WO2015026454A1 - Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus - Google Patents

Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus Download PDF

Info

Publication number
WO2015026454A1
WO2015026454A1 PCT/US2014/046685 US2014046685W WO2015026454A1 WO 2015026454 A1 WO2015026454 A1 WO 2015026454A1 US 2014046685 W US2014046685 W US 2014046685W WO 2015026454 A1 WO2015026454 A1 WO 2015026454A1
Authority
WO
WIPO (PCT)
Prior art keywords
hcv
interferon
ns5a
compounds
antiviral
Prior art date
Application number
PCT/US2014/046685
Other languages
English (en)
French (fr)
Inventor
Alan Xiangdong Wang
Omar D. Lopez
Yong Tu
Makonen Belema
Original Assignee
Bristol-Myers Squibb Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol-Myers Squibb Company filed Critical Bristol-Myers Squibb Company
Priority to US14/904,817 priority Critical patent/US9717712B2/en
Priority to JP2016527033A priority patent/JP2016525114A/ja
Priority to EP14748036.2A priority patent/EP3021846A1/en
Priority to CN201480050770.5A priority patent/CN105555266B/zh
Publication of WO2015026454A1 publication Critical patent/WO2015026454A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/7056Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing five-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present disclosure is generally directed to antiviral compounds, and more specifically directed to combinations of compounds which can inhibit the function of the NS5A protein encoded by Hepatitis C virus (HCV), compositions comprising
  • HCV is a major human pathogen, infecting an estimated 170 million persons worldwide - roughly five times the number infected by human immunodeficiency virus type 1. A substantial fraction of these HCV infected individuals develop serious progressive liver disease, including cirrhosis and hepatocellular carcinoma.
  • protease (Pis) (Victrelis ® and Incivek ®) are administered with pegylated-interferon and ribavirin and provide a major improvement in the percentage of patients who experience SVR and the treatment duration required to achieve SVR.
  • protease inhibitor resistance to improve efficacy across all HCV genotypes, and to advance antiviral
  • HCV is a positive-stranded RNA virus of approximately 9500 nucleotides in length and has a single open reading frame (ORF) encoding a single large polyprotein of about 3000 amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non-structural (NS)
  • NS2, NS3, NS4A, NS4B, NS5A, and NS5B are effected by two viral proteases. The first one is believed to be a metalloprotease and cleaves at the NS2-NS3 junction; the second one is a serine protease contained within the N-terminal region of NS3 (also referred to herein as NS3 protease) and mediates all the subsequent cleavages downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A-NS4B, NS4B-NS5A, NS5A-NS5B sites.
  • NS3 protease serine protease contained within the N-terminal region of NS3
  • the NS4A protein is a cofactor for the NS3 protease. The formation of a NS3-NS4A complex is necessary for proper protease activity. The NS3 protein also exhibits nucleoside triphosphatase and R A helicase activities.
  • NS5A is a multi-functional protein required for viral R A replication and virion assembly.
  • NS5B (also referred to herein as HCV polymerase) is a R A-dependent RNA polymerase that is responsible for viral RNA synthesis.
  • a method has been described to identify compounds that demonstrate synergistic inhibition of HCV replicon activity when combined with the HCV NS5A inhibitor such as BMS-790052 (PCT/US2011/043785, filed July 13, 2011).
  • each compound when tested individually versus some NS5A resistant variants, is essentially inactive or much less active and only has synergistic inhibitory activity when tested in combination with an NS5A-targeting compound.
  • the synergistic compounds were identified using titrations of test compounds in the presence of fixed concentrations of HCV NS5A inhibitors such as BMS-790052.
  • the present disclosure provides a combination comprising an NS5A-targeting compound and an NS5A synergist, which, when administered, provides synergistic anti-HCV activity against variants that contain mutation(s) conferring resistance to the NS5A-targeting compound alone, wherein the NS5A synergist is a compound of formula (I):
  • R 1' and R 1' are independently selected from alkoxyalkyl, alkyl, cycloalkyl, and pyranyl, wherein the cycloalkyl and the pyranyl are optionally substituted with one, two, or three substituents independently selected from alkyl, halo, haloalkyl, hydroxy, and hydroxyalkyl; and
  • R 2 and R 2' are the same or different alkyl groups.
  • the present disclosure provides a composition comprising said combination and one or more pharmaceutically acceptable carriers.
  • said composition comprises one or two additional compounds having anti-HCV activity.
  • at least one of the additional compounds is an interferon or a ribavirin.
  • the interferon is selected from interferon alpha 2B, pegylated interferon alpha, pegylated interferon lambda, consensus interferon, interferon alpha 2A, and lymphoblastoid interferon tau.
  • said composition comprises one or two additional compounds having anti-HCV activity wherein at least one of the additional compounds is effective to inhibit the function of a target selected from HCV protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH for the treatment of an HCV infection.
  • a target selected from HCV protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH for the treatment of an HCV infection.
  • the present disclosure provides a method of treating an HCV infection in a patient, comprising administering to the patient a therapeutically effective amount of a combination of said combination, or a pharmaceutically acceptable salt thereof.
  • the method further comprises administering one or two additional compounds having anti-HCV activity prior to, after or simultaneously with the combination, or a pharmaceutically acceptable salt thereof.
  • at least one of the additional compounds is an interferon or a ribavirin.
  • the interferon is selected from interferon alpha 2B, pegylated interferon alpha, pegylated interferon lambda, consensus interferon, interferon alpha 2A, and lymphoblastoid interferon tau.
  • At least one of the additional compounds is effective to inhibit the function of a target selected from HCV protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH for the treatment of an HCV infection.
  • a target selected from HCV protease, HCV polymerase, HCV helicase, HCV NS4B protein, HCV entry, HCV assembly, HCV egress, HCV NS5A protein, and IMPDH for the treatment of an HCV infection.
  • the present disclosure provides a combination comprising an NS5A-targeting compound and an NS5A synergist, which, when administered, provides synergistic anti-HCV activity against variants that contain mutation(s) conferring resistance to the NS5A-targeting compound alone, wherein the NS5A synergist is a compound of formula (II):
  • cycloalkyl is optionally substituted with one, two, or three substituents independently selected from alkyl, halo, haloalkyl, hydroxy, and hydroxyalkyl.
  • C 2 _ 6 alkenyl denotes an alkenyl group containing two to six carbon atoms. Where these designations exist they supercede all other definitions contained herein.
  • aryl, cycloalkyl, and heterocyclyl groups of the present disclosure may be substituted as described in each of their respective definitions.
  • aryl part of an arylalkyl group may be substituted as described in the definition of the term "aryl”.
  • NS5A synergist refers to a molecule that alone shows a weaker activity against HCV wild type than the NS5 A-targeting compound, but when combined with an NS5A-targeting compound shows a greater than three- fold increase in EC50 potency than the potency of the NS5A-targeting compound alone.
  • the term “synergistic anti-HCV activity” refers to a greater than three-fold increase in EC50 potency than the potency of the NS5A-targeting compound alone.
  • NS5A-targeting compound refers to a molecule that inhibits HCV replication for which at least one resistance substitution maps to the NS5A protein and most commonly within, but not limited to, the first 100 residues of NS5A.
  • alkoxy refers to an alkyl group attached to the parent molecular group through an oxygen atom.
  • alkoxyalkyl refers to an alkyl group substituted with one, two, or three alkoxy groups.
  • alkyl refers to a group derived from a straight or branched chain saturated hydrocarbon containing from one to seven carbon atoms.
  • cycloalkyl refers to a three- to seven-membered monocyclic saturated carbocyclic ring.
  • halo refers to CI, Br, F, or I.
  • haloalkyl refers to an alkyl group substituted with one, two, three, or four halogen atoms.
  • hydroxy refers to -OH.
  • hydroxyalkyl refers to an alkyl group substituted with one, two, or three hydroxy groups.
  • Certain compounds of the present disclosure may also exist in different stable conformational forms which may be separable. Torsional asymmetry due to restricted rotation about an asymmetric single bond, for example because of steric hindrance or ring strain, may permit separation of different conformers.
  • the present disclosure includes each conformational isomer of these compounds and mixtures thereof.
  • the compounds of the present disclosure also exist as tautomers; therefore the present disclosure also encompasses all tautomeric forms.
  • isotopes include those atoms having the same atomic number but different mass numbers.
  • isotopes of hydrogen include deuterium and tritium.
  • isotopes of carbon include 13 C and 14 C.
  • Isotopically-labeled compounds of the invention can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described herein, using an appropriate isotopically- labeled reagent in place of the non-labeled reagent otherwise employed. Such compounds may have a variety of potential uses, for example as standards and reagents in determining biological activity. In the case of stable isotopes, such compounds may have the potential to favorably modify biological, pharmacological, or pharmacokinetic properties.
  • the compounds of the present disclosure can exist as pharmaceutically acceptable salts.
  • pharmaceutically acceptable salt represents salts or zwitterionic forms of the compounds of the present disclosure which are water or oil-soluble or dispersible, which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • the salts can be prepared during the final isolation and purification of the compounds or separately by reacting a suitable nitrogen atom with a suitable acid.
  • Representative acid addition salts include acetate, adipate, alginate, citrate, aspartate, benzoate, benzenesulfonate, bisulfate, butyrate, camphorate, camphorsulfonate; digluconate, glycerophosphate, hemisulfate, heptanoate, hexanoate, formate, fumarate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, lactate, maleate, mesitylenesulfonate, methanesulfonate, naphthylenesulfonate, nicotinate, 2-naphthalenesulfonate, oxalate, palmoate, pectinate, persulfate, 3- phenylproprionate, picrate, pivalate, propionate, succinate, tartrate, trichloroacetate, trifluoroacetate, phosphate, glutamate, bi
  • Basic addition salts can be prepared during the final isolation and purification of the compounds by reacting a carboxy group with a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • a suitable base such as the hydroxide, carbonate, or bicarbonate of a metal cation or with ammonia or an organic primary, secondary, or tertiary amine.
  • the cations of pharmaceutically acceptable salts include lithium, sodium, potassium, calcium, magnesium, and aluminum, as well as nontoxic amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tributylamine, pyridine, ⁇ , ⁇ -dimethylaniline, N- methylpiperidine, N-methylmorpholine, dicyclohexylamine, procaine, dibenzylamine, ⁇ , ⁇ -dibenzylphenethylamine, and ⁇ , ⁇ '-dibenzylethylenediamine.
  • nontoxic amine cations such as ammonium, tetramethylammonium, tetraethylammonium, methylamine, dimethylamine, trimethylamine, triethylamine, diethylamine, ethylamine, tribut
  • representative organic amines useful for the formation of base addition salts include ethylenediamine, ethanolamine, diethanolamine, piperidine, and piperazine.
  • compositions which include therapeutically effective amounts of the compounds comprising the combination or pharmaceutically acceptable salts thereof, and one or more pharmaceutically acceptable carriers, diluents, or excipients.
  • therapeutically effective amount refers to the total amount of each active component that is sufficient to show a meaningful patient benefit, e.g., a sustained reduction in viral load. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone.
  • the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially, or simultaneously.
  • the compounds of the combination and pharmaceutically acceptable salts thereof are as described above.
  • the carrier(s), diluent(s), or excipient(s) must be acceptable in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • a process for the preparation of a pharmaceutical formulation including admixing the compounds of the combination, or pharmaceutically acceptable salts thereof, with one or more pharmaceutically acceptable carriers, diluents, or excipients.
  • pharmaceutically acceptable refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of patients without excessive toxicity, irritation, allergic response, or other problem or complication commensurate with a reasonable benefit/risk ratio, and are effective for their intended use.
  • compositions may be presented in unit dose forms containing a predetermined amount of active ingredient per unit dose. Dosage levels of between about 0.01 and about 250 milligram per kilogram (“mg/kg”) body weight per day, preferably between about 0.05 and about 100 mg/kg body weight per day of the compounds of the present disclosure are typical in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this disclosure will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy.
  • mg/kg milligram per kilogram
  • the amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending on the condition being treated, the severity of the condition, the time of administration, the route of administration, the rate of excretion of the compound employed, the duration of treatment, and the age, gender, weight, and condition of the patient.
  • Preferred unit dosage formulations are those containing a daily dose or sub-dose, as herein above recited, or an appropriate fraction thereof, of an active ingredient.
  • treatment is initiated with small dosages substantially less than the optimum dose of the compound. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached.
  • the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.
  • compositions of this disclosure comprise a combination of a compound of the present disclosure and one or more additional therapeutic or prophylactic agent
  • both the compound and the additional agent are usually present at dosage levels of between about 10 to 150%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.
  • compositions may be adapted for administration by any appropriate route, for example by the oral (including buccal or sublingual), rectal, nasal, topical (including buccal, sublingual, or transdermal), vaginal, or parenteral (including subcutaneous, intracutaneous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional, intravenous, or intradermal injections or infusions) route.
  • Such formulations may be prepared by any method known in the art of pharmacy, for example by bringing into association the active ingredient with the carrier(s) or excipient(s). Oral administration or administration by injection are preferred.
  • compositions adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions in aqueous or non-aqueous liquids; edible foams or whips; or oil-in- water liquid emulsions or water-in-oil emulsions.
  • the active drug component can be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • Powders are prepared by comminuting the compound to a suitable fine size and mixing with a similarly comminuted pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavoring, preservative, dispersing, and coloring agent can also be present.
  • Capsules are made by preparing a powder mixture, as described above, and filling formed gelatin sheaths.
  • Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol can be added to the powder mixture before the filling operation.
  • a disintegrating or solubilizing agent such as agar-agar, calcium carbonate, or sodium carbonate can also be added to improve the availability of the medicament when the capsule is ingested.
  • Suitable binders include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth or sodium alginate, carboxymethylcellulose, polyethylene glycol, and the like.
  • Lubricants used in these dosage forms include sodium oleate, sodium chloride, and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, betonite, xanthan gum, and the like. Tablets are formulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant, and pressing into tablets.
  • a powder mixture is prepared by mixing the compound, suitable comminuted, with a diluent or base as described above, and optionally, with a binder such as carboxymethylcellulose, an aliginate, gelating, or polyvinyl pyrrolidone, a solution retardant such as paraffin, a resorption accelerator such as a quaternary salt and/or and absorption agent such as betonite, kaolin, or dicalcium phosphate.
  • the powder mixture can be granulated by wetting with a binder such as syrup, starch paste, acadia mucilage, or solutions of cellulosic or polymeric materials and forcing through a screen.
  • the powder mixture can be run through the tablet machine and the result is imperfectly formed slugs broken into granules.
  • the granules can be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc, or mineral oil.
  • the lubricated mixture is then compressed into tablets.
  • the compounds of the present disclosure can also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps.
  • a clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and a polish coating of wax can be provided. Dyestuffs can be added to these coatings to distinguish different unit dosages.
  • Oral fluids such as solution, syrups, and elixirs can be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound.
  • Syrups can be prepared by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic vehicle.
  • Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and
  • polyoxyethylene sorbitol ethers preservatives, fiavor additive such as peppermint oil or natural sweeteners, or saccharin or other artificial sweeteners, and the like can also be added.
  • dosage unit formulations for oral administration can be microencapsulated.
  • the formulation can also be prepared to prolong or sustain the release as for example by coating or embedding particulate material in polymers, wax, or the like.
  • the compounds of Formula (I), and pharmaceutically acceptable salts thereof can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles.
  • Liposomes can be formed from a variety of phopholipids, such as cholesterol, stearylamine, or phophatidylcholines.
  • the compounds of the combination and pharmaceutically acceptable salts thereof may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled.
  • the compounds may also be coupled with soluble polymers as targetable drug carriers.
  • Such polymers can include polyvinylpyrrolidone, pyran copolymer,
  • the compounds may be coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels.
  • biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic acid, polepsilon caprolactone, polyhydroxy butyric acid, polyorthoesters, polyacetals, polydihydropyrans, polycyanoacrylates, and cross-linked or amphipathic block copolymers of hydrogels.
  • compositions adapted for transdermal administration may be presented as discrete patches intended to remain in intimate contact with the epidermis of the recipient for a prolonged period of time.
  • the active ingredient may be delivered from the patch by iontophoresis as generally described in Pharmaceutical Research 1986, 5(6), 318.
  • compositions adapted for topical administration may be formulated as ointments, creams, suspensions, lotions, powders, solutions, pastes, gels, sprays, aerosols, or oils.
  • the formulations are preferably applied as a topical ointment or cream.
  • the active ingredient may be employed with either a paraffinic or a water-miscible ointment base.
  • the active ingredient may be formulated in a cream with an oil-in-water cream base or a water-in oil base.
  • compositions adapted for topical administrations to the eye include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent.
  • Pharmaceutical formulations adapted for topical administration in the mouth include lozenges, pastilles, and mouth washes.
  • compositions adapted for rectal administration may be presented as suppositories or as enemas.
  • compositions adapted for nasal administration wherein the carrier is a solid include a course powder having a particle size for example in the range 20 to 500 microns which is administered in the manner in which snuff is taken, i.e., by rapid inhalation through the nasal passage from a container of the powder held close up to the nose.
  • suitable formulations wherein the carrier is a liquid, for administration as a nasal spray or nasal drops, include aqueous or oil solutions of the active ingredient.
  • Fine particle dusts or mists which may be generated by means of various types of metered, dose pressurized aerosols, nebulizers, or insufflators.
  • compositions adapted for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams, or spray formulations.
  • compositions adapted for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats, and soutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents.
  • the formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use.
  • Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules, and tablets.
  • formulations may include other agents conventional in the art having regard to the type of formulation in question, for example those suitable for oral administration may include flavoring agents.
  • patient includes both human and other mammals.
  • treating refers to: (i) preventing a disease, disorder or condition from occurring in a patient that may be predisposed to the disease, disorder, and/or condition but has not yet been diagnosed as having it; (ii) inhibiting the disease, disorder, or condition, i.e., arresting its development; and (iii) relieving the disease, disorder, or condition, i.e., causing regression of the disease, disorder, and/or condition.
  • the compounds of the present disclosure can also be administered with a cyclosporin, for example, cyclosporin A.
  • Cyclosporin A has been shown to be active against HCV in clinical trials (Hepatology 2003, 38, 1282; Biochem. Biophys. Res. Commun. 2004, 313, 42; J. Gastroenterol. 2003, 38, 567).
  • Table A lists some illustrative examples of compounds that can be administered with the compounds of this disclosure.
  • the compounds of the disclosure can be administered with other anti-HCV activity compounds in combination therapy, either jointly or separately, or by combining the compounds into a composition.
  • the compounds of the present disclosure may also be used as laboratory reagents.
  • Compounds may be instrumental in providing research tools for designing of viral replication assays, validation of animal assay systems and structural biology studies to further enhance knowledge of the HCV disease mechanisms. Further, the compounds of the present disclosure are useful in establishing or determining the binding site of other antiviral compounds, for example, by competitive inhibition.
  • the compounds of this disclosure may also be used to treat or prevent viral contamination of materials and therefore reduce the risk of viral infection of laboratory or medical personnel or patients who come in contact with such materials, e.g., blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection or transfusion apparatuses and materials.
  • materials e.g., blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection or transfusion apparatuses and materials.
  • This disclosure is intended to encompass compounds having Formula (I) when prepared by synthetic processes or by metabolic processes including those occurring in the human or animal body (in vivo) or processes occurring in vitro.
  • RT or rt room temperature or retention time (context will dictate); ret t for retention time; min or mins for minutes; TFA for trifluoro acetic acid; min or mins for minutes; ACN or MeCN for acetonitrile; DCM for dichloromethane; DIEA or DiPEA or DIPEA for
  • HATU 0-(7-azabenzotriazol-l-yl)-N,N,N',N'- tetramethyluronium hexafluorphosphate; h or hr or hrs for hours; MeOH for methanol; dppf for diphenylphosphinoferrocene; EtOAc for ethyl acetate; OAc for acetate; DMSO for dimethylsulfoxide; TBTU for 2-(lH-benzotriazole-l-yl)-l, 1,3,3- tetramethyluronium tetrafluoroborate; Me for methyl; and DMF for N,N- dimethy lformamide .
  • Acid precursors for the final step can be prepared according to the methods described in U.S. Patent Application Serial No. 13/933495, filed July 2, 2013.
  • Solvent B CH 3 CN (98%) + 10 mM NH 4 COOH in H 2 0 (2%)
  • Slovent A ACN (5%) + H 2 0 (95%) containing 10 mM NH 4 OAc
  • Solvent B ACN (95%) + H 2 0 (5%) containing 10 mM NH 4 OAc
  • Example B-1 Step e (0.04 g, 0.053 mmol) in DMF (5 mL) was added 4,4-difluorocyclohexanecarboxylic acid (0.017 g, 0.106 mmol), DIPEA (0.055 mL, 0.317 mmol) and HATU (0.030 g, 0.079 mmol). After being stirred for 2 h at room temperature, the volatile component was removed in vacuo and the residue was dissolved in DCM (10 mL), washed with saturated solution of NH 4 C1, 10% NaHC0 3 solution, brine, dried over Na 2 S0 4 and concentrated in vacuo. The crude was purified by reverse phase HPLC purification to give Example B-1 as a white solid.
  • LC (Condition 1): R, 2.37 min.
  • LC/MS Anal. Calcd. for [M+H] +
  • Example B-1 Step e The following examples were prepared from Example B-1 Step e, and appropriate acid precursors by employing the procedures described for the synthesis of Example B-1.
  • the resulting products were purified by preparatory HPLC
  • Step b
  • Example Y-2 to Y-5 were prepared similarly from appropriate carboxylic acid precursors, the synthesis of which is reported in the art. Note that the acid precursor used in the preparation of Example Y-4 was a racemate mixture with its hydroxyl and carboxyl moieties cis to each other.
  • the NS5A synergistic inhibitory effect of test compounds can be determined using various amounts of an NS5A-targeting compound with titration of a second compound of interest. Both the NS5 A-targeting compound and the second compound of interest, when tested individually versus HCV variants, are understood to be essentially inactive or weakly active and only regain synergistic inhibitory potency of 3 -fold or greater inhibition when tested in combination versus HCV variants.
  • compound BMS-790052 as an NS5A-targeting compound, can be held constant at a fixed concentration of 200nM with subsequent titration of the test compound on a variant of HCV.
  • the HCV genotype strain can be genotype la containing a change at amino acid 30 of the NS5A protein consisting of glutamine to glutamate.
  • the test compound can be chosen from compounds listed above or from others present in the literature.
  • One skilled in the art can readily test compounds in the HCV replicon cell based assay as has been demonstrated previously in the art and one can readily determine the effective concentration for 50% inhibition (EC 50 ) of a particular compound.
  • Compound P-55 which is noted below, can be titrated in the HCV replicon cell-based assay consisting of the genotype- la variant with glutamine 30 changed to glutamate in the NS5A protein. Titration of BMS-790052 singly would yield an EC 50 value ⁇ 200nM while titration of P-55 singly would yield an EC 50 value >200nM.
  • genotype is not limited to the genotype la variant but can encompass all genotypic variants of HCV including but not limited to HCV variants of lb, 2a, 3a, 4a, 5a, 6a as demonstrated in commonly owned
  • WO2012/009394 It is also understood that the synergy effect is not limited to BMS- 790052 or P-55 combinations but can be derived from other combinations of NS5A- targeting compounds that by themselves have reduced or no potency towards HCV variants.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
PCT/US2014/046685 2013-07-02 2014-07-15 Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus WO2015026454A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/904,817 US9717712B2 (en) 2013-07-02 2014-07-15 Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus
JP2016527033A JP2016525114A (ja) 2013-07-17 2014-07-15 C型肝炎ウイルスの治療に使用するためのトリシクロヘキサデカヘキサエン誘導体を含む組み合わせ
EP14748036.2A EP3021846A1 (en) 2013-07-17 2014-07-15 Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus
CN201480050770.5A CN105555266B (zh) 2013-07-17 2014-07-15 用于治疗丙型肝炎病毒的包含三环十六碳六烯衍生物的组合产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361847388P 2013-07-17 2013-07-17
US61/847,388 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015026454A1 true WO2015026454A1 (en) 2015-02-26

Family

ID=51293156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/046685 WO2015026454A1 (en) 2013-07-02 2014-07-15 Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus

Country Status (4)

Country Link
EP (1) EP3021846A1 (zh)
JP (1) JP2016525114A (zh)
CN (1) CN105555266B (zh)
WO (1) WO2015026454A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017076194A1 (zh) * 2015-11-06 2017-05-11 江苏豪森药业集团有限公司 具有抑制hcv活性的化合物及其制备方法和应用
WO2017076187A1 (zh) * 2015-11-06 2017-05-11 江苏豪森药业集团有限公司 1,4(1,4)-二苯杂环六蕃-12,43-二基衍生物及其制备方法与应用
US9775831B2 (en) 2013-07-17 2017-10-03 Bristol-Myers Squibb Company Combinations comprising biphenyl derivatives for use in the treatment of HCV
US10617675B2 (en) 2015-08-06 2020-04-14 Bristol-Myers Squibb Company Hepatitis C virus inhibitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093867A1 (en) 2005-02-28 2006-09-08 The Rockefeller University Structure of the hepatitits c virus ns5a protein
WO2012009394A2 (en) 2010-07-16 2012-01-19 Bristol-Myers Squibb Company Methods to identify combinations of ns5a targeting compounds that act synergistically to inhibit hepatitis c virus replication
WO2012166716A2 (en) * 2011-05-27 2012-12-06 Achillion Pharmaceuticals, Inc. Subsituted aliphanes, cyclophanes, heteraphanes, heterophanes, hetero-heteraphanes and metallocenes useful for treating hcv infections
WO2013106520A1 (en) * 2012-01-13 2013-07-18 Bristol-Myers Squibb Company Hepatitis c virus inhibitors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329159B2 (en) * 2006-08-11 2012-12-11 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
SG178952A1 (en) * 2009-09-04 2012-04-27 Glaxosmithkline Llc Chemical compounds
US8415374B2 (en) * 2009-10-12 2013-04-09 Bristol-Myers Squibb Company Combinations of hepatitis C virus inhibitors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093867A1 (en) 2005-02-28 2006-09-08 The Rockefeller University Structure of the hepatitits c virus ns5a protein
WO2012009394A2 (en) 2010-07-16 2012-01-19 Bristol-Myers Squibb Company Methods to identify combinations of ns5a targeting compounds that act synergistically to inhibit hepatitis c virus replication
WO2012166716A2 (en) * 2011-05-27 2012-12-06 Achillion Pharmaceuticals, Inc. Subsituted aliphanes, cyclophanes, heteraphanes, heterophanes, hetero-heteraphanes and metallocenes useful for treating hcv infections
WO2013106520A1 (en) * 2012-01-13 2013-07-18 Bristol-Myers Squibb Company Hepatitis c virus inhibitors

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 313, 2004, pages 42
HEPATOLOGY, vol. 38, 2003, pages 1282
J. GASTROENTEROL., vol. 38, 2003, pages 567
K.-J. PARK ET AL., J. BIOL. CHEM., 2003, pages 30711 - 30718
L. HUANG, J. BIOL. CHEM., vol. 280, 2005, pages 36417
M. GAO ET AL., NATURE, 2010
N. APPEL ET AL., J. BIOL. CHEM., vol. 281, 2006, pages 9833
PHARMACEUTICAL RESEARCH, vol. 3, no. 6, 1986, pages 318
R. A. LOVE ET AL., J. VIROL, vol. 83, 2009, pages 4395
S. L. TAN ET AL., VIROLOGY, vol. 284, 2001, pages 1 - 12
T. L. TELLINGHUISEN ET AL., NATURE, vol. 435, 2005, pages 374

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775831B2 (en) 2013-07-17 2017-10-03 Bristol-Myers Squibb Company Combinations comprising biphenyl derivatives for use in the treatment of HCV
US10617675B2 (en) 2015-08-06 2020-04-14 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2017076194A1 (zh) * 2015-11-06 2017-05-11 江苏豪森药业集团有限公司 具有抑制hcv活性的化合物及其制备方法和应用
WO2017076187A1 (zh) * 2015-11-06 2017-05-11 江苏豪森药业集团有限公司 1,4(1,4)-二苯杂环六蕃-12,43-二基衍生物及其制备方法与应用
CN108348504A (zh) * 2015-11-06 2018-07-31 江苏豪森药业集团有限公司 具有抑制hcv活性的化合物及其制备方法和应用
CN108349907A (zh) * 2015-11-06 2018-07-31 江苏豪森药业集团有限公司 1,4(1,4)-二苯杂环六蕃-12,43-二基衍生物及其制备方法与应用
CN108348504B (zh) * 2015-11-06 2021-06-29 江苏豪森药业集团有限公司 具有抑制hcv活性的化合物及其制备方法和应用
CN108349907B (zh) * 2015-11-06 2021-08-31 江苏豪森药业集团有限公司 1,4(1,4)-二苯杂环六蕃-12,43-二基衍生物及其制备方法与应用

Also Published As

Publication number Publication date
CN105555266A (zh) 2016-05-04
CN105555266B (zh) 2018-11-30
JP2016525114A (ja) 2016-08-22
EP3021846A1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
EP2784075B1 (en) Hepatitis C virus inhibitors
EP2300491B1 (en) Hepatitis c virus inhibitors
US9340520B2 (en) Hepatitis C virus inhibitors
EP2250163B1 (en) Hepatitis c virus inhibitors
ES2674401T3 (es) Inhibidores del virus de la hepatitis C
EP2707365B1 (en) Hepatitis c virus inhibitors
WO2013055563A1 (en) Compounds for the treatment of hepatitis c
WO2015026454A1 (en) Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis c virus
US20160311806A1 (en) 4,4'-biphenyldiyl-bis-(1 h-imidazolyl) derivatives as hepatitis hcv inhibitors
US9775831B2 (en) Combinations comprising biphenyl derivatives for use in the treatment of HCV
US9717712B2 (en) Combinations comprising tricyclohexadecahexaene derivatives for use in the treatment of hepatitis C virus
US10617675B2 (en) Hepatitis C virus inhibitors
EP2964630B1 (en) Pyrimidine compounds for the treatment of hepatitis c
US8987265B2 (en) Substituted 1,3,5-triazine derivatives of fused bicyclic oxalamide compounds for treatment of Hepatitis C
EP2948151B1 (en) Ammonium derivatives for the treatment of hepatitis c
NZ615067B2 (en) Hepatitis c virus inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480050770.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014748036

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904817

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016527033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE