WO2015027786A1 - 一种led灯具 - Google Patents

一种led灯具 Download PDF

Info

Publication number
WO2015027786A1
WO2015027786A1 PCT/CN2014/083406 CN2014083406W WO2015027786A1 WO 2015027786 A1 WO2015027786 A1 WO 2015027786A1 CN 2014083406 W CN2014083406 W CN 2014083406W WO 2015027786 A1 WO2015027786 A1 WO 2015027786A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
led
light
blue
led light
Prior art date
Application number
PCT/CN2014/083406
Other languages
English (en)
French (fr)
Inventor
余建华
陈日广
冯协
鄂雷
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2015027786A1 publication Critical patent/WO2015027786A1/zh
Priority to US15/014,043 priority Critical patent/US10036516B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/325Pulse-width modulation [PWM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • F21V3/062Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics
    • F21V3/0625Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material the material being plastics the material diffusing light, e.g. translucent plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a luminaire, and more particularly to an LED luminaire.
  • LED luminaires typically include a heat sink, a reflector, a diffuser, and a substrate on which each LED chip is disposed. Light that emits different colors using individual LED chips is combined into white light.
  • color-temperature-adjustable lamps that achieve high-intensity in the field of LED lighting are one of the main technical hotspots, and LED mixing methods with different color temperatures or wavelengths are usually used.
  • to achieve a high color rendering index especially the high special index R9 is not easy, and many applications (for example: merchandise display) require a high color rendering index. Therefore, attempts have been made to use phosphors or LED combinations of various wavelengths.
  • the disclosure date is August 18, 2010, and the disclosure number is CN101808451 A.
  • the chip excites the warm white light produced by the yellow-green mixed phosphor, and then mixes with the red LED light source and the blue LED light source of another wavelength to form a high white color with adjustable color temperature.
  • the coated phosphor is a mixture of yellow phosphor and green phosphor, and the mixing ratio is not well controlled. Poor grasping will affect the white color chromaticity parameter of the final synthesis. Moreover, the green fluorescence is partially absorbed by the yellow phosphor, which reduces the excitation efficiency, and increases the difficulty of setting the mixing ratio, so that the design cost of the lamp is high. 2. Although the white light after mixing can be adjusted within the range of 2700K ⁇ 6500K, the special index R9 is only greater than 90, the chromaticity difference is AC 0.01, and the performance parameters can not meet the high requirements.
  • the special display R9 is only greater than 90 in the range of 2700-5000K, and R9 cannot be greater than 90 in the range of adjustable color temperature. 3.
  • the peak wavelengths of the two blue LED chips set are not equal, which increases the manufacturing cost of the material.
  • the technical problem to be solved by the present invention is: to make up for the deficiencies of the above prior art, and to provide an LED lamp.
  • the color temperature is adjustable from 2700K to 6500K
  • the general color rendering index Ra is above 90
  • the special color rendering index R9 is Above 95
  • the chromaticity difference AC is less than 0.0054, and the design and manufacturing cost of the luminaire are also low.
  • An LED lamp includes a heat sink, a reflector, a diffuser, and a substrate on which the LED light source module is disposed, the LED light source module includes at least one set of LED light source components, and the LED light fixture further includes three driving circuits and controls
  • the LED light source assembly includes a first LED light source that provides blue-green light, a second LED light source that provides yellow light, and a third LED light source that provides red light; the first light source includes a peak wavelength of 445 to 455 nm.
  • the second light source includes a second blue LED chip having a peak wavelength of 445 to 455 nm, which is coated with a yellow light having a peak wavelength of 557 to 570 nm.
  • a phosphor the ratio of the optical power occupied by the blue light in the yellow light is 0 to 0.08
  • the third light source includes a third red LED chip having a peak wavelength of 624 to 630 nm; and the control circuit stores the respective light sources.
  • each chromaticity parameter satisfies the following conditions:
  • the color temperature is adjustable within the range of 2700K ⁇ 6500K, and the light source of each color temperature is adjustable.
  • the LED light source component is a specially arranged first blue LED chip, a second blue LED chip and a third red LED chip, thereby generating mixed light of a specific spectral power distribution.
  • the correspondence table between the luminous flux ratio and the chromaticity parameter of each light source satisfying the condition is pre-stored, and the luminous flux ratio of each light source is selected according to the color temperature required, thereby determining the driving current output to each light source driving.
  • Luminescence the desired color temperature is obtained, while the general color rendering index of the light source is Ra 90, the special color rendering index is R9 95, and the chromaticity difference is AC ⁇ 0.0054.
  • the index Ra 90 is generally displayed, the special color rendering index R9 95, the chromaticity difference AC ⁇ 0.0054, the chromaticity parameter is good, and the height can be satisfied.
  • the mixing ratio of different kinds of phosphors is not involved in the LED light source assembly, and the peak wavelengths of the two blue LED chips are the same, so the design cost and manufacturing cost of the lamps are low.
  • FIG. 1 is a schematic structural view of an LED lamp in a first embodiment of the present invention
  • FIG. 2 is a circuit diagram of an LED lamp in a first embodiment of the present invention
  • FIG. 3 is a relative spectral power distribution diagram of each chip and phosphor selected by a combination of LED lamps in the first embodiment of the present invention
  • FIG. 4 is a relative spectral power distribution diagram of light of three colors of a LED lamp in a combination and a set of blue light ratios according to a first embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a color gamut range of light of three colors of a LED lamp in a combination and a set of blue light ratios according to a first embodiment of the present invention
  • 6 is a flow chart of a method for calculating a luminous flux ratio satisfying a condition in a first embodiment of the present invention
  • 7 is a correspondence table between the luminous flux ratio and the chromaticity parameter calculated by the LED luminaire according to the first embodiment of the present invention under a combination and a set of blue light ratios;
  • FIG. 8 is a schematic view showing an arrangement structure of a plurality of LED light sources in an LED lamp according to a second embodiment of the present invention
  • FIG. 9 is a diagram showing a blue-green, yellow, and red LED light source array in the LED lamp in the second embodiment of the present invention. The illuminance of the surface simulates the design of the spot pattern.
  • the invention adopts a single blue LED with a peak wavelength of 445-455 nm to respectively excite the green phosphor (peak wavelength of 500-520 nm) and the yellow phosphor (peak wavelength of 557-570 nm) to generate blue-green light and yellow light, and A combination of red LEDs with a peak wavelength of 624-630 nm, adjustable color temperature in the range of 2700K ⁇ 6500K, and general color rendering index Ra 90, special color rendering index R9 95, LED white light with chromaticity difference AC ⁇ 0.0054.
  • the LED lamp includes a heat sink 1, a reflector 2, a diffusion plate 3, and a substrate 5 on which the LED light source module 4 is disposed.
  • the LED light source module 4 includes at least one set of LED light source components (one set is shown in FIG. 1).
  • the LED lamp also includes three drive circuits 701, 702, 703 and a control circuit 6.
  • the LED light source assembly includes a first LED light source 401 that provides blue-green light, a second LED light source 402 that provides yellow light, and a third LED light source 403 that provides red light.
  • the first light source 401 includes a first blue LED chip having a peak wavelength of 445 to 455 nm, and is coated with a green phosphor having a peak wavelength of 500 to 520 nm, so that the first blue LED chip excites the green phosphor to generate blue. Green light.
  • the ratio of the light power of the blue light generated by the blue-green light is 0.43 to 0.57 (in the blue-green light, the ratio of the light power of the blue light to the green light is added as 1, that is, the proportion of optical power occupied by green light is also 0.43 ⁇ 0.57).
  • a 507 nm green phosphor is excited using a blue LED chip having a peak wavelength of 446 nm, and the ratio of the optical power of the blue light to blue light is 0.44.
  • the second light source 402 includes a second blue LED chip having a peak wavelength of 445 to 455 nm, which is coated with a yellow phosphor having a peak wavelength of 557 to 570 nm, so that the second blue LED chip excites the green phosphor to produce yellow. Light.
  • the ratio of the optical power occupied by the blue light (transmitted by the blue LED chip) in the yellow light is 0 to 0.08 (that is, the ratio of the optical power occupied by the yellow light is 0.92 ⁇ 1).
  • a 555 nm yellow phosphor is excited by a blue LED chip having a peak wavelength of 446 nm, and the optical power ratio of the blue light in the yellow light is 0.07.
  • the third source includes a third red LED chip having a peak wavelength of 624 to 630 nm, providing red light.
  • a red LED having a peak wavelength of 627 nm is used.
  • FIG. 3 it is a relative spectral power distribution diagram of the 446 nm blue LED chip, the 627 nm red LED chip, the 507 nm green phosphor, and the 558 nm yellow phosphor selected in the specific embodiment.
  • B denotes a blue LED chip
  • G denotes a green phosphor
  • Y denotes a yellow phosphor
  • R denotes a red LED chip.
  • the proportion and coating amount of the phosphor powder are adjusted so that the ratio of the optical power of the blue light in the blue-green light and the yellow light is 0.44 and 0.07, respectively, thereby generating relative spectral powers of blue-green light, yellow light and red light.
  • the distribution is shown in Figure 4.
  • B_G represents blue-green light
  • B_Y represents yellow light
  • R represents red light.
  • the color coordinates of the blue-green, yellow and red light are: (0.1631, 0.2332), (0.3999, 0.4924), (0.6868, 0.3130), and the gamut range is shown in Figure 5. Shown. As can be seen from Fig. 5, the triangle range of the color coordinates of the three colors of light covers the energy gamut gamut range, indicating that the light obtained by mixing the three kinds of light in the color coordinate can achieve a color temperature ranging from 2700K to 6500K. Adjustable inside.
  • the peak value of the waveform in Fig. 4 will move.
  • the ratio of the optical power occupied by the blue light in the blue-green light or the yellow light is set to other values in the range, the relative power value at the corresponding wavelength may vary, and the compression opening condition of the waveform may be different.
  • the overall is 445-455nm blue LED chip, 624-630nm red LED chip, 500-520nm green phosphor and 557-570nm yellow phosphor combination
  • the ratio of the optical power occupied by the blue light in the blue-green light and the yellow light is 0.43 ⁇ 0.57 and 0 ⁇ 0.08, respectively.
  • the relative spectral power distribution of the mixed light is similar to that of FIG. 4, and the color coordinates of the three colors of light are obtained.
  • the triangle can also cover the energy gamut range, and the light obtained by mixing the three lights can also be adjusted in the range of 2700K ⁇ 6500K.
  • the control circuit 6 stores a correspondence table between the luminous flux ratio of each light source and the chromaticity parameter of the mixed light source, wherein under the luminous flux ratio of each light source, each chromaticity parameter satisfies the following Condition:
  • the color temperature is adjustable from 2700K to 6500K.
  • the luminous flux ratios of the respective light sources are selected, the driving currents of the respective light sources are determined according to the luminous flux ratio of the respective light sources, and the calculated driving currents are respectively output to the corresponding driving circuits 701, 702 and 703.
  • the three drive circuits 701, 702, and 703 respectively output the received drive currents to the respective LED light sources 401, 402, and 403 to drive the corresponding LED light sources to emit light.
  • the three-way driver circuits 701, 702, and 703 drive the three LED sources separately using the pulse width adjustment PWM adjustment mode.
  • the PWM regulation mode adjusts the pulse width of the input current of each LED light source, so that the LED light source always works at full amplitude current and zero, reducing the shift of the chromatogram.
  • the microcontroller can be used to generate a PWM signal using a 16-bit timer, which is divided into 65536 gray levels. This improves control accuracy and softens the lighting process.
  • the control circuit 6 adjusts the driving current through the driving circuit, thereby controlling the luminous flux output of each light source, and causing the LED lamp to output the mixed white light obtained by mixing the corresponding luminous flux ratios, thereby outputting the mixed white light at a desired color temperature.
  • the general color rendering index Ra at the color temperature is 90 or more
  • the special color rendering index R9 is 95 or more.
  • the chromaticity parameters such as the color temperature, color rendering index, and chromaticity difference of the light source are determined by the relative spectral power distribution of the light obtained by mixing the three colors.
  • the relative spectral power distribution of the light after mixing is calculated as shown in equation (1):
  • Sa) K, * s B _ G ( ⁇ ) + K 2 * S B _ Y (A) + K 3 * S R ( ⁇ ) (1)
  • s s _ e ), s B _ Y u) s ( i) is the relative spectral power distribution of the blue-green, yellow, and red light participating in the mixed light
  • ⁇ 2 and ⁇ 3 are the light corresponding to the blue-green, yellow, and red LEDs participating in the mixed light. Power ratio. Therefore, in order to determine the color temperature and color rendering index of the light after mixing, it is necessary to know the relative spectral power distribution of the LEDs participating in the light mixing and the optical power ratio between them.
  • the power distribution of the mixed light is determined (as shown in Fig. 4). Therefore, setting different optical power ratio combinations will result in different S(l), which will eventually affect the value of the chromaticity parameter (from the calculated color temperature, general color rendering index Ra, special color rendering index R9, chromatic aberration)
  • the formula for chromaticity parameters such as radiation efficiency is known).
  • the different light power ratios are combined and the light source has different color temperature, color rendering index and chromaticity difference.
  • FIG. 6 a flow chart of a method for calculating a luminous flux ratio that satisfies the condition.
  • the following steps are included: 1) Receive relative spectral power distribution data of blue-green, yellow, and red light. 2) Assignment to the blue-green optical power ratio Kl, the yellow light power ratio ⁇ 2, and the red light power ratio ⁇ 3. 3) Calculate the chromaticity parameters of the mixed light.
  • the relative spectral power distribution of the mixed light is calculated according to the above formula (1), and then the chromaticity parameters of the mixed light source are calculated according to the relative spectral power distribution of the mixed light, and the chromaticity parameters include color temperature, general color rendering index Ra.
  • the color temperature of the mixed light is within the set range (ie, it can fluctuate within a certain range of the set value. For example, if the color temperature setting value is 2700K, the color temperature can be in the range of 2695 ⁇ 2705K.
  • the general color rendering index Ra ⁇ 90, the special color rendering index R9 95, the chromaticity difference AC ⁇ 0.0054, if yes, proceed to step 5) output blue-green optical power ratio Kl, yellow light power Matching ⁇ 2 and red light power ratio ⁇ 3 current value, and the corresponding current chrominance parameter value; if not, return to step 2) re-assign, recalculate, until the conditional light blue-green light is obtained Power ratio Kl, yellow light power ratio ⁇ 2 and red light power ratio ⁇ 3.
  • the luminous flux ratio can be calculated according to the optical power ratio.
  • the calculation formula is:
  • the luminous flux ratio of each light source and the color temperature of the mixed light source, the general color rendering index Ra, the special color rendering index R9, the chromatic aberration difference AC, and the color temperature of 2700K ⁇ 6500K can be obtained.
  • the ratio of optical power to blue light in blue-green light and yellow light is 0.44 and 0.07, respectively.
  • the correspondence between the luminous flux ratio of the obtained white light and the respective chromaticity parameters is shown in the following table, and the relative power spectral distribution of the obtained white light after mixing is as shown in FIG. 7 .
  • the mixed light of the corresponding color temperature can be obtained, and the color temperature can be adjusted from 2700K to 6500K.
  • general The color rendering index Ra is above 90
  • the special color rendering index R9 is above 95, up to 98.
  • the chromaticity difference AC is less than 0.0054
  • the radiation efficacy (LER) is above 3141 m/W
  • the highest radiation efficacy (LER) is 3481 m/W.
  • the LED lamp can be continuously adjusted in the color temperature range of 2700K ⁇ 6500K.
  • the LED lamp adopts three kinds of LED light sources, which respectively use a blue LED chip to excite green phosphor to generate blue-green light, a blue LED chip to generate yellow light, and a red LED chip to generate red light.
  • the mixed light of a specific spectral power distribution is generated by a combination of a range of peak wavelengths and a combination of blue-green light and blue light in the yellow light.
  • the currents of different LED light sources are adjusted by the control circuit and the driving circuit, thereby adjusting the luminous flux output of different LED light sources, adjusting the ratio of the luminous flux between them, and obtaining the mixed white light at the corresponding color temperature under the respective luminous flux ratios.
  • the chromaticity parameter of white light is better, that is, under the premise of ensuring high color rendering index, good chromaticity difference, and radiation efficiency, the color temperature can be adjusted to meet the demanding application.
  • the mixing ratio of the phosphors is not involved in the light source assembly of the LED luminaire, and the peak wavelengths of the two blue LED chips are the same, so the design cost and manufacturing cost of the luminaire are low.
  • the specific embodiment differs from the first embodiment in that: the specific embodiment is further defined on the basis of the specific embodiment: a plurality of LED light sources are arranged in a circular array, a circular radius r is set, and a reflector is provided. , a preferred arrangement of the substrate, the diffusion plate, and the like.
  • the LED lamp, the components, the connections of the components, and the operation of the components in the present embodiment are the same as those in the first embodiment, and the description thereof will not be repeated. Only the further defined content will be described in detail below.
  • the LED light source array is arranged reasonably, so that the blue-green light, the yellow light, and the red light are projected onto the target diffusion panel with the same spot size and uniform illumination; and the frosted reflector is used to compress the light spot; and the material is made of PC or PMMA.
  • the diffuser or frosted glass is used for secondary homogenization and color grading; the substrate coated with the reflective film is used to collect the light reflected by the reflector and the diffuser to the bottom, thereby improving the light utilization efficiency of the system.
  • the LED lamp comprises 6 sets of LED light source components, each set of LED light source components comprises 3 LED light sources, a total of 18 LED light sources, the plurality of LED light sources are arranged in a circular array and provided in different colors.
  • the LED light sources of the light are spaced apart, and each LED light source has the same light distribution curve.
  • the first LED light source 401 providing blue-green light is adjacent to the second LED light source 402 and the third LED light source 403, and the second LED light source 402 providing yellow light is adjacent to the first LED light source 401.
  • the third LED light source 403, the first LED light source 401 and the second LED light source 402 adjacent to each other on the two sides of the third LED light source 403 providing red light are arranged in such a manner that the LED light sources of different colors are spaced apart.
  • the LED light sources are arranged in a circular array, and the blue-green, yellow, and red LED light sources have the same light distribution curve, and all are in the same circular array, and the blue-green, yellow, and red LEDs are projected onto the target.
  • the spot size of the diffusing plate is equal, and the illuminance is relatively uniform, so that the color temperature distribution of the white light synthesized on the diffusing plate surface is relatively uniform.
  • the LED light source is one of blue-green, yellow, and red LED light sources.
  • the circular radius can be set to make the illumination of the LED illuminator the most uniform. For example, in the case of a design of a downlight with an exit spot of 8 inches (203 mm), the LED light source is arranged in a circular array, and the number of blue-green, yellow, and red LEDs is six, different colors.
  • the LEDs are placed between the phases, z is set to 80 mm, and when the half-intensity angle ⁇ is 60°, the radius value r of the circular array that achieves the most uniform illumination is calculated to be 65 mm.
  • a blue, green, yellow, and red light LED lamp is arranged according to a circular array having a radius of 65 mm, an illumination simulation design spot pattern of the blue-green, yellow, and red LED light source arrays on the diffuser surface is respectively obtained. This is shown in Figures 9a, 9b and 9c. As shown in FIG.
  • the size of the spot of the blue-green light, the yellow light, and the red light array irradiated to the surface of the diffusing plate is 203 mm, and the illuminance is relatively uniform, so that the chromaticity of the spot formed by the superimposition will be relatively uniform.
  • the reflector in the LED luminaire is a frosted reflector.
  • the matte reflector is mainly used to collect edge light and compress the size of the spot of the LED light source array that exits the reflector to match the spot size on the diffuser.
  • the substrate in the LED luminaire is plated with a reflective film.
  • the substrate coated with the reflective film collects light that is reflected by the reflector and diffuser to the bottom, thereby increasing the light utilization efficiency of the system.
  • the diffusion plate in the LED lamp is a PC diffusion plate (polycarbonate polycarbonate, PC abbreviation PC), a PMMA diffusion plate (polymethylmethacrylate polymethylmethacrylate, abbreviated as PMMA) or a frosted glass, so that the diffusion plate can be Perform secondary lighting and coloring to improve the uniformity of the emitted light.
  • PC polycarbonate polycarbonate
  • PMMA polymethylmethacrylate polymethylmethacrylate
  • a frosted glass so that the diffusion plate can be Perform secondary lighting and coloring to improve the uniformity of the emitted light.

Abstract

一种LED灯具,包括LED光源模块(4),LED光源模块(4)包括至少一组LED光源组件;还包括三个驱动电路(701,702,703)和控制电路(6);LED光源组件包括第一LED光源(401),第二LED光源(402)和第三LED光源(403);第一LED光源(401)包括峰值波长为445〜455nm的第一蓝光LED芯片,其上涂覆有峰值波长为500〜520nm的绿光荧光粉,提供的蓝绿光中蓝光所占的光功率比例为0.43〜0.57;第二LED光源(402)包括峰值波长为445〜455m的第二蓝光LED芯片,其上涂覆有峰值波长为557〜570nm的黄光荧光粉,提供的黄光中蓝光所占的光功率比例为0〜0.08;第三LED光源(403)包括峰值波长为624〜630nm的第三红光LED芯片;控制电路(6)确定各LED光源的驱动电流,通过驱动电路驱动各个LED光源。该LED灯具色温可调,且特殊显色指数R9在95以上,同时灯具的设计,制造成本较低。

Description

说 明 书
一种 LED灯具
【 技术领域 】
本发明涉及灯具, 特别是涉及一种 LED灯具。
【 背景技术 】
现有的 LED灯具, 通常包括散热器、 反光罩、 扩散板和其上设置有各个 LED芯 片的基板。 利用各个 LED芯片发出不同的颜色的光合成为白光。 目前, 在 LED照明 领域实现高显指的色温可调灯具是主要技术热点之一, 通常采用不同色温或波长的 LED混光方法。 但是, 要实现高的显色指数, 特别是高的特殊显指 R9不太容易, 而 许多应用 (例如: 商品展示) 要求高的显色指数。 因此, 人们试图采用各种不同波长 的荧光粉或 LED组合。 例如: 公开日为 2010年 8月 18日, 公开号为 CN101808451 A 的发明创造名称为白光加红蓝 LED组合获得高显色可调色温白光的方法的专利申请文 件中, 利用一种蓝光 LED芯片激发黄绿混合荧光粉产生的暖白光, 再与红光 LED光 源以及另一种波长的蓝光 LED光源混合成高显指色温可调白光。
上述方案中,存在以下几点不足: 1.涂覆的荧光粉为黄色荧光粉和绿色荧光粉的混 合, 混合比例不好掌控, 把握不好会影响最终合成的白光色度参数。 而且绿色荧光会 被黄色荧光粉部分吸收, 降低激发效率, 更增加了设置混合比例的难度, 使得灯具的 设计成本较高。 2. 虽然混合后的白光可实现在 2700K〜6500K范围内可调, 但是特殊 显指 R9仅大于 90, 色品差 AC 0.01, 性能参数不能满足高要求的应用。 而且特殊显 指 R9也仅在 2700-5000K的范围内才大于 90, 不能在全部色温可调范围内达到 R9大 于 90。 3. 设置的两个蓝光 LED芯片的峰值波长不相等, 增加了选材制造成本。
【 发明内容 】
本发明所要解决的技术问题是: 弥补上述现有技术的不足, 提出一种 LED灯具, 在实现色温在 2700K-6500K范围可调时, 一般显色指数 Ra在 90以上, 特殊显色指数 R9在 95以上, 色品差 AC小于 0.0054, 同时灯具的设计, 制造成本也较低。
本发明的技术问题通过以下的技术方案予以解决:
一种 LED灯具, 包括散热器、 反光罩、 扩散板和其上设置有 LED光源模块的基 板, 所述 LED光源模块包括至少一组 LED光源组件, 所述 LED灯具还包括三个驱动 电路和控制电路; 所述 LED光源组件包括提供蓝绿光的第一 LED光源, 提供黄光的 第二 LED光源和提供红光的第三 LED光源;所述第一光源包括峰值波长为 445〜455nm 的第一蓝光 LED芯片, 其上涂覆有峰值波长为 500〜520nm的绿光荧光粉, 提供的所 述蓝绿光中蓝光所占的光功率比例为 0.43〜0.57; 所述第二光源包括峰值波长为 445〜 455nm的第二蓝光 LED芯片, 其上涂覆有峰值波长为 557〜570nm的黄光荧光粉, 提 供的所述黄光中蓝光所占的光功率比例为 0〜0.08 ; 所述第三光源包括峰值波长为 624〜630nm的第三红光 LED芯片; 所述控制电路中存储有各个光源的光通量配比与 混合后光源的色度参数之间的对应关系表, 其中在各个光源的光通量配比下, 各色度 参数满足如下条件: 色温在 2700K〜6500K范围内可调, 各色温下光源的一般显色指 数 Ra 90, 特殊显色指数 R9 95, 色品差 AC<0.0054; 所述控制电路根据用户需要 得到的混合后的色温选择相应的各个光源的光通量配比, 根据各个光源的光通量配比 确定各个光源的驱动电流, 并将计算的驱动电流分别输出至相应的驱动电路; 所述三 个驱动电路分别将接收的驱动电流输出至相应的 LED光源, 驱动相应的 LED光源发 光。
本发明与现有技术对比的有益效果是:
本发明的 LED灯具, LED光源组件为特别设置的第一蓝光 LED芯片, 第二蓝光 LED芯片和第三红光 LED芯片, 从而产生特定光谱功率分布的混合光。 同时控制电路 中预先存储好满足条件的各个光源的光通量配比与色度参数之间的对应关系表, 根据 需要得到的色温选择各个光源的光通量配比, 由此确定驱动电流输出给各个光源驱动 发光, 得到需要的色温, 同时光源的一般显色指数 Ra 90, 特殊显色指数 R9 95, 色 品差 AC<0.0054。本发明中 LED灯具,在实现色温在 2700K〜6500K范围内可调的前 提下, 一般显示指数 Ra 90, 特殊显色指数 R9 95, 色品差 AC<0.0054, 色度参数 较好, 可满足高要求的应用。 同时, LED光源组件中不涉及不同种类荧光粉的混合比 例问题, 且两个蓝光 LED芯片的峰值波长相同, 因此灯具的设计成本和制造成本均较 低。
【 附图说明 】
图 1是本发明具体实施方式一中的 LED灯具的结构示意图;
图 2是本发明具体实施方式一中的 LED灯具的电路示意图;
图 3是本发明具体实施方式一中的 LED灯具选取的一种组合下各芯片和荧光粉的 相对光谱功率分布图;
图 4是本发明具体实施方式一中的 LED灯具在一种组合下以及一组蓝光比例下三 种颜色的光的相对光谱功率分布图;
图 5是本发明具体实施方式一中的 LED灯具在一种组合下以及一组蓝光比例下三 种颜色的光的色域范围示意图;
图 6是本发明具体实施方式一中计算满足条件的光通量配比的方法流程图; 图 7是本发明具体实施方式一中的 LED灯具在一种组合下以及一组蓝光比例下计 算得到的光通量配比与色度参数的对应关系表;
图 8是本发明具体实施方式二中 LED灯具中多个 LED光源的排列结构示意图; 图 9是本发明具体实施方式二中 LED灯具中蓝绿光、 黄光、 红光 LED光源阵列 在扩散板面的照度模拟设计光斑图。
【 具体实施方式 】
下面结合具体实施方式并对照附图对本发明做进一步详细说明。
具体实施方式一
本发明采用单种峰值波长为 445-455nm的蓝光 LED分别激发绿光荧光粉(峰值波 长为 500-520nm)和黄光荧光粉(峰值波长为 557-570nm)产生蓝绿光和黄光, 与峰值 波长为 624-630nm的红光 LED的组合, 实现 2700K〜6500K范围内色温可调, 且一般 显色指数 Ra 90, 特殊显色指数 R9 95, 色品差 AC<0.0054的 LED白光。
如图 1和 2所示, 分布为本具体实施方式中的 LED灯具的结构示意图和电路示意 图。 LED灯具包括散热器 1、 反光罩 2、 扩散板 3和其上设置有 LED光源模块 4的基 板 5。 其中, LED光源模块 4包括至少一组 LED光源组件(图 1中示出了一组)。 LED 灯具还包括三个驱动电路 701、 702、 703和控制电路 6。
LED光源组件包括提供蓝绿光的第一 LED光源 401, 提供黄光的第二 LED光源 402和提供红光的第三 LED光源 403。
第一光源 401包括峰值波长为 445〜455nm的第一蓝光 LED芯片, 其上涂覆有峰 值波长为 500〜520nm的绿光荧光粉, 从而第一蓝光 LED芯片激发所述绿光荧光粉产 生蓝绿光。 通过调节绿光荧光粉的胶粉比例及涂覆量, 使产生的蓝绿光中蓝光所占的 光功率比例为 0.43〜0.57 (蓝绿光中, 蓝光与绿光的光功率比例相加为 1, 也即绿光所 占的光功率比例也为 0.43〜0.57)。 本具体实施方式中, 使用峰值波长为 446nm的蓝光 LED芯片激发 507nm的绿光荧光粉, 蓝绿光中蓝光所占的光功率比例为 0.44。
第二光源 402包括峰值波长为 445〜455nm的第二蓝光 LED芯片, 其上涂覆有峰 值波长为 557〜570nm的黄光荧光粉, 从而第二蓝光 LED芯片激发所述绿光荧光粉产 生黄光。通过调节黄光荧光粉的胶粉比例及涂覆量,使产生的黄光中蓝光(由蓝光 LED 芯片透过)所占的光功率比例为 0〜0.08 (也即黄光所占的光功率比例为 0.92〜1 )。 本 具体实施方式中, 使用峰值波长为 446nm的蓝光 LED芯片激发 558nm的黄光荧光粉, 黄光中蓝光所占的光功率比例为 0.07。
第三光源包括峰值波长为 624〜630nm的第三红光 LED芯片, 提供红光。 本具体 实施方式中, 使用峰值波长为 627nm的红光 LED。 如图 3所示, 即为本具体实施方式中选取的 446nm蓝光 LED芯片、 627nm红光 LED芯片、 507nm绿光荧光粉、 558nm黄光荧光粉的相对光谱功率分布图。 图 3中, B表示蓝光 LED芯片, G表示绿光荧光粉, Y表示黄光荧光粉, R表示红光 LED芯片。 在上述组合下, 调节荧光粉胶粉比例及涂覆量, 使蓝绿光、 黄光中蓝光所占的光功率 比例分别为 0.44、 0.07,从而产生蓝绿光、黄光和红光的相对光谱功率分布如图 4所示。 图 4中, B_G表示蓝绿光, B_Y表示黄光, R表示红光。 在上述组合和比例下, 产生 的蓝绿光、 黄光与红光的色坐标分别为: (0.1631, 0.2332 )、 (0.3999,0.4924 )、 (0.6868,0.3130), 其色域范围示意图如图 5所示。 从图 5可知, 该三种颜色的光的色 坐标构成的三角形范围, 覆盖了能源之星色域范围, 表明该色坐标下的三种光混合得 到的光可实现色温在 2700K〜6500K的范围内可调。
需说明的是, 当选取范围内其它值的组合时, 图 4 中波形的峰值会有移动。 当蓝 绿光、 黄光中蓝光所占的光功率比例设置为范围内其它取值时, 相应波长下的相对功 率值会有所变动, 波形的压缩张开情形会有所不同。 但无论波形峰值移动, 或者波形 收缩变化, 总体上在 445-455nm 的蓝光 LED芯片、 624-630nm 的红光 LED 芯片、 500-520nm的绿光荧光粉和 557-570nm的黄光荧光粉组合下, 蓝绿光、 黄光中蓝光所 占的光功率比例分别为 0.43〜0.57、 0〜0.08时, 混合后光的相对光谱功率分布图与图 4相似,得到的三种颜色的光的色坐标构成的三角形同样可覆盖能源之星色域范围,三 种光混合得到的光即同样可实现色温在 2700K〜6500K的范围内可调。
LED灯具中电路组件工作时: 控制电路 6中存储有各个光源的光通量配比与混合 后光源的色度参数之间的对应关系表, 其中在各个光源的光通量配比下, 各色度参数 满足如下条件: 色温在 2700K〜6500K范围内可调, 各色温下光源的一般显色指数 Ra ^90, 特殊显色指数 R9 95, 色品差 AC<0.0054; 控制电路根据用户需要得到的混合 后的色温选择相应的各个光源的光通量配比, 根据各个光源的光通量配比确定各个光 源的驱动电流, 并将计算的驱动电流分别输出至相应的驱动电路 701、 702和 703。
三个驱动电路 701、702和 703分别将接收的驱动电流输出至相应的 LED光源 401、 402和 403, 驱动相应的 LED光源发光。 三路驱动电路 701、 702和 703采用脉冲宽度 调节 PWM的调节模式分别驱动三种 LED光源。 PWM调节模式调节控制的是各 LED 光源的输入电流的脉宽,使得 LED光源始终工作在满幅度电流与零,减小色谱的偏移。 可利用单片机采用 16位定时器产生 PWM信号, 分成 65536个灰度级。 这样可提高控 制精度, 且使得灯光的变化过程柔和。
控制电路 6通过驱动电路调节驱动电流, 从而控制各光源的光通量输出, 使 LED 灯具输出相应光通量配比下混合得到的混合白光, 从而输出想要的色温下的混合白光, 并且该色温下的一般显色指数 Ra在 90以上, 特殊显色指数 R9在 95以上。
如下详细说明, 如何得到光通量配比与混合后光源的色度参数之间的对应关系表。 首先, 光源的色温、 显色指数及色品差等色度参数是由三种颜色混合后得到的光 的相对光谱功率分布决定的。 混光后光的相对光谱功率分布 的计算如公式(1)所 示:
sa) = K, * sB_G (Λ) + K2 * SB_Y (A) + K3 * SR (λ) (1) 其中, ss_e )、 sB_Y u) , s ( i)分别为参与混光的蓝绿光、 黄光、 红光的相对 光谱功率分布, Κ2、 ^3为参与混光的蓝绿光、 黄光、 红光 LED所对应的光功率 配比。 所以, 要想确定混光后的光的色温和显色指数, 需知道参与混光的 LED的相对 光谱功率分布及它们之间的光功率配比。 如前所述, 当使用的 LED芯片和荧光粉的峰 值波长, 荧光粉的量确定时, 混合后光的功率分布即是确定的 (如图 4所示)。 因此, 设置不同的光功率配比组合, 会得到不同的 S( l), 而 会最终影响色度参数的取值 (由 计算色温, 一般显色指数 Ra, 特殊显色指数 R9、 色品差和辐射效率等色度 参数的公式是已知的)。 综上所述, 不同的光功率配比组合混合后光源有不同的色温、 显色指数和色品差。
如图 6所示, 为计算满足条件的光通量配比的方法流程图。 如图 6所示, 包括如 下步骤: 1 ) 接收蓝绿光、 黄光和红光的相对光谱功率分布数据。 2 ) 对蓝绿光光功率 配比 Kl、 黄光光功率配比 Κ2和红光光功率配比 Κ3进行赋值。 3 )计算混合后光的色 度参数。 具体地, 即按照上述公式 (1 )计算混合光的相对光谱功率分布, 然后根据混合 后光的相对光谱功率分布计算混合后光源的色度参数, 这些色度参数包括色温, 一般 显色指数 Ra, 特殊显色指数 R9、色品差和辐射效率。根据混合后光的相对光谱功率分 布 计算上述色度参数有已知的计算公式, 在此不详细说明。 4 )判断是否满足如下 条件: 混合后光的色温在设定范围内 (即可在设定值某一范围内波动, 例如色温设定 值为 2700K, 则色温在 2695〜2705K的范围内均可视为色温为 2700K ) , —般显色指数 Ra^ 90, 特殊显色指数 R9 95, 色品差 AC <0.0054, 如果是, 则进入步骤 5 )输出蓝 绿光光功率配比 Kl、 黄光光功率配比 Κ2和红光光功率配比 Κ3当前的取值, 以及对 应的当前的色度参数值; 如果否, 则返回步骤 2 )重新赋值, 重新计算, 直至得到满足 条件的光蓝绿光光功率配比 Kl、 黄光光功率配比 Κ2和红光光功率配比 Κ3。
得到满足条件的光功率配比 Kl、 Κ2和 Κ3后, 由于光功率配比与光通量配比之间 有对应的关系, 因此可根据光功率配比计算得到光通量配比。 计算公式为:
Figure imgf000008_0001
式中, ηη, Kn, ^„分别对应的是各个光源 (n=l时对应蓝绿光、 n=2时对应 黄光、 n=3时对应红光) 的光通量配比, 光功率配比和辐射效率, ^的值为 6831m/W, Υ{λ)为视见函数, S( l)为相应的光源的相对功率光谱分布数据。
由上述计算方法, 即可得到各个光源的光通量配比与混合后光源的色温, 一般显 色指数 Ra, 特殊显色指数 R9, 色品差 AC之间的对应关系, 且色温在 2700K〜6500K 的范围内可调, 各色温下混合后光源的一般显色指数 Ra 90, 特殊显色指数 R9 95, 色品差 AC<0.0054。
仍然以峰值波长为 446nm蓝光 LED芯片、 627nm红光 LED芯片、 507nm绿光荧 光粉、 558nm黄光荧光粉的组合, 蓝绿光、 黄光中蓝光所占的光功率比例分别为 0.44、 0.07 的情形为例说明, 得到的混合后的白光的光通量配比与各个色度参数的对应关系 表如下表所示, 得到的混合后的白光的相对功率光谱分布如图 7所示。
Figure imgf000008_0002
从上表可知, 通过控制蓝绿光、 黄光、 红光三种 LED的光通量配比, 即可得到配 比下对应的色温的混合光, 色温可以实现从 2700K到 6500K的范围可调, 同时, 一般 显色指数 Ra均在 90以上, 特殊显色指数 R9在 95以上, 最高可达 98。 色品差 AC均 小于 0.0054, 辐射光效 (LER)在 3141m/W以上, 最高辐射光效 (LER)为 3481m/W。
从图 7 中的混合后的白光的相对光谱功率分布图可知, 该 LED 灯具可实现在 2700K〜6500K色温范围内的连续可调。
本具体实施方式中 LED灯具, 采用三种 LED光源, 分别是采用蓝光 LED芯片激 发绿光荧光粉产生蓝绿光、 蓝光 LED芯片激黄光荧光粉产生黄光、 以及红光 LED芯 片产生红光。 通过一定范围的峰值波长组合以及蓝绿光、 黄光中蓝光比例的配合, 从 而产生特定光谱功率分布的混合光。工作时,通过控制电路和驱动电路调节不同的 LED 光源的电流, 从而调节不同 LED光源的光通量输出, 调节它们之间的光通量的配比, 得到各个光通量配比下对应的色温下的混合白光, 且白光的色度参数较好, 即在保证 高显色指数、 良好色品差、 辐射效率的前提下, 实现色温的可调, 可满足高要求的应 用。 同时, LED灯具的光源组件中不涉及荧光粉的混合比例问题, 且两个蓝光 LED芯 片的峰值波长相同, 因此灯具的设计成本和制造成本均较低。 具体实施方式二
本具体实施方式与具体实施方式一的不同之处在于: 本具体实施方式在具体实施 方式一的基础上进一步限定: 多个 LED光源按照圆形阵列排布, 圆形半径 r的设置以 及反光罩、 基板、 扩散板的优选设置等。
本具体实施方式中的 LED灯具, 组件, 各组件的连接以及组件的工作过程均与实 施方式一中相同, 在此不重复说明。 如下仅详细说明进一步限定的内容。
本具体实施方式中通过合理布局 LED光源阵列, 使得蓝绿光、 黄光、 红光投射到 目标扩散面板上的光斑大小相等、 照度均匀; 以及由磨砂反光罩压缩光斑; 并由 PC或 PMMA材质的扩散板或磨砂的玻璃进行二次匀光和匀色; 镀有反射膜的基板用于收集 被反光罩及扩散板反射到底部的光线, 提高系统的光利用率。
如图 8所示, 为本具体实施方式中 LED灯具中多个 LED光源的排列结构示意图。 从图 8中可知, LED灯具包括 6组 LED光源组件,各组 LED光源组件均包括 3个 LED 光源, 共计 18个 LED光源, 该多个 LED光源按照圆形阵列排布, 且提供不同颜色的 光的 LED光源间隔设置, 各个 LED光源具有相同的配光曲线。 例如, 提供蓝绿光的 第一 LED光源 401两侧相邻的为第二 LED光源 402和第三 LED光源 403, 提供黄光 的第二 LED光源 402两侧相邻的为第一 LED光源 401和第三 LED光源 403, 提供红 光的第三 LED光源 403两侧相邻的为第一 LED光源 401和第二 LED光源 402, 如此 排列设置, 不同颜色的 LED光源间隔设置。 按照圆形阵列排列各个 LED光源, 蓝绿光、 黄光、 红光 LED光源具有相同的配 光曲线, 且均在同一圆形阵列内, 则蓝绿光、 黄光、 红光 LED投射到目标扩散板的光 斑的大小相等, 且照度较均匀, 这样在扩散板面合成的白光的色温分布也较均匀。
优选地, 蓝绿光、 黄光、 红光 LED光源的配光曲线均为朗伯型, 三者的半光强角 均相同, 则圆形阵列的半径 r = l^— X z, 其中, m为与所述 LED光源的半光强角相
V m + 2 关的系数, m = _ ln 2 , 其中 Θ为所述半光强角; z为所述 LED光源与所述扩散板 ln(cos^) 之间的距离。 由于蓝绿光、 黄光、 红光 LED光源均位于同一平面 基板上, 因此, LED光源为蓝绿光、 黄光、 红光 LED光源中的一个。 按照上述方法设置圆形半径, 可 使 LED灯具出射的光斑照度最均匀。 举例说明, 以出射光斑为 8英寸 (203mm) 的筒 灯的设计为例, 则 LED光源采用圆形阵列排列, 蓝绿光、 黄光、 红光 LED的个数均 为 6个, 不同颜色的 LED相间放置, z设为 80mm, 当半光强角 Θ为 60° 时, 计算得 到实现照度最均匀条件的圆形阵列的半径值 r为 65mm。此时, 按照半径为 65mm的圆 形阵列设置蓝绿光、 黄光、 红光组成 LED灯具时, 得到蓝绿光、 黄光、 红光 LED光 源阵列在扩散板面的照度模拟设计光斑图分别如图 9a、 9b和 9c所示。 如图 9所示, 蓝绿光、 黄光、 红光阵列照射到扩散板面的光斑的大小均为 203mm, 且照度较均匀, 这样叠加所形成的光斑的色度也将较均匀。
进一步优选地, LED灯具中的反光罩为磨砂反光罩。 磨砂反光罩主要可以收集边 缘光线, 压缩 LED光源阵列出射到反光罩上的光斑大小, 使之与扩散板上的光斑大小 一致。
更进一步优选地, LED灯具中的基板上镀有反射膜。 镀反射膜的基板可收集被反 光罩及扩散板反射到底部的光线, 从而提高系统的光利用率。
更进一步优选地, LED灯具中的扩散板为 PC扩散板 (聚碳酸酯 Polycarbonate, 英文缩写 PC)、 PMMA扩散板 (聚甲基丙烯酸甲酯 polymethylmethacrylate, 英文缩写 PMMA) 或磨砂玻璃, 这样扩散板可进行二次匀光、 匀色, 提高出射光的均匀度。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明, 不能认定 本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说, 在不脱离本发明构思的前提下做出若干替代或明显变型, 而且性能或用途相同, 都应 当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1.一种 LED灯具, 包括散热器、 反光罩、 扩散板和其上设置有 LED光源模块的 基板, 其特征在于: 所述 LED光源模块包括至少一组 LED光源组件, 所述 LED灯具 还包括三个驱动电路和控制电路;
所述 LED光源组件包括提供蓝绿光的第一 LED光源, 提供黄光的第二 LED光源 和提供红光的第三 LED光源; 所述第一光源包括峰值波长为 445〜455nm的第一蓝光 LED芯片, 其上涂覆有峰值波长为 500〜520nm的绿光荧光粉, 提供的所述蓝绿光中 蓝光所占的光功率比例为 0.43〜0.57 ;所述第二光源包括峰值波长为 445〜455nm的第 二蓝光 LED芯片, 其上涂覆有峰值波长为 557〜570nm的黄光荧光粉, 提供的所述黄 光中蓝光所占的光功率比例为 0〜0.08 ; 所述第三光源包括峰值波长为 624〜630nm的 第三红光 LED芯片;
所述控制电路中存储有各个光源的光通量配比与混合后光源的色度参数之间的对 应关系表, 其中在各个光源的光通量配比下, 各色度参数满足如下条件: 色温在 2700K〜6500K范围内可调, 各色温下光源的一般显色指数 Ra≡¾90, 特殊显色指数 R9 95, 色品差 AC<0.0054 ; 所述控制电路根据用户需要得到的混合后的色温选择相应 的各个光源的光通量配比, 根据各个光源的光通量配比确定各个光源的驱动电流, 并 将计算的驱动电流分别输出至相应的驱动电路;
所述三个驱动电路分别将接收的驱动电流输出至相应的 LED光源, 驱动相应的 LED光源发光。
2.根据权利要求 1所述的 LED灯具,其特征在于:所述三个驱动电路采用脉冲宽 度调节 (PWM) 的方式调节驱动电流。
3.根据权利要求 1所述的 LED灯具,其特征在于:所述 LED光源模块中多个 LED 光源按照圆形阵列排布, 且提供不同颜色的光的 LED光源间隔设置, 各个 LED光源 具有相同的配光曲线。
4.根据权利要求 3所述的 LED灯具,其特征在于:所述第一 LED光源、第二 LED 光源和第三 LED光源的配光曲线均为郎伯型, 三者的半光强角均相同; 所述圆形阵列 的半径 r = JHXz, 其中, m 为与所述 LED 光源的半光强角相关的系数, m = _ln 2 , 其中 Θ为所述半光强角, Ζ为所述 LED光源与所述扩散板之间的距离。
ln(cos Θ)
5.根据权利要求 1所述的 LED灯具, 其特征在于: 所述反光罩为磨砂反光罩。
6.根据权利要求 1所述的 LED灯具, 其特征在于: 所述基板上镀有反射膜。
7.根据权利要求 1所述的 LED灯具,其特征在于:所述扩散板为 PC扩散板、 PMMA 扩散板或磨砂玻璃。
PCT/CN2014/083406 2013-08-26 2014-07-31 一种led灯具 WO2015027786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/014,043 US10036516B2 (en) 2013-08-26 2016-02-03 LED lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310377015.5A CN103486466B (zh) 2013-08-26 2013-08-26 一种led灯具
CN201310377015.5 2013-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/014,043 Continuation US10036516B2 (en) 2013-08-26 2016-02-03 LED lamp

Publications (1)

Publication Number Publication Date
WO2015027786A1 true WO2015027786A1 (zh) 2015-03-05

Family

ID=49826927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083406 WO2015027786A1 (zh) 2013-08-26 2014-07-31 一种led灯具

Country Status (3)

Country Link
US (1) US10036516B2 (zh)
CN (1) CN103486466B (zh)
WO (1) WO2015027786A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486466B (zh) * 2013-08-26 2015-07-08 深圳大学 一种led灯具
EP3092467A2 (en) * 2014-01-08 2016-11-16 Hubbell Incorporated Systems and methods for testing and characterizing led lighting devices
CN103791356B (zh) * 2014-01-22 2014-10-15 台州市老百姓车业有限公司 电动自行车用led灯
CN103887299A (zh) * 2014-03-19 2014-06-25 浙江古越龙山电子科技发展有限公司 一种高压led光源
CN104373838B (zh) * 2014-06-30 2016-03-23 深圳大学 一种led光源模组及led灯具
FR3025289B1 (fr) * 2014-09-03 2019-07-26 Zodiac Aero Electric Projecteur d'eclairage et/ou de signalisation exterieur et systeme d'eclairage et/ou de signalisation correspondant
JP6455817B2 (ja) * 2014-09-12 2019-01-23 パナソニックIpマネジメント株式会社 照明装置
CN104470104B (zh) * 2014-12-01 2017-01-25 苏州立瓷智能电器有限公司 一种贴片led灯的色温调节方法
CN104633499B (zh) * 2015-02-04 2016-10-05 余建华 一种高显色指数的led光源模组及led灯具
CN104633595B (zh) * 2015-02-09 2016-02-24 常州千明智能照明科技有限公司 一种以高显色指数模拟日光的led灯具
KR102271161B1 (ko) * 2015-03-11 2021-07-05 엘지이노텍 주식회사 발광 모듈 및 이를 구비한 조명 장치
CN108302335B (zh) * 2016-08-29 2020-02-21 欧普照明股份有限公司 一种照明装置及包括该照明装置的灯具
CN107795948A (zh) * 2016-08-29 2018-03-13 欧普照明股份有限公司 一种照明装置及包括该照明装置的灯具
KR102406913B1 (ko) * 2017-03-27 2022-06-10 서울반도체 주식회사 발광 모듈
CN108006462A (zh) * 2018-01-04 2018-05-08 北京莱斯达电子科技股份有限公司 一种led多用途影视补光灯
US10827580B2 (en) 2018-01-11 2020-11-03 EcoSense Lighting, Inc. Two-channel tunable lighting systems with controllable equivalent melanopic lux and correlated color temperature outputs
CN110107821A (zh) * 2018-01-31 2019-08-09 上海三思电子工程有限公司 Led光源装置、照明设备、及照明控制方法
CN108826030A (zh) * 2018-06-27 2018-11-16 朗昭创新控股(深圳)有限公司 一种家居照明球泡灯
WO2020000517A1 (zh) * 2018-06-27 2020-01-02 朗昭创新控股(深圳)有限公司 一种全自然光谱led发光体及照明装置
WO2021141804A1 (en) * 2020-01-06 2021-07-15 Optimum Semiconductor Technologies Inc. Improving color rendering accuracy of led lighting device by adding monochromatic light elements
CN112203383B (zh) * 2020-10-23 2022-07-08 深圳瑞欧光技术有限公司 一种多光谱led的调光方法
WO2022165446A2 (en) * 2021-01-29 2022-08-04 Wu Bor Jen Lcd device
CN113260127B (zh) * 2021-04-30 2023-04-25 深圳市爱图仕影像器材有限公司 一种色温调节方法、终端设备及计算机可读存储介质
CN114484381A (zh) * 2022-01-21 2022-05-13 漳州立达信光电子科技有限公司 一种面向人因照明的发光单元及其组成的灯具
CN114630463B (zh) * 2022-03-21 2023-05-16 广州光联电子科技有限公司 一种led光源调光方法和调光系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160061A (ja) * 2006-11-30 2008-07-10 Toshiba Lighting & Technology Corp 照明装置
CN101482235A (zh) * 2009-01-22 2009-07-15 深圳市聚飞光电有限公司 色温可调整的高显色led灯及其制造方法
US20110103038A1 (en) * 2009-10-30 2011-05-05 Kingbright Electronics Co., Ltd. White led device
CN102278641A (zh) * 2011-08-25 2011-12-14 上海亚明灯泡厂有限公司 白光led灯及其生成高显色白光的方法
CN103486466A (zh) * 2013-08-26 2014-01-01 深圳大学 一种led灯具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805026B2 (ja) * 2006-05-29 2011-11-02 シャープ株式会社 発光装置、表示装置及び発光装置の制御方法
JP2008283155A (ja) * 2007-05-14 2008-11-20 Sharp Corp 発光装置、照明機器および液晶表示装置
KR20090014615A (ko) * 2007-08-06 2009-02-11 럭스피아(주) 조명용 백색 발광 장치 및 제조방법
CN101463986B (zh) * 2007-12-21 2011-01-05 富士迈半导体精密工业(上海)有限公司 发光二极管灯具
JP2010147306A (ja) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp 発光装置、この発光装置を用いた照明器具及び表示器具
KR20120031182A (ko) * 2009-07-07 2012-03-30 씨씨에스 가부시키가이샤 발광 장치
CN101808451B (zh) 2010-03-25 2013-04-03 东华大学 白光加红蓝led组合获得高显色可调色温白光的方法
CN101801139B (zh) * 2010-03-25 2013-06-26 东华大学 红黄绿蓝led组合获得高显色可调色温白光的方法
US8896197B2 (en) * 2010-05-13 2014-11-25 Cree, Inc. Lighting device and method of making
JP5127964B2 (ja) * 2010-09-06 2013-01-23 株式会社東芝 発光装置
KR101948220B1 (ko) * 2011-08-24 2019-02-14 엘지이노텍 주식회사 조명 장치
EP2753871B1 (en) * 2011-09-08 2016-11-02 LG Innotek Co., Ltd. Lighting device and lighting control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008160061A (ja) * 2006-11-30 2008-07-10 Toshiba Lighting & Technology Corp 照明装置
CN101482235A (zh) * 2009-01-22 2009-07-15 深圳市聚飞光电有限公司 色温可调整的高显色led灯及其制造方法
US20110103038A1 (en) * 2009-10-30 2011-05-05 Kingbright Electronics Co., Ltd. White led device
CN102278641A (zh) * 2011-08-25 2011-12-14 上海亚明灯泡厂有限公司 白光led灯及其生成高显色白光的方法
CN103486466A (zh) * 2013-08-26 2014-01-01 深圳大学 一种led灯具

Also Published As

Publication number Publication date
US10036516B2 (en) 2018-07-31
CN103486466A (zh) 2014-01-01
CN103486466B (zh) 2015-07-08
US20160153622A1 (en) 2016-06-02

Similar Documents

Publication Publication Date Title
WO2015027786A1 (zh) 一种led灯具
WO2016124106A1 (zh) 一种高显色指数的led光源模组及led灯具
EP2304309B1 (en) Solid state lighting devices including light mixtures
US9241384B2 (en) Solid state lighting devices with adjustable color point
US8998444B2 (en) Solid state lighting devices including light mixtures
US9530944B2 (en) High color-saturation lighting devices with enhanced long wavelength illumination
US8240875B2 (en) Solid state linear array modules for general illumination
JP6215207B2 (ja) 照明装置及び照明制御方法
US8664846B2 (en) Solid state lighting device including green shifted red component
EP2460193B1 (en) Solid state lighting devices including light mixtures
RU2456713C1 (ru) Белый сид и белая сид лампа
US9534741B2 (en) Lighting devices with illumination regions having different gamut properties
CN102036435A (zh) 一种光色调制方法及光色可变的发光二极管光源模块
JP2007059272A (ja) 照明装置及び照明方法
CN104373838B (zh) 一种led光源模组及led灯具
WO2012009918A1 (zh) Led白光光源模块
WO2011143907A1 (zh) 一种led光源模组及提高led光源模组显色指数的方法
US9702524B2 (en) High color-saturation lighting devices
CN110212076A (zh) 一种光源模组及包括该光源模组的照明装置
JP2001184910A (ja) 発光ダイオードを用いた照明用光源および照明装置
CN104681695A (zh) 一种基于远程荧光粉技术的led灯具
US20240155750A1 (en) Light emitting module, and lighting device
WO2020244512A1 (zh) 一种光源模组及包括该光源模组的照明装置
WO2020244511A1 (zh) 一种光源模组及包括该光源模组的照明装置
Zeng et al. Secondary optical design of LED lamps with high CRI and adjustable CCT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841005

Country of ref document: EP

Kind code of ref document: A1