WO2015027384A1 - 传感器标定平台 - Google Patents

传感器标定平台 Download PDF

Info

Publication number
WO2015027384A1
WO2015027384A1 PCT/CN2013/082325 CN2013082325W WO2015027384A1 WO 2015027384 A1 WO2015027384 A1 WO 2015027384A1 CN 2013082325 W CN2013082325 W CN 2013082325W WO 2015027384 A1 WO2015027384 A1 WO 2015027384A1
Authority
WO
WIPO (PCT)
Prior art keywords
carriage
calibration platform
motor
sensor calibration
sensor
Prior art date
Application number
PCT/CN2013/082325
Other languages
English (en)
French (fr)
Inventor
于伟
徐锋
Original Assignee
无锡必创传感科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡必创传感科技有限公司 filed Critical 无锡必创传感科技有限公司
Priority to PCT/CN2013/082325 priority Critical patent/WO2015027384A1/zh
Priority to CN201380076941.7A priority patent/CN105408722A/zh
Publication of WO2015027384A1 publication Critical patent/WO2015027384A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/042Calibration or calibration artifacts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Definitions

  • the invention relates to a mechatronic device, in particular to a sensor calibration platform. Background of the invention
  • the calibration platform is usually used to generate linear motion such as acceleration and deceleration, uniform speed, and reciprocating linear motion from the calibration platform for frequency response and amplitude linearity calibration.
  • the existing linear displacement calibration platform is divided into two types: electromagnetic type and cylinder push-pull type. Although they can simulate linear motion such as acceleration and deceleration, uniform speed, and reciprocating linear motion, all of them have defects of small stroke (displacement):
  • the electromagnetic calibration platform usually does not exceed 30 mm.
  • Patent 201010236968.6 discloses a circumferential calibration platform that uses rotational motion to generate centrifugal acceleration and circular motion displacement to calibrate linear displacement. This technical route can achieve dynamic calibration of motion simulation in a large stroke, but it cannot accurately simulate the true linear motion state.
  • a calibration platform capable of simulating the actual working condition.
  • the calibration platform can simulate linear motion such as acceleration and deceleration, hook speed, reciprocating linear motion in a large stroke range of 1 to 6 meters. State, and can set parameters such as speed, reciprocating cycle, and reciprocating stroke as needed. Summary of the invention
  • the present invention proposes a sensor calibration platform to solve the above problems.
  • the technical solution of the embodiment of the present invention is implemented as follows:
  • a sensor calibration platform comprising: an electric motor, a horizontally arranged linear guide, a grating ruler, a human machine terminal and a controller connected to the human machine terminal, for carrying a carriage of the calibrated sensor;
  • the carriage is slidably connected to the linear guide;
  • the motor is coupled to the carriage to drive the carriage along the linear guide;
  • the scale is mounted along the extending direction of the linear guide, and the readhead of the scale is located on the carriage In order to obtain the actual displacement of the carriage;
  • the man-machine terminal reads the displacement amount of the read head as a feedback signal by the controller, and controls the motor to operate.
  • the electric motor is a servo motor.
  • the electric motor is a linear motor.
  • the sensor calibration platform further comprises: a belt structure
  • the belt structure includes a driving wheel and a driven wheel, and the driving wheel and the driven wheel are connected by a conveyor belt;
  • the carriage is fixed on the conveyor belt;
  • the servo motor is coupled to the driving wheel and drives the conveyor to move the carriage along the linear guide.
  • the carriage is fixed to the transmission mechanism
  • the servo motor drives the transmission mechanism to move to move the carriage along the linear guide rail.
  • the servo motor is equipped with a rotary encoder
  • the rotary encoder is coupled to the controller to cause the human terminal to read the spin
  • the number of pulses of the encoder is used to obtain the linear displacement of the carriage.
  • the electric motor is coupled to the driving wheel via a speed reducer.
  • the conveyor belt is a wire rope or a toothless belt.
  • the circumferential surface of the driving wheel is provided with a spiral groove.
  • the controller is coupled to the electric motor by a motor drive.
  • the carriage is slidably connected to the linear guide by a slider.
  • the linear guides are two.
  • the linear guide is a magnetic suspension linear guide.
  • the sensor calibration platform further comprises: a guard rail, the guard rail being disposed on an outer peripheral side of the sensor calibration platform.
  • the sensor clamp is fixed on the carriage.
  • the beneficial effects of the invention are as follows: by providing a linear guide rail on the calibration platform and driving the carriage along the linear guide by the motor, the acceleration, deceleration, hook speed, reciprocating linear motion, etc. in a large stroke range of 1 to 6 meters can be simulated.
  • the linear motion state; and the actual displacement of the carriage is measured by the grating ruler, and then compared with the actual measured value of the sensor to achieve calibration of the sensor.
  • the function of the controller can control the forward and reverse rotation of the motor, the speed control and the acceleration and deceleration control, etc., to control the reciprocating motion, the uniform motion and the acceleration and deceleration motion of the carriage. In this way, it is possible to accurately simulate the true linear motion state such as the change of the moving speed of the acceleration/deceleration section on the linear calibration platform of the larger stroke.
  • the controller is connected to the motor through the motor driver, so that the controller controls the motor to realize the motor speed control, forward and reverse rotation control, acceleration and deceleration control, and the like.
  • the sliding plate adopts the sliding connection mode of the linear guide rail and the slider, which can avoid the slight vibration generated by the ball type linear guide rail and ensure the accuracy of the measurement result.
  • the motor is a servo motor
  • the servo motor and the carriage are connected by a belt structure.
  • the conveyor belt adopts a steel wire rope or a toothless belt, which can avoid the vibration generated when the toothed belt is transmitted, so as to avoid errors in the measurement results.
  • the grating ruler is a key component in the calibration platform of the sensor and is used to measure the true displacement of the carriage. Its signal is connected to the controller as a feedback signal and is displayed in real time and stored on the human terminal. In addition, the scale is marked with a zero point so that the pallet can be used after each calibration process is completed.
  • the rotary encoder is used for correction. There is a gap between the actual rotational displacement value of the motor and the actual motion value of the carriage due to factors such as belt slippage.
  • the man-machine terminal reads the number of pulses of the rotary encoder to obtain the theoretical displacement of the carriage, and compares it with the actual displacement data of the carriage measured by the grating ruler, and further corrects it to ensure the accuracy of the sensor calibration platform. .
  • the rotary encoder obtains the rotational speed of the servo motor and feeds it back to the human terminal to control the rotational speed of the servo motor.
  • the setting of the protective fence can prevent the sensor from falling off or the wire rope breaking and other damage to surrounding people.
  • the setting of the sensor fixture can ensure that the sensor is fixed on the carriage.
  • the spiral groove is arranged on the surface of the driving wheel to increase the contact surface and the friction force, and the wire rope can be automatically wound on the driving wheel when the wire rope is used in the conveyor belt.
  • FIG. 1 is a schematic structural diagram of a sensor calibration platform according to an embodiment of the present invention.
  • 6-rotary encoder 7-grating ruler; 8-reading head; 9-patch; 10-reducer; 11-motor;
  • the embodiment of the present invention provides a sensor calibration platform, as shown in FIG. 1 , comprising: an electric motor 11 , a horizontally disposed linear guide 3 , a scale 7 , a human terminal 14 and a controller 13 connected to the human terminal 14 .
  • a carriage 9 for carrying the calibrated sensor the carriage 9 is slidably coupled to the linear guide 3; the motor 11 is coupled to the carriage 9 to drive the carriage 9 to move along the linear guide 3; the extension of the scale 7 along the linear guide 3
  • the reading head 8 of the scale 7 is located on the carriage 9 to obtain the actual displacement of the carriage 9; the human terminal 14 reads the displacement of the reading head 8 as a feedback signal through the controller 13, and controls the motor 11 operations.
  • the sensor calibration platform of the present invention can simulate the acceleration and deceleration in a large stroke range of 1 to 6 meters by providing a linear guide 3 on the calibration platform and driving the carriage 9 along the linear guide 3 by the motor 11.
  • Linear motion state such as uniform speed, reciprocating linear motion; and the actual displacement of the carriage 9 is measured by the grating ruler 7, and then compared with the actual measured value of the sensor to achieve calibration of the sensor.
  • the motor 11 can be either a servo motor or a linear motor.
  • the motor 11 is a linear motor
  • the linear motor can move linearly, it can be directly connected to the carriage 9 to drive the carriage 9 to move along the linear guide 3.
  • linear motors are expensive and costly.
  • the servo motor is connected to the carriage 9 through the belt structure.
  • the servo motor and the carriage 9 are connected in various manners, including a belt structure transmission, a chain transmission, a gear transmission, etc., and the embodiment is preferably a belt structure transmission to realize a linear motion of a long distance and a large stroke. As shown in FIG.
  • the belt structure includes a driving wheel 4 and a driven wheel 5, and the driving wheel 4 and the driven wheel 5 are connected by a conveyor belt 2, and the motor 11 is connected with the driving wheel 4 to drive the conveyor belt 2 to operate;
  • the carriage 9 is straight
  • Both ends of the wire guide 3 are respectively connected to the conveyor belt 2 to move the carriage 9 along the linear guide 3.
  • the motor 11 is preferably a servo motor on which a rotary encoder 6 is mounted.
  • the rotary encoder 6 is used for correction. There is a difference between the actual rotational displacement value of the motor 11 and the actual motion value of the carriage 9 due to factors such as the slip of the conveyor belt 2.
  • the man-machine terminal 14 reads the number of pulses of the rotary encoder 6 to obtain the theoretical displacement of the carriage 9, compares it with the actual displacement data of the carriage 9 measured by the scale 7, and further performs the system based on the displacement data gap. Compensation to ensure the accuracy of the sensor calibration platform.
  • the rotary encoder can obtain the rotation speed of the servo motor and feed it back to the human terminal to control the speed of the servo motor.
  • the displacement amount of the reading head 8 is read by the controller 13, and the obtained displacement amount is transmitted to the human terminal 14, and the human terminal 14 displays and stores it as a reference value of the calibration sensor.
  • the man-machine terminal 14 can control the forward and reverse rotation, the rotation speed control, the acceleration/deceleration control, and the like of the motor 11 through the controller 13 to control the reciprocating motion of the carriage 9 and the constant speed movement to simulate the change of the movement speed of the acceleration/deceleration section. The state of linear motion.
  • the linear guide 3, the driving wheel 4 and the driven wheel 5 are both fixed to the base 1 of the sensor calibration platform.
  • the calibration of the displacement sensor, the speed sensor and the acceleration sensor can be realized by the sensor calibration platform of the embodiment of the invention.
  • the calibrated displacement sensor is placed on the carriage 9 to rotate the motor 11, thereby driving the driving wheel 4 to rotate, thereby driving the belt 2 to rotate, and moving the carriage 9 in the direction of the linear guide 3.
  • the actual displacement of the carriage 9 can be read by the grating ruler 7, and then compared with the measured value of the displacement sensor, thereby realizing the displacement. Calibration of the sensor.
  • the calibrated speed sensor is placed on the carriage 9 to rotate the motor 11, thereby driving the driving wheel 4 to rotate, thereby driving the belt 2 to rotate, and moving the carriage 9 in the direction of the linear guide 3.
  • the actual displacement of the carriage 9 can be read by the grating ruler 7, and the speed value of the carriage 9 is calculated by measuring the time; and then compared with the measured value of the speed sensor, thereby achieving the speed Calibration of the sensor.
  • the calibrated acceleration sensor is placed on the carriage 9 to rotate the motor 11, thereby driving the driving wheel 4 to rotate, thereby driving the belt 2 to rotate, and moving the carriage 9 in the direction of the linear guide 3.
  • the actual displacement amount of the carriage 9 can be read by the grating ruler 7, and the speed value and the acceleration value of the carriage 9 are calculated by measuring the time; and then compared with the measured value of the acceleration sensor, thereby Achieve calibration of the acceleration sensor.
  • the grating ruler 7 is a key component in the calibration platform of the sensor, and is used for measuring the true displacement of the carriage 9. Its signal is connected to the controller 13 as a feedback signal and is displayed and stored in real time on the human terminal 14. In addition, the scale 7 is marked with a zero point so that the carriage 9 can be "returned to zero" after each calibration process to facilitate the next calibration.
  • the scale 7 can also be replaced by a magnetic scale, and the displacement data of the carriage 9 is obtained by a magnetic scale sensor.
  • the motor 11 is not directly connected to the driving wheel 4, but is connected to the driving wheel 4 through the speed reducer 10.
  • the setting of the speed reducer 10 can increase the torque while reducing the speed, thereby obtaining a wider range of transmissions. ratio.
  • the controller 13 and the motor 11 are connected by a motor driver 12, so that the controller 13 controls the motor 11 to realize the rotation speed control, the forward/reverse rotation control, the acceleration/deceleration control, and the like of the motor 11.
  • the controller 13 then transmits the signal to the human terminal 14 and displays it in real time and data storage on the human terminal 14.
  • the linear guides 3 can be in various forms, such as a sliding linear guide, a ball linear guide, a magnetic suspension linear guide, etc., which is preferably a sliding linear guide, so as to avoid slight vibration generated by other kinds of linear guides, thereby Guarantee the accuracy of the measurement.
  • the linear guide rails 3 are two, and the carriage 9 is slidably connected to the two linear guide rails 3 through the sliders to reduce the friction force, so as to ensure that the carriage 9 does not suffer from excessive friction when sliding. Measurement results.
  • the conveyor belt 2 can be in various forms, including a wire rope, a toothed belt, a toothless belt, etc.
  • the conveyor belt 2 is preferably a steel wire rope or a toothless belt, which can avoid the vibration generated when the toothed conveyor belt 2 is conveyed. To avoid errors in the measurement results.
  • the outer peripheral side of the calibration platform of the sensor has a protective fence (not shown) to prevent the acceleration sensor from falling off or the wire rope from being broken.
  • a sensor clamp (not shown) is fixed on the carriage 9 to ensure that the acceleration sensor is fixed on the carriage 9.
  • a spiral groove (not shown) is provided on the surface of the driving wheel 4 to increase the contact surface and the frictional force, and the wire rope can be automatically wound around the driving wheel 4 when the conveyor belt 2 uses the wire rope.
  • the driving wheel 4 adopts an elastic tensioning mechanism to ensure proper tension, minimize background vibration, and improve the signal-to-noise ratio of the acceleration measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Conveyors (AREA)

Abstract

一种传感器标定平台,包括:电动机(11),水平设置的直线导轨(3),光栅尺(7),人机终端(14)以及与所述人机终端(14)连接的控制器(13),用于承载被标定传感器的拖板(9);拖板(9)与所述直线导轨(3)滑动连接;电动机(11)与拖板(9)连接,以驱动拖板(9)沿直线导轨(3)运动;光栅尺(7)沿直线导轨(3)的延伸方向装设,光栅尺(7)的读数头(8)位于拖板(9)上,用以获得拖板(9)的实际位移;人机终端(14)通过控制器(13)读取读数头(8)的位移量,并控制电动机(11)运转。在标定平台上设置直线导轨,并通过电动机驱动拖板沿直线导轨运动,从而可以模拟1〜6米行程范围内的直线运动状态;并通过光栅尺测量拖板的实际位移,然后与传感器的实际测量值进行比对,以实现对传感器的标定。

Description

传感器标定平台
技术领域
本发明涉及一种机电一体化装置, 尤其涉及一种传感器标定平台。 发明背景
对于传感器研发生产的厂家来说, 都需要对所生产的传感器进行出 厂标定校准, 保证传感器能够达到设计生产指标。 对于动态加速度、 速 度、 位移等传感器, 通常使用标定平台, 由标定平台产生加减速、 匀速、 往复直线运动等直线运动, 进行频率响应、 幅值线性度校准。
现有的直线位移的标定平台分为电磁式和气缸推拉式两种形式。 他 们虽然可以模拟加减速、 匀速、 往复直线运动等直线运动状态, 但是全 部存在行程(位移)较小的缺陷: 电磁式标定平台通常行程不会超过 30 毫米。 使用气缸推拉式的气动水平标定平台, 最大行程也不会超过 50 厘米, 从而不可能实现对被标定的传感器进行 1~6米直线位移内的运动 模拟动态标定。
专利 201010236968.6公开了一种圓周式的标定平台, 它是采用旋转 运动产生离心加速度, 用圓周运动位移来标定直线位移。 这种技术路线 虽然可以实现大行程内的运动模拟动态标定, 但无法准确模拟真实的直 线运动状态。
为了完成传感器测量速度或位移值的准确标定, 需要一个能模拟实 际工况的标定平台, 该标定平台可以模拟 1~6米的大行程范围内的加减 速、 勾速、 往复直线运动等直线运动状态, 并能按需要设定速度、 往复 周期、 往复行程量等参数。 发明内容
有鉴于此, 本发明提出一种传感器标定平台, 以解决上述问题。 为达到上述目的, 本发明实施例的技术方案是这样实现的:
一种传感器标定平台, 包括: 电动机, 水平设置的直线导轨, 光栅 尺, 人机终端以及与所述人机终端连接的控制器, 用于承载被标定传感 器的拖板;
所述拖板与所述直线导轨滑动连接;
所述电动机与所述拖板连接,以带动所述拖板沿所述直线导轨运动; 所述光栅尺沿所述直线导轨的延伸方向装设, 所述光栅尺的读数头 位于所述拖板上, 用以获得所述拖板的实际位移;
所述人机终端通过所述控制器读取所述读数头的位移量作为反馈信 号, 并控制所述电动机运转。
优选地, 所述电动机为伺服电机。
优选地, 所述电动机为直线电机。
优选地, 传感器标定平台还包括: 带结构;
所述带结构包括主动轮和从动轮, 且所述主动轮和所述从动轮之间 通过传送带连接;
所述拖板固定于所述传送带上;
所述伺服电机与所述主动轮相连接, 并驱动所述传送带动作, 以使 所述拖板沿所述直线导轨运动。
所述拖板固定于所述传动机构上;
所述伺服电机带动所述传动机构运动; 以使所述拖板沿所述直线导 轨运动。
优选地, 所述伺服电机上装有旋转编码器;
所述旋转编码器与所述控制器连接, 以使所述人机终端读取所述旋 转编码器的脉沖数, 用以得到所述拖板的直线位移。
优选地, 所述电动机通过减速器与所述主动轮连接。
优选地, 所述传送带为钢丝绳或者无齿皮带。
优选地, 所述主动轮的圓周面设有螺旋槽。
优选地, 所述控制器与所述电动机通过电机驱动器连接。
优选地, 所述拖板通过滑块与所述直线导轨滑动连接。
优选地, 所述直线导轨为两条。
优选地, 所述直线导轨为磁悬浮式直线导轨。
优选地, 传感器标定平台还包括: 防护栏, 所述防护栏装置于所述 传感器标定平台的外周侧。
优选地, 所述拖板上固定有传感器夹具。
本发明的有益效果为: 通过在标定平台上设置直线导轨, 并通过电 动机带动拖板沿直线导轨运动, 从而可以模拟 1~6米的大行程范围内的 加减速、 勾速、 往复直线运动等直线运动状态; 并通过光栅尺测量拖板 的实际位移, 然后与传感器的实际测量值进行比对, 以实现对传感器的 标定。
控制器的作用可以控制电动机的正反转、转速控制和加减速控制等, 以控制拖板的往复运动、 匀速运动和加减速运动。 这样就可以实现在较 大行程的直线标定平台上, 准确模拟出加减速段的运动速度时刻变化等 真实的直线运动状态。
1、控制器通过电机驱动器与电动机连接,从而使控制器对电动机进 行控制, 以实现电动机的转速控制、 正反转控制、 加减速控制等。
2、拖板采用直线导轨和滑块的滑动连接方式,可以避免滚珠类直线 导轨产生的轻微振动, 保证测量结果的准确性。
3、 当电动机为伺服电机时, 伺服电机和拖板之间通过带结构连接。 其中, 传送带采用钢丝绳或无齿皮带, 可以避免采用有齿传送带传送时 产生的振动, 以避免使测量结果产生误差。
4、光栅尺为本传感器标定平台中的关键部件,用于测量拖板的真实 位移。 其信号连接到控制器作为反馈信号, 并在人机终端上实时显示和 数据存储。 另外, 光栅尺上标有零点, 使每次标定过程完成后拖板可以
"回零", 以便于下次标定。
5、旋转编码器用于修正。 由于存在传送带打滑等因素, 使电动机的 实际旋转位移值和拖板的实际运动值存在差距。 人机终端通过读取旋转 编码器的脉沖数, 以得出拖板的理论位移, 通过与光栅尺测量的拖板的 实际位移数据相比较, 再进一步进行修正, 以保证传感器标定平台的准 确性。 旋转编码器获得伺服电机的旋转速度, 并反馈给人机终端, 用以 人机终端控制伺服电机的转速。
6、 防护栏的设置,可以防止传感器脱落飞出或钢丝绳断裂等对周围 人员的伤害。
7、 传感器夹具的设置, 可以保证传感器固定在拖板上。
8、 主动轮表面设置螺旋槽, 以增大接触面和摩擦力, 并可以在传送 带使用钢丝绳时, 使钢丝绳自动多圏缠绕在主动轮上。 附图简要说明
图 1为本发明实施例的传感器标定平台的结构示意图。
附图标记: 1-基座; 2-传送带; 3-直线导轨; 4-主动轮; 5-从动轮;
6-旋转编码器; 7-光栅尺; 8-读数头; 9-拖板; 10-减速器; 11-电动机;
12-电机驱动器; 13-控制器; 14-人机终端。 实施本发明的方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下通过具 体实施例并参见附图, 对本发明进行详细说明。
本发明实施例提供一种传感器标定平台, 如图 1所示, 包括: 电动 机 11 , 水平设置的直线导轨 3 , 光栅尺 7, 人机终端 14以及与所述人机 终端 14连接的控制器 13 , 用于承载被标定传感器的拖板 9; 拖板 9与 直线导轨 3滑动连接; 电动机 11与拖板 9连接, 以带动拖板 9沿直线 导轨 3运动; 光栅尺 7沿直线导轨 3的延伸方向装设, 光栅尺 7的读数 头 8位于拖板 9上, 用以获得拖板 9的实际位移; 人机终端 14通过控 制器 13读取读数头 8的位移量作为反馈信号, 并控制电动机 11运转。 本发明的传感器标定平台在检测时,通过在标定平台上设置直线导轨 3 , 并通过电动机 11驱动拖板 9沿直线导轨 3运动, 从而可以模拟 1~6米 的大行程范围内的加减速、 匀速、 往复直线运动等直线运动状态; 并通 过光栅尺 7测量拖板 9的实际位移, 然后与传感器的实际测量值进行比 对, 以实现对传感器的标定。
实际应用时, 电动机 11可以为伺 良电机, 也可以为直线电机。
当电动机 11为直线电机时, 因为直线电机可以直线运动, 所以它可 以直接和拖板 9连接, 以驱动拖板 9沿直线导轨 3运动。 但是直线电机 价格昂贵, 增加成本。
当电动机 11为伺服电机时, 伺服电机通过带结构和拖板 9连接。 本实施例中, 伺服电机和拖板 9的连接方式有多种, 包括带结构传 动、 链传动、 齿轮传动等, 本实施例优选为带结构传动, 以实现长距离 大行程的直线运动。 如图 1所示, 带结构包括主动轮 4和从动轮 5 , 主 动轮 4和从动轮 5之间通过传送带 2连接, 电动机 11与主动轮 4相连 接, 以驱动传送带 2动作; 拖板 9固定于传送带 2上, 即, 拖板 9沿直 线导轨 3方向的两端分别与传送带 2连接, 以使拖板 9沿直线导轨 3运 动。
本实施例中, 电动机 11优选为伺服电机, 其上装有旋转编码器 6。 旋转编码器 6用于修正。 由于存在传送带 2打滑等因素, 使电动机 11 的实际旋转位移值和拖板 9的实际运动值存在差距。 人机终端 14通过 读取旋转编码器 6的脉沖数, 以得出拖板 9的理论位移, 通过与光栅尺 7测量的拖板 9的实际位移数据相比较, 再进一步根据位移数据差距进 行系统补偿, 以保证传感器标定平台的准确性。 旋转编码器可获得伺服 电机的旋转速度, 并反馈给人机终端, 用以人机终端控制伺服电机的转 速。 实际应用时,通过控制器 13读取读数头 8的位移量, 并将获取的位 移量传送给人机终端 14, 人机终端 14显示并储存, 以作为标定传感器 的参考值。 另外, 人机终端 14可以通过控制器 13控制电动机 11的正 反转、 转速控制和加减速控制等, 以控制拖板 9的往复运动、 匀速运动 拟出加减速段的运动速度时刻变化等真实的直线运动状态。
实际应用中, 直线导轨 3、 主动轮 4和从动轮 5均固定于传感器标 定平台的基座 1上。
通过本发明实施例的传感器标定平台, 可以实现位移传感器、 速度 传感器和加速度传感器的标定。
在标定位移传感器时, 将被标定的位移传感器置于拖板 9上, 使电 动机 11转动, 从而驱动主动轮 4转动, 进而带动传送带 2转动, 使拖 板 9沿直线导轨 3方向移动。 此时, 通过光栅尺 7便可以读取出拖板 9 的实际位移量, 然后与位移传感器的测量值进行比对, 从而实现对位移 传感器的标定。
在标定速度传感器时, 将被标定的速度传感器置于拖板 9上, 使电 动机 11转动, 从而驱动主动轮 4转动, 进而带动传送带 2转动, 使拖 板 9沿直线导轨 3方向移动。 此时, 通过光栅尺 7便可以读取出拖板 9 的实际位移量, 并通过时间的测量, 计算出拖板 9的速度值; 然后与速 度传感器的测量值进行比对, 从而实现对速度传感器的标定。
在标定加速度传感器时, 将被标定的加速度传感器置于拖板 9上, 使电动机 11转动, 从而驱动主动轮 4转动, 进而带动传送带 2转动, 使拖板 9沿直线导轨 3方向移动。 此时, 通过光栅尺 7便可以读取出拖 板 9的实际位移量, 并通过时间的测量, 计算出拖板 9的速度值和加速 度值; 然后与加速度传感器的测量值进行比对, 从而实现对加速度传感 器的标定。
其中, 光栅尺 7为本传感器标定平台中的关键部件, 用于测量拖板 9 的真实位移。 其信号连接到控制器 13 作为反馈信号, 并在人机终端 14上实时显示和数据存储。 另外, 光栅尺 7上标有零点, 使每次标定过 程完成后拖板 9可以 "回零", 以便于下次标定。
实际应用中, 光栅尺 7也可以替换为磁栅尺, 拖板 9的位移数据通 过磁栅尺传感器获取。
实际应用中, 电动机 11并不是直接与主动轮 4相连接, 而是通过减 速器 10与主动轮 4连接, 减速器 10的设置可以在降低速度的同时提高 转矩, 从而获得更宽范围的传动比。
实际应用中, 控制器 13与电动机 11之间通过电机驱动器 12连接, 从而使控制器 13对电动机 11进行控制, 以实现电动机 11的转速控制、 正反转控制、 加减速控制等。 控制器 13再将信号传至人机终端 14, 并 在人机终端 14上实时显示和数据存储。 实际应用中, 直线导轨 3可以为多种形式, 例如滑动直线导轨、 滚 珠直线导轨、 磁悬浮直线导轨等, 本实施例优选为滑动直线导轨, 这样 可以避免其他种类的直线导轨产生的轻微振动, 从而保证测量的准确 性。
本实施例中, 直线导轨 3为两条, 拖板 9通过滑块分别与两条直线 导轨 3滑动连接, 以减小摩擦力, 保证拖板 9在滑动时不会受摩擦力过 大而影响测量结果。
实际应用中, 传送带 2可以为多种形式, 包括钢丝绳、 有齿皮带、 无齿皮带等, 本实施例优选传送带 2为钢丝绳或者无齿皮带, 可以避免 采用有齿传送带 2传送时产生的振动, 以避免使测量结果产生误差。
实际应用中, 本传感器标定平台的外周侧装置有防护栏 (图中未示 出 ), 以防止加速度传感器脱落飞出或钢丝绳断裂等对周围人员的伤害。
实际应用中, 拖板 9上固定有传感器夹具(图中未示出), 以保证加 速度传感器固定在拖板 9上。
主动轮 4表面设置螺旋槽(图中未示出), 以增大接触面和摩擦力, 并可以在传送带 2使用钢丝绳时,使钢丝绳自动多圏缠绕在主动轮 4上。 同时, 主动轮 4采用弹性张紧机构, 保证合适的张紧力, 将背景振动减 至最小, 提高加速度测量的信噪比。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均 应包含在本发明保护的范围之内。

Claims

权利要求书
1、 一种传感器标定平台, 其特征在于, 包括: 电动机, 水平设置的 直线导轨, 光栅尺, 人机终端以及与所述人机终端连接的控制器, 用于 承载被标定传感器的拖板;
所述拖板与所述直线导轨滑动连接;
所述电动机与所述拖板连接,以带动所述拖板沿所述直线导轨运动; 所述光栅尺沿所述直线导轨的延伸方向装设, 所述光栅尺的读数头 位于所述拖板上, 用以获得所述拖板的实际位移;
所述人机终端通过所述控制器读取所述读数头的位移量作为反馈信 号, 并控制所述电动机运转。
2、根据权利要求 1所述的传感器标定平台, 其特征在于, 所述电动 机为伺服电机。
3、根据权利要求 1所述的传感器标定平台, 其特征在于, 所述电动 机为直线电机。
4、 根据权利要求 2所述的传感器标定平台, 其特征在于, 还包括: 带结构;
所述带结构包括主动轮和从动轮, 且所述主动轮和所述从动轮之间 通过传送带连接;
所述拖板固定于所述传送带上;
所述伺服电机与所述主动轮相连接, 并驱动所述传送带动作, 以使 所述拖板沿所述直线导轨运动。
5、根据权利要求 2所述的传感器标定平台, 其特征在于, 所述伺服 电机上装有旋转编码器;
所述旋转编码器与所述控制器连接, 以使所述人机终端读取所述旋 转编码器的脉沖数, 用以得到所述拖板的直线位移。
6、根据权利要求 4所述的传感器标定平台, 其特征在于, 所述电动 机通过减速器与所述主动轮连接。
7、根据权利要求 4所述的传感器标定平台, 其特征在于, 所述传送 带为钢丝绳或者无齿皮带。
8、根据权利要求 4所述的传感器标定平台, 其特征在于, 所述主动 轮的圓周面设有螺旋槽。
9、 根据权利要求 1所述的传感器标定平台, 其特征在于, 所述控制 器与所述电动机通过电机驱动器连接。
10、 根据权利要求 1所述的传感器标定平台, 其特征在于, 所述拖 板通过滑块与所述直线导轨滑动连接。
11、 根据权利要求 1所述的传感器标定平台, 其特征在于, 所述直 线导轨为两条。
12、 根据权利要求 1所述的传感器标定平台, 其特征在于, 所述直 线导轨为磁悬浮式直线导轨。
13、 根据权利要求 1所述的传感器标定平台, 其特征在于, 还包括: 防护栏, 所述防护栏装置于所述传感器标定平台的外周侧。
14、 根据权利要求 1所述的传感器标定平台, 其特征在于, 所述拖 板上固定有传感器夹具。
PCT/CN2013/082325 2013-08-27 2013-08-27 传感器标定平台 WO2015027384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/082325 WO2015027384A1 (zh) 2013-08-27 2013-08-27 传感器标定平台
CN201380076941.7A CN105408722A (zh) 2013-08-27 2013-08-27 传感器标定平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/082325 WO2015027384A1 (zh) 2013-08-27 2013-08-27 传感器标定平台

Publications (1)

Publication Number Publication Date
WO2015027384A1 true WO2015027384A1 (zh) 2015-03-05

Family

ID=52585368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082325 WO2015027384A1 (zh) 2013-08-27 2013-08-27 传感器标定平台

Country Status (2)

Country Link
CN (1) CN105408722A (zh)
WO (1) WO2015027384A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781399A (zh) * 2020-07-06 2020-10-16 广东工业大学 一种用于加速传感器的仿真测试平台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106595817A (zh) * 2016-12-07 2017-04-26 深圳华夏恒泰电子有限公司 尿素液位传感器测试系统
CN107775627A (zh) * 2017-10-31 2018-03-09 嘉兴复尔机器人有限公司 一种六自由度并联机器人
CN109282776A (zh) * 2018-10-19 2019-01-29 长江水利委员会长江科学院 引张线仪自动化标定装置及其标定方法
CN109444470B (zh) * 2018-12-24 2024-05-28 北京奥特美克科技股份有限公司 流速仪校准装置
CN112345554A (zh) * 2020-10-30 2021-02-09 凌云光技术股份有限公司 一种光栅尺基准成像装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694797B2 (en) * 2000-05-10 2004-02-24 Ilmar Luik Dial indicator calibration apparatus
CN102175388A (zh) * 2011-01-21 2011-09-07 中国科学院合肥物质科学研究院 一种曲面柔性触觉传感器阵列的三维标定装置
CN202501835U (zh) * 2012-03-16 2012-10-24 成都飞机设计研究所 立式直线位移传感器标定/校准装置
CN103196629A (zh) * 2013-03-30 2013-07-10 大连交通大学 一种六维力传感器标定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694797B2 (en) * 2000-05-10 2004-02-24 Ilmar Luik Dial indicator calibration apparatus
CN102175388A (zh) * 2011-01-21 2011-09-07 中国科学院合肥物质科学研究院 一种曲面柔性触觉传感器阵列的三维标定装置
CN202501835U (zh) * 2012-03-16 2012-10-24 成都飞机设计研究所 立式直线位移传感器标定/校准装置
CN103196629A (zh) * 2013-03-30 2013-07-10 大连交通大学 一种六维力传感器标定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781399A (zh) * 2020-07-06 2020-10-16 广东工业大学 一种用于加速传感器的仿真测试平台

Also Published As

Publication number Publication date
CN105408722A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2015027384A1 (zh) 传感器标定平台
CN102435944B (zh) 直线电机力特性测试方法
CN102927959B (zh) 应变仪自动校准装置及校准方法
CN101980037B (zh) 一种直线电机运动系统综合试验装置
CN103389205A (zh) 一种检测滚珠丝杠副加载状态下综合性能的装置
GB2514438A (en) A camera support apparatus
CN107314851A (zh) 直线电机推力测试装置及采用该装置测量推力波动的方法
CN204359623U (zh) 一种摩擦磨损试验机
CN201637373U (zh) 皮带、链条长度测量仪
CN103868453A (zh) 一种直驱光栅尺自动检测装置
CN103353368A (zh) 一种扭矩测试平台
CN209077478U (zh) 一种齿轮轴校直机
CN101520348B (zh) 一种永磁直线电机定位力测量装置
CN205352345U (zh) 一种直线和角度位移传感器测量装置
CN212274955U (zh) 一种具有离合控制机构的编码器装置
CN201834608U (zh) 层绕机用浮动辊位置检测装置
CN203981349U (zh) 一种双向同步运动重心平衡调节装置
CN103075953A (zh) 一种活塞环槽径向跳动检测装置
CN102967272A (zh) 链条中心距检测台
CN102865805A (zh) 基于无接触旋转磁码盘的直线位移测量装置及测量方法
CN106225738B (zh) 一种直线导轨精度检测装置及方法
CN109186433B (zh) 导流罩导轨检测装置
CN203908493U (zh) 一种高效光栅尺检测平台
CN208937297U (zh) 一种自动扶梯的扶手带测量装置
CN205739065U (zh) 一种型材的进料机构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380076941.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892722

Country of ref document: EP

Kind code of ref document: A1