WO2015027533A1 - 背光驱动电路及液晶显示装置 - Google Patents

背光驱动电路及液晶显示装置 Download PDF

Info

Publication number
WO2015027533A1
WO2015027533A1 PCT/CN2013/083000 CN2013083000W WO2015027533A1 WO 2015027533 A1 WO2015027533 A1 WO 2015027533A1 CN 2013083000 W CN2013083000 W CN 2013083000W WO 2015027533 A1 WO2015027533 A1 WO 2015027533A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupled
mos transistor
constant current
pwm dimming
operational amplifier
Prior art date
Application number
PCT/CN2013/083000
Other languages
English (en)
French (fr)
Inventor
张华�
黎飞
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/114,531 priority Critical patent/US8981662B1/en
Publication of WO2015027533A1 publication Critical patent/WO2015027533A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/064Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source

Definitions

  • the present invention relates to the field of liquid crystal display, and more particularly to a backlight driving circuit and a liquid crystal display device. Background technique
  • CCFL cold cathode fluorescent lamp
  • LED backlights due to their shortcomings such as poor color reproduction, low luminous efficiency, high discharge voltage, poor discharge characteristics at low temperatures, and long stable gradation times.
  • the backlight driving circuit includes a boosting circuit 110, an LED string 120, and a constant current driving chip 130.
  • the booster circuit 110 boosts the input voltage Vin by the control of the constant current drive chip 130 to satisfy the need to drive the LED string 120.
  • the input voltage Vin is simultaneously supplied to the constant current driving chip 130 to cause the constant current driving chip 130 to operate normally.
  • the constant current driving chip 130 receives an external Pulse Width Modulation (PWM) dimming signal to control the current flowing through the LED string 120 so that the LED string 120 emits light normally.
  • PWM Pulse Width Modulation
  • the constant current driving chip 130 includes a control module 131 and an operational amplifier 132.
  • the control module 131 receives the enable signal ENA such that the entire constant current driving chip 130 starts operating.
  • the control module 131 outputs a driving signal to the MOS transistor Q1 of the boosting circuit 110, wherein when the MOS transistor Q1 is turned on, the inductor L stores energy; when the MOS transistor Q1 is turned off, the inductor L releases energy to provide the LED string 120 with satisfaction. Its normal luminous voltage.
  • the non-inverting input of the operational amplifier 132 receives a constant voltage VI.
  • the negative-phase input of the operational amplifier 132 feeds back the voltage across the resistor RT.
  • the output of the operational amplifier 132 is coupled to the gate of the MOS transistor Q2.
  • the operational amplifier 132 Will be the constant voltage VI and the voltage across the resistor RT After the comparison, a control signal is output to control the voltage difference between the gate and the source of the MOS transistor Q2 to determine the current flowing through the LED string 120.
  • the duty ratio of the current flowing through the LED string 120 is determined by the duty ratio of the PWM dimming signal; when the PWM dimming signal is high, the operational amplifier 132 controls the control of the MOS transistor Q2 effectively, when PWM dimming When the signal is low, the operational amplifier 132 can no longer control the MOS transistor Q2, the MOS transistor Q2 is in an off state, and no current flows in the LED string 120.
  • the parasitic capacitance C exists between the gate and the source of the MOS transistor Q2, when a voltage is applied to the gate and the source of the MOS transistor Q2, the parasitic capacitance C is first charged, and when the parasitic capacitance C is fully charged, When the applied voltage is still present, the MOS transistor Q2 is turned on.
  • the problem with this is that after the frequency of the PWM dimming signal is fixed, when its duty ratio is small, it means that the duration of the operational amplifier 132 outputting the adjustment signal to the MOS transistor Q2 is short, resulting in the gate of the MOS transistor Q2.
  • the charging time of the parasitic capacitance C between the sources is short, and the parasitic capacitance C cannot be fully charged, so that the MOS transistor Q2 cannot be in a fully conducting state, and the current flowing through the LED string 120 does not reach the preset current (
  • the preset current is a current for causing the LED string 120 to normally emit light; in particular, during the power-on process, if the duty ratio of the PWM dimming signal is too small, the MOS transistor Q2 cannot be turned on in time, and the constant current driving chip 130 may
  • the misidentification LED string 120 is in an open state, which affects the normal operation of the entire backlight driving circuit. Summary of the invention
  • an object of the present invention is to provide a backlight driving circuit and a liquid crystal display having the same, even when the duty ratio of the PWM dimming signal is small, and the operation abnormality does not occur.
  • a backlight driving circuit including a boosting circuit, a constant current driving chip, and an LED string coupled to the boosting circuit, wherein the backlight driving circuit further includes a detecting module, wherein the boosting The circuit boosts the input voltage to the LED string; the detecting module receives the external PWM dimming signal and calculates the duty ratio of the external PWM dimming signal, and the detecting module is based on the external PWM dimming signal.
  • a liquid crystal display device includes a liquid crystal panel and an LED backlight disposed opposite the liquid crystal panel, the LED backlight providing a display light source to the a liquid crystal panel, the LED backlight includes a backlight driving circuit, the backlight driving circuit includes a boosting circuit, a constant current driving chip, and an LED string coupled to the boosting circuit, wherein the backlight driving circuit further includes a detecting module, wherein The boosting circuit boosts the input voltage to the LED string; the detecting module receives the external PWM dimming signal and calculates the duty ratio of the external PWM dimming signal, and the detecting module is based on the external PWM tuning The result of comparing the duty ratio of the optical signal with the preset threshold determines whether a control signal is generated to the constant current driving chip, so that the constant current driving chip controls
  • the detecting module intercepts the external PWM dimming signal and generates a PWM tone with a duty ratio of the preset threshold.
  • the optical signal is applied to the constant current driving chip; or, when the duty ratio of the external PWM dimming signal is less than the preset threshold, the detecting module intercepts the external PWM dimming signal and outputs a low level signal The enable signal input terminal of the constant current driving chip.
  • the boosting circuit includes an inductor, a rectifier diode, a capacitor, and a first MOS transistor, wherein one end of the inductor is used to receive an input voltage, and the other end of the inductor is coupled to a positive pole of the rectifier diode, and a cathode of the rectifier diode Coupled to the positive terminal of the LED string, one end of the capacitor is coupled between the negative terminal of the rectifier diode and the positive terminal of the LED string, and the drain of the first MOS transistor is coupled between the other end of the inductor and the rectifier diode,
  • the source of a MOS transistor is electrically grounded, and the gate of the first MOS transistor is coupled to a constant current driving chip.
  • the LED string includes a plurality of LEDs connected in series, a second MOS transistor and a resistor, wherein a drain of the second MOS transistor is coupled to a cathode of the plurality of LEDs connected in series, and a source of the second MOS transistor is coupled To one end of the resistor, the other end of the resistor is electrically grounded, and the gate of the second MOS transistor is coupled to the constant current driving chip.
  • the constant current driving chip includes a control module and an operational amplifier, and the control module is provided with an enable signal input terminal, wherein the control module receives the input voltage and an enable signal input by the enable signal input terminal, and the control module Also coupled to the booster circuit and the negative poles of the plurality of LEDs connected in series, the non-inverting input terminal of the operational amplifier receives a constant voltage, and the negative phase input terminal of the operational amplifier is coupled to the source and the resistor of the second MOS transistor Between one end, the output of the operational amplifier is coupled to the gate of the second MOS transistor.
  • one end of the detecting module receives an external PWM dimming signal, and the detecting mode The other end of the block is coupled to the output of the operational amplifier; or one end of the detection module receives the external
  • the PWM dimming signal is coupled to the output of the operational amplifier and the enable signal input, respectively.
  • the backlight driving circuit and the liquid crystal display device of the present invention can generate a PWM dimming signal with a duty ratio of the preset threshold or generate a low level signal for constant current driving when the duty ratio of the PWM dimming signal is small.
  • the chip is such that the LED string is normally illuminated or the constant current driving chip is stopped, thereby enabling the backlight driving circuit to operate normally.
  • FIG. 1 is a schematic diagram of a prior art backlight driving circuit.
  • Fig. 2 is a schematic diagram of a backlight driving circuit according to Embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of a backlight driving circuit according to Embodiment 2 of the present invention.
  • Fig. 4 is a liquid crystal display device of the present invention. detailed description
  • Fig. 2 is a schematic diagram of a backlight driving circuit according to Embodiment 1 of the present invention.
  • the backlight driving circuit includes a boosting circuit 210, a constant current driving chip 220, a detecting module 230, and an LED string 240 coupled to the boosting circuit 210.
  • the booster circuit 210 boosts the received input voltage Vin by the control of the constant current driving chip 220, and outputs a voltage that satisfies the normal light emission of the LED string 240. Further, the input voltage Vin is also supplied to the constant current driving chip 220 as the operating voltage of the constant current driving chip 220.
  • Detection module 230 receives An external Pulse Width Modulation (PWM) dimming signal is calculated and the PWM dimming signal is calculated to obtain a duty ratio of the PWM dimming signal, and the detecting module 230 is based on the received PWM dimming signal.
  • PWM Pulse Width Modulation
  • the result of comparing the ratio with the preset threshold determines whether a control signal is generated to the constant current driving chip 220 to cause the constant current driving chip 220 to control the current flowing through the LED string 240.
  • the booster circuit 210 includes an inductor L, a rectifier diode D, a capacitor C1, and a first metal oxide semiconductor (MOS) transistor Q1.
  • One end of the inductor L is for receiving the input voltage Vin
  • the other end of the inductor L is coupled to the anode of the rectifier diode D
  • the cathode of the rectifier diode D is coupled to the positive terminal of the LED string 240
  • one end of the capacitor C1 is coupled to the rectifier
  • the drain of the first MOS transistor Q1 is coupled between the other end of the inductor L and the rectifier diode D
  • the source of the first MOS transistor Q1 is electrically grounded.
  • the gate of the first MOS transistor Q1 is coupled to the constant current driving chip 220.
  • the LED string 240 includes a plurality of LEDs in series, a second MOS transistor Q2, and a resistor RT.
  • the drain of the second MOS transistor Q2 is coupled to the cathode of the plurality of LEDs connected in series, the source of the second MOS transistor Q2 is coupled to one end of the resistor RT, the other end of the resistor RT is electrically grounded, and the second MOS transistor is The gate of Q2 is coupled to the constant current driving chip 220.
  • the constant current driving chip 220 includes a control module 222 and an operational amplifier 223.
  • the control module 222 receives the input voltage Vin and the enable signal ENA (here, the enable signal ENA is a high level signal) input by the enable signal input terminal 221 provided thereto, so that the entire constant current driving chip 220 operates and controls
  • the module 222 is also coupled to the gate of the first MOS transistor Q1 of the boosting circuit 210 and the negative electrode of the plurality of LEDs connected in series of the LED string 240, respectively, to provide a driving with a certain switching frequency to the gate of the first MOS transistor Q1.
  • the signal controls the operation of the boost circuit 210; the non-inverting input of the operational amplifier 223 is for receiving a constant voltage VI, the negative phase input of the operational amplifier 223 is fed back to the voltage across the resistor RT, and the output of the operational amplifier 223 Coupling to the gate of the second MOS transistor Q2; after the operational amplifier 223 compares the constant voltage VI with the voltage across the resistor RT, the output adjustment signal is output to control the adjustment of the gate and the source of the second MOS transistor Q2. The voltage difference between them, in turn, determines the current flowing through the LED string 240.
  • the enable signal ENA input to the enable signal input terminal 221 of the control module 222 can be a high level signal or a low level signal, and when the enable signal ENA is a high level signal, The constant current driving chip 220 operates; when the enable signal ENA is a low level signal, the constant current driving core is made Slice 220 stops working.
  • One end of the detection module 230 is for receiving an external PWM dimming signal, and the other end is coupled to the output of the operational amplifier 223.
  • the detecting module 230 can be, for example, a Micro Control Unit (MCU) such as a single chip microcomputer.
  • MCU Micro Control Unit
  • the duty ratio of the external PWM dimming signal compares the duty cycle of the obtained external PWM dimming signal with a preset threshold set internally; when the duty ratio of the external PWM dimming signal is less than the preset At the threshold, the detecting module 230 intercepts the external PWM dimming signal, and outputs a PWM dimming signal whose duty ratio is the preset threshold to the gate of the second MOS transistor Q2 to ensure the second MOS transistor Q2.
  • the current flowing through the LED string 240 can reach a preset current (the preset current is a current that causes the LED string 240 to normally emit light), thereby causing the LED string 240 to normally emit light, when external PWM dimming
  • the detecting module 230 does not perform any processing on the external PWM dimming signal, and the external PWM dimming signal without any processing is output to the gate of the second MOS transistor Q2.
  • a second MOS transistor Q2 may be such that in a fully conductive state, a current flowing through the LED string 240 can reach a predetermined current, the normal light emitting LED string 240.
  • the duty ratio of the PWM dimming signal applied to the gate of the second MOS transistor Q2 can be maintained above the preset threshold, and the operational amplifier 223 outputs the adjusting signal to the first
  • the duration of the second MOS transistor Q2 is sufficiently long that the charging time of the parasitic capacitance C between the gate and the source of the second MOS transistor Q2 is sufficiently long to fully charge the parasitic capacitance C, and thus the second MOS transistor Q2 is completely In the on state, the current flowing through the LED string 240 can reach a preset current, and the LED string 240 emits light normally.
  • the second MOS transistor Q2 can be completely turned on by the function of the detecting module 230, and the LED string 240 is normally illuminated, and the constant current driving chip is driven. 220 will not misjudge the LED string 240 in an open state, and the entire backlight driving circuit can work normally.
  • the preset threshold set in the detection module 230 is guaranteed to be the second
  • Example 2 3 is a schematic diagram of a backlight driving circuit according to Embodiment 2 of the present invention. As shown in FIG. 3, the backlight driving circuit according to Embodiment 2 of the present invention includes a boosting circuit 210, a constant current driving chip 220, a detecting module 230, and an LED string 240 coupled to the boosting circuit 210.
  • the booster circuit 210 boosts the received input voltage Vin by the control of the constant current driving chip 220, and outputs a voltage that satisfies the normal light emission of the LED string 240. Further, the input voltage Vin is also supplied to the constant current driving chip 220 as the operating voltage of the constant current driving chip 220.
  • the detecting module 230 receives an external Pulse Width Modulation (PWM) dimming signal and operates the PWM dimming signal to obtain a duty ratio of the PWM dimming signal, and the detecting module 230 is based on the received PWM.
  • PWM Pulse Width Modulation
  • a comparison result of the duty ratio of the dimming signal and the preset threshold determines whether a control signal is generated to the constant current driving chip 220, so that the constant current driving chip 220 controls the current flowing through the LED string 240.
  • the booster circuit 210 includes an inductor L, a rectifier diode D, a capacitor C1, and a first metal oxide semiconductor (MOS) transistor Q1.
  • One end of the inductor L is for receiving the input voltage Vin
  • the other end of the inductor L is coupled to the anode of the rectifier diode D
  • the cathode of the rectifier diode D is coupled to the positive terminal of the LED string 240
  • one end of the capacitor C1 is coupled to the rectifier
  • the drain of the first MOS transistor Q1 is coupled between the other end of the inductor L and the rectifier diode D
  • the source of the first MOS transistor Q1 is electrically grounded.
  • the gate of the first MOS transistor Q1 is coupled to the constant current driving chip 220.
  • the LED string 240 includes a plurality of LEDs in series, a second MOS transistor Q2, and a resistor RT.
  • the drain of the second MOS transistor Q2 is coupled to the anode of the plurality of LEDs connected in series, the source of the second MOS transistor Q2 is coupled to one end of the resistor RT, the other end of the resistor RT is electrically grounded, and the second MOS transistor
  • the gate of Q2 is coupled to the constant current driving chip 220.
  • the constant current driving chip 220 includes a control module 222 and an operational amplifier 223.
  • the control module 222 receives the input voltage Vin and the enable signal ENA (here, the enable signal ENA is a high level signal) input by the enable signal input terminal 221 provided thereto, so that the entire constant current driving chip 220 operates and controls
  • the module 222 is also coupled to the gate of the first MOS transistor Q1 of the boosting circuit 210 and the negative electrode of the plurality of LEDs connected in series of the LED string 240, respectively, to provide a driving with a certain switching frequency to the gate of the first MOS transistor Q1.
  • the signal controls the operation of the boost circuit 210;
  • the non-inverting input of the operational amplifier 223 is for receiving a constant voltage VI, the negative phase input of the operational amplifier 223 is fed back to the voltage across the resistor RT, and the output of the operational amplifier 223 Coupling to the gate of the second MOS transistor Q2;
  • the operational amplifier 223 compares the constant voltage VI with the voltage across the resistor RT, an adjustment signal is output to control the voltage difference between the gate and the source of the second MOS transistor Q2 to determine the flow through the LED.
  • the current of string 240 is a constant voltage VI, the negative phase input of the operational amplifier 223 is fed back to the voltage across the resistor RT, and the output of the operational amplifier 223 Coupling to the gate of the second MOS transistor Q2;
  • the enable signal ENA input to the enable signal input terminal 221 of the control module 222 can be a high level signal or a low level signal, and when the enable signal ENA is a high level signal, The constant current driving chip 220 operates; when the enable signal ENA is a low level signal, the constant current driving chip 220 is stopped.
  • One end of the detection module 230 is configured to receive an external PWM dimming signal, the other end of which is coupled to the output of the operational amplifier 223, and the detection module 230 is also coupled to the enable signal input terminal 221 of the control module.
  • the detecting module 230 can be, for example, a Micro Control Unit (MCU) such as a single chip microcomputer.
  • MCU Micro Control Unit
  • the specific working process is as follows:
  • the detecting module 230 obtains the received data through calculation.
  • the duty ratio of the external PWM dimming signal and compares the duty cycle of the obtained external PWM dimming signal with a preset threshold set internally; when the duty ratio of the external PWM dimming signal is less than the preset At the threshold, the detecting module 230 cuts off the PWM dimming signal, and outputs a low level signal to the enable signal input terminal 221 of the constant current driving chip 220 as an enable signal of the constant current driving chip, so that the constant current driving chip 220 is enabled.
  • the operation is stopped, that is, the constant current driving chip 220 controls the current flowing through the LED string 240 to be zero, thereby stopping the operation of the entire backlight driving circuit, and avoiding the flicker phenomenon of the LED string 240 due to the small duty ratio of the PWM dimming signal.
  • the detecting module 230 does not perform any processing on the external PWM dimming signal, and the external PWM dimming signal that is not processed is output to the second.
  • the gate of the MOS transistor Q2 can make the second MOS transistor Q2 in a fully-on state, the current flowing through the LED string 240 can reach a preset current, and the LED string 240 can normally emit light.
  • the constant current driving chip 220 is directly turned off by the action of the detecting module 230, and the constant current driving chip 220 is not mistaken.
  • the LED string 240 is judged to be in an open state.
  • the preset threshold set in the detecting module 230 is to ensure that the parasitic capacitance C between the gate and the source of the second MOS transistor Q2 is fully charged, and the second MOS transistor Q2 is fully turned on.
  • the current flowing through the LED string 240 can reach a preset current, which satisfies the minimum duty ratio of the PWM dimming signal of the entire backlight driving circuit.
  • the backlight driving circuits of the first embodiment and the second embodiment described above are applied to a liquid crystal display device, and specifically to FIG. 4, the liquid crystal display device of the present invention is shown.
  • the liquid crystal display device of the present invention mainly includes a liquid crystal panel 300 and an LED backlight 400 disposed opposite to the liquid crystal panel 300.
  • the LED backlight 400 includes the backlight driving circuits of Embodiment 1 and Embodiment 2 described above.
  • the LED string is provided with a driving voltage of its normal illumination, so that the LED string emits light, so that the LED backlight 400 provides a display light source to the liquid crystal panel 300, so that the liquid crystal panel 300 displays an image.

Abstract

一种背光驱动电路及液晶显示装置,该背光驱动电路包括升压电路(210)、恒流驱动芯片(220)、侦测模块(230)以及与升压电路(210)耦接的LED串(240)。升压电路(210)将输入电压升压后提供给LED串(240);侦测模块(230)接收外部的PWM调光信号并运算求得该外部的PWM调光信号的占空比,侦测模块(230)基于该外部的PWM调光信号的占空比与预设阈值的比较结果,判断是否产生控制信号给恒流驱动芯片(220),以使恒流驱动芯片(220)控制调节流经LED串(240)的电流。该背光驱动电路即使在PWM调光信号的占空比很小时,也可正常工作。

Description

背光驱动电路及液晶显示装置 技术领域
本发明涉及液晶显示领域, 更具体地说, 涉及一种背光驱动电路及液晶显 示装置。 背景技术
随着技术的不断进步, 液晶显示装置的背光技术不断得到发展。 传统的液 晶显示装置的背光源采用冷阴极荧光灯 (CCFL)。 但是由于 CCFL背光源存在 色彩还原能力较差、 发光效率低、 放电电压高、 低温下放电特性差、 加热达到 稳定灰度时间长等缺点, 当前已经开发出使用 LED背光源的背光源技术。
在 LED背光源中, 需要通过专门的背光驱动电路来为 LED串提供其正常 发光的驱动电压。图 1是一种现有技术的背光驱动电路的示意图。如图 1所示, 该背光驱动电路包括升压电路 110、 LED串 120和恒流驱动芯片 130。
升压电路 110通过恒流驱动芯片 130的控制, 将输入电压 Vin进行升压, 以满足驱动 LED串 120的需要。 输入电压 Vin同时供给恒流驱动芯片 130,以 使恒流驱动芯片 130正常工作。恒流驱动芯片 130接收外部的脉宽调制(Pulse Width Modulation, PWM ) 调光信号, 以控制流经 LED串 120的电流, 使得 LED串 120正常发光。 具体而言, 恒流驱动芯片 130包括控制模块 131和运算放大器 132。 控制 模块 131接收使能信号 ENA,使得整个恒流驱动芯片 130开始工作。控制模块 131输出驱动信号给升压电路 110的 MOS晶体管 Q1 , 其中, 当 MOS晶体管 Q1导通时, 电感 L储能; 当 MOS晶体管 Q1关断时, 电感 L释放能量, 给 LED串 120提供满足其正常发光的电压。 运算放大器 132的正相输入端接收一恒定电压 VI, 运算放大器 132的负 相输入端反馈电阻器 RT的两端的电压,运算放大器 132的输出端耦接到 MOS 晶体管 Q2的栅极,运算放大器 132将恒定电压 VI和电阻器 RT的两端的电压 进行比较后, 输出控制信号来控制调节 MOS晶体管 Q2的栅极和源极之间的 电压差值, 进而来决定流经 LED串 120的电流。 流经 LED串 120的电流的占 空比大小由 PWM调光信号的占空比大小决定;当 PWM调光信号为高电平时, 运算放大器 132对 MOS晶体管 Q2的控制调节有效,当 PWM调光信号为低电 平时,运算放大器 132不能再控制 MOS晶体管 Q2, MOS晶体管 Q2处于关断 状态, LED串 120中无电流流过。 然而,由于 MOS晶体管 Q2的栅极和源极之间存在寄生电容 C,当在 MOS 晶体管 Q2的栅极和源极外加电压时, 会先给寄生电容 C充电, 当寄生电容 C 充满电后,外加电压仍存在时, MOS晶体管 Q2才会导通。这样带来的问题是, PWM调光信号的频率固定以后, 当其占空比很小时, 意味着运算放大器 132 输出调节信号给 MOS晶体管 Q2的持续时间很短, 导致 MOS晶体管 Q2的栅 极和源极之间的寄生电容 C的充电时间就很短, 未能给寄生电容 C充满电, 进而 MOS晶体管 Q2不能处于完全导通状态, 流经 LED串 120的电流就达不 到预设电流(该预设电流是使 LED串 120正常发光的电流); 尤其在开机过程 中, 如果 PWM调光信号的占空比太小, MOS晶体管 Q2不能及时处于导通状 态, 恒流驱动芯片 130可能会出现误判 LED串 120处于开路状态, 影响整个 背光驱动电路的正常工作。 发明内容
为了解决上述现有技术存在的问题, 本发明的目的在于提供一种即使在 PWM调光信号的占空比很小时, 也不会出现工作异常的背光驱动电路及具有 该背光驱动电路的液晶显示装置。 根据本发明的一方面, 提供了一种背光驱动电路, 包括升压电路、 恒流驱 动芯片以及与升压电路耦接的 LED串, 所述背光驱动电路还包括侦测模块, 其中, 升压电路将输入电压升压后提供给 LED串; 侦测模块接收外部的 PWM 调光信号并运算求得该外部的 PWM调光信号的占空比, 侦测模块基于该外部 的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否产生控制信号给 恒流驱动芯片, 以使恒流驱动芯片控制调节流经 LED串的电流。 根据本发明的另一方面, 提供了一种液晶显示装置, 其包括液晶面板以及 与该液晶面板相对设置的 LED背光源, 所述 LED背光源提供显示光源给所述 液晶面板, 所述 LED背光源包括背光驱动电路, 所述背光驱动电路包括升压 电路、 恒流驱动芯片以及与升压电路耦接的 LED串, 所述背光驱动电路还包 括侦测模块, 其中, 升压电路将输入电压升压后提供给 LED串; 侦测模块接 收外部的 PWM调光信号并运算求得该外部的 PWM调光信号的占空比, 侦测 模块基于该外部的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否 产生控制信号给恒流驱动芯片, 以使恒流驱动芯片控制调节流经 LED串的电 流。
此外, 当所述外部的 PWM调光信号的占空比小于所述预设阈值时, 所述 侦测模块截断该外部的 PWM调光信号并且产生占空比为所述预设阈值的 PWM调光信号给恒流驱动芯片; 或者, 当所述外部的 PWM调光信号的占空 比小于所述预设阈值时, 所述侦测模块截断该外部的 PWM调光信号并且输出 低电平信号给恒流驱动芯片的使能信号输入端。 此外, 所述升压电路包括电感器、 整流二极管、 电容器和第一 MOS晶体 管, 其中, 电感器的一端用于接收输入电压, 电感器的另一端耦接到整流二极 管的正极, 整流二极管的负极耦接到 LED串的正端, 电容器的一端耦接到整 流二极管的负极和 LED串的正端之间,第一 MOS晶体管的漏极耦接到电感器 的另一端和整流二极管之间, 第一 MOS晶体管的源极电性接地, 第一 MOS 晶体管的栅极耦接到恒流驱动芯片。
此外, 所述 LED串包括串联的多个 LED、 第二 MOS晶体管和电阻器,其 中, 第二 MOS晶体管的漏极耦接到串联的多个 LED的负极, 第二 MOS晶体 管的源极耦接到电阻器的一端, 电阻器的另一端电性接地, 第二 MOS晶体管 的栅极耦接到恒流驱动芯片。 此外, 所述恒流驱动芯片包括控制模块和运算放大器, 所述控制模块设置 有使能信号输入端, 其中, 控制模块接收输入电压和由使能信号输入端输入的 使能信号, 并且控制模块还分别耦接到升压电路和串联的多个 LED的负极, 运算放大器的正相输入端接收一恒定电压, 运算放大器的负相输入端耦接到第 二 MOS晶体管的源极和电阻器的一端之间, 运算放大器的输出端耦接到第二 MOS晶体管的栅极。 此外, 所述侦测模块的一端接收外部的 PWM调光信号, 并且所述侦测模 块的另一端耦接到运算放大器的输出端; 或者所述侦测模块的一端接收外部的
PWM调光信号, 并且所述侦测模块还分别耦接到运算放大器的输出端和使能 信号输入端。
本发明的背光驱动电路及液晶显示装置, 在 PWM调光信号的占空比很小 时, 可自身产生占空比为所述预设阈值的 PWM调光信号或者产生低电平信号 给恒流驱动芯片, 以使 LED串正常发光或者使恒流驱动芯片停止工作, 进而 使得背光驱动电路正常工作。
附图说明
通过下面结合附图进行的详细描述, 本发明的上述和其它目的、 特点和优 点将会变得更加清楚, 其中:
图 1是一种现有技术的背光驱动电路的示意图。
图 2是根据本发明的实施例 1的背光驱动电路的示意图。
图 3是根据本发明的实施例 2的背光驱动电路的示意图。 图 4是本发明的液晶显示装置。 具体实施方式
现在对本发明的实施例进行详细的描述, 其示例表示在附图中, 其中,相 同的标号始终表示相同部件。下面通过参照附图对实施例进行描述以解释本发 明。 在附图中, 为了清晰起见, 可以夸大层和区域的厚度。 在下面的描述中, 为了避免公知结构和 /或功能的不必要的详细描述所导致的本发明构思的混淆, 可省略公知结构和 /或功能的不必要的详细描述。
实施例 1
图 2是根据本发明的实施例 1的背光驱动电路的示意图。
如图 2所示, 根据本发明的实施例 1的背光驱动电路包括升压电路 210、 恒流驱动芯片 220、 侦测模块 230以及与升压电路 210耦接的 LED串 240。 升压电路 210通过恒流驱动芯片 220的控制, 将接收的输入电压 Vin进行 升压, 并输出满足 LED串 240正常发光的电压。 此外, 输入电压 Vin还供给 恒流驱动芯片 220, 以作为恒流驱动芯片 220的工作电压。 侦测模块 230接收 外部的脉宽调制 (Pulse Width Modulation, PWM)调光信号并对该 PWM调光 信号进行运算, 得到该 PWM调光信号的占空比, 侦测模块 230基于接收到的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否产生控制信号给恒 流驱动芯片 220, 以使恒流驱动芯片 220控制流经 LED串 240的电流。
具体而言, 升压电路 210包括电感器 L、 整流二极管 D、 电容器 C1和第 一金属氧化物半导体 (MOS ) 晶体管 Ql。 电感器 L的一端用于接收输入电压 Vin, 电感器 L的另一端耦接到整流二极管 D的正极, 整流二极管 D的负极耦 接到 LED串 240的正端,电容器 C1的一端耦接到整流二极管 D的负极和 LED 串 240的正端之间, 第一 MOS晶体管 Q1的漏极耦接到电感器 L的另一端和 整流二极管 D之间,第一 M0S晶体管 Q1的源极电性接地,第一 M0S晶体管 Q1的栅极耦接到恒流驱动芯片 220。
LED串 240包括串联的多个 LED、 第二 M0S晶体管 Q2和电阻器 RT。第 二 M0S晶体管 Q2的漏极耦接到串联的多个 LED的负极, 第二 MOS晶体管 Q2的源极耦接到电阻器 RT的一端, 电阻器 RT的另一端电性接地,第二 M0S 晶体管 Q2的栅极耦接到恒流驱动芯片 220。 恒流驱动芯片 220包括控制模块 222和运算放大器 223。 控制模块 222接 收输入电压 Vin及由其设置的使能信号输入端 221输入的使能信号 ENA (这里, 使能信号 ENA为高电平信号), 以使整个恒流驱动芯片 220工作, 并且控制模 块 222还分别耦接到升压电路 210的第一 MOS晶体管 Q1的栅极和 LED串 240 的串联的多个 LED的负极, 以向第一 MOS晶体管 Q1的栅极提供具有一定开 关频率的驱动信号, 进而控制升压电路 210的工作; 运算放大器 223的正相输 入端用于接收一恒定电压 VI,运算放大器 223的负相输入端反馈电阻器 RT的 两端的电压, 运算放大器 223的输出端耦接到第二 MOS晶体管 Q2的栅极; 在运算放大器 223将恒定电压 VI和电阻器 RT的两端的电压进行比较后, 输 出调节信号来控制调节第二 MOS晶体管 Q2的栅极和源极之间的电压差值, 进而来决定流经 LED串 240的电流。
这里, 要说明的是, 输入到控制模块 222的使能信号输入端 221的使能信 号 ENA可为高电平信号或低电平信号, 当使能信号 ENA是高电平信号时,可 使恒流驱动芯片 220工作; 当使能信号 ENA是低电平信号时, 使恒流驱动芯 片 220停止工作。 侦测模块 230的一端用于接收外部的 PWM调光信号, 其另一端耦接到运 算放大器 223的输出端。 本实施例中, 侦测模块 230可例如是单片微型计算机 (Single Chip Microcomputer)等微控制单元 (Micro Control Unit, MCU), 其具体 工作过程是: 侦测模块 230通过运算求得接收到的外部的 PWM调光信号的占 空比, 并将求得的外部的 PWM调光信号的占空比与其内部设置的预设阈值作 比较; 当外部的 PWM调光信号的占空比小于预设阈值时, 侦测模块 230将该 外部的 PWM调光信号截断, 其自身输出占空比为该预设阈值的 PWM调光信 号到第二 MOS晶体管 Q2的栅极, 以保证第二 MOS晶体管 Q2的处于完全导 通状态,使得流经 LED串 240的电流能够达到预设电流(该预设电流是使 LED 串 240正常发光的电流), 进而使得 LED串 240正常发光, 当外部的 PWM调 光信号的占空比不小于该预设阈值时, 侦测模块 230对外部的 PWM调光信号 不作任何处理, 该未作任何处理的外部的 PWM调光信号输出到第二 MOS晶 体管 Q2的栅极, 可使得第二 MOS晶体管 Q2处于完全导通状态, 流经 LED 串 240的电流能够达到预设电流, LED串 240能够正常发光。 由此, 通过增加侦测模块 230, 可以将施加到第二 MOS晶体管 Q2的栅极 上的 PWM调光信号的占空比维持在所述预设阈值之上, 运算放大器 223输出 调节信号给第二 MOS晶体管 Q2的持续时间足够长, 使得第二 MOS晶体管 Q2的栅极和源极之间的寄生电容 C的充电时间足够长, 能够给寄生电容 C充 满电, 进而第二 MOS晶体管 Q2处于完全导通状态, 流经 LED串 240的电流 就可达到预设电流, LED串 240正常发光。 即使在开机过程中, 如果外部的 PWM调光信号的占空比太小, 经由侦测模块 230的作用, 也可将第二 MOS 晶体管 Q2完全导通, LED串 240正常发光,恒流驱动芯片 220就不会误判 LED 串 240处于开路状态, 进而整个背光驱动电路可正常工作。 这里, 需要说明的是, 侦测模块 230内部设置的所述预设阈值是保证第二
MOS晶体管 Q2的栅极和源极之间的寄生电容 C充满电, 并且第二 MOS晶体 管 Q2完全导通, 流经 LED串 240的电流就可达到预设电流, 满足整个背光驱 动电路正常工作的 PWM调光信号的最小占空比值。 实施例 2 图 3是根据本发明的实施例 2的背光驱动电路的示意图。 如图 3所示, 根据本发明的实施例 2的背光驱动电路包括升压电路 210、 恒流驱动芯片 220、 侦测模块 230以及与升压电路 210耦接的 LED串 240。 升压电路 210通过恒流驱动芯片 220的控制, 将接收的输入电压 Vin进行 升压, 并输出满足 LED串 240正常发光的电压。 此外, 输入电压 Vin还供给 恒流驱动芯片 220, 以作为恒流驱动芯片 220的工作电压。 侦测模块 230接收 外部的脉宽调制 (Pulse Width Modulation, PWM)调光信号并对该 PWM调光 信号进行运算, 得到该 PWM调光信号的占空比, 侦测模块 230基于接收到的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否产生控制信号给恒 流驱动芯片 220, 以使恒流驱动芯片 220控制流经 LED串 240的电流。
具体而言, 升压电路 210包括电感器 L、 整流二极管 D、 电容器 C1和第 一金属氧化物半导体 (MOS ) 晶体管 Ql。 电感器 L的一端用于接收输入电压 Vin, 电感器 L的另一端耦接到整流二极管 D的正极, 整流二极管 D的负极耦 接到 LED串 240的正端,电容器 C1的一端耦接到整流二极管 D的负极和 LED 串 240的正端之间, 第一 MOS晶体管 Q1的漏极耦接到电感器 L的另一端和 整流二极管 D之间,第一 MOS晶体管 Q1的源极电性接地,第一 MOS晶体管 Q1的栅极耦接到恒流驱动芯片 220。
LED串 240包括串联的多个 LED、 第二 MOS晶体管 Q2和电阻器 RT。第 二 MOS晶体管 Q2的漏极耦接到串联的多个 LED的负极, 第二 MOS晶体管 Q2的源极耦接到电阻器 RT的一端, 电阻器 RT的另一端电性接地,第二 MOS 晶体管 Q2的栅极耦接到恒流驱动芯片 220。 恒流驱动芯片 220包括控制模块 222和运算放大器 223。 控制模块 222接 收输入电压 Vin及由其设置的使能信号输入端 221输入的使能信号 ENA (这里, 使能信号 ENA为高电平信号), 以使整个恒流驱动芯片 220工作, 并且控制模 块 222还分别耦接到升压电路 210的第一 MOS晶体管 Q1的栅极和 LED串 240 的串联的多个 LED的负极, 以向第一 MOS晶体管 Q1的栅极提供具有一定开 关频率的驱动信号, 进而控制升压电路 210的工作; 运算放大器 223的正相输 入端用于接收一恒定电压 VI,运算放大器 223的负相输入端反馈电阻器 RT的 两端的电压, 运算放大器 223的输出端耦接到第二 MOS晶体管 Q2的栅极; 在运算放大器 223将恒定电压 VI和电阻器 RT的两端的电压进行比较后, 输 出调节信号来控制调节第二 MOS晶体管 Q2的栅极和源极之间的电压差值, 进而来决定流经 LED串 240的电流。
这里, 要说明的是, 输入到控制模块 222的使能信号输入端 221的使能信 号 ENA可为高电平信号或低电平信号, 当使能信号 ENA是高电平信号时,可 使恒流驱动芯片 220工作; 当使能信号 ENA是低电平信号时, 使恒流驱动芯 片 220停止工作。 侦测模块 230的一端用于接收外部的 PWM调光信号, 其另一端耦接到运 算放大器 223的输出端, 并且侦测模块 230还耦接到控制模块的使能信号输入 端 221。 本实施例中, 侦测模块 230可例如是单片微型计算机 (Single Chip Microcomputer)等微控制单元 (Micro Control Unit, MCU), 其具体工作过程是: 侦测模块 230通过运算求得接收到的外部的 PWM调光信号的占空比, 并将求 得的外部的 PWM调光信号的占空比与其内部设置的预设阈值作比较; 当外部 的 PWM调光信号的占空比小于预设阈值时, 侦测模块 230将 PWM调光信号 截断, 其自身输出低电平信号到恒流驱动芯片 220的使能信号输入端 221作为 恒流驱动芯片的使能信号,使恒流驱动芯片 220停止工作,即恒流驱动芯片 220 控制流经 LED串 240的电流为零, 进而使得整个背光驱动电路停止工作, 避 免 LED串 240由于 PWM调光信号的占空比小而出现的闪烁现象。 当外部的 PWM调光信号的占空比不小于该预设阈值时, 侦测模块 230对外部的 PWM 调光信号不作任何处理, 该未作任何处理的外部的 PWM调光信号输出到第二 MOS晶体管 Q2的栅极, 可使得第二 MOS晶体管 Q2处于完全导通状态, 流 经 LED串 240的电流能够达到预设电流, LED串 240能够正常发光。 由此, 当在开机过程中, 如果外部的 PWM调光信号的占空比太小, 经由 侦测模块 230的作用, 将恒流驱动芯片 220直接关断, 恒流驱动芯片 220就不 会误判 LED串 240处于开路状态。 这里, 需要说明的是, 侦测模块 230内部设置的所述预设阈值是保证第二 MOS晶体管 Q2的栅极和源极之间的寄生电容 C充满电, 并且第二 MOS晶体 管 Q2完全导通, 流经 LED串 240的电流就可达到预设电流, 满足整个背光驱 动电路正常工作的 PWM调光信号的最小占空比值。 另外,上述的实施例 1和实施例 2的背光驱动电路应用于液晶显示装置中, 具体参照图 4, 其示出本发明的液晶显示装置。 具体而言, 本发明的液晶显示 装置主要包括液晶面板 300以及与该液晶面板 300相对设置的 LED背光源 400, 其中, LED背光源 400包括上述的实施例 1和实施例 2的背光驱动电路 来为 LED串提供其正常发光的驱动电压, 使得 LED串发光, 进而使得 LED 背光源 400提供显示光源给液晶面板 300, 使得液晶面板 300显示影像。 尽管已经参照其示例性实施例具体显示和描述了本发明,但是本领域的技 术人员应该理解, 在不脱离权利要求所限定的本发明的精神和范围的情况下, 可以对其进行形式和细节上的各种改变。

Claims

权利要求书
1、 一种背光驱动电路, 包括升压电路、 恒流驱动芯片以及与升压电路耦 接的 LED串, 其中, 所述背光驱动电路还包括侦测模块, 其中, 升压电路将输入电压升压后提供给 LED串; 侦测模块接收外部的 PWM调光信号并运算求得该外部的 PWM调光信号的占空比, 侦测模块基于 该外部的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否产生控制 信号给恒流驱动芯片, 以使恒流驱动芯片控制调节流经 LED串的电流。
2、 根据权利要求 1所述的背光驱动电路, 其中, 当所述外部的 PWM调 光信号的占空比小于所述预设阈值时, 所述侦测模块截断该外部的 PWM调光 信号并且产生占空比为所述预设阈值的 PWM调光信号给恒流驱动芯片。
3、 根据权利要求 1所述的背光驱动电路, 其中, 当所述外部的 PWM调 光信号的占空比小于所述预设阈值时, 所述侦测模块截断该外部的 PWM调光 信号并且输出低电平信号给恒流驱动芯片的使能信号输入端。
4、 根据权利要求 2所述的背光驱动电路, 其中, 所述升压电路包括电感 器、 整流二极管、 电容器和第一 MOS晶体管, 其中, 电感器的一端用于接收输入电压, 电感器的另一端耦接到整流二极 管的正极, 整流二极管的负极耦接到 LED串的正端, 电容器的一端耦接到整 流二极管的负极和 LED串的正端之间,第一 MOS晶体管的漏极耦接到电感器 的另一端和整流二极管之间, 第一 MOS晶体管的源极电性接地, 第一 MOS 晶体管的栅极耦接到恒流驱动芯片。
5、 根据权利要求 3所述的背光驱动电路, 其中, 所述升压电路包括电感 器、 整流二极管、 电容器和第一 MOS晶体管, 其中, 电感器的一端用于接收输入电压, 电感器的另一端耦接到整流二极 管的正极, 整流二极管的负极耦接到 LED串的正端, 电容器的一端耦接到整 流二极管的负极和 LED串的正端之间,第一 MOS晶体管的漏极耦接到电感器 的另一端和整流二极管之间, 第一 MOS晶体管的源极电性接地, 第一 MOS 晶体管的栅极耦接到恒流驱动芯片。
6、 根据权利要求 2所述的背光驱动电路, 其中, 所述 LED串包括串联的 多个 LED、 第二 MOS晶体管和电阻器, 其中,第二 MOS晶体管的漏极耦接到串联的多个 LED的负极,第二 MOS 晶体管的源极耦接到电阻器的一端, 电阻器的另一端电性接地, 第二 MOS晶 体管的栅极耦接到恒流驱动芯片。
7、 根据权利要求 3所述的背光驱动电路, 其中, 所述 LED串包括串联的 多个 LED、 第二 MOS晶体管和电阻器, 其中,第二 MOS晶体管的漏极耦接到串联的多个 LED的负极,第二 MOS 晶体管的源极耦接到电阻器的一端, 电阻器的另一端电性接地, 第二 MOS晶 体管的栅极耦接到恒流驱动芯片。
8、 根据权利要求 6所述的背光驱动电路, 其中, 所述恒流驱动芯片包括 控制模块和运算放大器, 所述控制模块设置有使能信号输入端, 其中, 控制模块接收输入电压和由使能信号输入端输入的使能信号, 并且 控制模块还分别耦接到升压电路和串联的多个 LED的负极, 运算放大器的正 相输入端接收一恒定电压, 运算放大器的负相输入端耦接到第二 MOS晶体管 的源极和电阻器的一端之间, 运算放大器的输出端耦接到第二 MOS晶体管的
9、 根据权利要求 7所述的背光驱动电路, 其中, 所述恒流驱动芯片包括 控制模块和运算放大器, 所述控制模块设置有使能信号输入端, 其中, 控制模块接收输入电压和由使能信号输入端输入的使能信号, 并且 控制模块还分别耦接到升压电路和串联的多个 LED的负极, 运算放大器的正 相输入端接收一恒定电压, 运算放大器的负相输入端耦接到第二 MOS晶体管 的源极和电阻器的一端之间, 运算放大器的输出端耦接到第二 MOS晶体管的
10、 根据权利要求 8所述的背光驱动电路, 其中, 所述侦测模块的一端接 收外部的 PWM调光信号, 并且所述侦测模块的另一端耦接到运算放大器的输 出端。
11、 根据权利要求 9所述的背光驱动电路, 其中, 所述侦测模块的一端接 收外部的 PWM调光信号, 并且所述侦测模块还分别耦接到运算放大器的输出 端和使能信号输入端。
12、 一种液晶显示装置, 其包括液晶面板以及与该液晶面板相对设置的 LED背光源, 所述 LED背光源提供显示光源给所述液晶面板, 所述 LED背光 源包括背光驱动电路, 其中, 所述背光驱动电路包括升压电路、 恒流驱动芯片 以及与升压电路耦接的 LED串, 其中, 所述背光驱动电路还包括侦测模块, 其中, 升压电路将输入电压升压后提供给 LED串; 侦测模块接收外部的 PWM调光信号并运算求得该外部的 PWM调光信号的占空比, 侦测模块基于 该外部的 PWM调光信号的占空比与预设阈值的比较结果, 判断是否产生控制 信号给恒流驱动芯片, 以使恒流驱动芯片控制调节流经 LED串的电流。
13、根据权利要求 12所述的液晶显示装置, 其中, 当所述外部的 PWM调 光信号的占空比小于所述预设阈值时, 所述侦测模块截断该外部的 PWM调光 信号并且产生占空比为所述预设阈值的 PWM调光信号给恒流驱动芯片。
14、根据权利要求 12所述的液晶显示装置, 其中, 当所述外部的 PWM调 光信号的占空比小于所述预设阈值时, 所述侦测模块截断该外部的 PWM调光 信号并且输出低电平信号给恒流驱动芯片的使能信号输入端。
15、 根据权利要求 13所述的液晶显示装置, 其中, 所述 LED串包括串联 的多个 LED、 第二 MOS晶体管和电阻器, 其中,第二 MOS晶体管的漏极耦接到串联的多个 LED的负极,第二 MOS 晶体管的源极耦接到电阻器的一端, 电阻器的另一端电性接地, 第二 MOS晶 体管的栅极耦接到恒流驱动芯片。
16、 根据权利要求 14所述的液晶显示装置, 其中, 所述 LED串包括串联 的多个 LED、 第二 MOS晶体管和电阻器, 其中,第二 MOS晶体管的漏极耦接到串联的多个 LED的负极,第二 MOS 晶体管的源极耦接到电阻器的一端, 电阻器的另一端电性接地, 第二 MOS晶 体管的栅极耦接到恒流驱动芯片。
17、 根据权利要求 15所述的液晶显示装置, 其中, 所述恒流驱动芯片包 括控制模块和运算放大器, 所述控制模块设置有使能信号输入端, 其中, 控制模块接收输入电压和由使能信号输入端输入的使能信号, 并且 控制模块还分别耦接到升压电路和串联的多个 LED的负极, 运算放大器的正 相输入端接收一恒定电压, 运算放大器的负相输入端耦接到第二 MOS晶体管 的源极和电阻器的一端之间, 运算放大器的输出端耦接到第二 MOS晶体管的
18、 根据权利要求 16所述的液晶显示装置, 其中, 所述恒流驱动芯片包 括控制模块和运算放大器, 所述控制模块设置有使能信号输入端, 其中, 控制模块接收输入电压和由使能信号输入端输入的使能信号, 并且 控制模块还分别耦接到升压电路和串联的多个 LED的负极, 运算放大器的正 相输入端接收一恒定电压, 运算放大器的负相输入端耦接到第二 MOS晶体管 的源极和电阻器的一端之间, 运算放大器的输出端耦接到第二 MOS晶体管的
19、 根据权利要求 17所述的液晶显示装置, 其中, 所述侦测模块的一端 接收外部的 PWM调光信号, 并且所述侦测模块的另一端耦接到运算放大器的 输出端。
20、 根据权利要求 18所述的液晶显示装置, 其中, 所述侦测模块的一端 接收外部的 PWM调光信号, 并且所述侦测模块还分别耦接到运算放大器的输 出端和使能信号输入端。
PCT/CN2013/083000 2013-09-02 2013-09-05 背光驱动电路及液晶显示装置 WO2015027533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/114,531 US8981662B1 (en) 2013-09-02 2013-09-05 Backlight driving circuit and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310392644.5 2013-09-02
CN201310392644.5A CN103440848B (zh) 2013-09-02 2013-09-02 背光驱动电路

Publications (1)

Publication Number Publication Date
WO2015027533A1 true WO2015027533A1 (zh) 2015-03-05

Family

ID=49694539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083000 WO2015027533A1 (zh) 2013-09-02 2013-09-05 背光驱动电路及液晶显示装置

Country Status (2)

Country Link
CN (1) CN103440848B (zh)
WO (1) WO2015027533A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049115A1 (en) * 2021-09-21 2023-03-30 Ademco Inc. Led switching power supply
WO2023069018A1 (en) * 2021-10-18 2023-04-27 Aes Global Holdings Pte Ltd. Light driver calibration

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103747569B (zh) 2013-12-25 2015-11-25 矽力杰半导体技术(杭州)有限公司 一种pwm调光控制方法、控制电路及应用其的led驱动电路
CN104300598A (zh) * 2014-09-03 2015-01-21 北京交通大学长三角研究院 Mppt太阳能充电和恒流控制器
CN104240651B (zh) * 2014-09-29 2016-10-19 深圳市华星光电技术有限公司 用于液晶显示设备的led背光源及液晶显示设备
CN104270873B (zh) * 2014-10-27 2017-02-01 矽力杰半导体技术(杭州)有限公司 Led驱动器、控制方法和控制电路
CN109076676B (zh) * 2014-10-30 2020-07-10 德克萨斯仪器股份有限公司 Led电流控制器
US10368405B2 (en) * 2014-12-15 2019-07-30 Fca Us Llc Two stage indicator dimming circuit controlled by PWM backlighting back feed and backlight control
CN104505034B (zh) 2014-12-18 2017-04-19 深圳市华星光电技术有限公司 液晶显示装置、背光模块及其背光源驱动电路
CN105792410B (zh) * 2016-03-03 2017-06-23 深圳市质能达微电子科技有限公司 电源传输路径与数据传输路径分离的led驱动系统
KR102483086B1 (ko) * 2016-03-21 2022-12-29 엘지전자 주식회사 영상표시장치
CN107703069B (zh) * 2016-08-05 2021-08-03 广东达元食品药品安全技术有限公司 基于恒定电流的分光光度计食品安全检测方法
CN107909969A (zh) * 2016-10-11 2018-04-13 京东方科技集团股份有限公司 驱动电路、背光源和显示装置
CN106448575B (zh) * 2016-11-09 2019-09-24 广州视源电子科技股份有限公司 一种背光调节方法和背光驱动电路
CN106448577B (zh) * 2016-11-29 2019-02-26 深圳创维-Rgb电子有限公司 一种背光恒流驱动板及液晶电视机
CN107633820B (zh) * 2017-09-21 2020-04-14 深圳市华星光电技术有限公司 一种量子点背光的驱动电路及显示器
CN107750076B (zh) * 2017-11-22 2024-04-23 深圳中电数码显示有限公司 一种led驱动电路
CN108231014B (zh) * 2018-02-08 2020-08-04 深圳创维-Rgb电子有限公司 一种区域调光恒流控制电路、驱动电源和电视机
CN108391343B (zh) * 2018-03-02 2021-01-22 京东方科技集团股份有限公司 Led检测装置、检测系统及检测方法
CN108564924B (zh) * 2018-03-22 2021-06-29 昆山龙腾光电股份有限公司 背光调节电路及背光调节方法
CN110390913B (zh) * 2019-06-26 2021-08-06 昆山龙腾光电股份有限公司 驱动电路、背光系统以及显示装置
CN110996425B (zh) * 2019-11-26 2022-07-12 深圳创维-Rgb电子有限公司 灯条防过冲保护电路和背光模组
CN113257199B (zh) * 2020-06-01 2022-07-08 海信视像科技股份有限公司 背光驱动电路、方法及显示设备
CN113891523B (zh) * 2020-07-03 2023-09-05 酷矽半导体科技(上海)有限公司 适用于脉动电压的驱动电路、驱动芯片及系统、方法
CN112233610A (zh) * 2020-10-16 2021-01-15 Tcl华星光电技术有限公司 一种背光恒流控制电路和背光结构
CN112233625B (zh) * 2020-10-16 2024-02-09 Tcl华星光电技术有限公司 一种背光恒流控制电路和背光结构
CN112382232B (zh) * 2020-11-26 2022-05-20 深圳市洲明科技股份有限公司 一种led驱动装置及led显示屏
CN114585128B (zh) * 2020-12-02 2024-01-12 明纬(广州)电子有限公司 负载开路检测电路与具有该负载开路检测电路的led驱动器
CN112867203B (zh) * 2021-02-04 2023-02-03 深圳市晟碟半导体有限公司 一种led调光电路、装置及其调光方法
CN113470590A (zh) * 2021-07-15 2021-10-01 Tcl华星光电技术有限公司 逻辑电路和显示面板
CN113993244A (zh) * 2021-11-25 2022-01-28 深圳市火乐科技发展有限公司 调光电路和发光装置
CN114596821B (zh) * 2022-05-09 2022-08-16 惠科股份有限公司 控制电路、控制方法和显示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210537A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd 調光装置とそれを用いた照明器具
CN102026439A (zh) * 2009-09-23 2011-04-20 联咏科技股份有限公司 发光二极管的驱动装置及其驱动方法
CN102402953A (zh) * 2011-12-08 2012-04-04 深圳市华星光电技术有限公司 发光二极管的驱动电路与方法及其应用的显示装置
CN102708804A (zh) * 2011-10-21 2012-10-03 京东方科技集团股份有限公司 背光的调光方法及背光驱动电路
CN102984860A (zh) * 2012-11-21 2013-03-20 深圳市华星光电技术有限公司 Led调光驱动模块、背光模组及液晶显示装置
CN103150997A (zh) * 2013-03-01 2013-06-12 深圳市华星光电技术有限公司 Led背光驱动电路
CN103188851A (zh) * 2011-12-31 2013-07-03 海洋王照明科技股份有限公司 Led恒流驱动电路
CN103280190A (zh) * 2013-05-20 2013-09-04 深圳市华星光电技术有限公司 一种背光驱动电路、液晶显示装置和背光驱动方法
CN103582226A (zh) * 2012-08-08 2014-02-12 群康科技(深圳)有限公司 调光电路及其调光方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951258B1 (ko) * 2008-06-03 2010-04-02 삼성전기주식회사 발광 소자의 구동 회로
CN103165085B (zh) * 2013-03-29 2016-06-29 深圳市华星光电技术有限公司 一种背光驱动电路及其驱动方法和液晶装置
CN103150999B (zh) * 2013-03-29 2015-07-15 深圳市华星光电技术有限公司 一种led背光驱动电路和液晶显示装置
CN103247279B (zh) * 2013-05-13 2015-07-01 深圳市华星光电技术有限公司 一种发光半导体光源驱动电路及背光模组

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210537A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd 調光装置とそれを用いた照明器具
CN102026439A (zh) * 2009-09-23 2011-04-20 联咏科技股份有限公司 发光二极管的驱动装置及其驱动方法
CN102708804A (zh) * 2011-10-21 2012-10-03 京东方科技集团股份有限公司 背光的调光方法及背光驱动电路
CN102402953A (zh) * 2011-12-08 2012-04-04 深圳市华星光电技术有限公司 发光二极管的驱动电路与方法及其应用的显示装置
CN103188851A (zh) * 2011-12-31 2013-07-03 海洋王照明科技股份有限公司 Led恒流驱动电路
CN103582226A (zh) * 2012-08-08 2014-02-12 群康科技(深圳)有限公司 调光电路及其调光方法
CN102984860A (zh) * 2012-11-21 2013-03-20 深圳市华星光电技术有限公司 Led调光驱动模块、背光模组及液晶显示装置
CN103150997A (zh) * 2013-03-01 2013-06-12 深圳市华星光电技术有限公司 Led背光驱动电路
CN103280190A (zh) * 2013-05-20 2013-09-04 深圳市华星光电技术有限公司 一种背光驱动电路、液晶显示装置和背光驱动方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023049115A1 (en) * 2021-09-21 2023-03-30 Ademco Inc. Led switching power supply
WO2023069018A1 (en) * 2021-10-18 2023-04-27 Aes Global Holdings Pte Ltd. Light driver calibration

Also Published As

Publication number Publication date
CN103440848A (zh) 2013-12-11
CN103440848B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2015027533A1 (zh) 背光驱动电路及液晶显示装置
KR101813823B1 (ko) 과전류 보호회로, led 백라이트 구동 회로 및 액정 디스플레이
US9672779B2 (en) Liquid crystal display device, backlight module, and drive circuit for backlight source thereof
WO2012127844A1 (ja) 発光素子駆動用のスイッチング電源の制御回路、およびそれらを用いた発光装置および電子機器
US8698849B2 (en) Display device and driving method with feedback control
TWI571171B (zh) 發光二極體(led)驅動器電路
WO2014172986A1 (zh) Led背光源及液晶显示装置
US9058776B2 (en) LED backlight source and liquid crystal device
WO2015018021A1 (zh) Led背光源及液晶显示器
WO2014205671A1 (zh) Led背光源的驱动电路、led背光源及液晶显示设备
US8981662B1 (en) Backlight driving circuit and liquid crystal display
US20130147381A1 (en) Driving circuit and driving method for light emitting diode and display apparatus using the same
WO2015100804A1 (zh) Led背光驱动电路以及液晶显示器
JP2016540481A (ja) フライバック方式の快速起動駆動回路及び駆動方法
US20150373800A1 (en) Led backlight driving circuit and liquid crystal display device
JP6375444B2 (ja) 液晶表示装置におけるledバックライト及び液晶表示装置
KR101974218B1 (ko) Led 구동 장치
KR101932366B1 (ko) 액정 디스플레이 장비를 위한 led 백라이트 소스 및 액정 디스플레이 장비
JP5735832B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、発光装置および電子機器
US9210747B2 (en) Driver for driving LED backlight source, LED backlight source and LCD device
JP5698579B2 (ja) 発光素子駆動用のスイッチング電源の制御回路、およびそれらを用いた発光装置および電子機器
US8773033B2 (en) Driving method for backlight unit of liquid crystal display and system thereof
JP6235281B2 (ja) 発光素子の駆動回路、その制御回路、制御方法、およびそれを用いた発光装置および電子機器
KR100941145B1 (ko) 멀티 광원 구동 장치
WO2014089877A1 (zh) 直下式led背光源及其液晶显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14114531

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892709

Country of ref document: EP

Kind code of ref document: A1