific position.
  • the reference setting unit may set the print determination standard and / or the mounting determination standard for each specific position based on the correspondence information.
  • the information generation means may generate the correspondence information after executing a reflow process for a predetermined number of substrates. By doing this, it is possible to set a determination criterion with higher reliability, and thus it is possible to increase the processing efficiency of the mounting system more reliably.
  • the “predetermined number” may be determined empirically, for example, such that the result information of the reflow inspection process is a sufficiently reliable value.
  • the reference setting unit may set the print determination criterion and / or the mounting determination criterion after executing a reflow process for a predetermined number of substrates.
  • the information control apparatus may further include a condition setting unit that sets at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence relationship information. Good.
  • a condition setting unit that sets at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence relationship information.
  • at least one of the print execution condition of the print process and the mount execution condition of the mount process is set based on the generated correspondence relationship information.
  • a mounting system there are a printing process for printing solder on a board, a mounting process for placing components on a board printed with solder, a reflow process for reflowing solder, and the like.
  • the heated solder may be moved during solder reflow to bring the component to a normal position.
  • the state of solder, the arrangement state of components, and the like may be related to the final state after reflow.
  • the information control device generates correspondence information that associates the measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process, and based on this, the print execution condition and the mounting execution information are generated. Set conditions. For this reason, more appropriate execution conditions can be set, and as a result, the operator's confirmation work performed by stopping the line can be further suppressed. Therefore, the processing efficiency of the mounting system can be further increased.
  • the information control apparatus of the present invention outputs the set print execution condition to the printing apparatus when the print execution condition is set, and outputs the set mount execution condition when the mount execution condition is set.
  • the information output means for outputting to the apparatus may be provided.
  • the condition setting unit sets at least one of a printing speed and a printing pressure as the printing execution condition, and holds the holding force of the component as the mounting execution condition. At least one of the moving speeds of the parts may be set.
  • the information generation unit includes a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and the mounting A plurality of the specific values including a component measurement value indicating the state of the component at the specific position as measurement information of the inspection process, and a pass / fail result determined as a result of reflow of the component at the specific position as the result information of the reflow inspection process
  • the correspondence relationship information associated with a position is generated, and the condition setting unit sets the print execution condition and / or the mounting execution condition for each specific position based on the correspondence relationship information. Also good.
  • the mounting system of the present invention includes a printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that performs a printing inspection process for inspecting the state of the printed solder, and a component on the board.
  • a mounting processing device for executing mounting processing to be mounted a mounting inspection device for executing mounting inspection processing for inspecting a mounting state of the component subjected to mounting processing, a reflow device for executing reflow processing of the substrate, and the post-reflow
  • a reflow inspection apparatus that executes a reflow inspection process for inspecting a substrate of the substrate, and the information control apparatus according to any one of the above, wherein the print inspection apparatus uses the set print determination criterion to perform the printing.
  • An inspection process is executed, and the mounting inspection apparatus executes the mounting inspection process using the set mounting criterion.
  • This mounting system includes any of the information control devices described above. For this reason, it is possible to set a more appropriate determination criterion, and it is possible to further suppress the operator's confirmation work performed by stopping the line. Therefore, the processing efficiency of the mounting system can be further increased. Moreover, the effect of the information control apparatus mentioned above can be acquired according to the employ
  • the information control method of the present invention includes: A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow.
  • An information control method for a mounting system comprising a reflow inspection device for executing processing, (A) obtaining measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process; (B) generating correspondence information associating the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process; (C) setting at least one of a print determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information; Is included.
  • this information control method Similar to the information control apparatus described above, this information control method generates correspondence information that associates measurement information of print inspection processing, measurement information of mounting inspection processing, and result information of reflow inspection processing.
  • the criterion is set based on For this reason, it is possible to set a more appropriate determination criterion by using measurement information of each process related to each other, and it is possible to further suppress an operator's confirmation work performed by stopping the line. Therefore, the processing efficiency of the mounting system can be further increased.
  • various aspects of the above-described information control apparatus may be adopted, and steps for realizing each function of the above-described information control apparatus may be added.
  • the information control method of the present invention (d) outputs the set print determination standard to the print inspection apparatus when the print determination standard is set, and sets the mount determination when the mount determination standard is set. Outputting a reference to the mounting inspection apparatus.
  • the information control apparatus of the present invention is A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board
  • a mounting processing apparatus a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow.
  • An information control device of a mounting system comprising a reflow inspection device for executing processing, Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process; Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated; Condition setting means for setting at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence information; It is good also as a thing provided.
  • the information control apparatus acquires measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and acquires the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, Then, correspondence information that associates the result information of the reflow inspection process is generated. Next, at least one of the print execution condition for the printing process and the mounting execution condition for the mounting process is set based on the generated correspondence information. Then, the mounting system executes print processing and mounting processing using the set print execution conditions and mounting execution conditions.
  • the processing executed by the mounting system includes, for example, a printing process for printing solder on a board, a mounting process for placing components on a board on which solder is printed, and a reflow process for reflowing solder.
  • the heated solder may be moved during solder reflow to bring the component to a normal position.
  • the state of solder, the arrangement state of components, and the like may be related to the final state after reflow.
  • the information control device generates correspondence information that associates measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and sets an execution condition based on the correlation information. For this reason, more appropriate execution conditions can be set. Therefore, the processing efficiency of the mounting system can be further increased.
  • the information control apparatus of the present invention outputs the set print execution condition to the printing apparatus when the print execution condition is set, and outputs the set mount execution condition when the mount execution condition is set.
  • the information output means for outputting to the apparatus may be provided.
  • FIG. 1 is a schematic explanatory diagram of a mounting system 10.
  • FIG. 1 is a schematic explanatory diagram of a printing apparatus 12.
  • FIG. 2 is a schematic explanatory diagram of a mounting processing device 14.
  • FIG. 2 is a block diagram showing the configuration of each device of the mounting system 10 Explanatory drawing of the functional block of the mounting system 10.
  • FIG. The flowchart showing an example of a main routine. 6 is a flowchart illustrating an example of a print processing routine. 6 is a flowchart illustrating an example of a print inspection processing routine.
  • the flowchart showing an example of a mounting process routine The flowchart showing an example of a mounting inspection process routine.
  • FIG. 1 is a schematic explanatory diagram of the mounting system 10.
  • FIG. 2 is a schematic explanatory diagram of the printing apparatus 12.
  • FIG. 3 is a schematic explanatory diagram of the mounting processing device 14.
  • FIG. 4 is a block diagram illustrating the configuration of each device of the mounting system 10.
  • FIG. 5 is an explanatory diagram of functional blocks of the mounting system 10.
  • the mounting system 10 includes a printing apparatus 12 that executes a printing process for printing solder on the substrate S, and a printing inspection apparatus 13 that executes a printing inspection process for inspecting the state of the printed solder.
  • the mounting system 10 includes a mounting processing device 14 that executes a mounting process for mounting the component P on the substrate S, and a mounting inspection device 15 that performs a mounting inspection process for inspecting the mounting state of the component P that has been mounted. It has.
  • the mounting system 10 also includes a reflow device 16 that executes a reflow process for the substrate S, a reflow inspection device 17 that executes a reflow inspection process that inspects the substrate S after reflow, and a management computer 80 that manages information.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • an aspect in which a mounting determination standard used for the inspection of the mounting inspection apparatus 15 is set using the defect rate matrix 85b will be mainly described.
  • the printing apparatus 12 applies solder to the lower substrate S through the pattern hole by pressing the solder into the pattern hole formed in the screen mask M using the squeegees 29 and 29 (printing). ).
  • the printing apparatus 12 includes a double squeegee that can reciprocate by reciprocating in the Y-axis direction.
  • the printing apparatus 12 performs bidirectional communication with a controller 20 that controls the entire apparatus, an HDD 21 that stores various types of information, and an external device connected to the LAN 18 such as a management computer 80.
  • a communication unit 22 and an imaging unit 23 that images and confirms the position of the substrate S and the screen mask M are provided.
  • the printing apparatus 12 includes a substrate processing unit 24 that moves and fixes the substrate S, a mask unit 25 that positions and fixes the screen mask M that is fitted in the frame, and a squeegee 29. Is moved on the screen mask M, and a printing processing unit 26 for printing the solder is provided.
  • the controller 20 is configured as a microprocessor centered on a CPU 20a, and includes a ROM 20b that stores various processing programs and a RAM 20c that temporarily stores data.
  • the HDD 21 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores printing condition information 21 a including printing execution conditions such as a pressing force of the squeegee 29 and a moving speed of the squeegee 29.
  • the printing condition information 21a is acquired from the management computer 80 and stored in the HDD 21.
  • the print processing unit 26 includes a print head 27, a head moving unit 28 that can move the print head 27 in the Y direction, and squeegees 29 and 29 that move the solder and execute print processing.
  • the print head 27 includes a piston rod that expands and contracts in the Z direction, and moves a squeegee 29 fixed to the piston rod in the Z-axis direction (vertical direction).
  • the head moving unit 28 moves the print head 27 in the Y-axis direction by driving a moving motor, with the slider guided by a guide rail that is a guide member.
  • the print inspection apparatus 13 is an apparatus that inspects the printed state of the solder formed on the printed substrate S based on the captured image, and as shown in FIG. 4, a controller 30 that controls the entire apparatus, An HDD 31 that stores various types of information and a communication unit 32 that performs bidirectional communication with an external device connected to the LAN 18 are provided.
  • the print inspection apparatus 13 includes an inspection processing unit 34 that images the board S and measures the printed state of the solder.
  • the controller 30 is configured as a microprocessor centered on a CPU 30a, and includes a ROM 30b that stores various processing programs and a RAM 30c that temporarily stores data.
  • the HDD 31 is a storage unit that has a large capacity and stores various data in a rewritable manner, and print inspection condition information 31a including inspection conditions for print processing and print measurement value information 31b including solder measurement values as measurement results. Memorize etc. In addition, as a solder measured value, the height of solder, the area of solder, the volume (amount) of solder, the position of solder, etc. are mentioned, for example, Among these, 1 or more types are included.
  • the print inspection condition information 31 a is acquired from the management computer 80 and stored in the HDD 31.
  • the inspection processing unit 34 is disposed in the inspection head, and moves to move the inspection head along the XY plane (a surface parallel to the plate surface of the substrate S), which images the solder printed on the substrate S.
  • Part 36 The inspection head includes a light source that irradiates slit light so that a grating is formed on the surface of the substrate S, and the imaging unit 35 images the grating of light formed on the surface of the substrate S obliquely from two directions.
  • the line of light that constitutes the grating formed by the irradiated slit light shifts at the place where the solder is printed, with respect to the place where the solder is not printed. The amount of this shift varies depending on the thickness (height) of the solder.
  • the print inspection apparatus 13 uses this principle to measure the height, area, volume, and position of the printed solder corresponding to each component position by processing the image data captured by the imaging unit 35. .
  • the print inspection apparatus 13 determines whether or not the deviation between the normal position of the solder printed corresponding to each component position and the actual solder position is within an allowable range.
  • the mounting processing apparatus 14 is an apparatus that arranges (mounts) the component P supplied by the supply unit 45 at a predetermined position on the substrate S as shown in FIG.
  • the mounting process includes a process of placing, mounting, inserting, joining, and adhering components on a substrate.
  • the mounting processing device 14 includes a controller 40 that controls the entire device, an HDD 41 that stores various types of information, a communication unit 42 that performs bidirectional communication with an external device connected to the LAN 18, and And an image pickup unit 43 that picks up and confirms the component P sucked by the suction nozzle 49.
  • the mounting processing apparatus 14 includes a substrate processing unit 44 that moves and fixes the substrate S, a supply unit 45 that includes a tray and a reel that accommodates the component P, and a mounting process that sucks and moves the component P onto the substrate S.
  • the controller 40 is configured as a microprocessor centered on the CPU 40a, and includes a ROM 40b that stores various processing programs and a RAM 40c that temporarily stores data.
  • the HDD 41 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores mounting condition information 41 a including mounting execution conditions such as the moving speed of the mounting head 47 and the suction force of the suction nozzle 49. .
  • the mounting condition information 41a is acquired from the management computer 80 and stored in the HDD 41.
  • the mounting processing unit 46 includes a mounting head 47, a head moving unit 48 that can move the mounting head 47 in the XY direction, and a suction nozzle 49 that is mounted on the mounting head 47 and sucks the component P. I have.
  • the mounting head 47 moves the suction nozzle 49 in the Z-axis direction by adjusting a ball screw extending along the Z-axis with a Z-axis motor.
  • the head moving unit 48 moves the mounting head 47 in the XY directions by driving a moving motor, with the slider guided by a guide rail that is a guide member.
  • the mounting inspection device 15 is a device that inspects the mounting state of the component P arranged on the printed board S based on the captured image, and as shown in FIG. 4, a controller 50 that controls the entire device. And an HDD 51 for storing various types of information, and a communication unit 52 for performing bidirectional communication with an external device connected to the LAN 18. Further, the mounting inspection apparatus 15 includes an inspection processing unit 54 that images the board S and measures the mounting state of the component P.
  • the controller 50 is configured as a microprocessor centered on a CPU 50a, and includes a ROM 50b that stores various processing programs and a RAM 50c that temporarily stores data.
  • the HDD 51 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores mounting inspection condition information 51a, mounting measurement value information 51b including component measurement values that are measurement results, and the like.
  • the component measurement values include, for example, the positional deviation amount of the component P with respect to the substrate S, the positional deviation amount of the component P with respect to the printed solder, the rotation angle of the component P, and the like.
  • the mounting inspection condition information 51 a is acquired from the management computer 80 and stored in the HDD 51.
  • the inspection processing unit 54 is disposed on the inspection head, and moves the inspection head 55 along the XY plane (a surface parallel to the plate surface of the substrate S), which images the component P disposed on the substrate S.
  • the moving part 56 is provided.
  • the mounting inspection device 15 measures the positional deviation and the rotation angle of the component P based on the difference between the reference image in which the component P is arranged at the regular position and the captured image. The mounting inspection device 15 determines whether or not the deviation between the normal position of the component P arranged corresponding to each component position and the actual position of the component P is within an allowable range.
  • the reflow device 16 is a device that electrically connects and fixes each component P on the substrate S by melting the solder by heating the substrate S on which the component P is disposed on the solder, and then cooling it.
  • the reflow device 16 includes a reflow control unit 60 that controls the entire device, a communication unit 62 that performs bidirectional communication with an external device connected to the LAN 18, and a heating chamber 63 that houses the substrate S. And a heating unit 64 having a heater for heating the inside of the heating chamber 63.
  • the reflow inspection device 17 is a device that finally inspects the state of the component P on the reflowed substrate S based on the captured image.
  • the reflow inspection apparatus 17 includes a controller 70 that controls the entire apparatus, an HDD 71 that stores various types of information, and a communication unit 72 that performs bidirectional communication with external devices connected to the LAN 18. ing. Further, the reflow inspection device 17 includes an inspection processing unit 74 that images the board S and measures the mounting state of the component P.
  • the controller 70 is configured as a microprocessor centered on a CPU 70a, and includes a ROM 70b that stores various processing programs and a RAM 70c that temporarily stores data.
  • the HDD 71 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores inspection condition information 71a including inspection conditions for the substrate S after reflow, inspection result information 71b including final inspection results, and the like. To do.
  • This inspection condition information 71 a is acquired from the management computer 80 and stored in the HDD 71.
  • the inspection processing unit 74 is disposed in the inspection head, and an imaging unit 75 that images the reflowed component P disposed on the substrate S, and the inspection head along the XY plane (a surface parallel to the plate surface of the substrate S). And a moving unit 76 for moving the image.
  • the reflow inspection device 17 measures the positional deviation and the rotation angle of the component P based on the difference between the reference image in which the component P is arranged at the regular position and the captured image. The reflow inspection device 17 determines whether or not the deviation between the normal position of the component P arranged corresponding to each component position and the actual position of the component P is within an allowable range.
  • the management computer 80 is a computer that manages information of each device of the mounting system 10. As shown in FIG. 1, the management computer 80 is composed of a CPU 82, a ROM 83, a RAM 84, and the like, which controls the entire apparatus, an HDD 85 that stores various application programs and various data files, and an external device connected to the LAN 18. A communication unit 86 that performs bidirectional communication with the device. In addition, the management computer 80 includes an input device 87 such as a keyboard and a mouse for an operator to input various commands, and a display 88 for displaying various information.
  • an input device 87 such as a keyboard and a mouse for an operator to input various commands
  • a display 88 for displaying various information.
  • the HDD 85 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores result information 85a, a defect rate matrix 85b, a print determination criterion 85c, a mounting determination criterion 85d, and the like.
  • the result information 85a is data including a solder measurement value by the print inspection apparatus 13, a component measurement value by the mounting inspection apparatus 15, and an inspection result after reflow by the reflow inspection apparatus 17 (see FIG. 13 described later).
  • the defect rate matrix 85b includes a predetermined range of solder measurement values, a predetermined range of component measurement values, and a failure rate included in the predetermined range of solder measurement values and the predetermined range of component measurement values for a plurality of predetermined ranges.
  • the print determination standard 85c is a threshold value for determining whether or not the state of the solder printed on the substrate S is an acceptable state.
  • the mounting determination reference 85d is a threshold value for determining whether or not the state of the component P arranged on the board S is an acceptable state.
  • the management computer 80 includes an inspection data acquisition unit 90, a correspondence relationship generation unit 91, a correspondence relationship holding unit 92, a condition setting unit 93, and a condition command unit 94.
  • the inspection data acquisition unit 90 executes processing for acquiring measurement information (solder measurement values) of print inspection processing, measurement information (component measurement values) of mounting inspection processing, and result information (inspection results) of reflow inspection processing. To do.
  • the correspondence generation unit 91 executes processing for generating correspondence information (defective rate matrix 85b) in which the solder measurement values, the component measurement values, and the inspection results acquired by the inspection data acquisition unit 90 are associated with each other.
  • the correspondence relationship holding unit 92 is a storage unit that stores the generated correspondence relationship information.
  • the condition setting unit 93 executes a process of setting one or more of a print determination standard for the print inspection process, a mounting determination standard for the mounting inspection process, a print execution condition, and a mounting execution condition based on the generated correspondence information.
  • the condition command unit 94 executes a process of outputting the set printing determination standard, mounting determination standard, printing execution condition, and mounting execution condition to the corresponding device.
  • FIG. 6 is a flowchart illustrating an example of a main routine executed by the CPU 82 of the management computer 80.
  • This routine is stored in the HDD 85 of the management computer 80, and is executed by a start instruction from the operator.
  • this routine for example, the function of the test data acquisition unit 90, the correspondence generation unit 91, the correspondence relationship holding unit 92, the condition setting unit 93, and the condition command unit 94, which are functional blocks, and the CPU 82 using each unit are used.
  • the CPU 82 first instructs the printing apparatus 12 to execute the printing process (step S100), and instructs the printing inspection apparatus 13 to execute the printing inspection process (step S110).
  • the CPU 82 instructs the mounting processing apparatus 14 to execute the mounting process (step S120), and instructs the mounting inspection apparatus 15 to execute the mounting inspection process (step S130). Subsequently, the CPU 82 instructs the reflow apparatus 16 to execute the reflow process (step S140), and instructs the reflow inspection apparatus 17 to execute the reflow inspection process (step S150). Then, the CPU 82 generates a defect rate matrix 85b (corresponding relationship information), executes a process for setting an inspection standard and a mounting process condition based on the generated corresponding relationship information (step S160), and ends this routine.
  • a defect rate matrix 85b corresponding relationship information
  • the print inspection process is performed using the volume value of the solder
  • the mounting inspection process is performed using the displacement of the position of the component P with respect to the substrate S. Is mainly explained.
  • FIG. 7 is a flowchart illustrating an example of a print processing routine executed by the CPU 20a of the printing apparatus 12. This routine is stored in the HDD 21.
  • the CPU 20a acquires the printing condition information 21a from the management computer 80 (step S200), executes the transporting and fixing process of the substrate S (step S210), and executes the printing process (step S220).
  • the CPU 20a prints the solder on the substrate S through the screen mask M by moving the squeegee 29 in a state where the substrate S and the screen mask M are overlapped at an appropriate position.
  • the squeegee 29 is controlled by the pressing force and the moving speed included in the printing condition information 21a.
  • the CPU 20a discharges the printed substrate S (step S230), and determines whether or not the production is completed based on whether or not the printing process has been performed on all the planned substrates S (step S240). ).
  • the CPU 20a executes the processes after step S210.
  • this routine is finished as it is. In this way, solder is formed on the substrate S.
  • FIG. 8 is a flowchart illustrating an example of a print inspection processing routine executed by the CPU 30 a of the print inspection apparatus 13. This routine is stored in the HDD 31.
  • the CPU 30a acquires the print inspection condition information 31a from the management computer 80 (step S300), executes the transporting and fixing processing of the substrate S (step S305), and performs imaging processing of the inspection range (step S310). ).
  • the CPU 30a sets an inspection position (component mounting position, hereinafter also referred to as component position) (step S315).
  • the setting of the component positions is performed by reading the predetermined order of the component positions included in the print inspection condition information 31a.
  • the CPU 30a acquires a solder measurement value by performing image processing on the captured image, and stores the print measurement value information 31b including the acquired solder measurement value in the HDD 31 (step S320).
  • the CPU 30a acquires the solder height, area, volume, position, and the like as the solder measurement values.
  • a predetermined representative value such as a minimum volume pad, a minimum area pad, and a minimum height pad may be acquired as a solder measurement value. Good.
  • the CPU 30a acquires a print determination criterion corresponding to the component position (step S325), and determines whether or not the solder measurement value is within an error range based on whether or not the print determination criterion is exceeded. (Step S330).
  • the print determination criterion is set by the management computer 80. This determination is performed using the measurement value of the solder volume value and the print determination standard.
  • an abnormality display process is executed (step S335).
  • the CPU 30a displays an error on the display unit of the operation panel. Further, a process of excluding the board S determined as an error from the mounting line may be performed.
  • step S340 determines whether or not the inspection of the current substrate S has been completed (step S340), and if not completed, the processing after step S315 is performed. Execute. On the other hand, when the inspection of the current substrate S is completed, the CPU 30a discharges the substrate S that has been inspected (step S345), and determines whether or not the inspection of all the substrates S has been completed (step S350). When the inspection of all the substrates S has not been completed, the CPU 30a executes the processing after step S305, and when the inspection of all the substrates S has been completed, this routine is finished as it is. In this way, the state of the solder formed on the substrate S is inspected, and the substrate S that is considered to have a defect in the subsequent process is specified.
  • FIG. 9 is a flowchart illustrating an example of a mounting process routine executed by the CPU 40a of the mounting processing apparatus 14. This routine is stored in the HDD 41.
  • the CPU 40a acquires the mounting condition information 41a from the management computer 80, stores it in the HDD 41 (step S400), and executes the transfer and fixing process of the substrate S (step S410).
  • the CPU 40a sets a component P to be mounted on the substrate S based on the contents of the mounting condition information 41a (step S420), and acquires the mounting execution condition of the set component P from the mounting condition information 41a (step S430). ).
  • the mounting order of the parts P includes a predetermined order in the mounting condition information 41a.
  • the mounting condition information 41a includes a mounting execution condition of the component P for each component position, for example, the suction force of the suction nozzle 49 and the moving speed of the mounting head 47.
  • the CPU 40a performs the mounting process of the set component P based on the mounting execution condition (step S440). In the suction process of the mounting process, the CPU 40a performs a process of moving the mounting head 47 to the take-out position of the supply unit 45 in which the corresponding part is stored, and lowering the suction nozzle 49 to suck the part P onto the suction nozzle 49. Do.
  • the CPU 40a performs a process of moving the mounting head 47 that has attracted the component P to the position of the component on the substrate S through the imaging unit 43. Subsequently, the CPU 40a determines whether or not the mounting process for the current substrate S has been completed (step S450), and when the mounting process for the current substrate S has not been completed, the processes after step S420 are executed. On the other hand, when the mounting process of the current board S is completed, the CPU 40a discharges the mounted board S (step S460), and has the mounting process been executed for all the boards S scheduled for completion of production? A determination is made based on whether or not (step S470). When the production is not completed, the CPU 40a executes the processes after step S410. On the other hand, when the production is completed, this routine is finished as it is. In this way, the component P is arranged on the substrate S.
  • FIG. 10 is a flowchart showing an example of a mounting inspection processing routine executed by the CPU 50a of the mounting inspection device 15. This routine is stored in the HDD 51.
  • the CPU 50a acquires the mounting inspection condition information 51a from the management computer 80 (step S500), executes the transporting and fixing process of the substrate S (step S505), and performs imaging processing of the inspection range (step S510). ).
  • the CPU 50a sets an inspection position (component position) (step S515). For example, the setting of the component positions is performed by reading out a predetermined order of the component positions included in the mounting inspection condition information 51a.
  • the CPU 50a acquires a component measurement value by performing image processing on the captured image, and stores the acquired component measurement value in the mounting measurement value information 51b of the HDD 51 (step S520). It is assumed that the CPU 50a acquires, as the component measurement values, the positional deviation amount of the component P with respect to the substrate S, the positional deviation amount of the component P with respect to the solder, the rotation angle of the component P, and the like. Next, the CPU 50a acquires a solder measurement value corresponding to this component position (specific position) from the print inspection apparatus 13 (step S525).
  • the acquired solder measurement value is, for example, a measurement value of solder volume.
  • the CPU 50a acquires a mounting criterion corresponding to the component position (step S530), and determines whether or not the component measurement value is within an error range based on whether or not the component measurement value exceeds the mounting criterion. (Step S535).
  • the mounting criterion is acquired by the management computer 80 (see FIG. 15 to be described later), and the one selected by the acquired solder measurement value is used.
  • this determination is performed using a measured value of the amount of displacement with respect to the substrate S and a mounting determination criterion.
  • an abnormality display process is executed (step S540).
  • step S540 the CPU 50a determines whether or not the inspection of the current substrate S has been completed (step S545). Execute the process. On the other hand, when the inspection of the current substrate S is completed, the CPU 50a discharges the substrate S that has been inspected (step S550), and determines whether or not the inspection of all the substrates S has been completed (step S555).
  • the CPU 50a executes the processing after step S505, and when the inspection of all the substrates S has been completed, this routine is finished as it is. In this way, the state of the component P arranged on the substrate S is inspected, and the substrate S that is considered to have a problem in the subsequent process is specified.
  • the reflow control unit 60 of the reflow device 16 that has received the reflow processing command output in step S140 controls the heating unit 64 to heat the inside of the heating chamber 63 to a predetermined temperature at which the solder melts, and the solder is printed. Then, the substrate S on which the component P is arranged is transferred to the heating chamber 63. In the process of passing through the inside of the heating chamber 63, the solder melts as the temperature rises, and the substrate S cools and solidifies as the temperature falls.
  • FIG. 11 is a flowchart showing an example of a reflow inspection processing routine executed by the CPU 70a of the reflow inspection device 17. This routine is stored in the HDD 71.
  • the CPU 70a acquires the inspection condition information 71a from the management computer 80 (step S600), executes the transporting and fixing process of the substrate S (step S605), and performs imaging processing of the inspection range (step S610). .
  • the imaging process depending on the size of the substrate S, the whole may be imaged once, or a plurality of areas may be imaged multiple times.
  • the CPU 70a performs image processing for obtaining a difference between pixel values of the image of the substrate S on which the component P is normally mounted and the captured image of the substrate S in a state where the substrate S is overlapped.
  • the image data obtained is taken (step S615). It is determined whether or not there is a mounting abnormality on the substrate S based on whether or not there is an image area based on a missing part of the component P or a deviation outside the allowable range in the difference image data (step S620). Note that if the component P is normally mounted on the imaged substrate S, the difference image data has little variation in pixel values.
  • the CPU 70a When it is determined that there is a mounting abnormality on the substrate S, the CPU 70a identifies the component P corresponding to the mounting abnormality based on the component position on the substrate S (step S625), and executes an abnormality display process (step S630). .
  • the CPU 70a displays an error on the display unit of the operation panel. Moreover, you may perform the process which excludes the board
  • the CPU 70a stores information on the component P with the mounting abnormality in the HDD 71 as the inspection result information 71b (step S635).
  • step S635 the CPU 70a determines whether or not the inspection of the current substrate S has been completed (step S640). Execute the process. On the other hand, when the inspection of the current substrate S is completed, the CPU 70a discharges the substrate S that has been inspected (step S645), and determines whether or not the inspection of all the substrates S has been completed (step S650). When the inspection of all the substrates S has not been completed, the CPU 70a executes the processes in and after step S605. When the inspection of all the substrates S has been completed, this routine is finished as it is.
  • the state of the component P mounted on the substrate S is inspected, the substrate S in which the defect has occurred is specified, and the position of the component in which the defect has occurred and the information on the component are stored in the HDD 71 as the inspection result information 71b. is there.
  • FIG. 12 is a flowchart illustrating an example of a correspondence information generation condition setting processing routine executed by the CPU 82 of the management computer 80.
  • This routine is stored in the HDD 85.
  • a correspondence relationship such as a solder measurement value at each component position, a component measurement value, and a defect rate at the corresponding component position is acquired, and a mounting determination criterion used by the mounting inspection apparatus 15 is set based on this correspondence relationship.
  • the CPU 82 determines whether or not the number of substrates after the reflow process is equal to or greater than a predetermined number (step S700).
  • This “predetermined number” can be determined empirically, for example, to a number (for example, 100 sheets or 500 sheets) at which the inspection result of the reflow inspection process becomes a sufficiently reliable value.
  • the count of the number of substrates after the reflow process is reset when an affirmative determination is made in step S700.
  • the CPU 82 stands by as it is. That is, the CPU 82 waits until the inspection result of the reflow inspection process becomes a sufficiently reliable value.
  • the CPU 82 acquires the print measurement value information 31b including the solder measurement values from the print inspection apparatus 13 (step S705), and obtains the component measurement values.
  • the mounting measurement value information 51b including it is acquired from the mounting inspection apparatus 15 (step S710), and the inspection result information 71b including the information of the inspection result is acquired from the reflow inspection apparatus 17 (step S715).
  • FIG. 13 is an explanatory diagram of an example of the result information 85a.
  • the result information 85a is information acquired in steps S705 to S715, and is information in which the solder measurement value, the component measurement value, and the inspection result in the reflow inspection process are associated with each component position, and this is summarized for each board. It is.
  • step S715 the CPU 82 uses the result information 85a to determine a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a defect rate included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value, Is generated for a plurality of predetermined ranges (step S720).
  • FIG. 14 is an explanatory diagram of an example of the defect rate matrix 85b.
  • This defect rate matrix 85b shows the predetermined range of the solder volume ratio when the appropriate value is 100%, the predetermined range of the positional deviation amount of the component P with respect to the solder, and the number of mounting abnormal components included in this range.
  • defect rate matrix 85b in which the solder measurement value, the component measurement value, and the defect rate at a specific component position are associated is generated for each specific component position.
  • the generation process of the defect rate matrix 85b will be described.
  • the CPU 82 sets a part position for generating the defect rate matrix 85b. The setting of the component position is performed based on a preset order.
  • the CPU 82 uses the data of the result information 85a to determine the number of mounting abnormality components included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value at the set component position, and the total number of components included in the predetermined range. Count. Subsequently, based on the count result, the CPU 82 obtains the defect rate of the parts included in the predetermined range, and associates the predetermined range of the solder measurement value with the predetermined range of the component measurement value and the defect rate. The CPU 82 performs this process on all the predetermined ranges of the solder measurement value and the component measurement value, and generates a defect rate matrix 85b at the current component position (see FIG. 14).
  • the CPU 82 performs the above processing on all the component positions of the substrate S, and generates a defect rate matrix 85b for all the component positions.
  • the predetermined range of the solder volume ratio is set every 20%, for example, 70% to 90%, 90% to 110%, 110% to 130%, and the like.
  • the predetermined range of the positional deviation amount is set every 50 ⁇ m, for example, 0 to 50 ⁇ m, 50 to 100 ⁇ m, 100 to 150 ⁇ m, and the like.
  • the print inspection result when the print inspection result is 25% less than the appropriate value and the solder volume ratio is 75%, the amount of misalignment of the part P It can be seen that a mounting abnormal state occurs after reflowing with a high probability of 13% or more unless it is arranged at 50 ⁇ m or less.
  • the defect rate matrix 85b when the print inspection result includes an appropriate value and the solder volume is 90% or more and less than 110%, the defect rate is 0.8% even when the positional deviation amount of the component P is close to 150 ⁇ m. It can be seen that the mounting abnormal state is reached after reflowing only with a low probability.
  • this defect rate matrix 85b is used, for example, if a user specifies a limit value (allowable value) of an acceptable defect rate, the CPU 82 uses the mounting determination standard for the amount of positional deviation of the component P according to the solder volume. A value that satisfies this allowable value can be set (see FIG. 15 described later). Alternatively, the CPU 82 can set the solder volume printing determination standard to a value that satisfies this allowable value in accordance with the positional deviation amount of the component P.
  • the CPU 82 performs a process of setting a print determination standard for each specific component position (step S725).
  • the print determination criterion is set to a predetermined value.
  • the CPU 82 performs a process of setting a mounting determination criterion for each specific component position using the defect rate matrix 85b (step S730).
  • FIG. 15 is an explanatory diagram of an example of the mounting determination reference 85d. It is assumed that the CPU 82 sets a mounting determination criterion that satisfies a limit value (allowable value) of an acceptable defect rate determined by the user for each specific component position.
  • the CPU 82 sets the mounting determination criterion for the component measurement value to the upper limit value of the predetermined range of the component measurement value that satisfies this allowable value.
  • the mounting determination criterion may be set to a predetermined value (initial value).
  • a predetermined value initial value.
  • the allowable value is 3% will be described as a specific example. For example, as shown in FIG.
  • the CPU 82 sets the mounting determination standard in the range where the solder volume ratio is 70% or more and less than 90% to 50 ⁇ m.
  • the CPU 82 when the solder volume ratio is in the range of 90% or more and less than 110%, assuming that the amount of positional deviation of components satisfying the defect rate of 3% or less (allowable value) is in the range of 0 ⁇ m or more and less than 250 ⁇ m, the CPU 82 The mounting criterion in the range where the ratio is 90% or more and less than 110% is set to 250 ⁇ m. Similarly, when the solder volume ratio is in the range of 110% or more and less than 130%, the amount of misalignment of components satisfying the defect rate of 3% or less (allowable value) is in the range of 0 ⁇ m or more and less than 100 ⁇ m. The reference is set to 100 ⁇ m (see FIG. 15). In this way, the mounting determination reference value corresponding to each of the predetermined ranges of the solder measurement values is set.
  • the CPU 82 outputs the set print determination standard 85c to the print inspection apparatus 13, and outputs the set mount determination standard 85d to the mount inspection apparatus 15 (step S735).
  • the output of the print determination standard 85c and the mounting determination standard 85d may be performed based on a request from the print inspection apparatus 13 or the mounting inspection apparatus 15.
  • the print inspection apparatus 13 executes the print inspection process using the acquired print determination reference 85c.
  • the mounting inspection device 15 executes the mounting inspection process using the acquired mounting determination reference 85d.
  • the CPU 50a of the mounting inspection apparatus 15 performs the processing of steps S500 to S520 of the mounting inspection routine of FIG.
  • the CPU 50a selects a predetermined range of the mounting determination standard 85d including the acquired solder measurement value (here, solder volume ratio), and selects a mounting determination standard associated with the predetermined range of the solder measurement value. To do. Specifically, when the solder measurement value at this component position is 120% in terms of the solder volume ratio, the CPU 50a sets the mounting determination criterion for the positional deviation amount to 100 ⁇ m (see FIG. 15).
  • step S530 for determining whether or not the component measurement value acquired in step S520 is within the error range based on whether or not the selected mounting determination criterion is exceeded.
  • a more appropriate determination criterion is set by using the solder measurement value of the component position to be inspected for mounting and the mounting criterion determined based on the defect rate matrix 85b. It can be done.
  • step S735 the CPU 82 performs processing for setting the print execution condition and the mounting execution condition for each specific component position (step S740).
  • the change of the print execution condition will be described. For example, if it is estimated that the amount of component misalignment exceeds 100 ⁇ m under the current mounting execution conditions, assuming that the defect rate is 3%, the defect rate is the allowable value in the defect rate matrix 85b (FIG. 14). In order to satisfy the requirement, the solder volume needs to be 90 to 110%. In this case, the CPU 82 may change the print execution condition so as to reduce the moving speed of the squeegee 29 at the corresponding part position in order to stabilize the solder volume, or the pressing force of the squeegee 29 at the corresponding part position.
  • the print execution condition may be changed so as to increase the value.
  • the defect rate matrix 85b ( In FIG. 14)
  • the defect rate satisfies the allowable value.
  • the CPU 82 may change the print execution condition so as to increase the moving speed of the squeegee 29 at the relevant part position, or the print execution condition so as to reduce the pressing force of the squeegee 29 at the relevant part position. May be changed.
  • the CPU 82 sets a plurality of moving speed stages and changes the moving speed by one stage. Also good. Alternatively, in changing the moving speed of the squeegee 29, the CPU 82 may add or subtract a predetermined moving speed from the current moving speed.
  • the mounting execution condition for example, one or more of the moving speed of the mounting head 47, the acceleration of the mounting head 47, the vertical speed of the suction nozzle 49, the vertical acceleration of the suction nozzle 49, and the suction force of the suction nozzle 49 are changed. Also good. Specifically, when the solder volume ratio of the acquired solder measurement value is 70 to 90%, assuming that the defect rate 3% is an allowable value, the position of the component is required to satisfy the allowable value in the defect rate matrix 85b. The amount of deviation needs to be less than 50 ⁇ m.
  • the CPU 82 may change the mounting execution condition so as to reduce the moving speed of the component P to the corresponding component position in order to reduce the displacement amount of the component, or the component to the corresponding component position.
  • the mounting execution condition may be changed to increase the P adsorption force. In this way, it is possible to further stabilize the mounting process of the component P.
  • the solder volume ratio of the acquired solder measurement value is 90 to 110%, assuming that the defective rate is 3%, the defective rate satisfies the allowable value even if the positional deviation amount of the component is 150 ⁇ m in the defective rate matrix 85b. .
  • the CPU 82 may change the mounting execution condition so as to increase the moving speed of the component P to the corresponding component position, or the mounting execution may be performed so as to reduce the adsorption force of the component P at the corresponding component position.
  • Conditions may be changed.
  • a plurality of moving speed stages may be set, and the CPU 82 may change this moving speed by one stage.
  • the CPU 82 may change the predetermined movement speed from the current movement speed.
  • a plurality of suction force stages may be set, and the CPU 82 may change the suction force by one stage.
  • the CPU 82 may change the suction force of the suction nozzle 49 by adding or subtracting a predetermined suction force to the current suction force.
  • the CPU 82 stores in the HDD 85 printing condition information including the set printing execution condition and mounting condition information including the set mounting execution condition. Subsequently, the CPU 82 outputs the set printing condition information to the printing apparatus 12, and outputs the set mounting condition information to the mounting processing apparatus 14 (step S745). Note that the printing condition information and the mounting condition information may be output based on a request from the printing apparatus 12 or the mounting processing apparatus 14.
  • the CPU 82 determines whether or not the production is completed based on whether or not the scheduled reflow processing of all the substrates S is completed (step S750).
  • the CPU 82 executes the processes after step S700. That is, in step S700, the CPU 82 determines whether or not the number of substrates after the reflow processing has newly increased to a predetermined number or more, and when the measured value and the defect rate are accumulated more than the predetermined number, as described above. Then, the defect rate matrix 85b is generated (updated), and the printing determination reference 85c, the mounting determination reference 85d, the printing condition information, the mounting condition information, and the like are updated.
  • step S750 when the production is completed in step S750, this routine is finished as it is.
  • the correspondence determination information is used to change the print determination reference 85c, the mounting determination reference 85d, the printing condition information, the mounting condition information, and the like to more appropriate values.
  • the inspection data acquisition unit 90 of this embodiment corresponds to the information acquisition unit of the present invention
  • the correspondence generation unit 91 corresponds to the information generation unit
  • the condition setting unit 93 corresponds to the reference setting unit and the condition setting unit
  • management The computer 80 corresponds to the information control device.
  • an example of the information control method of the present invention is also clarified by describing the operation of the mounting system 10.
  • the management computer 80 of the first embodiment described above the measurement information (solder measurement value) of the print inspection process, the measurement information (component measurement value) of the mounting inspection process, and the result information (inspection result) of the reflow inspection process ) And a defect rate matrix 85b (correspondence information) in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other.
  • the management computer 80 sets a mounting determination criterion for mounting inspection processing based on the generated correspondence information.
  • the mounting inspection apparatus 15 performs a mounting inspection process using the set mounting determination standard.
  • the processing executed by the mounting system includes, for example, a printing process for printing solder on the board S, a mounting process for placing the component P on the board S printed with solder, and a reflow process for reflowing solder.
  • a printing process for printing solder on the board S a mounting process for placing the component P on the board S printed with solder
  • a reflow process for reflowing solder for example, even if the solder formation position is shifted and the placement position of the component P is shifted, the solder heated during the reflow process may move and the component P may be in a normal position.
  • the state of the solder and the arrangement state of the component P may be related to the final state after the reflow.
  • the management computer 80 generates correspondence information in which the measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other, and the determination criterion is set based on the correspondence information. For this reason, the management computer 80 can set more appropriate determination criteria using the measurement information of the processes related to each other, and as a result, the work of checking the substrate S of the worker performed by stopping the line, etc. Can be further suppressed. Therefore, the mounting system 10 can further increase the processing efficiency.
  • the management computer 80 also determines a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a defect rate of the component P included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value (statistic value of the pass / fail result). ) Are associated with a plurality of predetermined ranges. For this reason, the management computer 80 can further improve the processing efficiency by using the predetermined range of measurement values and the defect rate. Furthermore, since the management computer 80 sets a mounting determination standard that satisfies the predetermined allowable value of the defect rate, the processing efficiency of the mounting system 10 can be further increased within the predetermined allowable value range.
  • the management computer 80 since the management computer 80 generates the defect rate matrix 85b in which the solder measurement values, the component measurement values, and the quality results after reflow are associated with a plurality of specific positions, the management computer 80 is more appropriate for each specific position. It is possible to set various mounting criteria.
  • the management computer 80 since the management computer 80 generates the defect rate matrix 85b after executing the reflow processing of the predetermined number of substrates S, it is possible to set a determination criterion with higher reliability, and more reliably process the mounting system. Efficiency can be increased. Furthermore, since the management computer 80 sets the printing execution condition of the printing process and the mounting execution condition of the mounting process based on the defect rate matrix 85b, it is possible to set a more appropriate execution condition, and thus stop the line. Thus, it is possible to further suppress the confirmation work of the worker. Therefore, the processing efficiency of the mounting system can be further increased. Furthermore, since the management computer 80 uses the defect rate matrix 85b in which one type of solder measurement value and one type of component measurement value are associated with the defect rate, the correspondence computer generates the correspondence information by a relatively simple process. Can do.
  • the print inspection standard and the mounting standard are set to stricter values in the print inspection device 13 and the mounting inspection device 15 so that the mounting abnormality does not occur after reflow.
  • the print determination standard and the mounting determination standard can be set to more gradual values using the correspondence relationship between the measurement value of the print inspection apparatus 13, the measurement value of the mounting inspection apparatus 15, and the defect rate.
  • the print determination standard and the mounting determination standard are set using the deviation of the measurement data of the print inspection process, the deviation of the measurement data of the mounting inspection process, and the defect rate matrix 85b at each component position.
  • the aspect to perform is mainly demonstrated.
  • the configuration of the mounting system 10 is the same as that of the first embodiment, and only the processing contents of the management computer 80 are different. Therefore, the same configuration and processing as those of the first embodiment described above.
  • the same reference numerals and step numbers are assigned to the contents, and a specific description thereof is omitted.
  • the CPU 82 of the management computer 80 executes a correspondence information generation condition setting processing routine shown in FIG.
  • this routine is started, the CPU 82 executes the processes of steps S700 to S720. That is, after waiting until the inspection result of the reflow inspection process has a sufficiently reliable value, the defect rate matrix 85b is generated.
  • the CPU 82 obtains the average value and standard deviation of the solder measurement values at the specific part position and the average value and standard deviation of the component measurement values, and associates them with statistical correspondence information 85e. Is generated.
  • FIG. 16 is an explanatory diagram of an example of the statistical correspondence information 85e. As shown in FIG.
  • the statistical correspondence information 85e includes the component position (coordinates), the component type, the solder height as the solder measurement value, the solder area, the solder volume and the displacement amount, and the position with respect to the substrate as the component measurement value. This is information in which an average value and a standard deviation such as a deviation amount, a positional deviation amount with respect to solder, and a rotation angle are associated with each component position.
  • the solder tends to be printed properly at a specific component position, or the mounting state tends to be small at a specific position with a small amount of displacement of the component P. It is possible to grasp the tendency of the state of solder and the positional deviation of parts.
  • step S725 the CPU 82 performs a process of setting the print determination reference 85c for each specific component position using the defect rate matrix 85b and the statistical correspondence information 85e. For example, based on the statistical correspondence information 85e, the CPU 82 can change the print determination criterion for the solder volume to a loose value when the amount of component displacement is small at a specific component position. Specifically, in the statistical correspondence information 85e, if 99.7% of the data exists in the range of the average value ⁇ 3 ⁇ (standard deviation), the average value of the amount of positional deviation of the parts is 5 ⁇ m, and 3 ⁇ is 40 ⁇ m, The amount of deviation is expected to be 45 ⁇ m.
  • the CPU 82 refers to the defective rate matrix 85b (FIG. 14), and the component misalignment amount is less than 50 ⁇ m, for example, the solder volume ratio is 70% or more.
  • the print criterion 85c can be set within a range of less than 130%.
  • the CPU 82 can change the print determination criterion for the solder volume to a strict value when the displacement amount of the component is large and the defect rate is large at a specific component position.
  • the CPU 82 determines that the defective rate 3% is an allowable value, and the CPU 82 determines the defective rate matrix 85b (FIG. 14). ), It is possible to set the print determination standard 85c in the range where the solder volume ratio is 90% or more and less than 110% corresponding to the range where the amount of positional deviation of the component is less than 150 ⁇ m.
  • step S730 the CPU 82 performs a process of setting the mounting determination reference 85d for each specific component position using the defect rate matrix 85b and the statistical correspondence information 85e.
  • the CPU 82 continues to perform good solder printing at a specific component position. For example, when the solder volume ratio is stable near 100%, the mounting determination criterion for the positional deviation amount is set to a loose value. Can be changed. Specifically, in the same manner as described above, when the defect rate 3% is an allowable value and the solder volume ratio is predicted to be less than 110% from the average value and standard deviation of the statistical correspondence information 85e, the CPU 82 With reference to 85b (FIG.
  • the CPU 82 changes the mounting judgment standard of the positional deviation amount to a strict value. Can do. Specifically, when the defective rate 3% is an allowable value and the solder volume ratio is predicted to be 120% from the average value and standard deviation of the statistical correspondence information 85e, the CPU 82 uses the defective rate matrix 85b (FIG. 14).
  • the mounting determination standard 85d corresponding to a range in which the solder volume ratio is 70% or more and less than 130% and the component displacement amount is less than 50 ⁇ m.
  • the CPU 82 can change the printing determination criterion for the solder volume to a loose value.
  • the CPU 82 can change the mounting criterion for the misalignment amount to a loose value.
  • the CPU 82 uses the defect rate matrix 85b or the statistical correspondence information 85e to satisfy the print determination criterion 85c or the mounting determination so as to satisfy the allowable value of the defect rate.
  • the reference 85d is set.
  • the print inspection apparatus 13 that has acquired the print determination reference 85c executes print inspection processing for each component position using the print determination reference 85c.
  • the mounting inspection apparatus 15 which acquired the mounting determination reference
  • the management computer 80 of the second embodiment described above the measurement information (solder measurement value) of the print inspection process, the measurement information (component measurement value) of the mounting inspection process, and the result information (inspection result) of the reflow inspection process ), And a defect rate matrix 85b and statistical correspondence information 85e (corresponding relationship information) in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other. Generate.
  • the management computer 80 sets a printing determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information. Therefore, the management computer 80 can set more appropriate determination criteria by using the measurement information of the processes related to each other. As a result, the operator can confirm the substrate S by stopping the line. It can be suppressed more. Therefore, the mounting system 10 can further increase the processing efficiency.
  • the management computer 80 uses the statistical correspondence information 85e to set the mounting determination reference 85d using the defect rate matrix 85b when the solder printing state is stable, and the placement state of the component P is stabilized. Since the print determination standard 85c is set using the defect rate matrix 85b when the printer is in the middle, the more appropriate print determination standard 85c and mounting determination standard 85d can be set.
  • the CPU 82 generates the defect rate matrix 85b corresponding to a specific component position.
  • the present invention is not particularly limited thereto.
  • the same component P is spread over a plurality of locations at different component positions.
  • a defect rate matrix may be generated for each component type. If the parts P have the same size and weight, the defect rate matrix may have the same tendency. In this way, the defect rate matrix 85b can be simplified.
  • the CPU 82 sets the mounting determination standard to the upper limit value of the predetermined range of the component measurement values using the defect rate matrix 85b, but is not particularly limited thereto.
  • the CPU 82 may set an intermediate value (75 ⁇ m when 50 ⁇ n ⁇ 100 ⁇ m in FIG. 14) as a mounting determination reference using the defect rate matrix 85b as a mounting determination criterion.
  • the lower limit value of the predetermined range (50 ⁇ m when 50 ⁇ n ⁇ 100 ⁇ m in FIG. 14) may be set as the mounting criterion.
  • the determination criteria (print determination criteria 85c and mounting determination criteria 85d) of the print inspection device 13 and the mounting inspection device 15 are set, and the execution conditions (print condition information 21a) of the printing device 12 and the mounting processing device 14 are set.
  • the management computer 80 may set one or more determination criteria (print determination criteria 85c and mounting determination criteria 85d) of the print inspection device 13 and the mounting inspection device 15 based on the defect rate matrix 85b.
  • the mounting system may set one or more execution conditions (printing condition information 21a and mounting condition information 41a) of the printing device 12 and the mounting processing device 14 based on the defect rate matrix 85b. Even in this case, the mounting system can further increase the processing efficiency by using the correspondence information.
  • the defect rate matrix 85b is correspondence information in which the solder volume as the solder measurement value, the positional deviation amount as the component measurement value, and the defect rate are associated with each other, but is not particularly limited thereto.
  • the correspondence relationship information may be obtained by associating one or more types of solder measurement values, one or more types of component measurement values, and an inspection result after reflow. In this way, more detailed correspondence information can be generated.
  • the solder measurement value may include one or more of the solder height, the solder area, the solder volume (amount), and the solder position.
  • the component measurement value may include one or more of a component displacement amount with respect to the substrate, a component displacement amount with respect to the printed solder, and a component rotation angle.
  • the component measurement value may include the area of the component P that contacts the printed solder.
  • the management computer 80 transmits the print determination reference 85c, the mounting determination reference 85d, the print condition information 21a, and the mount condition information 41a via the LAN 18 to the printing device 12, the print inspection device 13, the mounting processing device 14, and the like.
  • output to the mounting inspection apparatus 15 is not particularly limited, the work instruction may be displayed on the display 88 of the management computer 80.
  • the management computer 80 waits until the inspection result of the reflow inspection process becomes a sufficiently reliable value in step S700.
  • an appropriate defect rate matrix 85b is obtained by an experiment or the like. If it is to be generated, this processing may be omitted.
  • the defect rate matrix 85b in which the measurement value of the print inspection process, the measurement value of the mounting inspection process, and the result information of the reflow inspection process are generated for each specific component position is generated.
  • a defect rate matrix in which the measurement values of the print inspection process for the entire substrate S, the measurement values of the mounting inspection process, and the result information of the reflow inspection process are associated with each other may be generated. Even in this way, it is possible to grasp the tendency of the printed state, the mounted state, etc. in the entire substrate S, and as a result, the processing efficiency of the mounting system can be further improved.
  • the management computer 80 includes the information control device of the present invention.
  • the present invention is not limited to this, and the printing device 12, the print inspection device 13, the mounting processing device 14, the mounting inspection device 15, and reflow. Any one of the device 16 and the reflow inspection device 17 may have the function of the information control device of the present invention. Or a mounting system is good also as what equips one or more of the said apparatuses with the function of the information control apparatus of this invention, and is provided.
  • the defect rate matrix 85b is updated every time the number of substrates subjected to reflow processing reaches a predetermined number in the correspondence information generation condition setting processing routine. You may change the number. For example, the CPU 82 may reduce or increase the predetermined number for the second and subsequent times with respect to the predetermined number for the first time. Further, the CPU 82 may generate the defect rate matrix 85b only once.
  • the management computer 80 outputs an execution command to the printing device 12, the print inspection device 13, the mounting processing device 14, the mounting inspection device 15, the reflow device 16, and the reflow inspection device 17 in the main routine.
  • the present invention is not particularly limited to this, and each device may perform processing.
  • management computer 80 provided with the function of the information control apparatus of the present invention has been described.
  • the present invention can be used in the technical field of mounting processing in which components are placed on solder printed on a substrate and then the solder is reflowed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

A mounting system (10) generates correspondence relationship information in which measurement information (a solder measurement value) relating to printing inspection processing by a printing inspection device (13), measurement information (a part measurement value) relating to mounting inspection processing by a mounting inspection device (15), and result information (an inspection result) relating to reflow inspection processing by a reflow inspection device (17) are associated. The mounting system (10) then sets a printing determination criterion for the printing inspection processing and a mounting determination criterion for the mounting inspection processing on the basis of the generated correspondence relationship information, and executes the printing inspection processing and the mounting inspection processing using the set printing determination criterion and mounting determination criterion. For example, the state of soldering, the state of disposition of a part, and the like are mutually related to a final state after reflow in some cases. The mounting system sets the determination criterions on the basis of the mutually related corresponding relationship information.

Description

情報制御装置、実装システム及び情報制御方法Information control apparatus, mounting system, and information control method
 本発明は、情報制御装置、実装システム及び情報制御方法に関する。 The present invention relates to an information control device, a mounting system, and an information control method.
 従来、実装処理の検査装置としては、最終のはんだ付け工程の検査結果が良の基板、不良の基板について、それぞれ部品の位置ずれ検査で計測された位置ずれ量のヒストグラムを作成し、「良」判定の範囲を定める判定基準値を初期設定するものが提案されている(例えば、特許文献1参照)。この装置では、判定基準値を設定したのち、この判定基準値を変更しながら、最終検査結果が「不良」の基板についての「良」判定の範囲に含まれる計測値及び最終検査結果が「良」の基板についての「不良」判定の範囲に含まれる計測値の総和を求める処理を繰り返す。そして、この総和の基板の総数に対する比率がユーザの指定した見逃し率又は見過ぎ率になったときを最適な値として選択する。このため、中間工程における検査結果と最終工程における検査結果との間に不整合が生じる頻度が許容値付近までに納められるような判定基準を容易に設定することができる、としている。 Conventionally, as an inspection device for mounting processing, a histogram of misregistration amounts measured by component misregistration inspection is created for each board with good and bad test results in the final soldering process. There has been proposed a method for initially setting a determination reference value for determining a determination range (see, for example, Patent Document 1). In this device, after setting the judgment reference value, the measurement value and final inspection result included in the “good” judgment range for the board having the final inspection result “defective” are changed to “good” while changing the judgment reference value. The process of obtaining the total sum of the measurement values included in the “defect” determination range for the substrate “” is repeated. Then, the optimal value is selected when the ratio of the total to the total number of substrates reaches the overlook rate or overlook rate specified by the user. For this reason, it is possible to easily set a determination criterion that allows the frequency of inconsistency between the inspection result in the intermediate process and the inspection result in the final process to be within the allowable value.
特開2008-10666号公報JP 2008-10666 A
 しかしながら、特許文献1に記載の装置では、中間工程のうち1つの工程に対して考慮するだけであり、検査の判定基準を容易に設定することができるとしても、まだ十分でなかった。そして、検査結果に不整合が生じると、作業者の目視による確認などを行う必要が生じるなど、実装システムの工程全体での処理効率が低下してしまう問題があった。 However, in the apparatus described in Patent Document 1, only one of the intermediate processes is considered, and even if the inspection criteria can be easily set, it has not been sufficient. When the inspection results are inconsistent, there is a problem that the processing efficiency of the entire process of the mounting system is lowered, such as the necessity for the operator to check visually.
 本発明は、このような課題に鑑みなされたものであり、実装システムの処理効率をより高めることができる情報制御装置及び情報制御方法を提供することを主目的とする。 The present invention has been made in view of such problems, and a main object of the present invention is to provide an information control apparatus and an information control method that can further improve the processing efficiency of the mounting system.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 即ち、本発明の情報制御装置は、
 基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御装置であって、
 前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得する情報取得手段と、
 前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する情報生成手段と、
 前記生成された対応関係情報に基づいて前記印刷検査処理の印刷判定基準及び前記実装検査処理の実装判定基準のうち少なくとも一方を設定する基準設定手段と、
 を備えたものである。
That is, the information control apparatus of the present invention
A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control device of a mounting system comprising a reflow inspection device for executing processing,
Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated;
Reference setting means for setting at least one of a print determination standard of the print inspection process and a mounting determination standard of the mounting inspection process based on the generated correspondence information;
It is equipped with.
 この情報制御装置は、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを取得し、取得した印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する。次に、情報制御装置は、生成された対応関係情報に基づいて印刷検査処理の印刷判定基準及び実装検査処理の実装判定基準のうち少なくとも一方を設定する。そして、実装システムは、この設定した印刷判定基準や実装判定基準を用いて印刷検査処理や実装検査処理を実行する。実装システムの実行する処理は、例えば、基板にはんだを印刷する印刷処理や、はんだを印刷した基板に部品を配置する実装処理や、はんだをリフローするリフロー処理などがある。例えば、はんだの形成位置がずれて部品の配置位置がずれてしまったとしても、リフロー処理時に加熱されたはんだが移動して部品が正常位置になることがある。このように、はんだの状態や部品の配置状態などは、リフロー後の最終的な状態に相互に関係することがある。この情報制御装置は、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成し、これに基づいて判定基準を設定する。このため、相互に関係する各処理の測定情報を用いて、より適正な判定基準を設定することができ、ひいては、ラインを停止して行う作業者の確認作業などをより抑制することができる。したがって、実装システムの処理効率をより高めることができる。このとき、本発明の情報制御装置は、前記印刷判定基準を設定したときには該設定した印刷判定基準を前記印刷検査装置へ出力し、前記実装判定基準を設定したときには該設定した実装判定基準を前記実装検査装置へ出力する情報出力手段、を備えるものとしてもよい。 The information control apparatus acquires measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and acquires the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, Then, correspondence information that associates the result information of the reflow inspection process is generated. Next, the information control apparatus sets at least one of a print determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information. Then, the mounting system executes a print inspection process and a mounting inspection process using the set printing determination standard and mounting determination standard. The processing executed by the mounting system includes, for example, a printing process for printing solder on a board, a mounting process for placing components on a board on which solder is printed, and a reflow process for reflowing solder. For example, even if the solder formation position is shifted and the component placement position is shifted, the heated solder may be moved during the reflow process and the component may be in a normal position. As described above, the state of solder, the arrangement state of components, and the like may be related to the final state after reflow. The information control device generates correspondence information in which measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process are associated with each other, and sets a determination criterion based thereon. For this reason, it is possible to set a more appropriate determination criterion by using measurement information of each process related to each other, and it is possible to further suppress an operator's confirmation work performed by stopping the line. Therefore, the processing efficiency of the mounting system can be further increased. At this time, the information control apparatus of the present invention outputs the set print determination standard to the print inspection apparatus when the print determination standard is set, and outputs the set mounting determination standard when the mounting determination standard is set. Information output means for outputting to the mounting inspection apparatus may be provided.
 本発明の情報制御装置において、前記情報生成手段は、前記印刷検査処理の測定情報として1種以上のはんだ測定値と、前記実装検査処理の測定情報として1種以上の部品測定値と、前記リフロー検査処理の結果情報として前記部品のリフロー後の良否判定した良否結果とを対応付けた前記対応関係情報を生成し、前記はんだ測定値は、はんだの高さ、はんだの面積、はんだの体積(量)及びはんだの位置のうち1種以上を含み、前記部品測定値は、前記基板に対する前記部品の位置ずれ量、前記印刷されたはんだに対する前記部品の位置ずれ量及び前記部品の回転角度のうち1種以上を含むものとしてもよい。こうすれば、はんだ測定値や部品測定値、良否結果などを用いて、実装システムの処理効率をより高めることができる。このとき、はんだ測定値の1種と部品測定値の1種と良否結果とを対応づけるものとしてもよい。こうすれば、比較的簡便な処理で対応関係情報を生成することができる。あるいは、複数種のはんだ測定値と複数種の部品測定値と良否結果とを対応づけるものとしてもよい。こうすれば、より細かな対応関係情報を生成することができる。 In the information control apparatus of the present invention, the information generation means includes one or more types of solder measurement values as the measurement information of the print inspection process, one or more types of component measurement values as the measurement information of the mounting inspection process, and the reflow. The correspondence information is generated by associating the pass / fail result determined after the reflow of the component as the result information of the inspection process, and the solder measurement value includes the solder height, the solder area, and the solder volume (quantity). ) And the position of the solder, and the component measurement value is one of the component displacement amount with respect to the substrate, the component displacement amount with respect to the printed solder, and the rotation angle of the component. It is good also as what contains a seed or more. In this way, it is possible to further improve the processing efficiency of the mounting system using the solder measurement value, the component measurement value, the pass / fail result, and the like. At this time, one type of solder measurement value, one type of component measurement value, and a pass / fail result may be associated with each other. In this way, correspondence information can be generated with a relatively simple process. Alternatively, a plurality of types of solder measurement values, a plurality of types of component measurement values, and good / bad results may be associated with each other. In this way, more detailed correspondence information can be generated.
 本発明の情報制御装置において、前記情報生成手段は、前記はんだ測定値の所定範囲と、前記部品測定値の所定範囲と、該はんだ測定値の所定範囲及び部品測定値の所定範囲に含まれる1以上の部品の前記良否結果の統計値と、を複数の前記所定範囲に対して対応付けた前記対応関係情報を生成するものとしてもよい。こうすれば、測定値の所定範囲や統計値を用いて実装システムの処理効率をより高めることができる。ここで、統計値は、例えば、不良率としてもよい。 In the information control apparatus of the present invention, the information generating means is included in a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a predetermined range of the solder measurement value, and a predetermined range of the component measurement value. The correspondence relationship information may be generated by associating the statistical values of the pass / fail results of the above parts with a plurality of the predetermined ranges. In this way, it is possible to further improve the processing efficiency of the mounting system by using the predetermined range of measurement values and statistical values. Here, the statistical value may be, for example, a defect rate.
 本発明の情報制御装置において、前記基準設定手段は、前記はんだ測定値の範囲と前記部品測定値の範囲とに応じて前記良否結果の統計値が所定の良否値を満たす前記印刷判定基準及び/又は前記実装判定基準を設定するものとしてもよい。ここで、「所定の良否値」は、例えば、使用者が許容可能な最大の不良率に定めるものとしてもよい。このとき、前記情報生成手段は、前記良否結果の統計値が所定の良否値を満たす前記はんだ測定値の範囲の上限値を前記印刷判定基準に設定し、前記良否結果の統計値が所定の良否値を満たす前記部品測定値の範囲の上限値を前記実装判定基準に設定するものとしてもよい。 In the information control apparatus according to the aspect of the invention, the reference setting unit may include the print determination standard and / or the statistical value of the pass / fail result satisfying a predetermined pass / fail value according to the range of the solder measurement value and the range of the component measurement value. Alternatively, the mounting determination criterion may be set. Here, the “predetermined pass / fail value” may be set to, for example, the maximum defect rate allowable by the user. At this time, the information generation unit sets the upper limit value of the range of the solder measurement value that satisfies the predetermined pass / fail statistical value as the print determination criterion, and the pass / fail statistical value is the predetermined pass / fail. The upper limit value of the component measurement value range that satisfies the value may be set as the mounting determination criterion.
 本発明の情報制御装置において、前記情報生成手段は、前記印刷検査処理の測定情報として前記部品が配置される特定位置の前記はんだの状態であるはんだ測定値と、前記実装検査処理の測定情報として前記特定位置の前記部品の状態を示す部品測定値と、前記リフロー検査処理の結果情報として前記特定位置の部品のリフロー後の良否判定した良否結果と、を複数の前記特定位置に対して対応付けた前記対応関係情報を生成するものとしてもよい。こうすれば、特定位置ごとに判定基準を設定することができる。このとき、前記基準設定手段は、前記対応関係情報に基づいて、前記特定位置ごとの前記印刷判定基準及び/又は前記実装判定基準を設定するものとしてもよい。 In the information control apparatus according to the aspect of the invention, the information generation unit may include a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and measurement information of the mounting inspection process. A part measurement value indicating the state of the part at the specific position is associated with a plurality of the specific positions, as the result information of the reflow inspection process, the pass / fail result after the reflow of the part at the specific position is determined. The correspondence relationship information may be generated. In this way, it is possible to set a determination criterion for each specific position. At this time, the reference setting unit may set the print determination standard and / or the mounting determination standard for each specific position based on the correspondence information.
 本発明の情報制御装置において、前記情報生成手段は、所定数の基板のリフロー処理を実行したあと前記対応関係情報を生成するものとしてもよい。こうすれば、信頼性をより高めた判定基準を設定することができるため、より確実に実装システムの処理効率を高めることができる。ここで、「所定数」は、例えば、リフロー検査処理の結果情報が十分信頼性のある値になる数に経験的に定めるものとしてもよい。また、本発明の情報制御装置において、前記基準設定手段は、所定数の基板のリフロー処理を実行したあと前記印刷判定基準及び/又は前記実装判定基準を設定するものとしてもよい。 In the information control apparatus of the present invention, the information generation means may generate the correspondence information after executing a reflow process for a predetermined number of substrates. By doing this, it is possible to set a determination criterion with higher reliability, and thus it is possible to increase the processing efficiency of the mounting system more reliably. Here, the “predetermined number” may be determined empirically, for example, such that the result information of the reflow inspection process is a sufficiently reliable value. In the information control apparatus of the present invention, the reference setting unit may set the print determination criterion and / or the mounting determination criterion after executing a reflow process for a predetermined number of substrates.
 本発明の情報制御装置は、前記生成された対応関係情報に基づいて前記印刷処理の印刷実行条件及び前記実装処理の実装実行条件のうち少なくとも一方を設定する条件設定手段、を備えたものとしてもよい。この情報制御装置では、生成された対応関係情報に基づいて印刷処理の印刷実行条件及び実装処理の実装実行条件のうち少なくとも一方を設定する。例えば、実装システムでは、基板にはんだを印刷する印刷処理や、はんだを印刷した基板に部品を配置する実装処理や、はんだをリフローするリフロー処理などがある。例えば、はんだの形成位置がずれて部品の配置位置がずれてしまったとしても、はんだのリフロー時に加熱されたはんだが移動して部品が正常位置になることがある。このように、はんだの状態や部品の配置状態などは、リフロー後の最終的な状態に相互に関係することがある。この情報制御装置は、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成し、これに基づいて印刷実行条件や実装実行条件を設定する。このため、より適正な実行条件を設定することができ、ひいては、ラインを停止して行う作業者の確認作業などをより抑制することができる。したがって、実装システムの処理効率をより高めることができる。このとき、本発明の情報制御装置は、前記印刷実行条件を設定したときには該設定した印刷実行条件を前記印刷装置へ出力し、前記実装実行条件を設定したときには該設定した実装実行条件を前記実装装置へ出力する前記情報出力手段、を備えるものとしてもよい。 The information control apparatus according to the present invention may further include a condition setting unit that sets at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence relationship information. Good. In this information control apparatus, at least one of the print execution condition of the print process and the mount execution condition of the mount process is set based on the generated correspondence relationship information. For example, in a mounting system, there are a printing process for printing solder on a board, a mounting process for placing components on a board printed with solder, a reflow process for reflowing solder, and the like. For example, even if the solder formation position is shifted and the component placement position is shifted, the heated solder may be moved during solder reflow to bring the component to a normal position. As described above, the state of solder, the arrangement state of components, and the like may be related to the final state after reflow. The information control device generates correspondence information that associates the measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process, and based on this, the print execution condition and the mounting execution information are generated. Set conditions. For this reason, more appropriate execution conditions can be set, and as a result, the operator's confirmation work performed by stopping the line can be further suppressed. Therefore, the processing efficiency of the mounting system can be further increased. At this time, the information control apparatus of the present invention outputs the set print execution condition to the printing apparatus when the print execution condition is set, and outputs the set mount execution condition when the mount execution condition is set. The information output means for outputting to the apparatus may be provided.
 条件設定手段を備えた本発明の情報制御装置において、前記条件設定手段は、前記印刷実行条件として印刷速度及び印刷圧力のうち少なくとも一方を設定し、前記実装実行条件として、前記部品の保持力及び前記部品の移動速度のうち少なくとも一方を設定するものとしてもよい。 In the information control apparatus of the present invention including a condition setting unit, the condition setting unit sets at least one of a printing speed and a printing pressure as the printing execution condition, and holds the holding force of the component as the mounting execution condition. At least one of the moving speeds of the parts may be set.
 条件設定手段を備えた本発明の情報制御装置において、前記情報生成手段は、前記印刷検査処理の測定情報として前記部品が配置される特定位置の前記はんだの状態であるはんだ測定値と、前記実装検査処理の測定情報として前記特定位置の前記部品の状態を示す部品測定値と、前記リフロー検査処理の結果情報として前記特定位置の部品のリフロー後の良否判定した良否結果と、を複数の前記特定位置に対して対応付けた前記対応関係情報を生成し、前記条件設定手段は、前記対応関係情報に基づいて、前記特定位置ごとの前記印刷実行条件及び/又は前記実装実行条件を設定するものとしてもよい。 In the information control apparatus of the present invention including a condition setting unit, the information generation unit includes a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and the mounting A plurality of the specific values including a component measurement value indicating the state of the component at the specific position as measurement information of the inspection process, and a pass / fail result determined as a result of reflow of the component at the specific position as the result information of the reflow inspection process The correspondence relationship information associated with a position is generated, and the condition setting unit sets the print execution condition and / or the mounting execution condition for each specific position based on the correspondence relationship information. Also good.
 本発明の実装システムは、基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、上述したいずれかに記載の情報制御装置と、を備え、前記印刷検査装置は、前記設定された前記印刷判定基準を用いて前記印刷検査処理を実行し、前記実装検査装置は、前記設定された前記実装判定基準を用いて前記実装検査処理を実行するものである。 The mounting system of the present invention includes a printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that performs a printing inspection process for inspecting the state of the printed solder, and a component on the board. A mounting processing device for executing mounting processing to be mounted, a mounting inspection device for executing mounting inspection processing for inspecting a mounting state of the component subjected to mounting processing, a reflow device for executing reflow processing of the substrate, and the post-reflow A reflow inspection apparatus that executes a reflow inspection process for inspecting a substrate of the substrate, and the information control apparatus according to any one of the above, wherein the print inspection apparatus uses the set print determination criterion to perform the printing. An inspection process is executed, and the mounting inspection apparatus executes the mounting inspection process using the set mounting criterion.
 この実装システムは、上述したいずれかの情報制御装置を備えている。このため、より適正な判定基準を設定することができ、ひいては、ラインを停止して行う作業者の確認作業などをより抑制することができる。したがって、実装システムの処理効率をより高めることができる。また、採用した情報制御装置に応じて、上述した情報制御装置の効果を得ることができる。 This mounting system includes any of the information control devices described above. For this reason, it is possible to set a more appropriate determination criterion, and it is possible to further suppress the operator's confirmation work performed by stopping the line. Therefore, the processing efficiency of the mounting system can be further increased. Moreover, the effect of the information control apparatus mentioned above can be acquired according to the employ | adopted information control apparatus.
 本発明の情報制御方法は、
 基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御方法であって、
(a)前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得するステップと、
(b)前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成するステップと、
(c)前記生成された対応関係情報に基づいて前記印刷検査処理の印刷判定基準及び前記実装検査処理の実装判定基準のうち少なくとも一方を設定するステップと、
   を含むものである。
The information control method of the present invention includes:
A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control method for a mounting system comprising a reflow inspection device for executing processing,
(A) obtaining measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
(B) generating correspondence information associating the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process;
(C) setting at least one of a print determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information;
Is included.
 この情報制御方法は、上述した情報制御装置と同様に、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成し、これに基づいて判定基準を設定する。このため、相互に関係する各処理の測定情報を用いて、より適正な判定基準を設定することができ、ひいては、ラインを停止して行う作業者の確認作業などをより抑制することができる。したがって、実装システムの処理効率をより高めることができる。なお、この情報制御方法において、上述した情報制御装置の種々の態様を採用してもよいし、また、上述した情報制御装置の各機能を実現するようなステップを追加してもよい。このとき、本発明の情報制御方法は、(d)前記印刷判定基準を設定したときには該設定した印刷判定基準を前記印刷検査装置へ出力し、前記実装判定基準を設定したときには該設定した実装判定基準を前記実装検査装置へ出力するステップ、を含むものとしてもよい。 Similar to the information control apparatus described above, this information control method generates correspondence information that associates measurement information of print inspection processing, measurement information of mounting inspection processing, and result information of reflow inspection processing. The criterion is set based on For this reason, it is possible to set a more appropriate determination criterion by using measurement information of each process related to each other, and it is possible to further suppress an operator's confirmation work performed by stopping the line. Therefore, the processing efficiency of the mounting system can be further increased. In this information control method, various aspects of the above-described information control apparatus may be adopted, and steps for realizing each function of the above-described information control apparatus may be added. At this time, the information control method of the present invention (d) outputs the set print determination standard to the print inspection apparatus when the print determination standard is set, and sets the mount determination when the mount determination standard is set. Outputting a reference to the mounting inspection apparatus.
 あるいは、本発明の情報制御装置は、
 基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御装置であって、
   前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得する情報取得手段と、
 前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する情報生成手段と、
 前記生成された対応関係情報に基づいて前記印刷処理の印刷実行条件及び前記実装処理の実装実行条件のうち少なくとも一方を設定する条件設定手段と、
 を備えたものとしてもよい。
Alternatively, the information control apparatus of the present invention is
A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control device of a mounting system comprising a reflow inspection device for executing processing,
Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated;
Condition setting means for setting at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence information;
It is good also as a thing provided.
 この情報制御装置は、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを取得し、取得した印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する。次に、生成された対応関係情報に基づいて印刷処理の印刷実行条件及び実装処理の実装実行条件のうち少なくとも一方を設定する。そして、実装システムは、この設定した印刷実行条件や実装実行条件を用いて印刷処理や実装処理を実行する。実装システムの実行する処理は、例えば、基板にはんだを印刷する印刷処理や、はんだを印刷した基板に部品を配置する実装処理や、はんだをリフローするリフロー処理などがある。例えば、はんだの形成位置がずれて部品の配置位置がずれてしまったとしても、はんだのリフロー時に加熱されたはんだが移動して部品が正常位置になることがある。このように、はんだの状態や部品の配置状態などは、リフロー後の最終的な状態に相互に関係することがある。この情報制御装置は、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成し、これに基づいて実行条件を設定する。このため、より適正な実行条件を設定することができる。したがって、実装システムの処理効率をより高めることができる。なお、この情報制御装置において、上述した情報制御装置の種々の態様を採用してもよいし、また、上述した情報制御装置の各機能を実現するようなステップを追加してもよい。このとき、本発明の情報制御装置は、前記印刷実行条件を設定したときには該設定した印刷実行条件を前記印刷装置へ出力し、前記実装実行条件を設定したときには該設定した実装実行条件を前記実装装置へ出力する前記情報出力手段、を備えるものとしてもよい。 The information control apparatus acquires measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and acquires the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, Then, correspondence information that associates the result information of the reflow inspection process is generated. Next, at least one of the print execution condition for the printing process and the mounting execution condition for the mounting process is set based on the generated correspondence information. Then, the mounting system executes print processing and mounting processing using the set print execution conditions and mounting execution conditions. The processing executed by the mounting system includes, for example, a printing process for printing solder on a board, a mounting process for placing components on a board on which solder is printed, and a reflow process for reflowing solder. For example, even if the solder formation position is shifted and the component placement position is shifted, the heated solder may be moved during solder reflow to bring the component to a normal position. As described above, the state of solder, the arrangement state of components, and the like may be related to the final state after reflow. The information control device generates correspondence information that associates measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process, and sets an execution condition based on the correlation information. For this reason, more appropriate execution conditions can be set. Therefore, the processing efficiency of the mounting system can be further increased. In this information control apparatus, various aspects of the above-described information control apparatus may be adopted, and steps for realizing each function of the above-described information control apparatus may be added. At this time, the information control apparatus of the present invention outputs the set print execution condition to the printing apparatus when the print execution condition is set, and outputs the set mount execution condition when the mount execution condition is set. The information output means for outputting to the apparatus may be provided.
実装システム10の概略説明図。1 is a schematic explanatory diagram of a mounting system 10. FIG. 印刷装置12の概略説明図。1 is a schematic explanatory diagram of a printing apparatus 12. FIG. 実装処理装置14の概略説明図。FIG. 2 is a schematic explanatory diagram of a mounting processing device 14. 実装システム10の各装置の構成を表すブロック図。FIG. 2 is a block diagram showing the configuration of each device of the mounting system 10 実装システム10の機能ブロックの説明図。Explanatory drawing of the functional block of the mounting system 10. FIG. メインルーチンの一例を表すフローチャート。The flowchart showing an example of a main routine. 印刷処理ルーチンの一例を表すフローチャート。6 is a flowchart illustrating an example of a print processing routine. 印刷検査処理ルーチンの一例を表すフローチャート。6 is a flowchart illustrating an example of a print inspection processing routine. 実装処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a mounting process routine. 実装検査処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a mounting inspection process routine. リフロー検査処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a reflow inspection process routine. 対応情報生成条件設定処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a corresponding information generation condition setting process routine. 結果情報85aの一例の説明図。Explanatory drawing of an example of the result information 85a. 不良率マトリックス85bの一例の説明図。Explanatory drawing of an example of the defect rate matrix 85b. 実装判定基準85dの一例の説明図。Explanatory drawing of an example of the mounting determination reference | standard 85d. 統計対応情報85eの一例の説明図。An explanatory view of an example of statistics correspondence information 85e.
(第1実施形態)
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は、実装システム10の概略説明図である。図2は、印刷装置12の概略説明図である。図3は、実装処理装置14の概略説明図である。図4は、実装システム10の各装置の構成を表すブロック図である。図5は、実装システム10の機能ブロックの説明図である。実装システム10は、基板S上にはんだを印刷する印刷処理を実行する印刷装置12と、印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置13とを備えている。また、実装システム10は、部品Pを基板S上に実装する実装処理を実行する実装処理装置14と、実装処理された部品Pの実装状態を検査する実装検査処理を実行する実装検査装置15とを備えている。また、実装システム10は、基板Sのリフロー処理を実行するリフロー装置16と、リフロー後の基板Sを検査するリフロー検査処理を実行するリフロー検査装置17と、情報を管理する管理コンピュータ80とを備えている。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は、図1に示した通りとする。この第1実施形態では、不良率マトリックス85bを用いて実装検査装置15の検査に用いる実装判定基準を設定する態様を主として説明する。
(First embodiment)
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic explanatory diagram of the mounting system 10. FIG. 2 is a schematic explanatory diagram of the printing apparatus 12. FIG. 3 is a schematic explanatory diagram of the mounting processing device 14. FIG. 4 is a block diagram illustrating the configuration of each device of the mounting system 10. FIG. 5 is an explanatory diagram of functional blocks of the mounting system 10. The mounting system 10 includes a printing apparatus 12 that executes a printing process for printing solder on the substrate S, and a printing inspection apparatus 13 that executes a printing inspection process for inspecting the state of the printed solder. The mounting system 10 includes a mounting processing device 14 that executes a mounting process for mounting the component P on the substrate S, and a mounting inspection device 15 that performs a mounting inspection process for inspecting the mounting state of the component P that has been mounted. It has. The mounting system 10 also includes a reflow device 16 that executes a reflow process for the substrate S, a reflow inspection device 17 that executes a reflow inspection process that inspects the substrate S after reflow, and a management computer 80 that manages information. ing. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG. In the first embodiment, an aspect in which a mounting determination standard used for the inspection of the mounting inspection apparatus 15 is set using the defect rate matrix 85b will be mainly described.
 印刷装置12は、図2に示すように、スキージ29,29を用いてスクリーンマスクMに形成されたパターン孔にはんだを押し込むことによりそのパターン孔を介して下方の基板Sにはんだを塗布(印刷)する装置である。印刷装置12は、Y軸方向に往復動することにより、往復印刷が可能なダブルスキージを備えている。この印刷装置12は、図4に示すように、装置全体の制御を司るコントローラ20と、各種情報を記憶するHDD21と、例えば管理コンピュータ80などのLAN18に接続された外部機器と双方向通信を行う通信部22と、基板SやスクリーンマスクMの位置を撮像して確認する撮像部23とを備えている。また、印刷装置12は、基板Sの移動及び固定を行う基板処理ユニット24と、枠体にはめ込まれた状態のスクリーンマスクMを位置決めして水平な姿勢で支持固定するマスクユニット25と、スキージ29をスクリーンマスクM上で移動することによりはんだを印刷する印刷処理ユニット26とを備えている。コントローラ20は、CPU20aを中心とするマイクロプロセッサとして構成されており、各種処理プログラムなどを記憶したROM20bと、一時的にデータを記憶するRAM20cとを備えている。HDD21は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、スキージ29の押圧力やスキージ29の移動速度などの印刷実行条件を含む印刷条件情報21aなどを記憶する。この印刷条件情報21aは、管理コンピュータ80から取得されてHDD21に記憶される。印刷処理ユニット26は、図2に示すように、印刷ヘッド27と、印刷ヘッド27をY方向に移動可能なヘッド移動部28と、はんだを移動させ印刷処理を実行するスキージ29,29とを備えている。印刷ヘッド27は、Z方向に伸縮するピストンロッドを備えており、このピストンロッドに固定されたスキージ29をZ軸方向(垂直方向)に移動させる。ヘッド移動部28は、案内部材であるガイドレールにスライダが案内されて、移動用モータの駆動によりY軸方向に印刷ヘッド27を移動させる。 As shown in FIG. 2, the printing apparatus 12 applies solder to the lower substrate S through the pattern hole by pressing the solder into the pattern hole formed in the screen mask M using the squeegees 29 and 29 (printing). ). The printing apparatus 12 includes a double squeegee that can reciprocate by reciprocating in the Y-axis direction. As shown in FIG. 4, the printing apparatus 12 performs bidirectional communication with a controller 20 that controls the entire apparatus, an HDD 21 that stores various types of information, and an external device connected to the LAN 18 such as a management computer 80. A communication unit 22 and an imaging unit 23 that images and confirms the position of the substrate S and the screen mask M are provided. Further, the printing apparatus 12 includes a substrate processing unit 24 that moves and fixes the substrate S, a mask unit 25 that positions and fixes the screen mask M that is fitted in the frame, and a squeegee 29. Is moved on the screen mask M, and a printing processing unit 26 for printing the solder is provided. The controller 20 is configured as a microprocessor centered on a CPU 20a, and includes a ROM 20b that stores various processing programs and a RAM 20c that temporarily stores data. The HDD 21 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores printing condition information 21 a including printing execution conditions such as a pressing force of the squeegee 29 and a moving speed of the squeegee 29. The printing condition information 21a is acquired from the management computer 80 and stored in the HDD 21. As shown in FIG. 2, the print processing unit 26 includes a print head 27, a head moving unit 28 that can move the print head 27 in the Y direction, and squeegees 29 and 29 that move the solder and execute print processing. ing. The print head 27 includes a piston rod that expands and contracts in the Z direction, and moves a squeegee 29 fixed to the piston rod in the Z-axis direction (vertical direction). The head moving unit 28 moves the print head 27 in the Y-axis direction by driving a moving motor, with the slider guided by a guide rail that is a guide member.
 印刷検査装置13は、印刷済みの基板Sに形成されたはんだの印刷状態を、撮像した画像に基づいて検査する装置であり、図4に示すように、装置全体の制御を司るコントローラ30と、各種情報を記憶するHDD31と、LAN18に接続された外部機器と双方向通信を行う通信部32とを備えている。また、印刷検査装置13は、基板Sを撮像してはんだの印刷状態を測定する検査処理ユニット34を備えている。コントローラ30は、CPU30aを中心とするマイクロプロセッサとして構成されており、各種処理プログラムなどを記憶したROM30bと、一時的にデータを記憶するRAM30cとを備えている。HDD31は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、印刷処理の検査条件を含む印刷検査条件情報31aや、測定結果であるはんだ測定値を含む印刷測定値情報31bなどを記憶する。なお、はんだ測定値としては、例えば、はんだの高さ、はんだの面積、はんだの体積(量)及びはんだの位置などが挙げられ、このうち1種以上を含む。この印刷検査条件情報31aは、管理コンピュータ80から取得されてHDD31に記憶される。検査処理ユニット34は、検査ヘッドに配設され、基板Sに印刷されたはんだを撮像する撮像部35と、検査ヘッドをXY平面(基板Sの板面と平行な面)に沿って移動させる移動部36とを備えている。検査ヘッドは、基板Sの表面に格子が形成されるようスリット光を照射する光源を備え、撮像部35は、基板Sの表面に形成された光の格子を2方向から斜めに撮像する。照射されたスリット光によってできる格子を構成する光の線は、はんだが印刷されていない箇所に対して、はんだが印刷されている箇所ではシフトする。このシフトの量は、はんだの厚み(高さ)によって異なる。印刷検査装置13は、この原理を利用し、撮像部35によって撮影された画像データを処理することにより、各部品位置に対応して印刷されたはんだの高さ、面積、体積及び位置を測定する。印刷検査装置13は、各部品位置に対応して印刷されるはんだの正規の位置と実際のはんだの位置とのずれが許容範囲に収まっているか否かを判定する。 The print inspection apparatus 13 is an apparatus that inspects the printed state of the solder formed on the printed substrate S based on the captured image, and as shown in FIG. 4, a controller 30 that controls the entire apparatus, An HDD 31 that stores various types of information and a communication unit 32 that performs bidirectional communication with an external device connected to the LAN 18 are provided. The print inspection apparatus 13 includes an inspection processing unit 34 that images the board S and measures the printed state of the solder. The controller 30 is configured as a microprocessor centered on a CPU 30a, and includes a ROM 30b that stores various processing programs and a RAM 30c that temporarily stores data. The HDD 31 is a storage unit that has a large capacity and stores various data in a rewritable manner, and print inspection condition information 31a including inspection conditions for print processing and print measurement value information 31b including solder measurement values as measurement results. Memorize etc. In addition, as a solder measured value, the height of solder, the area of solder, the volume (amount) of solder, the position of solder, etc. are mentioned, for example, Among these, 1 or more types are included. The print inspection condition information 31 a is acquired from the management computer 80 and stored in the HDD 31. The inspection processing unit 34 is disposed in the inspection head, and moves to move the inspection head along the XY plane (a surface parallel to the plate surface of the substrate S), which images the solder printed on the substrate S. Part 36. The inspection head includes a light source that irradiates slit light so that a grating is formed on the surface of the substrate S, and the imaging unit 35 images the grating of light formed on the surface of the substrate S obliquely from two directions. The line of light that constitutes the grating formed by the irradiated slit light shifts at the place where the solder is printed, with respect to the place where the solder is not printed. The amount of this shift varies depending on the thickness (height) of the solder. The print inspection apparatus 13 uses this principle to measure the height, area, volume, and position of the printed solder corresponding to each component position by processing the image data captured by the imaging unit 35. . The print inspection apparatus 13 determines whether or not the deviation between the normal position of the solder printed corresponding to each component position and the actual solder position is within an allowable range.
 実装処理装置14は、図3に示すように、供給ユニット45により供給された部品Pを基板S上の所定位置に配置(実装)する装置である。なお、実装処理とは、部品を基板上に配置、装着、挿入、接合、接着する処理などを含む。この実装処理装置14は、図4に示すように、装置全体の制御を司るコントローラ40と、各種情報を記憶するHDD41と、LAN18に接続された外部機器と双方向通信を行う通信部42と、吸着ノズル49に吸着された部品Pを撮像して確認する撮像部43とを備えている。また、実装処理装置14は、基板Sの移動及び固定を行う基板処理ユニット44と、部品Pを収容したトレイやリールを備える供給ユニット45と、部品Pを吸着し基板S上へ移動させる実装処理ユニット46とを備えている。コントローラ40は、CPU40aを中心とするマイクロプロセッサとして構成されており、各種処理プログラムなどを記憶したROM40bと、一時的にデータを記憶するRAM40cとを備えている。HDD41は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、実装ヘッド47の移動速度や吸着ノズル49の吸着力などの実装実行条件を含む実装条件情報41aなどを記憶する。この実装条件情報41aは、管理コンピュータ80から取得されてHDD41に記憶される。実装処理ユニット46は、図3に示すように、実装ヘッド47と、実装ヘッド47をXY方向に移動可能なヘッド移動部48と、実装ヘッド47に装着され部品Pを吸着する吸着ノズル49とを備えている。実装ヘッド47は、Z軸に沿って延びるボールネジをZ軸モータによって調整することにより、吸着ノズル49をZ軸方向に移動させる。ヘッド移動部48は、案内部材であるガイドレールにスライダが案内されて、移動用モータの駆動によりXY方向に実装ヘッド47を移動させる。 The mounting processing apparatus 14 is an apparatus that arranges (mounts) the component P supplied by the supply unit 45 at a predetermined position on the substrate S as shown in FIG. The mounting process includes a process of placing, mounting, inserting, joining, and adhering components on a substrate. As shown in FIG. 4, the mounting processing device 14 includes a controller 40 that controls the entire device, an HDD 41 that stores various types of information, a communication unit 42 that performs bidirectional communication with an external device connected to the LAN 18, and And an image pickup unit 43 that picks up and confirms the component P sucked by the suction nozzle 49. In addition, the mounting processing apparatus 14 includes a substrate processing unit 44 that moves and fixes the substrate S, a supply unit 45 that includes a tray and a reel that accommodates the component P, and a mounting process that sucks and moves the component P onto the substrate S. Unit 46. The controller 40 is configured as a microprocessor centered on the CPU 40a, and includes a ROM 40b that stores various processing programs and a RAM 40c that temporarily stores data. The HDD 41 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores mounting condition information 41 a including mounting execution conditions such as the moving speed of the mounting head 47 and the suction force of the suction nozzle 49. . The mounting condition information 41a is acquired from the management computer 80 and stored in the HDD 41. As shown in FIG. 3, the mounting processing unit 46 includes a mounting head 47, a head moving unit 48 that can move the mounting head 47 in the XY direction, and a suction nozzle 49 that is mounted on the mounting head 47 and sucks the component P. I have. The mounting head 47 moves the suction nozzle 49 in the Z-axis direction by adjusting a ball screw extending along the Z-axis with a Z-axis motor. The head moving unit 48 moves the mounting head 47 in the XY directions by driving a moving motor, with the slider guided by a guide rail that is a guide member.
 実装検査装置15は、印刷済みの基板Sに配設された部品Pの実装状態を、撮像した画像に基づいて検査する装置であり、図4に示すように、装置全体の制御を司るコントローラ50と、各種情報を記憶するHDD51と、LAN18に接続された外部機器と双方向通信を行う通信部52とを備えている。また、実装検査装置15は、基板Sを撮像して部品Pの実装状態を測定する検査処理ユニット54を備えている。コントローラ50は、CPU50aを中心とするマイクロプロセッサとして構成されており、各種処理プログラムなどを記憶したROM50bと、一時的にデータを記憶するRAM50cとを備えている。HDD51は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、実装検査条件情報51aや、測定結果である部品測定値を含む実装測定値情報51bなどを記憶する。なお、部品測定値としては、例えば、基板Sに対する部品Pの位置ずれ量、印刷されたはんだに対する部品Pの位置ずれ量及び部品Pの回転角度などが挙げられ、この1種以上を含む。この実装検査条件情報51aは、管理コンピュータ80から取得されてHDD51に記憶される。検査処理ユニット54は、検査ヘッドに配設され、基板Sに配置された部品Pを撮像する撮像部55と、検査ヘッドをXY平面(基板Sの板面と平行な面)に沿って移動させる移動部56とを備えている。実装検査装置15は、正規の位置に部品Pが配置された基準画像と、撮像した画像との差分により、部品Pの位置ずれや回転角度を測定する。実装検査装置15は、各部品位置に対応して配置される部品Pの正規の位置と実際の部品Pの位置とのずれが許容範囲に収まっているか否かを判定する。 The mounting inspection device 15 is a device that inspects the mounting state of the component P arranged on the printed board S based on the captured image, and as shown in FIG. 4, a controller 50 that controls the entire device. And an HDD 51 for storing various types of information, and a communication unit 52 for performing bidirectional communication with an external device connected to the LAN 18. Further, the mounting inspection apparatus 15 includes an inspection processing unit 54 that images the board S and measures the mounting state of the component P. The controller 50 is configured as a microprocessor centered on a CPU 50a, and includes a ROM 50b that stores various processing programs and a RAM 50c that temporarily stores data. The HDD 51 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores mounting inspection condition information 51a, mounting measurement value information 51b including component measurement values that are measurement results, and the like. The component measurement values include, for example, the positional deviation amount of the component P with respect to the substrate S, the positional deviation amount of the component P with respect to the printed solder, the rotation angle of the component P, and the like. The mounting inspection condition information 51 a is acquired from the management computer 80 and stored in the HDD 51. The inspection processing unit 54 is disposed on the inspection head, and moves the inspection head 55 along the XY plane (a surface parallel to the plate surface of the substrate S), which images the component P disposed on the substrate S. The moving part 56 is provided. The mounting inspection device 15 measures the positional deviation and the rotation angle of the component P based on the difference between the reference image in which the component P is arranged at the regular position and the captured image. The mounting inspection device 15 determines whether or not the deviation between the normal position of the component P arranged corresponding to each component position and the actual position of the component P is within an allowable range.
 リフロー装置16は、はんだ上に部品Pが配置された基板Sを加熱することによりはんだを溶融し、その後冷却することにより各部品Pを基板S上に電気的に接続、固定する装置である。リフロー装置16は、図4に示すように、装置全体の制御を司るリフロー制御部60と、LAN18に接続された外部機器と双方向通信を行う通信部62と、基板Sを収容する加熱室63と、加熱室63の内部を加熱するヒータを有する加熱部64とを備えている。 The reflow device 16 is a device that electrically connects and fixes each component P on the substrate S by melting the solder by heating the substrate S on which the component P is disposed on the solder, and then cooling it. As shown in FIG. 4, the reflow device 16 includes a reflow control unit 60 that controls the entire device, a communication unit 62 that performs bidirectional communication with an external device connected to the LAN 18, and a heating chamber 63 that houses the substrate S. And a heating unit 64 having a heater for heating the inside of the heating chamber 63.
 リフロー検査装置17は、リフロー済みの基板S上の部品Pの状態を、撮像した画像に基づいて最終的に検査する装置である。リフロー検査装置17は、図4に示すように、装置全体の制御を司るコントローラ70と、各種情報を記憶するHDD71と、LAN18に接続された外部機器と双方向通信を行う通信部72とを備えている。また、リフロー検査装置17は、基板Sを撮像して部品Pの実装状態を測定する検査処理ユニット74を備えている。コントローラ70は、CPU70aを中心とするマイクロプロセッサとして構成されており、各種処理プログラムなどを記憶したROM70bと、一時的にデータを記憶するRAM70cとを備えている。HDD71は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、リフロー後の基板Sの検査条件を含む検査条件情報71aや、最終検査結果を含む検査結果情報71bなどを記憶する。この検査条件情報71aは、管理コンピュータ80から取得されてHDD71に記憶される。検査処理ユニット74は、検査ヘッドに配設され、基板Sに配置されたリフロー後の部品Pを撮像する撮像部75と、検査ヘッドをXY平面(基板Sの板面と平行な面)に沿って移動させる移動部76とを備えている。リフロー検査装置17は、正規の位置に部品Pが配置された基準画像と、撮像した画像との差分により、部品Pの位置ずれや回転角度を測定する。リフロー検査装置17は、各部品位置に対応して配置される部品Pの正規の位置と実際の部品Pの位置とのずれが許容範囲に収まっているか否かを判定する。 The reflow inspection device 17 is a device that finally inspects the state of the component P on the reflowed substrate S based on the captured image. As shown in FIG. 4, the reflow inspection apparatus 17 includes a controller 70 that controls the entire apparatus, an HDD 71 that stores various types of information, and a communication unit 72 that performs bidirectional communication with external devices connected to the LAN 18. ing. Further, the reflow inspection device 17 includes an inspection processing unit 74 that images the board S and measures the mounting state of the component P. The controller 70 is configured as a microprocessor centered on a CPU 70a, and includes a ROM 70b that stores various processing programs and a RAM 70c that temporarily stores data. The HDD 71 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores inspection condition information 71a including inspection conditions for the substrate S after reflow, inspection result information 71b including final inspection results, and the like. To do. This inspection condition information 71 a is acquired from the management computer 80 and stored in the HDD 71. The inspection processing unit 74 is disposed in the inspection head, and an imaging unit 75 that images the reflowed component P disposed on the substrate S, and the inspection head along the XY plane (a surface parallel to the plate surface of the substrate S). And a moving unit 76 for moving the image. The reflow inspection device 17 measures the positional deviation and the rotation angle of the component P based on the difference between the reference image in which the component P is arranged at the regular position and the captured image. The reflow inspection device 17 determines whether or not the deviation between the normal position of the component P arranged corresponding to each component position and the actual position of the component P is within an allowable range.
 管理コンピュータ80は、実装システム10の各装置の情報を管理するコンピュータである。管理コンピュータ80は、図1に示すように、CPU82、ROM83及びRAM84などにより構成され装置全体の制御を司るコントローラ81と、各種アプリケーションプログラムや各種データファイルを記憶するHDD85と、LAN18に接続された外部機器と双方向の通信を行う通信部86とを備える。また、管理コンピュータ80は、作業者が各種指令を入力するキーボード及びマウス等の入力デバイス87と、各種情報を表示するディスプレイ88とを備えている。HDD85は、大容量を有し各種のデータを書き換え可能に記憶する記憶部であり、結果情報85aや、不良率マトリックス85b、印刷判定基準85c、実装判定基準85dなどが記憶されている。結果情報85aは、印刷検査装置13によるはんだ測定値と、実装検査装置15による部品測定値と、リフロー検査装置17によるリフロー後の検査結果とを含むデータである(後述図13参照)。不良率マトリックス85bは、はんだ測定値の所定範囲と、部品測定値の所定範囲と、はんだ測定値の所定範囲及び部品測定値の所定範囲に含まれる不良率と、を複数の所定範囲に対して対応付けた情報である(後述図14参照)。印刷判定基準85cは、基板S上に印刷されたはんだの状態が許容できる状態であるか否かを判定する閾値である。実装判定基準85dは、基板S上に配置された部品Pの状態が許容できる状態であるか否かを判定する閾値である。 The management computer 80 is a computer that manages information of each device of the mounting system 10. As shown in FIG. 1, the management computer 80 is composed of a CPU 82, a ROM 83, a RAM 84, and the like, which controls the entire apparatus, an HDD 85 that stores various application programs and various data files, and an external device connected to the LAN 18. A communication unit 86 that performs bidirectional communication with the device. In addition, the management computer 80 includes an input device 87 such as a keyboard and a mouse for an operator to input various commands, and a display 88 for displaying various information. The HDD 85 is a storage unit that has a large capacity and stores various data in a rewritable manner, and stores result information 85a, a defect rate matrix 85b, a print determination criterion 85c, a mounting determination criterion 85d, and the like. The result information 85a is data including a solder measurement value by the print inspection apparatus 13, a component measurement value by the mounting inspection apparatus 15, and an inspection result after reflow by the reflow inspection apparatus 17 (see FIG. 13 described later). The defect rate matrix 85b includes a predetermined range of solder measurement values, a predetermined range of component measurement values, and a failure rate included in the predetermined range of solder measurement values and the predetermined range of component measurement values for a plurality of predetermined ranges. The associated information (see FIG. 14 described later). The print determination standard 85c is a threshold value for determining whether or not the state of the solder printed on the substrate S is an acceptable state. The mounting determination reference 85d is a threshold value for determining whether or not the state of the component P arranged on the board S is an acceptable state.
 次に、管理コンピュータ80が備える機能ブロックについて説明する。図5に示すように、管理コンピュータ80は、検査データ取得部90、対応関係生成部91、対応関係保持部92、条件設定部93及び条件指令部94を備えている。検査データ取得部90は、印刷検査処理の測定情報(はんだ測定値)と、実装検査処理の測定情報(部品測定値)と、リフロー検査処理の結果情報(検査結果)とを取得する処理を実行する。対応関係生成部91は、上記検査データ取得部90が取得したはんだ測定値と、部品測定値と、検査結果とを対応付けた対応関係情報(不良率マトリックス85b)を生成する処理を実行する。対応関係保持部92は、生成した対応関係情報を記憶する記憶部である。条件設定部93は、生成した対応関係情報に基づいて印刷検査処理の印刷判定基準や実装検査処理の実装判定基準、印刷実行条件、実装実行条件のうち1以上を設定する処理を実行する。条件指令部94は、設定された印刷判定基準や実装判定基準、印刷実行条件及び実装実行条件を該当する装置へ出力する処理を実行する。 Next, functional blocks provided in the management computer 80 will be described. As shown in FIG. 5, the management computer 80 includes an inspection data acquisition unit 90, a correspondence relationship generation unit 91, a correspondence relationship holding unit 92, a condition setting unit 93, and a condition command unit 94. The inspection data acquisition unit 90 executes processing for acquiring measurement information (solder measurement values) of print inspection processing, measurement information (component measurement values) of mounting inspection processing, and result information (inspection results) of reflow inspection processing. To do. The correspondence generation unit 91 executes processing for generating correspondence information (defective rate matrix 85b) in which the solder measurement values, the component measurement values, and the inspection results acquired by the inspection data acquisition unit 90 are associated with each other. The correspondence relationship holding unit 92 is a storage unit that stores the generated correspondence relationship information. The condition setting unit 93 executes a process of setting one or more of a print determination standard for the print inspection process, a mounting determination standard for the mounting inspection process, a print execution condition, and a mounting execution condition based on the generated correspondence information. The condition command unit 94 executes a process of outputting the set printing determination standard, mounting determination standard, printing execution condition, and mounting execution condition to the corresponding device.
 次に、こうして構成された本実施形態の実装システム10の動作について説明する。図6は、管理コンピュータ80のCPU82により実行されるメインルーチンの一例を表すフローチャートである。このルーチンは、管理コンピュータ80のHDD85に記憶され、作業者による開始指示により実行される。このルーチンは、例えば、各機能ブロックである検査データ取得部90、対応関係生成部91、対応関係保持部92、条件設定部93及び条件指令部94の機能や、各ユニットを利用してCPU82が実行するものとする。このルーチンを開始すると、まず、CPU82は、印刷処理を実行するよう印刷装置12へ指令し(ステップS100)、印刷検査処理を実行するよう印刷検査装置13へ指令する(ステップS110)。次に、CPU82は、実装処理を実行するよう実装処理装置14へ指令し(ステップS120)、実装検査処理を実行するよう実装検査装置15へ指令する(ステップS130)。続いて、CPU82は、リフロー処理を実行するようリフロー装置16へ指令し(ステップS140)、リフロー検査処理を実行するようリフロー検査装置17へ指令する(ステップS150)。そして、CPU82は、不良率マトリックス85b(対応関係情報)を生成し、生成した対応関係情報に基づいて検査基準及び実装処理条件を設定する処理を実行し(ステップS160)、このルーチンを終了する。この各処理について、以下説明する。なお、ここでは、説明の便宜のため、印刷検査処理は、はんだの体積値を用いて行うことを主に説明し、実装検査処理は、基板Sに対する部品Pの位置のずれを用いて行うことを主に説明する。 Next, the operation of the mounting system 10 of the present embodiment configured as described above will be described. FIG. 6 is a flowchart illustrating an example of a main routine executed by the CPU 82 of the management computer 80. This routine is stored in the HDD 85 of the management computer 80, and is executed by a start instruction from the operator. In this routine, for example, the function of the test data acquisition unit 90, the correspondence generation unit 91, the correspondence relationship holding unit 92, the condition setting unit 93, and the condition command unit 94, which are functional blocks, and the CPU 82 using each unit are used. Shall be executed. When this routine is started, the CPU 82 first instructs the printing apparatus 12 to execute the printing process (step S100), and instructs the printing inspection apparatus 13 to execute the printing inspection process (step S110). Next, the CPU 82 instructs the mounting processing apparatus 14 to execute the mounting process (step S120), and instructs the mounting inspection apparatus 15 to execute the mounting inspection process (step S130). Subsequently, the CPU 82 instructs the reflow apparatus 16 to execute the reflow process (step S140), and instructs the reflow inspection apparatus 17 to execute the reflow inspection process (step S150). Then, the CPU 82 generates a defect rate matrix 85b (corresponding relationship information), executes a process for setting an inspection standard and a mounting process condition based on the generated corresponding relationship information (step S160), and ends this routine. Each process will be described below. Here, for convenience of explanation, it is mainly described that the print inspection process is performed using the volume value of the solder, and the mounting inspection process is performed using the displacement of the position of the component P with respect to the substrate S. Is mainly explained.
 ステップS100で出力された印刷処理指令を受信した印刷装置12は、印刷処理を実行する。図7は、印刷装置12のCPU20aが実行する印刷処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD21に記憶されている。このルーチンを開始すると、CPU20aは、印刷条件情報21aを管理コンピュータ80から取得し(ステップS200)、基板Sの搬送及び固定処理を実行し(ステップS210)、印刷処理を実行する(ステップS220)。印刷処理では、CPU20aは、基板SとスクリーンマスクMとを適正な位置で重ねた状態で、スキージ29を移動させてスクリーンマスクMを介してはんだを基板S上に印刷する。このとき、印刷条件情報21aに含まれる押圧力及び移動速度でスキージ29を制御する。次に、CPU20aは、印刷完了した基板Sを排出し(ステップS230)、生産が完了したか否かを予定したすべての基板Sに印刷処理を実行したか否かに基づいて判定する(ステップS240)。生産完了していないときには、CPU20aは、ステップS210以降の処理を実行する。一方、生産完了したときには、そのままこのルーチンを終了する。このように基板S上にはんだを形成する。 The printing apparatus 12 that has received the print processing command output in step S100 executes print processing. FIG. 7 is a flowchart illustrating an example of a print processing routine executed by the CPU 20a of the printing apparatus 12. This routine is stored in the HDD 21. When this routine is started, the CPU 20a acquires the printing condition information 21a from the management computer 80 (step S200), executes the transporting and fixing process of the substrate S (step S210), and executes the printing process (step S220). In the printing process, the CPU 20a prints the solder on the substrate S through the screen mask M by moving the squeegee 29 in a state where the substrate S and the screen mask M are overlapped at an appropriate position. At this time, the squeegee 29 is controlled by the pressing force and the moving speed included in the printing condition information 21a. Next, the CPU 20a discharges the printed substrate S (step S230), and determines whether or not the production is completed based on whether or not the printing process has been performed on all the planned substrates S (step S240). ). When the production is not completed, the CPU 20a executes the processes after step S210. On the other hand, when the production is completed, this routine is finished as it is. In this way, solder is formed on the substrate S.
 ステップS110で出力された印刷検査処理指令を受信した印刷検査装置13は、印刷検査処理を実行する。図8は、印刷検査装置13のCPU30aが実行する印刷検査処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD31に記憶されている。このルーチンを開始すると、CPU30aは、印刷検査条件情報31aを管理コンピュータ80から取得し(ステップS300)、基板Sの搬送及び固定処理を実行し(ステップS305)、検査範囲を撮像処理する(ステップS310)。次に、CPU30aは、検査位置(部品の実装位置、以下部品位置とも称する)を設定する(ステップS315)。この部品位置の設定は、例えば、印刷検査条件情報31aに含まれている予め定められた各部品位置の順番を読み出して行うものとする。次に、CPU30aは、撮像した画像を画像処理することにより、はんだ測定値を取得し、取得したはんだ測定値を含む印刷測定値情報31bをHDD31に記憶する(ステップS320)。CPU30aは、はんだ測定値として、はんだの高さ、面積、体積及び位置などを取得するものとする。また、該当する部品位置に複数のパッドがある場合は、例えば、最小体積のパッド、最小面積のパッド及び最低高さのパッドなど、予め定められた代表値をはんだ測定値として取得するものとしてもよい。続いて、CPU30aは、この部品位置に対応する印刷判定基準を取得し(ステップS325)、はんだ測定値が、印刷判定基準を超えるか否かに基づいて、エラー範囲であるか否かを判定する(ステップS330)。印刷判定基準は、詳しくは後述するが、管理コンピュータ80で設定されたものを取得するものとする。この判定は、はんだ体積値の測定値と印刷判定基準とを用いて行うものとする。はんだ測定値がエラー範囲であるときには、異常表示処理を実行する(ステップS335)。ここでは、CPU30aは、操作パネルの表示部にエラー表示を行うものとする。また、エラー判定された基板Sを実装ラインから除外する処理を行ってもよい。ステップS335のあと又はステップS330ではんだ測定値がエラー範囲でないときには、CPU30aは、現基板Sの検査が完了したか否かを判定し(ステップS340)、完了していないときには、ステップS315以降の処理を実行する。一方、現基板Sの検査が完了したときには、CPU30aは、検査完了した基板Sを排出し(ステップS345)、すべての基板Sを検査完了したか否かを判定する(ステップS350)。すべての基板Sを検査完了していないときには、CPU30aは、ステップS305以降の処理を実行し、すべての基板Sを検査完了したときには、そのままこのルーチンを終了する。このように、基板S上に形成されたはんだの状態を検査し、その後の工程で不具合が生じると思われる基板Sを特定するのである。 The print inspection apparatus 13 that has received the print inspection process command output in step S110 executes the print inspection process. FIG. 8 is a flowchart illustrating an example of a print inspection processing routine executed by the CPU 30 a of the print inspection apparatus 13. This routine is stored in the HDD 31. When this routine is started, the CPU 30a acquires the print inspection condition information 31a from the management computer 80 (step S300), executes the transporting and fixing processing of the substrate S (step S305), and performs imaging processing of the inspection range (step S310). ). Next, the CPU 30a sets an inspection position (component mounting position, hereinafter also referred to as component position) (step S315). For example, the setting of the component positions is performed by reading the predetermined order of the component positions included in the print inspection condition information 31a. Next, the CPU 30a acquires a solder measurement value by performing image processing on the captured image, and stores the print measurement value information 31b including the acquired solder measurement value in the HDD 31 (step S320). The CPU 30a acquires the solder height, area, volume, position, and the like as the solder measurement values. In addition, when there are a plurality of pads at the corresponding component position, for example, a predetermined representative value such as a minimum volume pad, a minimum area pad, and a minimum height pad may be acquired as a solder measurement value. Good. Subsequently, the CPU 30a acquires a print determination criterion corresponding to the component position (step S325), and determines whether or not the solder measurement value is within an error range based on whether or not the print determination criterion is exceeded. (Step S330). As will be described in detail later, it is assumed that the print determination criterion is set by the management computer 80. This determination is performed using the measurement value of the solder volume value and the print determination standard. When the solder measurement value is within the error range, an abnormality display process is executed (step S335). Here, it is assumed that the CPU 30a displays an error on the display unit of the operation panel. Further, a process of excluding the board S determined as an error from the mounting line may be performed. After step S335 or when the solder measurement value is not in the error range in step S330, the CPU 30a determines whether or not the inspection of the current substrate S has been completed (step S340), and if not completed, the processing after step S315 is performed. Execute. On the other hand, when the inspection of the current substrate S is completed, the CPU 30a discharges the substrate S that has been inspected (step S345), and determines whether or not the inspection of all the substrates S has been completed (step S350). When the inspection of all the substrates S has not been completed, the CPU 30a executes the processing after step S305, and when the inspection of all the substrates S has been completed, this routine is finished as it is. In this way, the state of the solder formed on the substrate S is inspected, and the substrate S that is considered to have a defect in the subsequent process is specified.
 ステップS120で出力された実装処理指令を受信した実装処理装置14は、実装処理を実行する。図9は、実装処理装置14のCPU40aが実行する実装処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD41に記憶されている。このルーチンを開始すると、CPU40aは、実装条件情報41aを管理コンピュータ80から取得してHDD41に記憶し(ステップS400)、基板Sの搬送及び固定処理を実行する(ステップS410)。次に、CPU40aは、実装条件情報41aの内容に基づいて基板S上に実装する部品Pを設定し(ステップS420)、設定した部品Pの実装実行条件を実装条件情報41aから取得する(ステップS430)。部品Pの実装順番は、予め定められたものが実装条件情報41aに含まれているものとする。また、実装条件情報41aは、各部品位置に対して部品Pの実装実行条件、例えば、吸着ノズル49の吸着力や実装ヘッド47の移動速度などを含んでいる。次に、CPU40aは、設定された部品Pの実装処理を実装実行条件に基づいて行う(ステップS440)。実装処理の吸着処理では、CPU40aは、該当する部品が収納されている供給ユニット45の取出位置まで実装ヘッド47を移動し、吸着ノズル49を下降して吸着ノズル49に部品Pを吸着させる処理を行う。また、実装処理の移動処理では、CPU40aは、部品Pを吸着した実装ヘッド47を撮像部43の上方を通過させて、基板Sの部品位置まで移動する処理を行う。続いて、CPU40aは、現基板Sの実装処理が完了したか否かを判定し(ステップS450)、現基板Sの実装処理が完了していないときにはステップS420以降の処理を実行する。一方、現基板Sの実装処理が完了したときには、CPU40aは、実装完了した基板Sを排出し(ステップS460)、生産が完了したか否かを予定したすべての基板Sに実装処理を実行したか否かに基づいて判定する(ステップS470)。生産完了していないときには、CPU40aは、ステップS410以降の処理を実行する。一方、生産完了したときには、そのままこのルーチンを終了する。このように、基板S上に部品Pを配置する。 The mounting processing device 14 that has received the mounting processing command output in step S120 executes mounting processing. FIG. 9 is a flowchart illustrating an example of a mounting process routine executed by the CPU 40a of the mounting processing apparatus 14. This routine is stored in the HDD 41. When this routine is started, the CPU 40a acquires the mounting condition information 41a from the management computer 80, stores it in the HDD 41 (step S400), and executes the transfer and fixing process of the substrate S (step S410). Next, the CPU 40a sets a component P to be mounted on the substrate S based on the contents of the mounting condition information 41a (step S420), and acquires the mounting execution condition of the set component P from the mounting condition information 41a (step S430). ). It is assumed that the mounting order of the parts P includes a predetermined order in the mounting condition information 41a. Further, the mounting condition information 41a includes a mounting execution condition of the component P for each component position, for example, the suction force of the suction nozzle 49 and the moving speed of the mounting head 47. Next, the CPU 40a performs the mounting process of the set component P based on the mounting execution condition (step S440). In the suction process of the mounting process, the CPU 40a performs a process of moving the mounting head 47 to the take-out position of the supply unit 45 in which the corresponding part is stored, and lowering the suction nozzle 49 to suck the part P onto the suction nozzle 49. Do. In the movement process of the mounting process, the CPU 40a performs a process of moving the mounting head 47 that has attracted the component P to the position of the component on the substrate S through the imaging unit 43. Subsequently, the CPU 40a determines whether or not the mounting process for the current substrate S has been completed (step S450), and when the mounting process for the current substrate S has not been completed, the processes after step S420 are executed. On the other hand, when the mounting process of the current board S is completed, the CPU 40a discharges the mounted board S (step S460), and has the mounting process been executed for all the boards S scheduled for completion of production? A determination is made based on whether or not (step S470). When the production is not completed, the CPU 40a executes the processes after step S410. On the other hand, when the production is completed, this routine is finished as it is. In this way, the component P is arranged on the substrate S.
 ステップS130で出力された実装検査処理指令を受信した実装検査装置15は、実装検査処理を実行する。図10は、実装検査装置15のCPU50aが実行する実装検査処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD51に記憶されている。このルーチンを開始すると、CPU50aは、実装検査条件情報51aを管理コンピュータ80から取得し(ステップS500)、基板Sの搬送及び固定処理を実行し(ステップS505)、検査範囲を撮像処理する(ステップS510)。次に、CPU50aは、検査位置(部品位置)を設定する(ステップS515)。この部品位置の設定は、例えば、実装検査条件情報51aに含まれている予め定められた各部品位置の順番を読み出して行うものとする。次に、CPU50aは、撮像した画像を画像処理することにより、部品測定値を取得し、取得した部品測定値をHDD51の実装測定値情報51bに記憶する(ステップS520)。CPU50aは、部品測定値として、基板Sに対する部品Pの位置ずれ量、はんだに対する部品Pの位置ずれ量及び部品Pの回転角度などを取得するものとする。次に、CPU50aは、この部品位置(特定位置)に対応するはんだ測定値を印刷検査装置13から取得する(ステップS525)。取得するはんだ測定値は、例えば、はんだ体積の測定値とする。続いて、CPU50aは、この部品位置に対応する実装判定基準を取得し(ステップS530)、部品測定値が、実装判定基準を超えるか否かに基づいて、エラー範囲であるか否かを判定する(ステップS535)。実装判定基準は、詳しくは後述するが、管理コンピュータ80で設定されたものを取得し(後述図15参照)、更に、取得したはんだ測定値により選択されたものが用いられるものとする。また、この判定は、基板Sに対する位置ずれ量の測定値と実装判定基準とを用いて行うものとする。部品測定値がエラー範囲であるときには、異常表示処理を実行する(ステップS540)。ここでは、CPU50aは、操作パネルの表示部にエラー表示を行うものとする。また、エラー判定された基板Sを実装ラインから除外する処理を行ってもよい。ステップS540のあと、又はステップS535で部品測定値がエラー範囲でないときには、CPU50aは、現基板Sの検査が完了したか否かを判定し(ステップS545)、完了していないときには、ステップS515以降の処理を実行する。一方、現基板Sの検査が完了したときには、CPU50aは、検査完了した基板Sを排出し(ステップS550)、すべての基板Sを検査完了したか否かを判定する(ステップS555)。すべての基板Sを検査完了していないときには、CPU50aは、ステップS505以降の処理を実行し、すべての基板Sを検査完了したときには、そのままこのルーチンを終了する。このように、基板S上に配置された部品Pの状態を検査し、その後の工程で不具合が生じると思われる基板Sを特定するのである。 The mounting inspection apparatus 15 that has received the mounting inspection processing command output in step S130 executes the mounting inspection processing. FIG. 10 is a flowchart showing an example of a mounting inspection processing routine executed by the CPU 50a of the mounting inspection device 15. This routine is stored in the HDD 51. When this routine is started, the CPU 50a acquires the mounting inspection condition information 51a from the management computer 80 (step S500), executes the transporting and fixing process of the substrate S (step S505), and performs imaging processing of the inspection range (step S510). ). Next, the CPU 50a sets an inspection position (component position) (step S515). For example, the setting of the component positions is performed by reading out a predetermined order of the component positions included in the mounting inspection condition information 51a. Next, the CPU 50a acquires a component measurement value by performing image processing on the captured image, and stores the acquired component measurement value in the mounting measurement value information 51b of the HDD 51 (step S520). It is assumed that the CPU 50a acquires, as the component measurement values, the positional deviation amount of the component P with respect to the substrate S, the positional deviation amount of the component P with respect to the solder, the rotation angle of the component P, and the like. Next, the CPU 50a acquires a solder measurement value corresponding to this component position (specific position) from the print inspection apparatus 13 (step S525). The acquired solder measurement value is, for example, a measurement value of solder volume. Subsequently, the CPU 50a acquires a mounting criterion corresponding to the component position (step S530), and determines whether or not the component measurement value is within an error range based on whether or not the component measurement value exceeds the mounting criterion. (Step S535). As will be described later in detail, it is assumed that the mounting criterion is acquired by the management computer 80 (see FIG. 15 to be described later), and the one selected by the acquired solder measurement value is used. In addition, this determination is performed using a measured value of the amount of displacement with respect to the substrate S and a mounting determination criterion. When the component measurement value is in the error range, an abnormality display process is executed (step S540). Here, it is assumed that the CPU 50a displays an error on the display unit of the operation panel. Further, a process of excluding the board S determined as an error from the mounting line may be performed. After step S540 or when the component measurement value is not in the error range in step S535, the CPU 50a determines whether or not the inspection of the current substrate S has been completed (step S545). Execute the process. On the other hand, when the inspection of the current substrate S is completed, the CPU 50a discharges the substrate S that has been inspected (step S550), and determines whether or not the inspection of all the substrates S has been completed (step S555). When the inspection of all the substrates S has not been completed, the CPU 50a executes the processing after step S505, and when the inspection of all the substrates S has been completed, this routine is finished as it is. In this way, the state of the component P arranged on the substrate S is inspected, and the substrate S that is considered to have a problem in the subsequent process is specified.
 ステップS140で出力されたリフロー処理指令を受信したリフロー装置16のリフロー制御部60は、加熱部64を制御することにより、はんだが溶融する所定温度まで加熱室63の内部を加熱し、はんだが印刷され部品Pが配置された基板Sをこの加熱室63へ搬送する。基板Sは、加熱室63の内部を通過する課程において、温度上昇に伴いはんだが溶融し、温度下降に伴いはんだが冷却されて固化する。 The reflow control unit 60 of the reflow device 16 that has received the reflow processing command output in step S140 controls the heating unit 64 to heat the inside of the heating chamber 63 to a predetermined temperature at which the solder melts, and the solder is printed. Then, the substrate S on which the component P is arranged is transferred to the heating chamber 63. In the process of passing through the inside of the heating chamber 63, the solder melts as the temperature rises, and the substrate S cools and solidifies as the temperature falls.
 ステップS150で出力されたリフロー検査処理指令を受信したリフロー検査装置17は、リフロー検査処理を実行する。図11は、リフロー検査装置17のCPU70aが実行するリフロー検査処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD71に記憶されている。このルーチンを開始すると、CPU70aは、検査条件情報71aを管理コンピュータ80から取得し(ステップS600)、基板Sの搬送及び固定処理を実行し(ステップS605)、検査範囲を撮像処理する(ステップS610)。撮像処理では、基板Sの大きさに応じて、1回で全体を撮像してもよいし、複数の領域を複数回にわたって撮像するものとしてもよい。次に、CPU70aは、正常に部品Pが実装された基板Sの画像と撮像した基板Sの画像とを、基板Sが重なるようにした状態で画素値の差分をとる画像処理を行い、この差分をとった画像データを取得する(ステップS615)。この差分の画像データに部品Pの欠品や許容範囲外のずれなどに基づく画像領域があるか否かに基づいて、基板Sに実装異常があるか否かを判定する(ステップS620)。なお、撮像した基板Sに部品Pが正常に実装されていれば、この差分の画像データは、画素値の変動が少ないものとなる。基板Sに実装異常があると判定されたときには、CPU70aは、実装異常に該当する部品Pを基板S上の部品位置に基づいて特定し(ステップS625)、異常表示処理を実行する(ステップS630)。ここでは、CPU70aは、操作パネルの表示部にエラー表示を行うものとする。また、実装異常を判定された基板Sを実装ラインから除外する処理を行ってもよい。次に、CPU70aは、実装異常の部品Pの情報を検査結果情報71bとしてHDD71に記憶する(ステップS635)。ステップS635のあと、又はステップS620で基板Sに実装異常がないときには、CPU70aは、現基板Sの検査が完了したか否かを判定し(ステップS640)、完了していないときには、ステップS615以降の処理を実行する。一方、現基板Sの検査が完了したときには、CPU70aは、検査完了した基板Sを排出し(ステップS645)、すべての基板Sを検査完了したか否かを判定する(ステップS650)。すべての基板Sを検査完了していないときには、CPU70aは、ステップS605以降の処理を実行し、すべての基板Sを検査完了したときには、そのままこのルーチンを終了する。このように、基板S上に実装された部品Pの状態を検査し、不具合が生じた基板Sを特定し、不具合の生じた部品位置及び部品の情報を検査結果情報71bとしてHDD71に記憶するのである。 The reflow inspection device 17 that has received the reflow inspection process command output in step S150 executes the reflow inspection process. FIG. 11 is a flowchart showing an example of a reflow inspection processing routine executed by the CPU 70a of the reflow inspection device 17. This routine is stored in the HDD 71. When this routine is started, the CPU 70a acquires the inspection condition information 71a from the management computer 80 (step S600), executes the transporting and fixing process of the substrate S (step S605), and performs imaging processing of the inspection range (step S610). . In the imaging process, depending on the size of the substrate S, the whole may be imaged once, or a plurality of areas may be imaged multiple times. Next, the CPU 70a performs image processing for obtaining a difference between pixel values of the image of the substrate S on which the component P is normally mounted and the captured image of the substrate S in a state where the substrate S is overlapped. The image data obtained is taken (step S615). It is determined whether or not there is a mounting abnormality on the substrate S based on whether or not there is an image area based on a missing part of the component P or a deviation outside the allowable range in the difference image data (step S620). Note that if the component P is normally mounted on the imaged substrate S, the difference image data has little variation in pixel values. When it is determined that there is a mounting abnormality on the substrate S, the CPU 70a identifies the component P corresponding to the mounting abnormality based on the component position on the substrate S (step S625), and executes an abnormality display process (step S630). . Here, it is assumed that the CPU 70a displays an error on the display unit of the operation panel. Moreover, you may perform the process which excludes the board | substrate S by which mounting abnormality was determined from the mounting line. Next, the CPU 70a stores information on the component P with the mounting abnormality in the HDD 71 as the inspection result information 71b (step S635). After step S635 or when there is no mounting abnormality on the substrate S in step S620, the CPU 70a determines whether or not the inspection of the current substrate S has been completed (step S640). Execute the process. On the other hand, when the inspection of the current substrate S is completed, the CPU 70a discharges the substrate S that has been inspected (step S645), and determines whether or not the inspection of all the substrates S has been completed (step S650). When the inspection of all the substrates S has not been completed, the CPU 70a executes the processes in and after step S605. When the inspection of all the substrates S has been completed, this routine is finished as it is. As described above, the state of the component P mounted on the substrate S is inspected, the substrate S in which the defect has occurred is specified, and the position of the component in which the defect has occurred and the information on the component are stored in the HDD 71 as the inspection result information 71b. is there.
 続いて、図6のメインルーチンのステップS160の対応情報生成条件設定処理について説明する。図12は、管理コンピュータ80のCPU82が実行する対応情報生成条件設定処理ルーチンの一例を表すフローチャートである。このルーチンは、HDD85に記憶されている。このルーチンでは、各部品位置のはんだ測定値、部品測定値及び対応する部品位置の不良率などの対応関係を取得し、この対応関係に基づいて、実装検査装置15が用いる実装判定基準を設定する処理を行う。 Subsequently, the correspondence information generation condition setting process in step S160 of the main routine of FIG. 6 will be described. FIG. 12 is a flowchart illustrating an example of a correspondence information generation condition setting processing routine executed by the CPU 82 of the management computer 80. This routine is stored in the HDD 85. In this routine, a correspondence relationship such as a solder measurement value at each component position, a component measurement value, and a defect rate at the corresponding component position is acquired, and a mounting determination criterion used by the mounting inspection apparatus 15 is set based on this correspondence relationship. Process.
 このルーチンを開始すると、CPU82は、リフロー処理後の基板数が、予め定められた所定数以上であるか否かを判定する(ステップS700)。この「所定数」は、例えば、リフロー検査処理の検査結果が十分信頼性のある値になる数(例えば、100枚や500枚など)に経験的に定めることができる。なお、このリフロー処理後の基板数のカウントは、ステップS700で肯定判定されたときにリセットされるものとする。リフロー処理後の基板数が予め定められた所定数以上でないときには、CPU82は、そのまま待機する。即ち、CPU82は、リフロー検査処理の検査結果が十分信頼性のある値になるまで待機する。一方、リフロー処理後の基板数が予め定められた所定数以上であるときには、CPU82は、はんだ測定値を含む印刷測定値情報31bを印刷検査装置13から取得し(ステップS705)、部品測定値を含む実装測定値情報51bを実装検査装置15から取得し(ステップS710)、検査結果の情報を含む検査結果情報71bをリフロー検査装置17から取得する(ステップS715)。図13は、結果情報85aの一例の説明図である。結果情報85aは、ステップS705~S715で取得した情報であり、はんだ測定値、部品測定値及びリフロー検査処理での検査結果を各部品位置ごとに対応付け、更にこれを各基板ごとにまとめた情報である。 When this routine is started, the CPU 82 determines whether or not the number of substrates after the reflow process is equal to or greater than a predetermined number (step S700). This “predetermined number” can be determined empirically, for example, to a number (for example, 100 sheets or 500 sheets) at which the inspection result of the reflow inspection process becomes a sufficiently reliable value. The count of the number of substrates after the reflow process is reset when an affirmative determination is made in step S700. When the number of substrates after the reflow process is not equal to or greater than a predetermined number, the CPU 82 stands by as it is. That is, the CPU 82 waits until the inspection result of the reflow inspection process becomes a sufficiently reliable value. On the other hand, when the number of substrates after the reflow processing is equal to or larger than a predetermined number, the CPU 82 acquires the print measurement value information 31b including the solder measurement values from the print inspection apparatus 13 (step S705), and obtains the component measurement values. The mounting measurement value information 51b including it is acquired from the mounting inspection apparatus 15 (step S710), and the inspection result information 71b including the information of the inspection result is acquired from the reflow inspection apparatus 17 (step S715). FIG. 13 is an explanatory diagram of an example of the result information 85a. The result information 85a is information acquired in steps S705 to S715, and is information in which the solder measurement value, the component measurement value, and the inspection result in the reflow inspection process are associated with each component position, and this is summarized for each board. It is.
 ステップS715のあと、CPU82は、結果情報85aを用い、はんだ測定値の所定範囲と、部品測定値の所定範囲と、はんだ測定値の所定範囲及び部品測定値の所定範囲に含まれる不良率と、を複数の所定範囲に対して対応付けた不良率マトリックス85bを生成する(ステップS720)。図14は、不良率マトリックス85bの一例の説明図である。この不良率マトリックス85bは、適正値を100%としたときのはんだ体積の比率の所定範囲と、部品Pのはんだに対する位置ずれ量の所定範囲と、この範囲に含まれる実装異常の部品数をこの範囲に含まれる全部品数で除算して100を乗算した不良率とを対応づけた情報である。ここでは、特定の部品位置におけるはんだ測定値と部品測定値と不良率とを対応づけた不良率マトリックス85bを、各特定の部品位置ごとに生成するものとする。ここで、この不良率マトリックス85bの生成処理について説明する。まず、CPU82は、不良率マトリックス85bを生成する部品位置を設定する。この部品位置の設定は、予め設定されている順番に基づいて行うものとする。次に、CPU82は、結果情報85aのデータを用い、設定された部品位置ではんだ測定値の所定範囲且つ部品測定値の所定範囲に含まれる実装異常の部品数及びこの所定範囲に含まれる全部品数をカウントする。続いて、CPU82は、カウント結果に基づいて、この所定範囲内に含まれる部品の不良率を求め、このはんだ測定値の所定範囲と部品測定値の所定範囲と不良率とを対応づける。この処理を、CPU82は、はんだ測定値及び部品測定値のすべての所定範囲に対して行い、現部品位置での不良率マトリックス85bを生成する(図14参照)。更に、CPU82は、上記処理を基板Sのすべての部品位置に対して行い、全部品位置の不良率マトリックス85bを生成するのである。この不良率マトリックス85bにおいて、はんだ体積比率の所定範囲は、20%ごとに設定されており、例えば70%~90%、90%~110%、110%~130%などに設定されている。また、位置ずれ量の所定範囲は、50μmごとに設定されており、例えば0~50μm、50~100μm、100~150μmなどに設定されている。図14に示す不良率マトリックス85bでは、例えば特定の(任意の)部品位置において、印刷検査結果が、適正値よりも25%も少ない、はんだ体積比率75%であるときには、部品Pの位置ずれ量が50μm以下で配置しない限り13%以上の高確率でリフロー後に実装異常状態になることがわかる。また、不良率マトリックス85bでは、印刷検査結果が、適正値を含む、はんだ体積90%以上110%未満であるときには、部品Pの位置ずれ量が150μm近くであっても不良率が0.8%程度の低確率でしかリフロー後に実装異常状態にならないことがわかる。この不良率マトリックス85bを用いると、例えば、使用者が許容可能な不良率の限界値(許容値)を指定すれば、CPU82は、はんだ体積に応じて部品Pの位置ずれ量の実装判定基準をこの許容値を満たす値に定めることができる(後述の図15参照)。あるいは、CPU82は、部品Pの位置ずれ量に応じてはんだ体積の印刷判定基準をこの許容値を満たす値に定めることができる。 After step S715, the CPU 82 uses the result information 85a to determine a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a defect rate included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value, Is generated for a plurality of predetermined ranges (step S720). FIG. 14 is an explanatory diagram of an example of the defect rate matrix 85b. This defect rate matrix 85b shows the predetermined range of the solder volume ratio when the appropriate value is 100%, the predetermined range of the positional deviation amount of the component P with respect to the solder, and the number of mounting abnormal components included in this range. This is information in which the defect rate obtained by dividing by the total number of parts included in the range and multiplying by 100 is correlated. Here, it is assumed that a defect rate matrix 85b in which the solder measurement value, the component measurement value, and the defect rate at a specific component position are associated is generated for each specific component position. Here, the generation process of the defect rate matrix 85b will be described. First, the CPU 82 sets a part position for generating the defect rate matrix 85b. The setting of the component position is performed based on a preset order. Next, the CPU 82 uses the data of the result information 85a to determine the number of mounting abnormality components included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value at the set component position, and the total number of components included in the predetermined range. Count. Subsequently, based on the count result, the CPU 82 obtains the defect rate of the parts included in the predetermined range, and associates the predetermined range of the solder measurement value with the predetermined range of the component measurement value and the defect rate. The CPU 82 performs this process on all the predetermined ranges of the solder measurement value and the component measurement value, and generates a defect rate matrix 85b at the current component position (see FIG. 14). Further, the CPU 82 performs the above processing on all the component positions of the substrate S, and generates a defect rate matrix 85b for all the component positions. In the defect rate matrix 85b, the predetermined range of the solder volume ratio is set every 20%, for example, 70% to 90%, 90% to 110%, 110% to 130%, and the like. Further, the predetermined range of the positional deviation amount is set every 50 μm, for example, 0 to 50 μm, 50 to 100 μm, 100 to 150 μm, and the like. In the defect rate matrix 85b shown in FIG. 14, for example, at a specific (arbitrary) part position, when the print inspection result is 25% less than the appropriate value and the solder volume ratio is 75%, the amount of misalignment of the part P It can be seen that a mounting abnormal state occurs after reflowing with a high probability of 13% or more unless it is arranged at 50 μm or less. Further, in the defect rate matrix 85b, when the print inspection result includes an appropriate value and the solder volume is 90% or more and less than 110%, the defect rate is 0.8% even when the positional deviation amount of the component P is close to 150 μm. It can be seen that the mounting abnormal state is reached after reflowing only with a low probability. If this defect rate matrix 85b is used, for example, if a user specifies a limit value (allowable value) of an acceptable defect rate, the CPU 82 uses the mounting determination standard for the amount of positional deviation of the component P according to the solder volume. A value that satisfies this allowable value can be set (see FIG. 15 described later). Alternatively, the CPU 82 can set the solder volume printing determination standard to a value that satisfies this allowable value in accordance with the positional deviation amount of the component P.
 次に、CPU82は、印刷判定基準を各特定の部品位置ごとに設定する処理を行う(ステップS725)。ここでは、印刷判定基準は、予め定められた値に設定されるものとする。次に、CPU82は、不良率マトリックス85bを用いて、実装判定基準を各特定の部品位置ごとに設定する処理を行う(ステップS730)。図15は、実装判定基準85dの一例の説明図である。CPU82は、使用者が定める許容可能な不良率の限界値(許容値)を満たす実装判定基準を各特定の部品位置ごとに設定するものとする。また、CPU82は、この許容値を満たす、部品測定値の所定範囲の上限値に、部品測定値の実装判定基準を設定するものとする。なお、不良率マトリックス85bにおいて、上記許容値を満たす実装判定基準を設定できない場合などには、予め定めた値(初期値)に実装判定基準を設定するものとしてもよい。ここでは、例えば、許容値が3%である場合について、具体例として説明する。例えば、図14に示すように、はんだ体積比率が70%以上90%未満の範囲では、不良率3%以下(許容値)を満たす部品の位置ずれ量は0μm以上50μm未満の範囲である。このため、CPU82は、はんだ体積比率が70%以上90%未満の範囲の実装判定基準を50μmに設定する。同様に、はんだ体積比率が90%以上110%未満の範囲では、不良率3%以下(許容値)を満たす部品の位置ずれ量が0μm以上250μm未満の範囲であるとすると、CPU82は、はんだ体積比率が90%以上110%未満の範囲の実装判定基準を250μmに設定する。同様に、はんだ体積の比率が110%以上130%未満の範囲では、不良率3%以下(許容値)を満たす部品の位置ずれ量が0μm以上100μm未満の範囲であるので、CPU82は、実装判定基準を100μmに設定する(図15参照)。このように、はんだ測定値の所定範囲のそれぞれに対応する実装判定基準値を設定する。 Next, the CPU 82 performs a process of setting a print determination standard for each specific component position (step S725). Here, it is assumed that the print determination criterion is set to a predetermined value. Next, the CPU 82 performs a process of setting a mounting determination criterion for each specific component position using the defect rate matrix 85b (step S730). FIG. 15 is an explanatory diagram of an example of the mounting determination reference 85d. It is assumed that the CPU 82 sets a mounting determination criterion that satisfies a limit value (allowable value) of an acceptable defect rate determined by the user for each specific component position. In addition, the CPU 82 sets the mounting determination criterion for the component measurement value to the upper limit value of the predetermined range of the component measurement value that satisfies this allowable value. In addition, in the defect rate matrix 85b, when it is not possible to set a mounting determination criterion that satisfies the above allowable value, the mounting determination criterion may be set to a predetermined value (initial value). Here, for example, a case where the allowable value is 3% will be described as a specific example. For example, as shown in FIG. 14, when the solder volume ratio is in the range of 70% or more and less than 90%, the positional deviation amount of the component that satisfies the defect rate of 3% or less (allowable value) is in the range of 0 to 50 μm. For this reason, the CPU 82 sets the mounting determination standard in the range where the solder volume ratio is 70% or more and less than 90% to 50 μm. Similarly, when the solder volume ratio is in the range of 90% or more and less than 110%, assuming that the amount of positional deviation of components satisfying the defect rate of 3% or less (allowable value) is in the range of 0 μm or more and less than 250 μm, the CPU 82 The mounting criterion in the range where the ratio is 90% or more and less than 110% is set to 250 μm. Similarly, when the solder volume ratio is in the range of 110% or more and less than 130%, the amount of misalignment of components satisfying the defect rate of 3% or less (allowable value) is in the range of 0 μm or more and less than 100 μm. The reference is set to 100 μm (see FIG. 15). In this way, the mounting determination reference value corresponding to each of the predetermined ranges of the solder measurement values is set.
 次に、CPU82は、設定した印刷判定基準85cを印刷検査装置13へ出力し、設定した実装判定基準85dを実装検査装置15へ出力する(ステップS735)。なお、印刷判定基準85c及び実装判定基準85dの出力は、印刷検査装置13や実装検査装置15からの依頼に基づいて行うものとしてもよい。印刷検査装置13は、取得した印刷判定基準85cを用いて上記印刷検査処理を実行する。また、実装検査装置15は、取得した実装判定基準85dを用いて上記実装検査処理を実行する。ここで、実装検査装置15の実装検査処理について詳細に説明する。実装検査装置15のCPU50aは、図10の実装検査ルーチンのステップS500~S520の処理を行ったあと、ステップS515で、検査対象である部品位置のはんだ測定値を取得すると共に、ステップS530で、上記設定された実装判定基準85dを取得する。次に、CPU50aは、取得したはんだ測定値(ここでは、はんだ体積比率)が含まれる実装判定基準85dの所定範囲を選択し、このはんだ測定値の所定範囲に対応づけられた実装判定基準を選択する。具体的には、CPU50aは、この部品位置のはんだ測定値がはんだ体積比率で120%である場合には、位置ずれ量の実装判定基準を100μmとする(図15参照)。続いて、CPU50aは、ステップS520で取得した部品測定値が、選択した実装判定基準を超えるか否かに基づいて、エラー範囲であるか否かを判定するステップS530の処理を行う。このように、現在実装検査している基板Sにおいて、実装検査する部品位置のはんだ測定値と不良率マトリックス85bに基づいて定められる実装判定基準とを用いることによって、より適正な判定基準を設定することができるのである。 Next, the CPU 82 outputs the set print determination standard 85c to the print inspection apparatus 13, and outputs the set mount determination standard 85d to the mount inspection apparatus 15 (step S735). The output of the print determination standard 85c and the mounting determination standard 85d may be performed based on a request from the print inspection apparatus 13 or the mounting inspection apparatus 15. The print inspection apparatus 13 executes the print inspection process using the acquired print determination reference 85c. Further, the mounting inspection device 15 executes the mounting inspection process using the acquired mounting determination reference 85d. Here, the mounting inspection process of the mounting inspection apparatus 15 will be described in detail. The CPU 50a of the mounting inspection apparatus 15 performs the processing of steps S500 to S520 of the mounting inspection routine of FIG. 10, and then acquires the solder measurement value of the component position to be inspected in step S515, and in step S530, The set mounting criterion 85d is acquired. Next, the CPU 50a selects a predetermined range of the mounting determination standard 85d including the acquired solder measurement value (here, solder volume ratio), and selects a mounting determination standard associated with the predetermined range of the solder measurement value. To do. Specifically, when the solder measurement value at this component position is 120% in terms of the solder volume ratio, the CPU 50a sets the mounting determination criterion for the positional deviation amount to 100 μm (see FIG. 15). Subsequently, the CPU 50a performs the process of step S530 for determining whether or not the component measurement value acquired in step S520 is within the error range based on whether or not the selected mounting determination criterion is exceeded. In this way, in the board S that is currently inspected for mounting, a more appropriate determination criterion is set by using the solder measurement value of the component position to be inspected for mounting and the mounting criterion determined based on the defect rate matrix 85b. It can be done.
 ステップS735のあと、CPU82は、印刷実行条件及び実装実行条件を各特定の部品位置ごとに設定する処理を行う(ステップS740)。まず、印刷実行条件の変更について説明する。例えば、現状の実装実行条件では部品の位置ずれ量が100μmを超えると推定される場合には、不良率3%を許容値とすると、不良率マトリックス85b(図14)において、不良率が許容値を満たすには、はんだ体積を90~110%にする必要がある。この場合、CPU82は、はんだ体積を安定するべく、該当する部品位置でのスキージ29の移動速度を低下するよう印刷実行条件を変更してもよいし、該当する部品位置でのスキージ29の押圧力を上昇するよう印刷実行条件を変更してもよい。一方、現状の実装実行条件であれば部品の位置ずれ量が50μm未満に収まると推定される場合には、不良率3%を許容値とすると、はんだ体積が大きくばらついても不良率マトリックス85b(図14)において不良率が許容値を満たすことになる。この場合、CPU82は、該当する部品位置でのスキージ29の移動速度を増加するよう印刷実行条件を変更してもよいし、該当する部品位置でのスキージ29の押圧力を低下するよう印刷実行条件を変更してもよい。印刷実行条件を変更するに際して、該当する部品位置でのスキージ29の移動速度の変更において、CPU82は、例えば、複数の移動速度の段階を設定しておき、この移動速度を1段階変更するものとしてもよい。あるいは、スキージ29の移動速度の変更において、CPU82は、現在の移動速度から所定の移動速度を加減するものとしてもよい。 After step S735, the CPU 82 performs processing for setting the print execution condition and the mounting execution condition for each specific component position (step S740). First, the change of the print execution condition will be described. For example, if it is estimated that the amount of component misalignment exceeds 100 μm under the current mounting execution conditions, assuming that the defect rate is 3%, the defect rate is the allowable value in the defect rate matrix 85b (FIG. 14). In order to satisfy the requirement, the solder volume needs to be 90 to 110%. In this case, the CPU 82 may change the print execution condition so as to reduce the moving speed of the squeegee 29 at the corresponding part position in order to stabilize the solder volume, or the pressing force of the squeegee 29 at the corresponding part position. The print execution condition may be changed so as to increase the value. On the other hand, if it is estimated that the amount of component misalignment will be less than 50 μm under the current mounting execution conditions, the defect rate matrix 85b ( In FIG. 14), the defect rate satisfies the allowable value. In this case, the CPU 82 may change the print execution condition so as to increase the moving speed of the squeegee 29 at the relevant part position, or the print execution condition so as to reduce the pressing force of the squeegee 29 at the relevant part position. May be changed. When changing the printing execution condition, in changing the moving speed of the squeegee 29 at the corresponding part position, for example, the CPU 82 sets a plurality of moving speed stages and changes the moving speed by one stage. Also good. Alternatively, in changing the moving speed of the squeegee 29, the CPU 82 may add or subtract a predetermined moving speed from the current moving speed.
 次に、実装実行条件の変更について説明する。実装実行条件は、例えば、実装ヘッド47の移動速度、実装ヘッド47の加速度、吸着ノズル49の上下速度、吸着ノズル49の上下加速度及び吸着ノズル49の吸着力などのうち1以上を変更するものとしてもよい。具体的には、取得したはんだ測定値のはんだ体積比率が70~90%であるときには、不良率3%を許容値とすると、不良率マトリックス85bにおいて不良率が許容値を満たすには部品の位置ずれ量は50μm未満の必要がある。この場合は、CPU82は、部品の位置ずれ量を小さくするべく、該当する部品位置への部品Pの移動速度を低下させるよう実装実行条件を変更してもよいし、該当する部品位置への部品Pの吸着力を上昇させるよう実装実行条件を変更してもよい。こうすれば、部品Pの実装処理をより安定化することができる。一方、取得したはんだ測定値のはんだ体積比率が90~110%であるときには、不良率3%を許容値とすると、不良率マトリックス85bにおいて部品の位置ずれ量が150μmでも不良率が許容値を満たす。この場合は、CPU82は、該当する部品位置への部品Pの移動速度を増加させるよう実装実行条件を変更してもよいし、該当する部品位置への部品Pの吸着力を低下させるよう実装実行条件を変更してもよい。実装ヘッド47の移動速度の変更において、例えば、複数の移動速度の段階を設定しておき、CPU82は、この移動速度を1段階変更するものとしてもよい。あるいは、CPU82は、現在の移動速度から所定の移動速度を変更するものとしてもよい。また、吸着ノズル49の吸引力の変更において、例えば、複数の吸引力の段階を設定しておき、CPU82は、この吸引力を1段階変更するものとしてもよい。あるいは、CPU82は、吸着ノズル49の吸引力の変更において、CPU82は、現在の吸引力に所定の吸引力を加減するものとしてもよい。CPU82は、設定した印刷実行条件を含む印刷条件情報、及び設定した実装実行条件を含む実装条件情報をHDD85に格納する。続いて、CPU82は、設定した印刷条件情報を印刷装置12へ出力し、設定した実装条件情報を実装処理装置14へ出力する(ステップS745)。なお、印刷条件情報及び実装条件情報の出力は、印刷装置12や実装処理装置14からの依頼に基づいて行うものとしてもよい。 Next, the change of implementation execution conditions will be explained. As the mounting execution condition, for example, one or more of the moving speed of the mounting head 47, the acceleration of the mounting head 47, the vertical speed of the suction nozzle 49, the vertical acceleration of the suction nozzle 49, and the suction force of the suction nozzle 49 are changed. Also good. Specifically, when the solder volume ratio of the acquired solder measurement value is 70 to 90%, assuming that the defect rate 3% is an allowable value, the position of the component is required to satisfy the allowable value in the defect rate matrix 85b. The amount of deviation needs to be less than 50 μm. In this case, the CPU 82 may change the mounting execution condition so as to reduce the moving speed of the component P to the corresponding component position in order to reduce the displacement amount of the component, or the component to the corresponding component position. The mounting execution condition may be changed to increase the P adsorption force. In this way, it is possible to further stabilize the mounting process of the component P. On the other hand, when the solder volume ratio of the acquired solder measurement value is 90 to 110%, assuming that the defective rate is 3%, the defective rate satisfies the allowable value even if the positional deviation amount of the component is 150 μm in the defective rate matrix 85b. . In this case, the CPU 82 may change the mounting execution condition so as to increase the moving speed of the component P to the corresponding component position, or the mounting execution may be performed so as to reduce the adsorption force of the component P at the corresponding component position. Conditions may be changed. In changing the moving speed of the mounting head 47, for example, a plurality of moving speed stages may be set, and the CPU 82 may change this moving speed by one stage. Alternatively, the CPU 82 may change the predetermined movement speed from the current movement speed. In changing the suction force of the suction nozzle 49, for example, a plurality of suction force stages may be set, and the CPU 82 may change the suction force by one stage. Alternatively, the CPU 82 may change the suction force of the suction nozzle 49 by adding or subtracting a predetermined suction force to the current suction force. The CPU 82 stores in the HDD 85 printing condition information including the set printing execution condition and mounting condition information including the set mounting execution condition. Subsequently, the CPU 82 outputs the set printing condition information to the printing apparatus 12, and outputs the set mounting condition information to the mounting processing apparatus 14 (step S745). Note that the printing condition information and the mounting condition information may be output based on a request from the printing apparatus 12 or the mounting processing apparatus 14.
 そして、CPU82は、生産が完了したか否かを、予定したすべての基板Sのリフロー処理が終了したか否かに基づいて判定する(ステップS750)。生産完了していないときには、CPU82は、ステップS700以降の処理を実行する。即ち、CPU82は、ステップS700で、新たにリフロー処理後の基板数が所定数以上になったか否かを判定し、所定数以上測定値及び不良率が蓄積された際には、上述したように、不良率マトリックス85bを生成(更新)し、印刷判定基準85cや実装判定基準85d、印刷条件情報、実装条件情報などを更新するのである。一方、ステップS750で生産完了したときには、そのままこのルーチンを終了する。このように、対応関係情報を用いて、印刷判定基準85cや実装判定基準85d、印刷条件情報、実装条件情報などをより適した値になるよう変更するのである。 Then, the CPU 82 determines whether or not the production is completed based on whether or not the scheduled reflow processing of all the substrates S is completed (step S750). When the production is not completed, the CPU 82 executes the processes after step S700. That is, in step S700, the CPU 82 determines whether or not the number of substrates after the reflow processing has newly increased to a predetermined number or more, and when the measured value and the defect rate are accumulated more than the predetermined number, as described above. Then, the defect rate matrix 85b is generated (updated), and the printing determination reference 85c, the mounting determination reference 85d, the printing condition information, the mounting condition information, and the like are updated. On the other hand, when the production is completed in step S750, this routine is finished as it is. As described above, the correspondence determination information is used to change the print determination reference 85c, the mounting determination reference 85d, the printing condition information, the mounting condition information, and the like to more appropriate values.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の検査データ取得部90が本発明の情報取得手段に相当し、対応関係生成部91が情報生成手段に相当し、条件設定部93が基準設定手段及び条件設定手段に相当し、管理コンピュータ80が情報制御装置に相当する。なお、本実施形態では、実装システム10の動作を説明することにより本発明の情報制御方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The inspection data acquisition unit 90 of this embodiment corresponds to the information acquisition unit of the present invention, the correspondence generation unit 91 corresponds to the information generation unit, the condition setting unit 93 corresponds to the reference setting unit and the condition setting unit, and management The computer 80 corresponds to the information control device. In the present embodiment, an example of the information control method of the present invention is also clarified by describing the operation of the mounting system 10.
 以上説明した第1実施形態の管理コンピュータ80によれば、印刷検査処理の測定情報(はんだ測定値)と、実装検査処理の測定情報(部品測定値)と、リフロー検査処理の結果情報(検査結果)とを取得し、取得した印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた不良率マトリックス85b(対応関係情報)を生成する。次に、管理コンピュータ80は、生成された対応関係情報に基づいて実装検査処理の実装判定基準を設定する。そして、実装検査装置15は、この設定した実装判定基準を用いて実装検査処理を実行する。実装システムで実行する処理は、例えば、基板Sにはんだを印刷する印刷処理や、はんだを印刷した基板Sに部品Pを配置する実装処理や、はんだをリフローするリフロー処理などがある。例えば、はんだの形成位置がずれて部品Pの配置位置がずれてしまったとしても、リフロー処理時に加熱されたはんだが移動して部品Pが正常位置になることがある。このように、はんだの状態や部品Pの配置状態などは、リフロー後の最終的な状態に相互に関係することがある。この管理コンピュータ80では、印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた対応関係情報を生成し、これに基づいて判定基準を設定する。このため、管理コンピュータ80では、相互に関係する各処理の測定情報を用いて、より適正な判定基準を設定することができ、ひいては、ラインを停止して行う作業者の基板Sの確認作業などをより抑制することができる。したがって、実装システム10は、その処理効率をより高めることができる。 According to the management computer 80 of the first embodiment described above, the measurement information (solder measurement value) of the print inspection process, the measurement information (component measurement value) of the mounting inspection process, and the result information (inspection result) of the reflow inspection process ) And a defect rate matrix 85b (correspondence information) in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other. Next, the management computer 80 sets a mounting determination criterion for mounting inspection processing based on the generated correspondence information. Then, the mounting inspection apparatus 15 performs a mounting inspection process using the set mounting determination standard. The processing executed by the mounting system includes, for example, a printing process for printing solder on the board S, a mounting process for placing the component P on the board S printed with solder, and a reflow process for reflowing solder. For example, even if the solder formation position is shifted and the placement position of the component P is shifted, the solder heated during the reflow process may move and the component P may be in a normal position. As described above, the state of the solder and the arrangement state of the component P may be related to the final state after the reflow. The management computer 80 generates correspondence information in which the measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other, and the determination criterion is set based on the correspondence information. For this reason, the management computer 80 can set more appropriate determination criteria using the measurement information of the processes related to each other, and as a result, the work of checking the substrate S of the worker performed by stopping the line, etc. Can be further suppressed. Therefore, the mounting system 10 can further increase the processing efficiency.
 また、管理コンピュータ80は、はんだ測定値の所定範囲と、部品測定値の所定範囲と、はんだ測定値の所定範囲及び部品測定値の所定範囲に含まれる部品Pの不良率(良否結果の統計値)と、を複数の所定範囲に対して対応付けた不良率マトリックス85bを生成する。このため、管理コンピュータ80は、測定値の所定範囲や不良率を用いて処理効率をより高めることができる。更に、管理コンピュータ80は、不良率が所定の許容値を満たす実装判定基準を設定するため、所定の許容値の範囲内で実装システム10の処理効率をより高めることができる。更にまた、管理コンピュータ80は、はんだ測定値と部品測定値とリフロー後の良否結果と、を複数の特定位置に対して対応付けた不良率マトリックス85bを生成するため、特定位置ごとに、より適正な実装判定基準を設定することができる。 The management computer 80 also determines a predetermined range of the solder measurement value, a predetermined range of the component measurement value, a defect rate of the component P included in the predetermined range of the solder measurement value and the predetermined range of the component measurement value (statistic value of the pass / fail result). ) Are associated with a plurality of predetermined ranges. For this reason, the management computer 80 can further improve the processing efficiency by using the predetermined range of measurement values and the defect rate. Furthermore, since the management computer 80 sets a mounting determination standard that satisfies the predetermined allowable value of the defect rate, the processing efficiency of the mounting system 10 can be further increased within the predetermined allowable value range. Furthermore, since the management computer 80 generates the defect rate matrix 85b in which the solder measurement values, the component measurement values, and the quality results after reflow are associated with a plurality of specific positions, the management computer 80 is more appropriate for each specific position. It is possible to set various mounting criteria.
 また、管理コンピュータ80は、所定数の基板Sのリフロー処理を実行したあと不良率マトリックス85bを生成するため、信頼性をより高めた判定基準を設定することができ、より確実に実装システムの処理効率を高めることができる。更に、管理コンピュータ80は、不良率マトリックス85bに基づいて印刷処理の印刷実行条件及び実装処理の実装実行条件を設定するため、より適正な実行条件を設定することができ、ひいては、ラインを停止して行う作業者の確認作業などをより抑制することができる。したがって、実装システムの処理効率をより高めることができる。更にまた、管理コンピュータ80は、はんだ測定値の1種と部品測定値の1種と不良率とを対応づけた不良率マトリックス85bを用いるため、比較的簡便な処理で対応関係情報を生成することができる。 In addition, since the management computer 80 generates the defect rate matrix 85b after executing the reflow processing of the predetermined number of substrates S, it is possible to set a determination criterion with higher reliability, and more reliably process the mounting system. Efficiency can be increased. Furthermore, since the management computer 80 sets the printing execution condition of the printing process and the mounting execution condition of the mounting process based on the defect rate matrix 85b, it is possible to set a more appropriate execution condition, and thus stop the line. Thus, it is possible to further suppress the confirmation work of the worker. Therefore, the processing efficiency of the mounting system can be further increased. Furthermore, since the management computer 80 uses the defect rate matrix 85b in which one type of solder measurement value and one type of component measurement value are associated with the defect rate, the correspondence computer generates the correspondence information by a relatively simple process. Can do.
 一般的に、実装システムでは、リフロー後に実装異常にならないように、印刷検査装置13や実装検査装置15では、印刷判定基準や実装判定基準をより厳しい値に設定する。しかしながら、例えば、はんだの印刷位置がずれたり、部品の配置位置がずれたりしていても、リフロー処理時に加熱されたはんだが移動して部品が正常位置になることがある。ここでは、印刷検査装置13の測定値、実装検査装置15の測定値及び不良率の対応関係を用いて、印刷判定基準や実装判定基準をより緩やかな値に設定することができる。 Generally, in the mounting system, the print inspection standard and the mounting standard are set to stricter values in the print inspection device 13 and the mounting inspection device 15 so that the mounting abnormality does not occur after reflow. However, for example, even if the printing position of the solder is shifted or the arrangement position of the component is shifted, the heated solder may be moved during the reflow process and the component may be in a normal position. Here, the print determination standard and the mounting determination standard can be set to more gradual values using the correspondence relationship between the measurement value of the print inspection apparatus 13, the measurement value of the mounting inspection apparatus 15, and the defect rate.
 (第2実施形態)
 次に、本発明を実施するための第2実施形態を説明する。この第2実施形態では、各部品位置での印刷検査処理の測定データの偏差と、実装検査処理の測定データの偏差と、不良率マトリックス85bとを用いて印刷判定基準と実装判定基準とを設定する態様を主として説明する。なお、この第2実施形態では、実装システム10の構成は第1実施形態と変わらず、管理コンピュータ80の処理内容に相違があるだけであるので、上述した第1実施形態と同様の構成及び処理内容については同じ符号及びステップ番号を付し、その具体的な説明を省略する。
(Second Embodiment)
Next, a second embodiment for carrying out the present invention will be described. In the second embodiment, the print determination standard and the mounting determination standard are set using the deviation of the measurement data of the print inspection process, the deviation of the measurement data of the mounting inspection process, and the defect rate matrix 85b at each component position. The aspect to perform is mainly demonstrated. In the second embodiment, the configuration of the mounting system 10 is the same as that of the first embodiment, and only the processing contents of the management computer 80 are different. Therefore, the same configuration and processing as those of the first embodiment described above. The same reference numerals and step numbers are assigned to the contents, and a specific description thereof is omitted.
 管理コンピュータ80のCPU82は、図12に示す対応情報生成条件設定処理ルーチンを実行する。このルーチンを開始すると、CPU82は、ステップS700~S720の処理を実行する。即ち、リフロー検査処理の検査結果が十分信頼性のある値になるまで待機したのち、不良率マトリックス85bを生成する。次に、CPU82は、結果情報85aを用いて、特定の部品位置のはんだ測定値の平均値及び標準偏差と部品測定値の平均値及び標準偏差とを求め、これらを対応づけた統計対応情報85eを生成する。図16は、統計対応情報85eの一例の説明図である。統計対応情報85eは、図16に示すように、部品位置(座標)、部品種別、はんだ測定値としてのはんだ高さ、はんだ面積、はんだ体積及び位置ずれ量や、部品測定値としての基板に対する位置ずれ量、はんだに対する位置ずれ量及び回転角などの平均値及び標準偏差を各部品位置ごと対応付けた情報である。この統計対応情報85eでは、特定の部品位置ではんだが適正に印刷されている傾向にあることや、特定の位置では部品Pの位置ずれ量が小さく実装状態が安定している傾向にあることなど、はんだの状態、部品の位置ずれ状態の傾向を把握することができる。 The CPU 82 of the management computer 80 executes a correspondence information generation condition setting processing routine shown in FIG. When this routine is started, the CPU 82 executes the processes of steps S700 to S720. That is, after waiting until the inspection result of the reflow inspection process has a sufficiently reliable value, the defect rate matrix 85b is generated. Next, using the result information 85a, the CPU 82 obtains the average value and standard deviation of the solder measurement values at the specific part position and the average value and standard deviation of the component measurement values, and associates them with statistical correspondence information 85e. Is generated. FIG. 16 is an explanatory diagram of an example of the statistical correspondence information 85e. As shown in FIG. 16, the statistical correspondence information 85e includes the component position (coordinates), the component type, the solder height as the solder measurement value, the solder area, the solder volume and the displacement amount, and the position with respect to the substrate as the component measurement value. This is information in which an average value and a standard deviation such as a deviation amount, a positional deviation amount with respect to solder, and a rotation angle are associated with each component position. In the statistical correspondence information 85e, the solder tends to be printed properly at a specific component position, or the mounting state tends to be small at a specific position with a small amount of displacement of the component P. It is possible to grasp the tendency of the state of solder and the positional deviation of parts.
 続いて、CPU82は、ステップS725で、不良率マトリックス85b及び統計対応情報85eを用いて印刷判定基準85cを各特定の部品位置ごとに設定する処理を行う。例えば、CPU82は、統計対応情報85eに基づき、特定の部品位置において、部品の位置ずれ量が小さいときには、はんだ体積の印刷判定基準を緩い値に変更することができる。具体的には、統計対応情報85eにおいて、平均値±3σ(標準偏差)の範囲にデータの99.7%が存在し、部品の位置ずれ量の平均値が5μm、3σが40μmとすると、位置ずれ量は45μmになると予想される。このとき、不良率3%を許容値とした場合、CPU82は、不良率マトリックス85b(図14)を参照して、部品の位置ずれ量が50μm未満の範囲、例えば、はんだ体積率が70%以上130%未満の範囲の印刷判定基準85cを設定することができる。一方、CPU82は、特定の部品位置において、部品の位置ずれ量が大きく、不良率が大きいときには、はんだ体積の印刷判定基準を厳しい値に変更することができる。具体的には、統計対応情報85eの平均値及び標準偏差から部品の位置ずれ量が120μmになると予想された場合、不良率3%を許容値とすると、CPU82は、不良率マトリックス85b(図14)を参照して、部品の位置ずれ量が150μm未満の範囲に対応する、はんだ体積率が90%以上110%未満の範囲の印刷判定基準85cを設定することができる。 Subsequently, in step S725, the CPU 82 performs a process of setting the print determination reference 85c for each specific component position using the defect rate matrix 85b and the statistical correspondence information 85e. For example, based on the statistical correspondence information 85e, the CPU 82 can change the print determination criterion for the solder volume to a loose value when the amount of component displacement is small at a specific component position. Specifically, in the statistical correspondence information 85e, if 99.7% of the data exists in the range of the average value ± 3σ (standard deviation), the average value of the amount of positional deviation of the parts is 5 μm, and 3σ is 40 μm, The amount of deviation is expected to be 45 μm. At this time, when the defective rate 3% is set as an allowable value, the CPU 82 refers to the defective rate matrix 85b (FIG. 14), and the component misalignment amount is less than 50 μm, for example, the solder volume ratio is 70% or more. The print criterion 85c can be set within a range of less than 130%. On the other hand, the CPU 82 can change the print determination criterion for the solder volume to a strict value when the displacement amount of the component is large and the defect rate is large at a specific component position. Specifically, if it is predicted from the average value and standard deviation of the statistical correspondence information 85e that the amount of positional deviation of the component is 120 μm, the CPU 82 determines that the defective rate 3% is an allowable value, and the CPU 82 determines the defective rate matrix 85b (FIG. 14). ), It is possible to set the print determination standard 85c in the range where the solder volume ratio is 90% or more and less than 110% corresponding to the range where the amount of positional deviation of the component is less than 150 μm.
 続いて、CPU82は、ステップS730で、不良率マトリックス85b及び統計対応情報85eを用いて実装判定基準85dを各特定の部品位置ごとに設定する処理を行う。CPU82は、特定の部品位置において、良好なはんだ印刷が継続して行われている、例えば、はんだ体積の比率が100%近傍で安定しているときには、位置ずれ量の実装判定基準を緩い値に変更することができる。具体的には、上記と同様に、不良率3%を許容値とし、統計対応情報85eの平均値及び標準偏差からはんだ体積率が110%未満になると予想された場合、CPU82は、不良率マトリックス85b(図14)を参照して、はんだ体積率が90%以上110%未満の範囲に対応する、部品の位置ずれ量が150μm未満の実装判定基準85dを設定することができる。一方、CPU82は、特定の部品位置において、はんだ印刷が不安定である、例えば、はんだ体積比率が70%以下や130%超過であるときには、位置ずれ量の実装判定基準を厳しい値に変更することができる。具体的には、不良率3%を許容値とし、統計対応情報85eの平均値及び標準偏差からはんだ体積率が120%になると予想された場合、CPU82は、不良率マトリックス85b(図14)を参照して、はんだ体積率が70%以上130%未満の範囲に対応する、部品の位置ずれ量が50μm未満の実装判定基準85dを設定することができる。あるいは、CPU82は、特定の部品位置において、はんだ印刷の状態にかかわらず不良率が低いときには、はんだ体積の印刷判定基準を緩い値に変更することができる。また、CPU82は、特定の部品位置において、位置ずれ量の大きさにかかわらず不良率が低いときには、位置ずれ量の実装判定基準を緩い値に変更することができる。このように、CPU82は、印刷判定基準や実装判定基準を変更するときには、不良率マトリックス85bや統計対応情報85eを利用して、不良率の許容値を満たすように、印刷判定基準85cや実装判定基準85dを設定するのである。 Subsequently, in step S730, the CPU 82 performs a process of setting the mounting determination reference 85d for each specific component position using the defect rate matrix 85b and the statistical correspondence information 85e. The CPU 82 continues to perform good solder printing at a specific component position. For example, when the solder volume ratio is stable near 100%, the mounting determination criterion for the positional deviation amount is set to a loose value. Can be changed. Specifically, in the same manner as described above, when the defect rate 3% is an allowable value and the solder volume ratio is predicted to be less than 110% from the average value and standard deviation of the statistical correspondence information 85e, the CPU 82 With reference to 85b (FIG. 14), it is possible to set a mounting determination reference 85d corresponding to a range in which the solder volume ratio is 90% or more and less than 110% and whose component displacement is less than 150 μm. On the other hand, when the solder printing is unstable at a specific component position, for example, when the solder volume ratio is 70% or less or exceeds 130%, the CPU 82 changes the mounting judgment standard of the positional deviation amount to a strict value. Can do. Specifically, when the defective rate 3% is an allowable value and the solder volume ratio is predicted to be 120% from the average value and standard deviation of the statistical correspondence information 85e, the CPU 82 uses the defective rate matrix 85b (FIG. 14). With reference to this, it is possible to set the mounting determination standard 85d corresponding to a range in which the solder volume ratio is 70% or more and less than 130% and the component displacement amount is less than 50 μm. Alternatively, when the defective rate is low regardless of the solder printing state at the specific component position, the CPU 82 can change the printing determination criterion for the solder volume to a loose value. Further, when the defect rate is low regardless of the amount of misalignment at a specific component position, the CPU 82 can change the mounting criterion for the misalignment amount to a loose value. As described above, when changing the print determination criterion or the mounting determination criterion, the CPU 82 uses the defect rate matrix 85b or the statistical correspondence information 85e to satisfy the print determination criterion 85c or the mounting determination so as to satisfy the allowable value of the defect rate. The reference 85d is set.
 そして、ステップS735~S750の処理を行い、このルーチンを終了する。印刷判定基準85cを取得した印刷検査装置13は、この印刷判定基準85cを用いて、各部品位置の印刷検査処理を実行する。また、実装判定基準85dを取得した実装検査装置15は、この実装判定基準85dを用いて、各部品位置の実装検査処理を実行する。 Then, the processing of steps S735 to S750 is performed, and this routine is finished. The print inspection apparatus 13 that has acquired the print determination reference 85c executes print inspection processing for each component position using the print determination reference 85c. Moreover, the mounting inspection apparatus 15 which acquired the mounting determination reference | standard 85d performs the mounting inspection process of each component position using this mounting determination reference | standard 85d.
 以上説明した第2実施形態の管理コンピュータ80によれば、印刷検査処理の測定情報(はんだ測定値)と、実装検査処理の測定情報(部品測定値)と、リフロー検査処理の結果情報(検査結果)とを取得し、取得した印刷検査処理の測定情報と、実装検査処理の測定情報と、リフロー検査処理の結果情報とを対応付けた不良率マトリックス85b及び統計対応情報85e(対応関係情報)を生成する。次に、管理コンピュータ80は、生成された対応関係情報に基づいて印刷検査処理の印刷判定基準や実装検査処理の実装判定基準を設定する。したがって、管理コンピュータ80では、相互に関係する各処理の測定情報を用いて、より適正な判定基準を設定することができ、ひいては、ラインを停止して行う作業者の基板Sの確認作業などをより抑制することができる。したがって、実装システム10は、その処理効率をより高めることができる。 According to the management computer 80 of the second embodiment described above, the measurement information (solder measurement value) of the print inspection process, the measurement information (component measurement value) of the mounting inspection process, and the result information (inspection result) of the reflow inspection process ), And a defect rate matrix 85b and statistical correspondence information 85e (corresponding relationship information) in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated with each other. Generate. Next, the management computer 80 sets a printing determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information. Therefore, the management computer 80 can set more appropriate determination criteria by using the measurement information of the processes related to each other. As a result, the operator can confirm the substrate S by stopping the line. It can be suppressed more. Therefore, the mounting system 10 can further increase the processing efficiency.
 また、管理コンピュータ80は、統計対応情報85eを用いて、はんだの印刷状態が安定しているときに不良率マトリックス85bを用いて実装判定基準85dを設定し、部品Pの配置状態が安定しているときに不良率マトリックス85bを用いて印刷判定基準85cを設定するため、より適正な印刷判定基準85cや実装判定基準85dを設定することができる。 Further, the management computer 80 uses the statistical correspondence information 85e to set the mounting determination reference 85d using the defect rate matrix 85b when the solder printing state is stable, and the placement state of the component P is stabilized. Since the print determination standard 85c is set using the defect rate matrix 85b when the printer is in the middle, the more appropriate print determination standard 85c and mounting determination standard 85d can be set.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、CPU82は、特定の部品位置に対応する不良率マトリックス85bを生成するものとしたが、特にこれに限定されず、例えば、同じ部品Pを異なる部品位置に複数箇所にわたって配置する場合、この部品種別ごとに不良率マトリックスを生成するものとしてもよい。大きさや重さが同じである部品Pであれば、不良率マトリックスも同じ傾向になることがあるため、これを共通とすることができる。こうすれば、不良率マトリックス85bの簡素化を図ることができる。 For example, in the above-described embodiment, the CPU 82 generates the defect rate matrix 85b corresponding to a specific component position. However, the present invention is not particularly limited thereto. For example, the same component P is spread over a plurality of locations at different component positions. In the case of arrangement, a defect rate matrix may be generated for each component type. If the parts P have the same size and weight, the defect rate matrix may have the same tendency. In this way, the defect rate matrix 85b can be simplified.
 上述した実施形態では、CPU82は、不良率マトリックス85bを用いて部品測定値の所定範囲の上限値に実装判定基準を設定するものとしたが、特にこれに限定されない。例えば、CPU82は、不良率マトリックス85bを用いて部品測定値の所定範囲の中間値(図14で50≦n<100μmのとき75μm)を実装判定基準に設定するものとしてもよいし、部品測定値の所定範囲の下限値(図14で50≦n<100μmのとき50μm)を実装判定基準に設定するものとしてもよい。 In the above-described embodiment, the CPU 82 sets the mounting determination standard to the upper limit value of the predetermined range of the component measurement values using the defect rate matrix 85b, but is not particularly limited thereto. For example, the CPU 82 may set an intermediate value (75 μm when 50 ≦ n <100 μm in FIG. 14) as a mounting determination reference using the defect rate matrix 85b as a mounting determination criterion. The lower limit value of the predetermined range (50 μm when 50 ≦ n <100 μm in FIG. 14) may be set as the mounting criterion.
 上述した実施形態では、印刷検査装置13及び実装検査装置15の判定基準(印刷判定基準85c及び実装判定基準85d)を設定すると共に、印刷装置12及び実装処理装置14の実行条件(印刷条件情報21a及び実装条件情報41a)を設定するものとして説明したが、例えばいずれか1つのみを設定するものとし、他の設定を省略するものとしてもよい。具体的には、管理コンピュータ80は、不良率マトリックス85bに基づいて印刷検査装置13及び実装検査装置15の判定基準(印刷判定基準85c及び実装判定基準85d)の1以上を設定するものとしてもよい。あるいは、実装システムは、不良率マトリックス85bに基づいて印刷装置12及び実装処理装置14の実行条件(印刷条件情報21a及び実装条件情報41a)の1以上を設定するものとしてもよい。こうしても、実装システムは、対応関係情報を用いることにより、その処理効率をより高めることができる。 In the above-described embodiment, the determination criteria (print determination criteria 85c and mounting determination criteria 85d) of the print inspection device 13 and the mounting inspection device 15 are set, and the execution conditions (print condition information 21a) of the printing device 12 and the mounting processing device 14 are set. However, only one of them may be set, and other settings may be omitted. Specifically, the management computer 80 may set one or more determination criteria (print determination criteria 85c and mounting determination criteria 85d) of the print inspection device 13 and the mounting inspection device 15 based on the defect rate matrix 85b. . Alternatively, the mounting system may set one or more execution conditions (printing condition information 21a and mounting condition information 41a) of the printing device 12 and the mounting processing device 14 based on the defect rate matrix 85b. Even in this case, the mounting system can further increase the processing efficiency by using the correspondence information.
 上述した実施形態では、不良率マトリックス85bは、はんだ測定値としてのはんだ体積と、部品測定値としての位置ずれ量と、不良率とを対応づけた対応関係情報としたが、特にこれに限定されない。例えば、対応関係情報は、1種以上のはんだ測定値と、1種以上の部品測定値と、リフロー後の検査結果とを対応付けたものとしてもよい。こうすれば、より細かな対応関係情報を生成することができる。このはんだ測定値は、はんだの高さ、はんだの面積、はんだの体積(量)及びはんだの位置のうち1種以上を含むものとしてもよい。また、部品測定値は、基板に対する部品の位置ずれ量、印刷されたはんだに対する部品の位置ずれ量及び部品の回転角度のうち1種以上を含むものとしてもよい。また、部品測定値には、印刷されたはんだと接触する部品Pの面積を含むものとしてもよい。 In the embodiment described above, the defect rate matrix 85b is correspondence information in which the solder volume as the solder measurement value, the positional deviation amount as the component measurement value, and the defect rate are associated with each other, but is not particularly limited thereto. . For example, the correspondence relationship information may be obtained by associating one or more types of solder measurement values, one or more types of component measurement values, and an inspection result after reflow. In this way, more detailed correspondence information can be generated. The solder measurement value may include one or more of the solder height, the solder area, the solder volume (amount), and the solder position. In addition, the component measurement value may include one or more of a component displacement amount with respect to the substrate, a component displacement amount with respect to the printed solder, and a component rotation angle. In addition, the component measurement value may include the area of the component P that contacts the printed solder.
 上述した実施形態では、管理コンピュータ80は、LAN18を介して、印刷判定基準85c、実装判定基準85d、印刷条件情報21a及び実装条件情報41aを印刷装置12、印刷検査装置13、実装処理装置14及び実装検査装置15に出力するものとしたが、特にこれに限定されず、管理コンピュータ80のディスプレイ88に作業指示を表示出力するものとしてもよい。 In the above-described embodiment, the management computer 80 transmits the print determination reference 85c, the mounting determination reference 85d, the print condition information 21a, and the mount condition information 41a via the LAN 18 to the printing device 12, the print inspection device 13, the mounting processing device 14, and the like. Although output to the mounting inspection apparatus 15 is not particularly limited, the work instruction may be displayed on the display 88 of the management computer 80.
 上述した実施形態では、管理コンピュータ80は、ステップS700で、リフロー検査処理の検査結果が十分信頼性のある値になるまで待機するものとしたが、例えば、実験などにより適正な不良率マトリックス85bを生成するものとすれば、特にこの処理を省略してもよい。 In the embodiment described above, the management computer 80 waits until the inspection result of the reflow inspection process becomes a sufficiently reliable value in step S700. However, for example, an appropriate defect rate matrix 85b is obtained by an experiment or the like. If it is to be generated, this processing may be omitted.
 上述した実施形態では、特定の部品位置ごとに印刷検査処理の測定値と、実装検査処理の測定値と、リフロー検査処理の結果情報とを対応づけた不良率マトリックス85bを生成するものとしたが、特にこれに限定されない。例えば、基板S全体の印刷検査処理の測定値と、実装検査処理の測定値と、リフロー検査処理の結果情報とを対応づけた不良率マトリックスを生成するものとしてもよい。こうしても、基板S全体での印刷状態、実装状態などの傾向を把握することができ、ひいては、実装システムの処理効率をより高めることができる。 In the embodiment described above, the defect rate matrix 85b in which the measurement value of the print inspection process, the measurement value of the mounting inspection process, and the result information of the reflow inspection process are generated for each specific component position is generated. However, it is not particularly limited to this. For example, a defect rate matrix in which the measurement values of the print inspection process for the entire substrate S, the measurement values of the mounting inspection process, and the result information of the reflow inspection process are associated with each other may be generated. Even in this way, it is possible to grasp the tendency of the printed state, the mounted state, etc. in the entire substrate S, and as a result, the processing efficiency of the mounting system can be further improved.
 上述した実施形態では、本発明の情報制御装置を管理コンピュータ80が備えるものとしたが、特にこれに限定されず、印刷装置12、印刷検査装置13、実装処理装置14、実装検査装置15、リフロー装置16及びリフロー検査装置17のいずれか1つの装置が、本発明の情報制御装置の機能を備えるものとしてもよい。あるいは、実装システムは、本発明の情報制御装置の機能を上記装置の1以上に分担させて備えるものとしてもよい。 In the above-described embodiment, the management computer 80 includes the information control device of the present invention. However, the present invention is not limited to this, and the printing device 12, the print inspection device 13, the mounting processing device 14, the mounting inspection device 15, and reflow. Any one of the device 16 and the reflow inspection device 17 may have the function of the information control device of the present invention. Or a mounting system is good also as what equips one or more of the said apparatuses with the function of the information control apparatus of this invention, and is provided.
 上述した実施形態では、対応情報生成条件設定処理ルーチンにおいて、リフロー処理した基板数が所定数となるたびに、不良率マトリックス85bを更新するものとして説明したが、特にこれに限定されず、この所定数を変えてもよい。例えば、CPU82は、1回目の所定数に対して2回目以降の所定数を少なくするものとしてもよいし、多くするものとしてもよい。また、CPU82は、不良率マトリックス85bを1回だけ生成するものとしてもよい。 In the above-described embodiment, it has been described that the defect rate matrix 85b is updated every time the number of substrates subjected to reflow processing reaches a predetermined number in the correspondence information generation condition setting processing routine. You may change the number. For example, the CPU 82 may reduce or increase the predetermined number for the second and subsequent times with respect to the predetermined number for the first time. Further, the CPU 82 may generate the defect rate matrix 85b only once.
 上述した実施形態では、管理コンピュータ80が、メインルーチンで印刷装置12、印刷検査装置13、実装処理装置14、実装検査装置15、リフロー装置16及びリフロー検査装置17へ実行指令を出力するものとして説明したが、特にこれに限定されず、各々の装置が各々処理を行うものとしてもよい。 In the above-described embodiment, it is assumed that the management computer 80 outputs an execution command to the printing device 12, the print inspection device 13, the mounting processing device 14, the mounting inspection device 15, the reflow device 16, and the reflow inspection device 17 in the main routine. However, the present invention is not particularly limited to this, and each device may perform processing.
 上述した実施形態では、本発明の情報制御装置の機能を備えた管理コンピュータ80として説明したが、特にこれに限定されず、情報制御方法やそのプログラムの形態としてもよい。 In the above-described embodiment, the management computer 80 provided with the function of the information control apparatus of the present invention has been described.
   本発明は、基板に印刷されたはんだに部品を配置したあと、はんだをリフローする実装処理の技術分野に利用可能である。 The present invention can be used in the technical field of mounting processing in which components are placed on solder printed on a substrate and then the solder is reflowed.
10 実装システム、12 印刷装置、13 印刷検査装置、14 実装処理装置、15 実装検査装置、16 リフロー装置、17 リフロー検査装置、18 LAN、20 コントローラ、20a CPU、20b ROM、20c RAM、21 HDD、21a 印刷条件情報、22 通信部、23 撮像部、24 基板処理ユニット、25 マスクユニット、26 印刷処理ユニット、27 印刷ヘッド、28 ヘッド移動部、29 スキージ、30 コントローラ、30a CPU、30b ROM、30c RAM、31 HDD、31a 印刷検査条件情報、31b 印刷測定値情報、32 通信部、34 検査処理ユニット、35 撮像部、36 移動部、40 コントローラ、40a CPU、40b ROM、40c RAM、41 HDD、41a 実装条件情報、42 通信部、43 撮像部、44 基板処理ユニット、45 供給ユニット、46 実装処理ユニット、47 実装ヘッド、48 ヘッド移動部、49 吸着ノズル、50 コントローラ、50a CPU、50b ROM、50c RAM、51 HDD、51a 実装検査条件情報、51b 実装測定値情報、52 通信部、54 検査処理ユニット、55 撮像部、56 移動部、60 リフロー制御部、62 通信部、63 加熱室、64 加熱部、70 コントローラ、70a CPU、70b ROM、70c RAM、71 HDD、71a 検査条件情報、71b 検査結果情報、72 通信部、74 検査処理ユニット、75 撮像部、76 移動部、80 管理コンピュータ、82 CPU、83 ROM、84 RAM、85 HDD、85a 結果情報、85b 不良率マトリックス、85c 印刷判定基準、85d 実装判定基準、85e 統計対応情報、86 通信部、87 入力デバイス、88 ディスプレイ、90 検査データ取得部、91 対応関係生成部、92 対応関係保持部、93 条件設定部、94 条件指令部、M スクリーンマスク、P 部品、S 基板。 10 mounting system, 12 printing device, 13 printing inspection device, 14 mounting processing device, 15 mounting inspection device, 16 reflow device, 17 reflow inspection device, 18 LAN, 20 controller, 20a CPU, 20b ROM, 20c RAM, 21 HDD, 21a printing condition information, 22 communication unit, 23 imaging unit, 24 substrate processing unit, 25 mask unit, 26 print processing unit, 27 print head, 28 head moving unit, 29 squeegee, 30 controller, 30a CPU, 30b ROM, 30c RAM , 31 HDD, 31a printing inspection condition information, 31b printing measurement value information, 32 communication unit, 34 inspection processing unit, 35 imaging unit, 36 moving unit, 40 controller, 40a CPU, 40b ROM, 40c RAM, 41 HDD, 41a mounting condition information, 42 communication unit, 43 imaging unit, 44 substrate processing unit, 45 supply unit, 46 mounting processing unit, 47 mounting head, 48 head moving unit, 49 suction nozzle, 50 controller, 50a CPU 50b ROM, 50c RAM, 51 HDD, 51a mounting inspection condition information, 51b mounting measurement value information, 52 communication unit, 54 inspection processing unit, 55 imaging unit, 56 moving unit, 60 reflow control unit, 62 communication unit, 63 heating Room, 64 heating unit, 70 controller, 70a CPU, 70b ROM, 70c RAM, 71 HDD, 71a inspection condition information, 71b inspection result information, 72 communication unit, 74 inspection processing unit, 75 imaging unit, 76 moving unit, 80 management Con Computer, 82 CPU, 83 ROM, 84 RAM, 85 HDD, 85a result information, 85b defect rate matrix, 85c printing judgment standard, 85d mounting judgment standard, 85e statistical correspondence information, 86 communication unit, 87 input device, 88 display, 90 Inspection data acquisition unit, 91 correspondence generation unit, 92 correspondence relationship holding unit, 93 condition setting unit, 94 condition command unit, M screen mask, P component, S substrate.

Claims (14)

  1.  基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御装置であって、
     前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得する情報取得手段と、
     前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する情報生成手段と、
     前記生成された対応関係情報に基づいて前記印刷検査処理の印刷判定基準及び前記実装検査処理の実装判定基準のうち少なくとも一方を設定する基準設定手段と、
     を備えた情報制御装置。
    A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control device of a mounting system comprising a reflow inspection device for executing processing,
    Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
    Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated;
    Reference setting means for setting at least one of a print determination standard of the print inspection process and a mounting determination standard of the mounting inspection process based on the generated correspondence information;
    An information control device comprising:
  2.  前記情報生成手段は、前記印刷検査処理の測定情報として1種以上のはんだ測定値と、前記実装検査処理の測定情報として1種以上の部品測定値と、前記リフロー検査処理の結果情報として前記部品のリフロー後の良否判定した良否結果とを対応付けた前記対応関係情報を生成し、
     前記はんだ測定値は、はんだの高さ、はんだの面積、はんだの体積及びはんだの位置のうち1種以上を含み、
     前記部品測定値は、前記基板に対する前記部品の位置ずれ量、前記印刷されたはんだに対する前記部品の位置ずれ量及び前記部品の回転角度のうち1種以上を含む、請求項1に記載の情報制御装置。
    The information generation means includes at least one type of solder measurement value as measurement information of the print inspection process, at least one type of component measurement value as measurement information of the mounting inspection process, and the component as result information of the reflow inspection process. Generating the correspondence relationship information that correlates with the pass / fail result determined by pass / fail after the reflow,
    The solder measurement value includes one or more of a solder height, a solder area, a solder volume, and a solder position,
    2. The information control according to claim 1, wherein the component measurement value includes at least one of a displacement amount of the component with respect to the substrate, a displacement amount of the component with respect to the printed solder, and a rotation angle of the component. apparatus.
  3.  前記情報生成手段は、前記はんだ測定値の所定範囲と、前記部品測定値の所定範囲と、該はんだ測定値の所定範囲及び部品測定値の所定範囲に含まれる1以上の部品の前記良否結果の統計値と、を複数の前記所定範囲に対して対応付けた前記対応関係情報を生成する、請求項2に記載の情報制御装置。 The information generation means includes the predetermined range of the solder measurement value, the predetermined range of the component measurement value, the predetermined result range of the solder measurement value, and the pass / fail result of one or more parts included in the predetermined range of the component measurement value. The information control apparatus according to claim 2, wherein the correspondence relationship information in which a statistical value is associated with a plurality of the predetermined ranges is generated.
  4.  前記基準設定手段は、前記はんだ測定値の範囲と前記部品測定値の範囲とに応じて前記良否結果の統計値が所定の良否値を満たす前記印刷判定基準及び/又は前記実装判定基準を設定する、請求項2又は3に記載の情報制御装置。 The reference setting means sets the print determination criterion and / or the mounting determination criterion in which the statistical value of the pass / fail result satisfies a predetermined pass / fail value according to the range of the solder measurement value and the range of the component measurement value. The information control apparatus according to claim 2 or 3.
  5.  前記情報生成手段は、前記良否結果の統計値が所定の良否値を満たす前記はんだ測定値の範囲の上限値を前記印刷判定基準に設定し、前記良否結果の統計値が所定の良否値を満たす前記部品測定値の範囲の上限値を前記実装判定基準に設定する、請求項4に記載の情報制御装置。 The information generation means sets the upper limit value of the solder measurement value range in which the statistical value of the pass / fail result satisfies a predetermined pass / fail value as the print criterion, and the statistical value of the pass / fail result satisfies a predetermined pass / fail value The information control apparatus according to claim 4, wherein an upper limit value of the component measurement value range is set as the mounting determination reference.
  6.  前記情報生成手段は、前記印刷検査処理の測定情報として前記部品が配置される特定位置の前記はんだの状態であるはんだ測定値と、前記実装検査処理の測定情報として前記特定位置の前記部品の状態を示す部品測定値と、前記リフロー検査処理の結果情報として前記特定位置の部品のリフロー後の良否判定した良否結果と、を複数の前記特定位置に対して対応付けた前記対応関係情報を生成する、請求項1~5のいずれか1項に記載の情報制御装置。 The information generation means includes a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and a state of the component at the specific position as measurement information of the mounting inspection process. The correspondence information is generated by associating the component measurement value indicating the quality and the quality result after the reflow of the component at the specific position as the result information of the reflow inspection process with the plurality of specific positions. The information control apparatus according to any one of claims 1 to 5.
  7.  前記基準設定手段は、前記対応関係情報に基づいて、前記特定位置ごとの前記印刷判定基準及び/又は前記実装判定基準を設定する、請求項6に記載の情報制御装置。 The information control apparatus according to claim 6, wherein the reference setting unit sets the print determination criterion and / or the mounting determination criterion for each specific position based on the correspondence information.
  8.  前記情報生成手段は、所定数の基板のリフロー処理を実行したあと前記対応関係情報を生成する、請求項1~7のいずれか1項に記載の情報制御装置。 8. The information control apparatus according to claim 1, wherein the information generation unit generates the correspondence information after executing a reflow process for a predetermined number of substrates.
  9.  請求項1~8のいずれか1項に記載の情報制御装置であって、
     前記生成された対応関係情報に基づいて前記印刷処理の印刷実行条件及び前記実装処理の実装実行条件のうち少なくとも一方を設定する条件設定手段、を備えた情報制御装置。
    The information control device according to any one of claims 1 to 8,
    An information control apparatus comprising: condition setting means for setting at least one of a print execution condition for the print process and a mounting execution condition for the mounting process based on the generated correspondence information.
  10.  前記条件設定手段は、前記印刷実行条件として印刷速度及び印刷圧力のうち少なくとも一方を設定し、前記実装実行条件として、前記部品の保持力及び前記部品の移動速度のうち少なくとも一方を設定する、請求項9に記載の情報制御装置。 The condition setting means sets at least one of a printing speed and a printing pressure as the printing execution condition, and sets at least one of a holding force of the component and a moving speed of the component as the mounting execution condition. Item 10. The information control device according to Item 9.
  11.  前記情報生成手段は、前記印刷検査処理の測定情報として前記部品が配置される特定位置の前記はんだの状態であるはんだ測定値と、前記実装検査処理の測定情報として前記特定位置の前記部品の状態を示す部品測定値と、前記リフロー検査処理の結果情報として前記特定位置の部品のリフロー後の良否判定した良否結果と、を複数の前記特定位置に対して対応付けた前記対応関係情報を生成し、
     前記条件設定手段は、前記対応関係情報に基づいて、前記特定位置ごとの前記印刷実行条件及び/又は前記実装実行条件を設定する、請求項10に記載の情報制御装置。
    The information generation means includes a solder measurement value that is a state of the solder at a specific position where the component is arranged as measurement information of the print inspection process, and a state of the component at the specific position as measurement information of the mounting inspection process. The correspondence information is generated by associating the component measurement value indicating the quality and the quality result after the reflow of the component at the specific position as the result information of the reflow inspection process with the specific position. ,
    The information control apparatus according to claim 10, wherein the condition setting unit sets the print execution condition and / or the mounting execution condition for each specific position based on the correspondence information.
  12.  基板上にはんだを印刷する印刷処理を実行する印刷装置と、
     前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、
     部品を前記基板上に実装する実装処理を実行する実装処理装置と、
     前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、
     前記基板のリフロー処理を実行するリフロー装置と、
     前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、
     請求項1~11のいずれか1項に記載の情報制御装置と、を備え、
     前記印刷検査装置は、前記設定された前記印刷判定基準を用いて前記印刷検査処理を実行し、
     前記実装検査装置は、前記設定された前記実装判定基準を用いて前記実装検査処理を実行する、実装システム。
    A printing apparatus that executes a printing process for printing solder on a substrate;
    A print inspection apparatus for executing a print inspection process for inspecting the state of the printed solder;
    A mounting processing apparatus for executing a mounting process for mounting a component on the board;
    A mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process;
    A reflow apparatus for performing reflow processing of the substrate;
    A reflow inspection apparatus for executing a reflow inspection process for inspecting the substrate after the reflow;
    An information control device according to any one of claims 1 to 11,
    The print inspection apparatus performs the print inspection process using the set print determination criterion,
    The mounting inspection apparatus performs the mounting inspection processing using the set mounting determination criterion.
  13.  基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御方法であって、
    (a)前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得するステップと、
    (b)前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成するステップと、
    (c)前記生成された対応関係情報に基づいて前記印刷検査処理の印刷判定基準及び前記実装検査処理の実装判定基準のうち少なくとも一方を設定するステップと、
       を含む情報制御方法。
    A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control method for a mounting system comprising a reflow inspection device for executing processing,
    (A) obtaining measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
    (B) generating correspondence information associating the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process;
    (C) setting at least one of a print determination standard for the print inspection process and a mounting determination standard for the mounting inspection process based on the generated correspondence information;
    Including an information control method.
  14.  基板上にはんだを印刷する印刷処理を実行する印刷装置と、前記印刷されたはんだの状態を検査する印刷検査処理を実行する印刷検査装置と、部品を前記基板上に実装する実装処理を実行する実装処理装置と、前記実装処理された部品の実装状態を検査する実装検査処理を実行する実装検査装置と、前記基板のリフロー処理を実行するリフロー装置と、前記リフロー後の基板を検査するリフロー検査処理を実行するリフロー検査装置と、を備える実装システムの情報制御装置であって、
       前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを取得する情報取得手段と、
     前記取得した前記印刷検査処理の測定情報と、前記実装検査処理の測定情報と、前記リフロー検査処理の結果情報とを対応付けた対応関係情報を生成する情報生成手段と、
     前記生成された対応関係情報に基づいて前記印刷処理の印刷実行条件及び前記実装処理の実装実行条件のうち少なくとも一方を設定する条件設定手段と、
     を備えた情報制御装置。
    A printing apparatus that executes a printing process for printing solder on a substrate, a printing inspection apparatus that executes a printing inspection process for inspecting the state of the printed solder, and a mounting process for mounting components on the board A mounting processing apparatus, a mounting inspection apparatus for executing a mounting inspection process for inspecting a mounting state of the component subjected to the mounting process, a reflow apparatus for executing a reflow process for the board, and a reflow inspection for inspecting the board after the reflow. An information control device of a mounting system comprising a reflow inspection device for executing processing,
    Information acquisition means for acquiring measurement information of the print inspection process, measurement information of the mounting inspection process, and result information of the reflow inspection process;
    Information generating means for generating correspondence information in which the acquired measurement information of the print inspection process, the measurement information of the mounting inspection process, and the result information of the reflow inspection process are associated;
    Condition setting means for setting at least one of a print execution condition of the print process and a mounting execution condition of the mounting process based on the generated correspondence information;
    An information control device comprising:
PCT/JP2013/073559 2013-09-02 2013-09-02 Information control device, mounting system, and information control method WO2015029255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015533922A JP6262237B2 (en) 2013-09-02 2013-09-02 Information control apparatus, mounting system, and information control method
PCT/JP2013/073559 WO2015029255A1 (en) 2013-09-02 2013-09-02 Information control device, mounting system, and information control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/073559 WO2015029255A1 (en) 2013-09-02 2013-09-02 Information control device, mounting system, and information control method

Publications (1)

Publication Number Publication Date
WO2015029255A1 true WO2015029255A1 (en) 2015-03-05

Family

ID=52585861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073559 WO2015029255A1 (en) 2013-09-02 2013-09-02 Information control device, mounting system, and information control method

Country Status (2)

Country Link
JP (1) JP6262237B2 (en)
WO (1) WO2015029255A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016991A1 (en) * 2018-07-19 2020-01-23 株式会社Fuji Test setting device and test setting method
CN111034385A (en) * 2017-08-08 2020-04-17 株式会社富士 Manufacturing system and control method of manufacturing system
JP2020161748A (en) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 System and method for manufacturing mounting substrate
CN113508651A (en) * 2019-03-05 2021-10-15 株式会社富士 Correction amount calculation device, component mounting machine, and correction amount calculation method
CN114449883A (en) * 2020-11-03 2022-05-06 株式会社高迎科技 Apparatus, method and recording medium for determining mounting information and recording instructions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161749A (en) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 Information processor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366613A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Production information system
JP2004361145A (en) * 2003-06-02 2004-12-24 Omron Corp Display method, quality control apparatus, and quality control system
JP2006339445A (en) * 2005-06-02 2006-12-14 Omron Corp Substrate inspecting device
JP2011082376A (en) * 2009-10-08 2011-04-21 Panasonic Corp Part mounting system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751948B1 (en) * 2010-02-16 2011-08-17 ヤマハ発動機株式会社 Component mounting apparatus and component mounting method
JP2014135425A (en) * 2013-01-11 2014-07-24 Djtech Co Ltd Quality control system of printed circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366613A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Production information system
JP2004361145A (en) * 2003-06-02 2004-12-24 Omron Corp Display method, quality control apparatus, and quality control system
JP2006339445A (en) * 2005-06-02 2006-12-14 Omron Corp Substrate inspecting device
JP2011082376A (en) * 2009-10-08 2011-04-21 Panasonic Corp Part mounting system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111034385A (en) * 2017-08-08 2020-04-17 株式会社富士 Manufacturing system and control method of manufacturing system
CN111034385B (en) * 2017-08-08 2021-02-12 株式会社富士 Manufacturing system and control method of manufacturing system
WO2020016991A1 (en) * 2018-07-19 2020-01-23 株式会社Fuji Test setting device and test setting method
CN113508651A (en) * 2019-03-05 2021-10-15 株式会社富士 Correction amount calculation device, component mounting machine, and correction amount calculation method
EP3937607A4 (en) * 2019-03-05 2022-03-16 Fuji Corporation Correction amount calculation device, component mounting machine, and correction amount calculation method
CN113508651B (en) * 2019-03-05 2022-09-20 株式会社富士 Correction amount calculation device, component mounting machine, and correction amount calculation method
US11751370B2 (en) 2019-03-05 2023-09-05 Fuji Corporation Correction amount calculation device, component mounting machine, and correction amount calculation method
JP2020161748A (en) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 System and method for manufacturing mounting substrate
JP7291871B2 (en) 2019-03-28 2023-06-16 パナソニックIpマネジメント株式会社 MOUNTING BOARD MANUFACTURING SYSTEM AND MOUNTING BOARD MANUFACTURING METHOD
CN114449883A (en) * 2020-11-03 2022-05-06 株式会社高迎科技 Apparatus, method and recording medium for determining mounting information and recording instructions
US11770921B2 (en) 2020-11-03 2023-09-26 Koh Young Technology Inc. Apparatus, method and recording medium storing command for determining mounting information
CN114449883B (en) * 2020-11-03 2024-01-26 株式会社高迎科技 Apparatus, method for determining mounting information, and recording medium for recording instructions

Also Published As

Publication number Publication date
JP6262237B2 (en) 2018-01-17
JPWO2015029255A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6262237B2 (en) Information control apparatus, mounting system, and information control method
JP4793187B2 (en) Electronic component mounting system and electronic component mounting method
KR101260429B1 (en) Electronic component mounting system electronic component placing apparatus and electronic component mounting method
JP2007173552A (en) Electronic component packaging system and method therefor
WO2012165276A1 (en) Board operation assisting device, and board operation assisting method
JP2006203020A (en) Electronic component packaging system and method
WO2012165275A1 (en) Electrical-circuit manufacturing assistance device and electrical-circuit manufacturing assistance method
JP5781834B2 (en) Substrate work inspection support device
US20090007424A1 (en) Electronic component mounting system and electronic component mounting method
JP5963129B2 (en) Print inspection apparatus, print inspection system, inspection data statistical method, program, and substrate manufacturing method
WO2015107959A1 (en) Quality control apparatus, quality control method, and program
JPWO2019021361A1 (en) Substrate work management system
JP4743172B2 (en) Solder inspection method
JP5927504B2 (en) Component mounting system and component mounting method
JP6010760B2 (en) Electronic component mounting system and electronic component mounting method
JP6270841B2 (en) Inspection control device, mounting system, and inspection control method
JP4161884B2 (en) Solder inspection equipment
JP2013097414A (en) Inspection device, processor, information processor, object manufacturing device and manufacturing method thereof
JPWO2019049318A1 (en) Board-to-board working machine
JP2013062273A (en) Component mounting substrate inspection method and substrate manufacturing system adopting the same
JP5753021B2 (en) Board surface mounting line and bad mark detection method in board surface mounting line
JP2004114698A (en) Printing state monitoring device and screen printing method
JP4595857B2 (en) Electronic component mounting system and electronic component mounting method
JPH10202832A (en) Screen printing machine and method for screen printing
JP7458488B2 (en) Print quality control system and print quality control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533922

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892455

Country of ref document: EP

Kind code of ref document: A1