WO2015026117A1 - 금 나노 입자를 포함하는 형광 입자 및 그 제조방법 - Google Patents

금 나노 입자를 포함하는 형광 입자 및 그 제조방법 Download PDF

Info

Publication number
WO2015026117A1
WO2015026117A1 PCT/KR2014/007639 KR2014007639W WO2015026117A1 WO 2015026117 A1 WO2015026117 A1 WO 2015026117A1 KR 2014007639 W KR2014007639 W KR 2014007639W WO 2015026117 A1 WO2015026117 A1 WO 2015026117A1
Authority
WO
WIPO (PCT)
Prior art keywords
lanthanide
gold nanoparticles
ligand
particles
silica
Prior art date
Application number
PCT/KR2014/007639
Other languages
English (en)
French (fr)
Inventor
김소연
허내영
정재안
김원정
황병갑
김영섭
이명훈
Original Assignee
주식회사 메디센서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140100689A external-priority patent/KR101660399B1/ko
Application filed by 주식회사 메디센서 filed Critical 주식회사 메디센서
Priority to US14/913,801 priority Critical patent/US10067138B2/en
Priority to EP14837719.5A priority patent/EP3037498B1/en
Priority to CN201480058437.9A priority patent/CN105829493B/zh
Publication of WO2015026117A1 publication Critical patent/WO2015026117A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/40Rare earth chelates

Definitions

  • the present invention relates to fluorescent particles, and more particularly to fluorescent particles comprising gold nanoparticles and lanthanide complex particles.
  • Fluorescent particles comprising metals such as gold or silver exhibit improved fluorescence properties due to surface plasmon resonance phenomena.
  • the fluorescent particles can improve the sensitivity of target molecular detection, and are utilized for biological analysis and molecular detection such as detection of DNA and / or RNA and immunity.
  • the fluorescent particles may be utilized in measuring devices and chemical devices. As such, fluorescent particles are widely used in molecular biology, material science, photonics, and medicine.
  • the reverse microemulsion method is used in the process of coating organic nanoparticles on silica.
  • Inverse microemulsion method can easily control the organic nanoparticle size and particle distribution. For example, studies have been reported in which fullerene-silica nanoparticles are produced in the order of tens of nanometers by the reverse microemulsion method. At this time, the fullerene and silica are directly connected by covalent bond without a separate linker.
  • biotechnology and many other academic technologies have been fused and developed with their influence in various fields. Many of them are moving towards the biomaterials analysis and detection market.
  • One of the methods used for the analysis and measurement of the biological material is to measure the biomaterial to attach to one side of the micro or nanoparticles by using nanoparticles or beads.
  • Fluorescence occurs when molecules absorb photons and are released by electron transitions when the excited state returns to the ground state. Fluorescent materials absorb energy at certain wavelengths and re-emit at different wavelengths. Fluorescent materials are used as fluorescent dyes or pigments, such as fluorescent inks, fluorescent paints, and the like, including inorganic materials and organic materials.
  • One technical problem to be solved of the present invention relates to a fluorescent particle applicable to the measurement of biological material.
  • Another technical problem to be solved of the present invention relates to fluorescent particles that can be observed with the naked eye and detectable upon ultraviolet irradiation.
  • the present invention relates to a fluorescent particle and a method for producing the same.
  • Fluorescent particles of the present invention are gold nanoparticles; A silica shell covering the gold nanoparticles; And lanthanide complex particles dispersed in the silica shell, wherein each of the lanthanide complex particles comprises: lanthanide ions; A ligand that binds to the lanthanide ion and comprises phosphorus; And a ligand that binds to the lanthanide ion and has a beta diketone functional group.
  • the surface of the silica shell may be provided with a hydrophilic functional group.
  • the ligand comprising phosphorus includes at least one selected from Trioctylphosphine oxide and Trioctylphosphine
  • the beta diketone ligand is 4,4,4-Trifluoro-1- (2-naphthyl) -1,3- butanedione, 4,4,4-Trifluoro-1- (2-thienyl) -1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, and Benzil.
  • the lanthanide complexes may further include at least one selected from 1,10-phenanthroline monohydrate and 2,2'-Bipyridyl.
  • the lanthanide ions may include euroform ions, dysprosium ions, samarium (Sm) ions, or tibium ions.
  • Fluorescent particle production method of the present invention to prepare gold nanoparticles and lanthanide complexes; Producing silica by hydrolysis and condensation reaction of a silicon precursor; And adding the gold nanoparticles and the lanthanide complexes to the silica to produce the silica shell surrounding the gold nanoparticles, wherein the lanthanide complex particles are formed by the aggregation of the lanthanide complexes.
  • preparing the gold nanoparticles comprises: adding a surfactant to a gold precursor solution; And reducing the gold precursor solution.
  • the ligand comprising phosphorus includes at least one selected from Trioctylphosphine oxide and Trioctylphosphine
  • the beta diketone ligand is 4,4,4-Trifluoro-1- (2-naphthyl) -1,3- butanedione, 4,4,4-Trifluoro-1- (2-thienyl) -1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, and Benzil.
  • preparing the silica and preparing the silica shell may be carried out using a surfactant.
  • the fluorescent particles can include gold nanoparticles, lanthanide complex particles, and silica shells.
  • Gold nanoparticles, lanthanide complex particles, and silica shells are not toxic and fluorescent particles may be suitable for analysis / detection of biological samples / materials.
  • the gold nanoparticles emit light in the visible region by the surface plasmon phenomenon, so that the generation of the fluorescent particle-biological sample conjugate can be easily visually determined.
  • the size of the gold nanoparticles By controlling the size of the gold nanoparticles, the light wavelength of the visible light region emitted by the gold nanoparticles can be controlled.
  • the lanthanide complex particles may have a fluorescence property that absorbs light at a wavelength in the ultraviolet region and emits light at a wavelength in the visible region. Fluorescent particles may emit light upon ultraviolet irradiation. By adjusting the type and number of ligands of the lanthanide complex particles, the wavelength and intensity of light emitted by the lanthanide complex particles can be controlled.
  • Lanthanide complex particles may be provided in plural in the silica shell. Lanthanide complex particles enhance the fluorescence properties of the fluorescent particles, so that the fluorescent particles can be used for the analysis of small amounts of biological samples / materials.
  • FIG 1 illustrates fluorescent particles according to an embodiment.
  • Figure 2 is a graph showing the optical density according to the wavelength, it is shown according to the size of the gold nanoparticles.
  • FIG 3 illustrates a lanthanide complex according to one embodiment.
  • FIG. 4 is a flowchart illustrating a method of manufacturing fluorescent particles according to an embodiment of the present invention.
  • FIG 1 illustrates fluorescent particles according to an embodiment.
  • the fluorescent particles 1 may include gold nanoparticles 100, lanthanide complex particles 200, and silica shells 300.
  • the fluorescent particle 1 may have a core-shell structure.
  • the fluorescent particle 1 may be combined with a biological sample / material to generate a fluorescent particle-biological sample conjugate.
  • the fluorescent particles 1 may be used for detection and analysis of biological samples / materials.
  • the gold nanoparticles 100 may be provided in the core of the fluorescent particles 1.
  • the gold nanoparticles 100 may have a spherical shape.
  • the gold nanoparticles 100 may emit light in the visible region by surface plasmon resonance. Accordingly, the gold nanoparticles 100 may exhibit color.
  • the gold nanoparticles 100 may have a size of about 10 nm to about 60 nm.
  • the wavelength of light in the visible light region that is emitted may be longer.
  • the wavelength of light in the visible light region emitted by the gold nanoparticles 100 may be controlled.
  • a surfactant may be used in the manufacturing process of the gold nanoparticles 100 so that the size of the gold nanoparticles 100 may be adjusted.
  • the size of the gold nanoparticles 100 may be controlled by controlling reaction conditions such as temperature, reaction time, reducing agent, and / or type of solvent.
  • the fluorescent particles (1) are used for the detection and analysis of biological samples such as diagnostic kits, whether the fluorescent particles (1)-biological sample assembly is generated by the light in the visible region emitted by the gold nanoparticles (100) Can be easily determined visually.
  • the gold nanoparticles 100 are not toxic and may be suitable for analysis of biological samples / materials.
  • a silica shell 300 may be provided surrounding the gold nanoparticles 100 to cover the gold nanoparticles 100.
  • the shell may comprise silica.
  • Silica shell 300 may include hydrophobic and hydrophilic functional groups.
  • the gold nanoparticles 100 exhibit hydrophobicity, such that the hydrophobic functional groups of the silica shell 300 may interact with the gold nanoparticles 100.
  • hydrophobic functional groups of the silica shell 300 may be provided toward the gold nanoparticles 100, and hydrophilic functional groups may be provided toward the outside.
  • the hydrophilic functional group may comprise a hydroxyl group (—OH).
  • the fluorescent particles 1 can be easily dispersed in an aqueous solution containing a biological sample / material.
  • the fluorescent particles 1 may react with various functional groups (eg, carboxyl group (COOH), amine group (NH 2 ), thiol group, aldehyde group, And / or epoxy groups, etc.) may be introduced.
  • functional groups eg, carboxyl group (COOH), amine group (NH 2 ), thiol group, aldehyde group, And / or epoxy groups, etc.
  • hydroxyl groups on the surface of the silica shell 300 may be substituted with various functional groups.
  • the functional group may bind directly to the biological sample / material or to the biological sample / material through another molecule / material.
  • the silica shell 300 is not toxic and may be suitable for analysis of biological samples / materials.
  • Lanthanide complex particles 200 may be provided dispersed in the silica shell 300. Lanthanide complex particles 200 may be provided in plurality.
  • the lanthanide complex particles 200 may have a fluorescence property that absorbs light of one wavelength and emits light of another wavelength different from one wavelength. In this case, one wavelength may be a wavelength in the ultraviolet region, and the other wavelength may be a wavelength in the visible region.
  • the euroform ions may absorb light of approximately 340 nm to 390 nm (eg, 361 nm) and emit light of 600 to 650 nm (eg, 615 nm).
  • the fluorescent particles 1 can be used for the analysis of small amounts of biological samples / materials.
  • the fluorescent particles 1 may include a plurality of lanthanide complex particles 200 by the silica shell 300. As the amount of the lanthanide complex particles 200 included in the fluorescent particles 1 increases, the intensity of light of other wavelengths emitted by the fluorescent particles 1 may increase. Accordingly, when the fluorescent particles 1 are used for a biological sample / material, the detection intensity can be improved.
  • FIG. 3 illustrates lanthanide complex particles according to one embodiment. Duplicate content as described above will be omitted.
  • the lanthanide complex particles 200 may include lanthanide ions 210 and ligands 220, 230, and 240.
  • the lanthanide ions 210 may serve as central atoms.
  • the lanthanide complex particles 200 may not be suitable for biomolecular diagnosis, measurement, or detection.
  • the lanthanide complex particles 200 of the present invention include non-toxic lanthanide ions 210, for example, europium (Eu) ions, dysprosium (Dy), samarium (Sm), or terbium (Tb) ions. May be suitable for detection / analysis of biological samples / materials.
  • the lanthanide ions 210 may have a fluorescence property by absorbing light of one wavelength and emitting light of another wavelength different from one wavelength.
  • Ligands 220, 230, and 240 may bind to lanthanide ions 210.
  • the lanthanide complex particles 200 may include a ligand 220 including at least one phosphorus and at least one beta diketone ligand 230.
  • the lanthanide complex particles 200 may further include a ligand 240 including nitrogen.
  • the lanthanide complex particles 200 may include ligands 220, 230, and 240 to increase the fluorescence intensity of the lanthanide ions 210.
  • the beta diketone ligand 230 may serve to move electrons in the fluorescence expression of euroform ions.
  • the fluorescence intensity increasing action of the ligand 220 including phosphorus may be expressed when included in the lanthanide complex particle 200 together with the beta diketone ligand 230.
  • the ligand 230 including phosphorus may be, for example, Trioctylphosphine oxide (hereinafter referred to as TOPO) or Trioctylphosphine (hereinafter referred to as TOP).
  • Beta diketone ligand 220 is 4,4,4-Trifluoro-1- (2-naphthyl) -1,3-butanedione (hereinafter NTA), 4,4,4-Trifluoro-1- (2-thienyl) It may include at least one selected from -1,3-butanedione (hereinafter referred to as TTA), 1,3-Diphenyl-1,3-propanedione (hereinafter referred to as DPP), and Benzil.
  • the ligand 240 including nitrogen may include at least one selected from 1,10-phenanthroline monohydrate (hereinafter referred to as Phen) and 2,2'-Bipyridyl (hereinafter referred to as Bipy).
  • Table 1 shows lanthanide complex particles and structural formulas according to examples of the present invention.
  • FIG. 4 is a flowchart illustrating a method of manufacturing fluorescent particles according to an embodiment of the present invention.
  • descriptions overlapping with those described above will be omitted.
  • the gold nanoparticle precursor solution may be reduced to prepare gold nanoparticles 100.
  • S10 A gold precursor and a first surfactant are added to and mixed with the solvent, and gold is added.
  • Precursor solutions can be prepared.
  • the reduction reaction of the gold precursor solution may proceed for 5 hours at a temperature condition of approximately 110 ° C.
  • the gold nanoparticle 100 precursor solution may be geum chloride.
  • the first surfactant may be oleylamine, but may now vary without limitation.
  • the size of the gold nanoparticles 100 may be controlled.
  • a reducing agent may be further added, but a separate reducing agent may not be added by controlling process conditions.
  • a washing process may be performed. The washing process can be carried out three times using ethanol.
  • the prepared gold nanoparticles 100 may be stored in an organic solvent such as cyclohexane.
  • a lanthanide complex particle 200 may be prepared.
  • S20 For example, a lanthanide element (eg, euroform, dysprosium, samarium, or terbium), a ligand , Surfactant, and water can be mixed to prepare a reaction solution.
  • the type of ligand may be the same as described above in the example of the ligands 220, 230, and 240 of FIG. 3.
  • the type and ratio of the ligands added may be controlled to control the type and ratio of the ligands 220, 240, and 240 that bind to the lanthanide ions 210.
  • acrylic acid may be mixed with the reaction solution to complete the production of the lanthanide complex particles 200.
  • silica By condensation reaction of the silica precursor material, silica can be prepared.
  • silica may be prepared according to Scheme 1 below.
  • tetraethyl orthosilicate can be used as precursor material (a).
  • the precursor material (a) may be dissolved in an organic solvent such as cyclohexane.
  • the precursor material can be hydrolyzed to produce the silica precursor (b).
  • the silica precursor (b) may be condensed under ammonium hydroxide to form silica (c).
  • the second surfactant may be further added to the silica.
  • the second surfactant may be Igepal CO-520 (Sigma Aldrich, Polyoxyethylene (5) nonylphenylether), but the present invention is not limited thereto.
  • the type and amount of the second surfactant may be controlled to adjust the size of the silica shell 300.
  • gold nanoparticles 100 and lanthanide complex particles 200 may be added to silica.
  • S30 Of gold nanoparticles 100 and lanthanide complex particles 200 The addition may be carried out before the silica is made.
  • Gold nanoparticles 100, lanthanide complex particles 200, and silica may be mixed for approximately 24 hours.
  • the surface of the gold nanoparticles 100 may be hydrophobic so that the hydrophobic functional groups of the silica may face the gold nanoparticles 100.
  • Silica may surround the gold nanoparticles 100 to form a silica shell 300.
  • Gold nanoparticles 100 may correspond to the core.
  • Lanthanide complex particles 200 may be dispersed in the silica shell 300.
  • Lanthanide complex particles 200 may be stabilized by interacting with silica shell 300. Accordingly, the intensity of fluorescence emitted by the lanthanide complex particles 200 may be increased.
  • the gold nanoparticles 100 and the lanthanide complex particles 200 may be more easily supported in the silica shell 300 by the second surfactant. Thereby, the manufacture of the fluorescent particle 1 demonstrated by the example of FIG. 1 can be completed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

형광 입자 및 그 제조방법이 제공된다. 형광 입자는 금 나노 입자; 상기 금 나노 입자를 덮는 실리카 쉘; 및 상기 실리카 쉘 내에 분산된 란탄족 착물 입자들을 포함할 수 있다. 상기 란탄족 착물 입자들 각각은 란탄족 이온; 상기 란탄족 이온과 결합하며, 인을 포함하는 리간드; 및 상기 란탄족 이온과 결합하며, 베타 디케톤 작용기를 가지는 리간드를 포함할 수 있다. 형광 입자는 육안으로 관찰 가능하여, 자외선 조사 시 빛을 방출할 수 있다. 형광 입자는 생체 시료 물질의 검출 및 분석에 사용될 수 있다.

Description

금 나노 입자를 포함하는 형광 입자 및 그 제조방법
본 발명은 형광 입자에 관한 것으로, 보다 구체적으로 금 나노 입자 및 란탄족 착물 입자를 포함하는 형광 입자에 관한 것이다.
금 또는 은과 같은 금속을 포함하는 형광 입자는 표면 플라즈몬 공명 현상으로 인해, 향상된 형광 특성을 나타낸다. 상기 형광 입자는 타켓 분자검출의 민감도를 향상시킬 수 있어, DNA 및/또는 RNA의 검출과 면역 같은 생물학적 분석 및 분자 감지에 활용된다. 또한, 상기 형광 입자는 측정 장치 및 화학 장치에 활용될 수 있다. 이와 같이 형광 입자는 분자 생물학, 재료 과학, 포토닉스, 그리고 의학에 이르기까지 광범위하게 사용되고 있다.
역마이크로에멀젼법은 유기나노 입자를 실리카에 코팅하는 과정에서 사용된다. 역 마이크로에멀젼법은 유기나노 입자크기와 입자분포를 간단하게 컨트롤할 수 있다. 예를 들어, 역마이크로에멀젼 방법에 의해, 풀러렌-실리카 나노 입자가 수십 나노미터의 크기로 제조되는 연구 결과가 보고되었다. 이 때, 풀러렌 및 실리카는 별도의 링커없이 공유결합으로 직접 연결된다.
현재 생명공학 기술과 많은 다양한 학문의 기술이 융합하여, 다양한 분야에서 그 영향력을 가지고 발전해 가고 있다. 그 중 많은 부분이 생체 물질 분석 및 검출 시장 쪽으로 흘러가고 있다. 생체 물질의 분석 및 측정을 위해 사용되는 방법 중 하나가 나노(nano) 입자 또는 비드(bead)를 이용한 기술로 마이크로(micro) 또는 나노 입자의 한쪽에 생체 물질이 붙을 수 있도록 하여 측정하는 것이다.
형광은 분자가 광자를 흡수하여 들뜬 상태의 물질이 바닥 상태로 되돌아갈 때 전자 전이에 의해 방출될 때 발생한다. 형광 물질은 특정 파장의 에너지를 흡수하여 다른 파장으로 재방출한다. 형광 물질은 무기 물질 및 유기 물질을 포함하여 형광 잉크, 형광 페인트 등과 같은 형광 염료 또는 안료 등으로 쓰인다.
본 발명의 해결하고자 하는 일 기술적 과제는 생체 물질 측정에 적용 가능한 형광 입자에 관한 것이다.
본 발명의 해결하고자 하는 다른 기술적 과제는 육안으로 관찰가능하고, 자외선 조사 시 검출가능한 형광 입자에 관한 것이다.
본 발명은 형광 입자 및 그의 제조방법에 관한 것이다. 본 발명의 형광 입자는 금 나노 입자; 상기 금 나노 입자를 덮는 실리카 쉘; 및 상기 실리카 쉘 내에 분산된 란탄족 착물 입자들을 포함하되, 상기 란탄족 착물 입자들 각각은: 란탄족 이온; 상기 란탄족 이온과 결합하며, 인을 포함하는 리간드; 및 상기 란탄족 이온과 결합하며, 베타 디케톤 작용기를 가지는 리간드를 포함할 수 있다.
실시예에 따르면, 상기 실리카 쉘의 표면은 상에 친수성 작용기가 제공될 수 있다.
실시예에 따르면, 상기 인을 포함하는 리간드는 Trioctylphosphine oxide 및 Trioctylphosphine 중에서 선택된 적어도 하나를 포함하고, 상기 베타 디케톤 리간드는 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione, 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, 및 Benzil 중에서 선택된 적어도 하나를 포함할 수 있다.
실시예에 따르면, 상기 란탄족 착물들은 1,10-phenanthroline monohydrate 및 2,2'-Bipyridyl 중에서 선택된 적어도 하나를 더 포함할 수 있다.
실시예에 따르면, 상기 란탄족 이온은: 유로폼 이온, 디스프로슘 이온, 사마듐(Sm) 이온, 또는 티븀 이온을 포함할 수 있다.
본 발명의 형광 입자 제조방법은 금 나노 입자 및 란탄족 착물을 준비하는 것; 실리콘 전구체의 가수 분해 및 축합 반응에 의해, 실리카를 제조하는 것; 및 상기 실리카에 상기 금 나노 입자 및 상기 란탄족 착물을 첨가하여, 상기 금 나노 입자를 둘러싸는 상기 실리카 쉘을 제조하는 것을 포함하되, 상기 란탄족 착물의 응집에 의해 란탄족 착물 입자들이 상기 실리카 쉘 내에 형성하고, 상기 란탄족 착물 입자들 각각은: 란탄족 이온; 상기 란탄족 이온과 결합하며, 인을 포함하는 리간드; 및 상기 란탄족 이온과 결합하며, 베타 디케톤 작용기를 가지는 리간드를 포함할 수 있다.
실시예에 따르면, 상기 금 나노 입자를 준비하는 것은: 금 전구체 용액에 계면 활성제를 첨가하는 것; 및 상기 금 전구체 용액을 환원시키는 것을 포함할 수 있다.
실시예에 따르면, 상기 인을 포함하는 리간드는 Trioctylphosphine oxide 및 Trioctylphosphine 중에서 선택된 적어도 하나를 포함하고, 상기 베타 디케톤 리간드는 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione, 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, 및 Benzil 중에서 선택된 적어도 하나를 포함할 수 있다.
실시예에 따르면, 상기 실리카를 제조하는 것 및 상기 실리카 쉘을 제조하는 것은 계면 활성제를 사용하여 진행될 수 있다.
형광 입자는 금 나노 입자, 란탄족 착물 입자들, 및 실리카 쉘을 포함할 수 있다. 금 나노 입자, 란탄족 착물 입자들, 및 실리카 쉘은 독성을 띄지 않아, 형광 입자는 생체 시료/물질의 분석/검출에 적합할 수 있다.
금 나노 입자가 표면 플라즈몬 현상에 의해 가시광선 영역의 빛을 방출하여, 형광 입자-생체 시료 결합체의 생성여부가 육안으로 용이하게 판별될 수 있다. 금 나노 입자의 크기가 조절되어, 금 나노 입자가 방출하는 가시광선 영역의 빛 파장이 제어될 수 있다.
란탄족 착물 입자들은 자외선 영역의 파장의 빛을 흡수하여, 가시 광선 영역의 파장의 빛을 방출하는 형광 특성을 가질 수 있다. 형광 입자는 자외선 조사 시, 빛을 방출할 수 있다. 란탄족 착물 입자들의 리간드들의 종류 및 수를 조절하여, 란탄족 착물 입자들이 방출하는 빛의 파장 및 세기가 제어될 수 있다. 란탄족 착물 입자들은 실리카 쉘 내에 복수개로 제공될 수 있다. 란탄족 착물 입자들에 의해 형광 입자의 형광 특성이 향상되어, 형광 입자는 소량의 생체 시료/물질의 분석에 사용될 수 있다.
본 발명의 보다 완전한 이해와 도움을 위해, 참조가 아래의 설명에 첨부도면과 함께 주어져 있고 참조번호가 아래에 나타나 있다.
도 1은 일 실시예에 따른 형광 입자를 도시하였다.
도 2는 파장에 따른 광학 밀도를 도시한 그래프로, 금 나노 입자의 크기에 따라 나타내었다.
도 3은 일 실시예에 따른 란탄족 착물을 도시였다.
도 4는 본 발명의 일 실시예에 따른 형광 입자의 제조방법을 도시한 순서도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면들과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 여기서 설명되는 실시예에 한정되는 것이 아니라 서로 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 또한, 바람직한 실시예에 따른 것이기 때문에, 설명의 순서에 따라 제시되는 참조 부호는 그 순서에 반드시 한정되지는 않는다. 이에 더하여, 본 명세서에서, 어떤 막이 다른 막 또는 기판 상에 있다고 언급되는 경우에 그것은 다른 막 또는 기판 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 막이 개재될 수도 있다는 것을 의미한다.
또한, 본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 구성 요소 두께 및/또는 크기는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 식각 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서, 도면에서 예시된 영역들은 개략적인 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다.
이하 첨부한 도면을 참조하며, 본 발명의 개념에 따른 형광 입자를 설명한다.
도 1은 일 실시예에 따른 형광 입자를 도시하였다.
도 1을 참조하면, 형광 입자(1)는 금 나노 입자(100), 란탄족 착물 입자(200), 및 실리카 쉘(300)을 포함할 수 있다. 형광 입자(1)는 코어-쉘(core-shell) 구조를 가질 수 있다. 형광 입자(1)는 생체 시료/물질과 결합하여, 형광 입자-생체시료 결합체를 생성할 수 있다. 형광 입자(1)는 생체 시료/물질의 검출 및 분석 등에 사용될 수 있다.
금 나노 입자(100)는 형광 입자(1)의 코어에 제공될 수 있다. 금 나노 입자(100)는 구형의 형상을 가질 수 있다. 금 나노 입자(100)는 표면 플라즈몬 공명 현상에 의해 가시광선 영역의 빛을 방출할 수 있다. 이에 따라, 금 나노 입자(100)는 색을 나타낼 수 있다. 금 나노 입자(100)는 약 10nm 내지 약 60nm 의 크기를 가질 수 있다.
도 2를 도 1과 함께 참조하면, 금 나노 입자(100)는 그 크기가 증가될수록, 방출하는 가시광선 영역의 빛의 파장이 길어질 수 있다. 금 나노 입자(100)의 크기가 조절되어, 금 나노 입자(100)가 방출하는 가시광선 영역의 빛 파장이 제어될 수 있다. 일 예로, 금 나노 입자(100)의 제조 과정에서 계면 활성제가 사용되어, 금 나노 입자(100)의 크기가 조절될 수 있다. 다른 예로, 금 나노 입자(100)의 제조 시, 온도, 반응 시간, 환원제, 및/또는 용매의 종류 등과 같은 반응 조건을 제어하여, 금 나노 입자(100)의 크기가 제어될 수 있다. 형광 입자(1)가 진단 키트 등과 같은 생체 시료의 검출 및 분석에 사용되는 경우, 금 나노 입자(100)가 방출하는 가시광선 영역의 빛에 의해, 형광 입자(1)-생체 시료 결합체의 생성여부가 육안으로 용이하게 판별될 수 있다. 금 나노 입자(100)는 독성을 띄지 않아, 생체 시료/물질의 분석에 적합할 수 있다.
도 1을 다시 참조하면, 실리카 쉘(300)이 금 나노 입자(100)를 둘러싸며 제공되어, 금 나노 입자(100)를 덮을 수 있다. 쉘은 실리카를 포함할 수 있다. 실리카 쉘(300)은 소수성 작용기 및 친수성 작용기를 포함할 수 있다. 금 나노 입자(100)는 소수성을 나타내어, 실리카 쉘(300)의 소수성 작용기가 금 나노 입자(100)와 상호작용할 수 있다. 이에 따라, 실리카 쉘(300)의 소수성 작용기는 금 나노 입자(100)를 향하여 제공되며, 친수성 작용기는 외부를 향하여 제공될 수 있다. 예를 들어, 친수성 작용기는 수산화기(-OH)를 포함할 수 있다. 실리카 쉘(300)의 친수성 작용기가 외부를 향해 배치됨에 따라, 형광 입자(1)는 생체 시료/물질을 포함하는 수용액 내에 용이하게 분산될 수 있다. 다른 예로, 형광 입자(1)는 수용액 내에서의 반응을 통하여, 실리카 쉘(300)의 표면에 다양한 작용기(예를 들어, 카르복시기(COOH), 아민기(NH2), 티올기, 알데하이드기, 및/또는 에폭시기 등)가 도입될 수 있다. 예를 들어, 실리카 쉘(300) 표면의 수산화기는 다양한 작용기로 치환될 수 있다. 상기 작용기는 생체 시료/물질과 직접 결합하거나, 다른 분자/물질을 통하여 생체 시료/물질과 결합할 수 있다. 또한, 실리카 쉘(300)은 독성을 띄지 않아, 생체 시료/물질의 분석에 적합할 수 있다.
란탄족 착물 입자(200)가 실리카 쉘(300) 내에 분산되어 제공될 수 있다. 란탄족 착물 입자(200)는 복수개로 제공될 수 있다. 란탄족 착물 입자(200)는 일 파장의 빛을 흡수하여, 일 파장과 다른 타 파장의 빛을 방출하는 형광 특성을 가질 수 있다. 이 때, 일 파장은 자외선 영역의 파장이고, 타 파장은 가시광선 영역의 파장일 수 있다. 일 예로, 유로폼 이온은 대략 340nm 내지 390nm(예를 들어, 361nm)의 빛을 흡수하여, 600 내지 650nm(예를 들어, 615nm)의 빛을 방출할 수 있다. 상기 란탄족 착물 입자(200)에 의해, 형광 입자(1)는 소량의 생체 시료/물질의 분석에 사용될 수 있다. 실리카 쉘(300)에 의해 형광 입자(1)는 복수의 란탄족 착물 입자(200)를 포함할 수 있다. 형광 입자(1)에 포함된 란탄족 착물 입자(200)의 양이 증가함에 따라, 형광 입자(1)가 방출하는 타 파장의 빛의 세기가 증가될 수 있다. 이에 따라, 형광 입자(1)가 생체 시료/물질에 사용되었을 때, 검출 강도가 향상될 수 있다.
이하, 본 발명의 란탄족 착물 입자에 대하여 보다 상세하게 설명한다.
도 3은 일 실시예에 따른 란탄족 착물 입자를 도시였다. 앞서 설명한 바와 중복되는 내용은 생략한다.
도 3을 참조하면, 란탄족 착물 입자(200)는 란탄족 이온(210) 및 리간드들(220, 230, 240)을 포함할 수 있다. 이하, 란탄족 이온(210)은 중심원자의 역할을 할 수 있다. 란탄족 이온(210)이 카드늄(Cd)이온을 포함하는 경우, 카드늄 이온의 독성으로 인하여, 란탄족 착물 입자(200)가 생체분자 진단, 측정, 또는 검출용으로 적절하지 않을 수 있다. 본 발명의 란탄족 착물 입자(200)는 무독성을 띄는 란탄족 이온(210), 예를 들어, 유로퓸(Eu) 이온, 디스프로슘(Dy), 사마듐(Sm), 또는 터븀(Tb) 이온을 포함함에 따라, 생체 시료/물질의 검출/분석에 적합할 수 있다. 란탄족 이온(210)은 앞서 설명한 바와 같이 일 파장의 빛을 흡수하여, 일 파장과 다른 타 파장의 빛을 방출하는 형광특성을 가질 수 있다.
리간드들(220, 230, 240)은 란탄족 이온(210)과 결합할 수 있다. 란탄족 착물 입자(200)는 적어도 하나의 인을 포함하는 리간드(220) 및 적어도 하나의 베타 디케톤 리간드(230)를 포함할 수 있다. 란탄족 착물 입자(200)는 질소를 포함하는 리간드(240)를 더 포함할 수 있다. 란탄족 착물 입자(200)는 리간드들(220, 230, 240)을 포함하여, 란탄족 이온(210)의 형광세기를 증가시킬 수 있다. 베타 디케톤 리간드(230)는 유로폼 이온의 형광특성 발현 과정에서 전자를 이동시키는 역할을 수행할 수 있다. 인을 포함하는 리간드(220)의 형광세기 증가 작용은 베타 디케톤 리간드(230)와 함께 란탄족 착물 입자(200)에 포함되었을 때, 발현될 수 있다. 인을 포함하는 리간드(220) 및 베타 디케톤 리간드(230)의 수를 조절하여, 란탄족 착물 입자(200)의 발광세기 및 발광파장이 조절될 수 있다. 인을 포함하는 리간드(230)는 예를 들어, Trioctylphosphine oxide (이하, TOPO) 또는 Trioctylphosphine(이하, TOP)일 수 있다. 베타 디케톤 리간드(220)는 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione(이하, NTA), 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione(이하, TTA), 1,3-Diphenyl-1,3-propanedione(이하, DPP), 및 Benzil 중에서 선택된 적어도 하나를 포함할 수 있다. 질소를 포함하는 리간드(240)는 1,10-phenanthroline monohydrate(이하, Phen) 및 2,2'-Bipyridyl(이하, Bipy) 중에서 선택된 적어도 하나를 포함할 수 있다.
표 1은 본 발명의 예시들에 따른 란탄족 착물 입자 및 그 구조식을 나타낸다.
표 1
이름 구조식
Tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tris(trioctylphosphine oxide)europium(III)
Figure PCTKR2014007639-appb-I000001
Tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tris(trioctylphosphine)europium(III)
Figure PCTKR2014007639-appb-I000002
Tris[4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione] tris(trioctylphosphine oxide)europium(III)
Figure PCTKR2014007639-appb-I000003
Tris[4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione] tris(trioctylphosphine oxide)europium(III)
Figure PCTKR2014007639-appb-I000004
Tris(1,3-diphenyl-1,3-propanedione) tris(trioctylphosphine oxide)europium(III)
Figure PCTKR2014007639-appb-I000005
Tris(1,3-diphenyl-1,3 propanedione) tris(trioctylphosphine)europium(III)
Figure PCTKR2014007639-appb-I000006
1,3-diphenyl-1,3-propanedione tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] trioctylphosphine oxide europium(III)
Figure PCTKR2014007639-appb-I000007
1,3-diphenyl-1,3-propanedione tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] trioctylphosphine europium(III)
Figure PCTKR2014007639-appb-I000008
1,3-diphenyl-1,3-propanedione di[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tri(trioctylphosphine oxide) europium(III)
Figure PCTKR2014007639-appb-I000009
1,3-diphenyl-1,3-propanedione di[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tri(trioctylphosphine) europium(III)
Figure PCTKR2014007639-appb-I000010
Di(1,3-diphenyl-1,3-propanedione) [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tri(trioctylphosphine oxide) europium(III)
Figure PCTKR2014007639-appb-I000011
Di(1,3-diphenyl-1,3-propanedione) [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tri(trioctylphosphine) europium(III)
Figure PCTKR2014007639-appb-I000012
1,3-diphenyl-1,3-propanedione 2,2'-Bipyridyl trioctylphosphine europium(III)
Figure PCTKR2014007639-appb-I000013
Dibenzil [4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionato] tri(trioctylphosphine) europium(III)
Figure PCTKR2014007639-appb-I000014
이하, 첨부한 도면을 참조하면, 일 실시예에 따른 형광 입자의 제조방법을 설명한다.
도 4는 본 발명의 일 실시예에 따른 형광 입자의 제조방법을 도시한 순서도이다. 이하, 앞서 설명한 바와 중복되는 내용은 생략한다.
도 4를 도 1과 함께 참조하면, 금 나노 입자 전구체 용액을 환원시켜, 금 나노 입자(100)가 준비될 수 있다.(S10) 용매에 금 전구체 및 제1 계면 활성제가 첨가 및 혼합되어, 금 전구체 용액이 제조될 수 있다. 금 전구체 용액의 환원 반응은 대략 110℃의 온도 조건에서 5시간 동안 진행될 수 있다. 예를 들어, 금 나노 입자(100) 전구체 용액은 염화 금산일 수 있다. 제1 계면 활성제는 올레일아민일 수 있으나, 이제 제한되지 않고 다양할 수 있다. 제1 계면 활성제의 종류를 조절하여, 제조되는 금 나노 입자(100)의 크기가 제어될 수 있다. 다른 예로, 환원제가 더 첨가될 수 있으나, 공정 조건을 제어하여 별도의 환원제가 첨가되지 않을 수 있다. 이후, 세척 공정이 수행될 수 있다. 세척 공정은 에탄올을 사용하여 3회 실시될 수 있다. 제조된 금 나노 입자(100)는 싸이클로헥산과 같은 유기 용매 내에 보관될 수 있다.
도 4를 도 3과 함께 참조하면, 란탄족 착물 입자(200)가 준비될 수 있다.(S20) 예를 들어, 란탄족 원소(예를 들어, 유로폼, 디스프로슘, 사마듐, 또는 터븀), 리간드, 계면 활성제, 및 물이 혼합되어, 반응 용액이 제조될 수 있다. 리간드의 종류는 앞서 도 3의 리간드들(220, 230, 240)의 예에서 설명한 바와 동일할 수 있다. 첨가되는 리간드의 종류 및 비를 조절하여, 란탄족 이온(210)에 결합하는 리간드들(220, 240, 240)의 종류 및 비를 제어할 수 있다. 반응용액의 색이 투명한 백색을 나타내면, 아크릴 산이 반응 용액과 혼합되어, 란탄족 착물 입자(200)의 제조가 완성될 수 있다.
실리카 전구체 물질의 축합 반응에 의해, 실리카가 제조될 수 있다. 일 예로, 실리카는 아래의 반응식 1에 따라 제조될 수 있다.
<반응식 1>
Figure PCTKR2014007639-appb-I000015
예를 들어, 테트라에틸 오소실리케이트(Tetraethyl orthosilicate, TEOS)가 전구체 물질(a)로 사용될 수 있다. 전구체 물질(a)은 사이클로헥산과 같은 유기 용매에 용해되어 있을 수 있다. 전구체 물질이 가수분해되어, 실리카 전구체(b)가 제조될 수 있다. 실리카 전구체(b)는 수산화 암모늄(Ammonium hydroxide) 하에 축합 반응하여, 실리카(c)를 형성할 수 있다. 이 때, 제2 계면 활성제가 실리카 에 더 첨가될 수 있다. 일 예로, 제2 계면 활성제는 Igepal CO-520(시그마 알드리치사, Polyoxyethylene (5) nonylphenylether)일 수 있으나, 이에 제한되지 않고 다양할 수 있다. 제2 계면 활성제의 종류 및 첨가량이 제어되어, 실리카 쉘(300)의 크기가 조절될 수 있다.
도 4를 도 1과 함께 참조하면, 금 나노 입자(100) 및 란탄족 착물 입자(200)가 실리카에 첨가될 수 있다.(S30) 금 나노 입자(100) 및 란탄족 착물 입자(200)의 첨가는 실리카가 제조되기 이전에 수행될 수 있다. 금 나노 입자(100), 란탄족 착물 입자(200), 및 실리카는 대략 24시간 동안 혼합될 수 있다. 금 나노 입자(100)의 표면이 소수성을 나타내어, 실리카의 소수성 작용기가 금 나노 입자(100)를 향하도록 배치될 수 있다. 실리카는 금 나노 입자(100)들 둘러싸여, 실리카 쉘(300)을 형성할 수 있다. 금 나노 입자(100)는 코어에 해당할 수 있다. 란탄족 착물 입자(200)는 실리카 쉘(300) 내에 분산될 수 있다. 란탄족 착물 입자(200)는 실리카 쉘(300)과 상호작용하여, 안정화될 수 있다. 이에 따라, 란탄족 착물 입자(200)가 방출하는 형광의 세기가 증가될 수 있다. 제2 계면 활성제에 의해 금 나노 입자(100) 및 란탄족 착물 입자(200)가 실리카 쉘(300) 내에 보다 용이하게 담지될 수 있다. 이에 따라, 도 1의 예에서 설명한 형광 입자(1)의 제조가 완성될 수 있다.
이상, 첨부된 도면들을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (9)

  1. 금 나노 입자;
    상기 금 나노 입자를 덮는 실리카 쉘; 및
    상기 실리카 쉘 내에 분산된 란탄족 착물 입자들을 포함하되,
    상기 란탄족 착물 입자들 각각은:
    란탄족 이온;
    상기 란탄족 이온과 결합하며, 인을 포함하는 리간드; 및
    상기 란탄족 이온과 결합하며, 베타 디케톤 작용기를 가지는 리간드를 포함하는 형광 입자.
  2. 제1 항에 있어서,
    상기 실리카 쉘의 표면은 친수성 작용기를 가지는 형광 입자.
  3. 제1 항에 있어서,
    상기 인을 포함하는 리간드는 Trioctylphosphine oxide 및 Trioctylphosphine 중에서 선택된 적어도 하나를 포함하고,
    상기 베타 디케톤 리간드는 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione, 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, 및 Benzil 중에서 선택된 적어도 하나를 포함하는 형광 입자.
  4. 제 1항에 있어서,
    상기 란탄족 착물 입자들은 1,10-phenanthroline monohydrate 및 2,2'-Bipyridyl 중에서 선택된 적어도 하나를 더 포함하는 형광 입자.
  5. 제1 항에 있어서,
    상기 란탄족 이온은:
    유로폼 이온, 디스프로슘 이온, 사마듐(Sm) 이온, 또는 티븀 이온을 포함하는 형광 입자.
  6. 금 나노 입자 및 란탄족 착물 입자들을 준비하는 것;
    실리콘 전구체의 가수 분해 및 축합 반응에 의해, 실리카를 제조하는 것; 및
    상기 실리카에 상기 금 나노 입자 및 상기 란탄족 착물 입자들을 첨가하여, 상기 금 나노 입자를 둘러싸는 실리카 쉘을 제조하는 것을 포함하되, 상기 실리카 쉘은 상기 실리카로부터 형성되고, 상기 란탄족 착물 입자들는 상기 실리카 쉘 내에 분산되어 제공되며,
    상기 란탄족 착물 입자들 각각은:
    란탄족 이온;
    상기 란탄족 이온과 결합하며, 인을 포함하는 리간드; 및
    상기 란탄족 이온과 결합하며, 베타 디케톤 작용기를 가지는 리간드를 포함하는 형광 입자 제조 방법.
  7. 제6 항에 있어서,
    상기 금 나노 입자를 준비하는 것은:
    금 전구체 용액에 계면 활성제를 첨가하는 것; 및
    상기 금 전구체 용액을 환원시키는 것을 포함하는 형광 입자 제조방법.
  8. 제6 항에 있어서,
    상기 인을 포함하는 리간드는 Trioctylphosphine oxide 및 Trioctylphosphine 중에서 선택된 적어도 하나를 포함하고,
    상기 베타 디케톤 리간드는 4,4,4-Trifluoro-1-(2-naphthyl)-1,3-butanedione, 4,4,4-Trifluoro-1-(2-thienyl)-1,3-butanedione, 1,3-Diphenyl-1,3-propanedione, 및 Benzil 중에서 선택된 적어도 하나를 포함하는 형광 입자 제조방법.
  9. 제6 항에 있어서,
    상기 실리카를 제조하는 것 및 상기 실리카 쉘을 제조하는 것은 계면 활성제를 사용하여 진행되는 형광 입자 제조방법.
PCT/KR2014/007639 2013-08-23 2014-08-18 금 나노 입자를 포함하는 형광 입자 및 그 제조방법 WO2015026117A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/913,801 US10067138B2 (en) 2013-08-23 2014-08-18 Fluorescent particle comprising gold nanoparticles and method for manufacturing same
EP14837719.5A EP3037498B1 (en) 2013-08-23 2014-08-18 Fluorescent particle comprising gold nanoparticles and method for manufacturing same
CN201480058437.9A CN105829493B (zh) 2013-08-23 2014-08-18 包含金纳米粒子的荧光粒子及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0100430 2013-08-23
KR20130100430 2013-08-23
KR1020140100689A KR101660399B1 (ko) 2013-08-23 2014-08-05 금 나노 입자를 포함하는 형광 입자 및 그 제조방법
KR10-2014-0100689 2014-08-05

Publications (1)

Publication Number Publication Date
WO2015026117A1 true WO2015026117A1 (ko) 2015-02-26

Family

ID=52483849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007639 WO2015026117A1 (ko) 2013-08-23 2014-08-18 금 나노 입자를 포함하는 형광 입자 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2015026117A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587223A (en) * 1982-09-13 1986-05-06 Wallac Oy Method for quantitative determination of a biospecific affinity reaction
KR20120089928A (ko) * 2010-12-27 2012-08-16 한국과학기술원 금-형광 실리카 나노입자 복합체 및 이의 제조방법
US20130075658A1 (en) * 2010-06-29 2013-03-28 Mingjie Zhou Fluorescent powder of halogen silicate containing nano-metal particles and preparation method thereof
WO2013076305A1 (en) * 2011-11-25 2013-05-30 Danmarks Tekniske Universitet Formulation of solid nano-sized particles in a gel-forming system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587223A (en) * 1982-09-13 1986-05-06 Wallac Oy Method for quantitative determination of a biospecific affinity reaction
US20130075658A1 (en) * 2010-06-29 2013-03-28 Mingjie Zhou Fluorescent powder of halogen silicate containing nano-metal particles and preparation method thereof
KR20120089928A (ko) * 2010-12-27 2012-08-16 한국과학기술원 금-형광 실리카 나노입자 복합체 및 이의 제조방법
WO2013076305A1 (en) * 2011-11-25 2013-05-30 Danmarks Tekniske Universitet Formulation of solid nano-sized particles in a gel-forming system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, ZHI YA ET AL.: "A microemulsion preparation of nanoparticles of europium in silica with luminescence enhancement using silver", NANOTECHNOLOGY, vol. 20, no. 8, 2009, pages 1 - 7, XP020153220 *

Similar Documents

Publication Publication Date Title
Hu et al. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes
US8357545B2 (en) Hybrid nanoparticles with Ln2O3 core and carrying biological ligands, and method of preparation thereof
CN101486903B (zh) 一种基于吡啶二羧酸的稀土发光纳米粒子的制备方法
Peng et al. Color-tunable binuclear (Eu, Tb) nanocomposite powder for the enhanced development of latent fingerprints based on electrostatic interactions
CN107922834B (zh) 用具有aie特性的荧光光稳定线粒体特异生物探针实时监测线粒体自噬过程
WO2007044711A1 (en) Multiple component nanoparticles for multiplexed signaling and optical encoding
JP2007506934A6 (ja) 蛍光性磁性ナノ粒子および調製のプロセス
JP2007506934A (ja) 蛍光性磁性ナノ粒子および調製のプロセス
Chen et al. Lanthanide organic/inorganic hybrid systems: Efficient sensors for fluorescence detection
DE10214019A1 (de) Lumineszierende, sphärische, nicht autofluoreszierende Silicagel-Partikel mit veränderbaren Emissionsintensitäten und -frequenzen
Shabashini et al. Applications of carbon dots (CDs) in latent fingerprints imaging
Xu et al. A ratiometric nanosensor based on lanthanide-functionalized attapulgite nanoparticle for rapid and sensitive detection of bacterial spore biomarker
CN108949171B (zh) 一种稀土碳纳米粒子及其制备方法和基于荧光色度测定pH值的应用
Wang et al. Dye-loaded zeolite L@ silica core-shell composite functionalized with europium (III) complexes for dipicolinic acid detection
KR20120072671A (ko) 형광 고분자 기반 실리카 나노입자의 제조방법
Long et al. Monodisperse core-shell-structured SiO 2@ Gd 2 O 3: Eu 3+@ SiO 2@ MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea
KR101423589B1 (ko) 란탄족 착물을 포함하는 무독성 형광 입자
CN111909685A (zh) 一种超疏水三通路同步检测上转换荧光探针检测试片及其制备方法
Wei et al. Design and implementation of fluorescence sensor based on all-inorganic perovskite quantum dots for rapid detection of tetracycline in water
KR101660399B1 (ko) 금 나노 입자를 포함하는 형광 입자 및 그 제조방법
CN103468260A (zh) 具有上转换发光性质的pH纳米传感材料及其制备方法
WO2015026117A1 (ko) 금 나노 입자를 포함하는 형광 입자 및 그 제조방법
Li et al. An evaporation induced self-assembly approach to prepare polymorphic carbon dot fluorescent nanoprobes for protein labelling
CN109265601B (zh) 识别和荧光定量农药的纳米印迹微球及其制备方法
Rong et al. Sensing application of novel nanocomposite based on lanthanide functionalized nanoporous material and polymer matrix

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014837719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14913801

Country of ref document: US