WO2015025914A1 - インドール誘導体の塩及びその結晶 - Google Patents

インドール誘導体の塩及びその結晶 Download PDF

Info

Publication number
WO2015025914A1
WO2015025914A1 PCT/JP2014/071861 JP2014071861W WO2015025914A1 WO 2015025914 A1 WO2015025914 A1 WO 2015025914A1 JP 2014071861 W JP2014071861 W JP 2014071861W WO 2015025914 A1 WO2015025914 A1 WO 2015025914A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound according
crystal
peaks
ppm
compound
Prior art date
Application number
PCT/JP2014/071861
Other languages
English (en)
French (fr)
Inventor
一道 城
竹内 秀樹
清水 和夫
藤倉 秀紀
Original Assignee
キッセイ薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッセイ薬品工業株式会社 filed Critical キッセイ薬品工業株式会社
Publication of WO2015025914A1 publication Critical patent/WO2015025914A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention has a xanthine oxidase inhibitory activity and is useful as a prophylactic or therapeutic drug for diseases caused by abnormal serum uric acid levels.
  • Xanthine oxidase inhibitory activity useful as a prophylactic or therapeutic agent for diseases caused by abnormal serum uric acid levels:
  • Crystals are generally desired as drug substances.
  • the crystal of the compound (B) described in Patent Document 1 has a problem in solubility in water as described in Test Example 1 (solubility test) below. found.
  • solubility test solubility test
  • the solubility in water is poor, the drug absorbability often becomes a problem.
  • An object of the present invention is to provide a different form of the compound (B) which has high solubility and is suitable for use as a drug substance.
  • the chemical shift values ( ⁇ (ppm)) are 176.4 ⁇ 0.2, 163.3 ⁇ 0.2, 141.2 ⁇ 0.2, 136.5 ⁇ 0. .2, 132.4 ⁇ 0.2, 126.8 ⁇ 0.2, 123.5 ⁇ 0.2, 120.0 ⁇ 0.2, 116.9 ⁇ 0.2, 111.4 ⁇ 0.2
  • the chemical shift value ( ⁇ (ppm)) is 176.6 ⁇ 0.2, 174.4 ⁇ 0.2, 163.6 ⁇ 0.2, 162.4 ⁇ 0.
  • the compound according to any one of (1) to (13) for use as a drug.
  • the compound according to any one of (1) to (13) for use in the prevention or treatment of a disease caused by an abnormal serum uric acid level.
  • a method for preventing or treating a disease caused by an abnormal serum uric acid level comprising administering an effective amount of the compound according to any one of (1) to (13).
  • a pharmaceutical composition comprising the compound according to any one of (1) to (15) and a pharmacologically acceptable pharmaceutical additive.
  • the present invention relates to the following (18) to (27) and the like as another aspect.
  • the powder X-ray diffraction pattern has characteristic peaks at diffraction angles (2 ⁇ (°)) of 6.8, 13.2, 16.2, 26.2 and 27.8.
  • the compound according to (2) above. (19) In the 13 C solid state NMR spectrum chart, 176.37, 163.32, 141.18, 136.46, 132.42, 126.81, 123.47, 119 are used as chemical shift values ( ⁇ (ppm)).
  • the compound according to (2) above having characteristic peaks at .95, 116.88, 111.44, 109.43 and 85.54.
  • the compound (A) of the present invention has extremely good solubility, crystallinity and storage stability. Moreover, the crystal
  • the compound (A) of the present invention can be produced, for example, by the following method.
  • a compound (B) which is a free form that can be produced according to the method described in Patent Document 1 or a method based thereon, and an equivalent amount (1.0 equivalent) or a small excess amount of a base mixed solvent of organic solvent / water Mix and heat in, and filter off the precipitated solid after cooling.
  • a laboratory atmosphere approximately 25 ° C./50% relative humidity
  • Compound (A) can be produced.
  • Examples of the base include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like, and sodium hydroxide is preferable.
  • Examples of the organic solvent include methanol, ethanol, 1-propanol, 2-propanol, acetone, acetonitrile, tetrahydrofuran and the like. In the mixed solvent of the organic solvent and water, it is preferable to increase the ratio of the organic solvent when obtaining A-form crystals, and it is preferable to increase the ratio of water when obtaining B-form crystals.
  • drying conditions for crystals when obtaining B-type crystals, it is preferable to air-dry in a laboratory atmosphere (about 25 ° C./50% relative humidity) or store under humidified conditions after drying.
  • the D-form crystal was obtained by, for example, adding a mixed solution of water and 1,4-dioxane to the compound (A) that can be produced according to the method described above or a method based on the method, heating and dissolving, and filtering while hot. It can also be produced by lyophilizing the solution, adding acetonitrile to the resulting solid and mixing, removing the solid from the mixture and drying.
  • the compound (A) of the present invention includes a hydrate or a solvate with a pharmaceutically acceptable solvent.
  • the compound (A) of the present invention has a uric acid production inhibitory action and is useful as a prophylactic or therapeutic agent for diseases caused by abnormal serum uric acid levels.
  • a solid pharmaceutical composition can be prepared by mixing the compound (A) of the present invention and a commonly used pharmaceutical carrier.
  • compositions are prepared according to a conventional method by appropriately mixing pharmaceutical additives such as excipients, disintegrants, binders, lubricants and the like according to the dosage form in accordance with ordinary pharmacological methods. Can be manufactured.
  • powder is added to the active ingredient as necessary by adding appropriate excipients, lubricants, etc., and mixed well to obtain a powder.
  • tablets are added to the active ingredients with appropriate excipients, disintegrants, binders, lubricants, etc., and compressed into tablets according to conventional methods. Tablets, sugar-coated tablets, enteric-coated skin tablets, etc.
  • a capsule is prepared by adding an appropriate excipient, lubricant, etc. to an active ingredient and mixing well, or after granulating or finely granulating it according to a conventional method, filling it into an appropriate capsule and To do.
  • an immediate release or sustained release preparation can be prepared depending on the prevention or treatment method.
  • the dose of the compound (A) as the active ingredient is appropriately determined depending on the age, sex, body weight, disease, degree of treatment, etc. of the patient.
  • the dose of the compound (A) as the active ingredient is appropriately determined depending on the age, sex, body weight, disease, degree of treatment, etc. of the patient.
  • it can be administered once or in several divided doses in the range of about 1 to 2000 mg per day for an adult.
  • Example 1 Form A crystal Compound (B) (1168.9 mg), ethanol (17.5 mL) and water (1.6 mL) were mixed and heated at 80 ° C. A 1 mol / L aqueous sodium hydroxide solution (4.2 mL) was added to the mixture, and the mixture was stirred at the same temperature for about 1 hour and at room temperature for 3 days. The solid was taken out from the mixture and washed with a mixed solution of ethanol and water (a solution obtained by mixing 3 volumes of ethanol and 1 volume of water) (500 ⁇ L). The obtained solid was dried under reduced pressure at 70 ° C. for 3 hours to obtain Form A crystals (yield 1179 mg).
  • Example 2 Form B crystal Compound (B) (2035 mg), 7.31 mL of 1 mol / L sodium hydroxide aqueous solution, and a mixture of ethanol and water (a mixture of 1 volume of ethanol and 1 volume of water) (120 mL) were mixed at 70 ° C. Heated to dissolve. The solution was filtered while hot and the resulting solution was stirred at room temperature for about 2 hours. The precipitated solid was collected by filtration and washed twice with a mixed solution of ethanol and water (a mixture of 1 volume of ethanol and 1 volume of water) (1 mL).
  • Example 3 Form D crystal Compound (A) (2000 mg), water and 1,4-dioxane mixed solution (volume ratio 1: 1) 100 mL were mixed and heated at 70 ° C. to dissolve. The resulting solution was filtered through a glass filter while being washed with 20 mL of a mixture of water and 1,4-dioxane (volume ratio 1: 1). The obtained filtrate was rapidly cooled in a dry ice-acetone bath to obtain a solid. Thereafter, the obtained solid was taken out, and the solid was dried under reduced pressure for about 1 day (yield 1956 mg). A part of the obtained solid (1100 mg) was taken out, 20 mL of acetonitrile was added at room temperature, immediately heated in a 70 ° C.
  • the powder X-ray diffraction was measured by a reflection method using a powder X-ray diffractometer X'Pert Pro MPD (Spectris Co., Ltd., Panalytical Division) after pulverizing the crystal lightly and pulverizing coarse particles.
  • Measurement conditions Radiation source: CuK ⁇ tube voltage: 45 kV Tube current: 40 mA
  • Diffraction diagrams of the obtained A, B, and D crystals are shown in FIGS. 1 to 3, respectively.
  • the diffraction angle (2 ⁇ (°)) of typical diffraction peaks and the relative intensity (%) of diffraction peaks are shown in Tables 1 to 3. Respectively.
  • the following peak set can be used for identification of the A-form crystal.
  • One peak set is 6.8 ⁇ 0.2, 13.2 ⁇ 0.2, and 16.2 ⁇ 0.2.
  • Other peak sets are 6.8 ⁇ 0.2, 13.2 ⁇ 0.2, 16.2 ⁇ 0.2, 26.2 ⁇ 0.2 and 27.8 ⁇ 0.2.
  • Further peak sets include 6.8 ⁇ 0.2, 13.2 ⁇ 0.2, 16.2 ⁇ 0.2, 17.2 ⁇ 0.2, 23.7 ⁇ 0.2, 24. 4 ⁇ 0.2, 25.0 ⁇ 0.2, 26.2 ⁇ 0.2, 27.6 ⁇ 0.2, 27.8 ⁇ 0.2 and 28.4 ⁇ 0.2.
  • the following peak set can be used for identification of the B-form crystal.
  • One peak set is 6.2 ⁇ 0.2 and 12.4 ⁇ 0.2.
  • Other peak sets are 6.2 ⁇ 0.2, 12.4 ⁇ 0.2, 14.4 ⁇ 0.2, 19.1 ⁇ 0.2, and 28.9 ⁇ 0.2.
  • Further peak sets include 6.2 ⁇ 0.2, 12.4 ⁇ 0.2, 14.4 ⁇ 0.2, 14.8 ⁇ 0.2, 19.1 ⁇ 0.2, 20. 2 ⁇ 0.2, 27.7 ⁇ 0.2 and 28.9 ⁇ 0.2.
  • the following peak set can be used for identification of the D-form crystal.
  • One peak set is 5.5 ⁇ 0.2, 13.7 ⁇ 0.2, and 14.2 ⁇ 0.2.
  • Other peak sets include 5.5 ⁇ 0.2, 13.7 ⁇ 0.2, 14.2 ⁇ 0.2, 24.1 ⁇ 0.2, 27.0 ⁇ 0.2, 27.5 ⁇ 0.2 and 28.9 ⁇ 0.2.
  • Further peak sets include 5.5 ⁇ 0.2, 13.7 ⁇ 0.2, 14.2 ⁇ 0.2, 16.9 ⁇ 0.2, 24.1 ⁇ 0.2, 25. 0 ⁇ 0.2, 25.3 ⁇ 0.2, 26.4 ⁇ 0.2, 27.0 ⁇ 0.2, 27.5 ⁇ 0.2 and 28.9 ⁇ 0.2.
  • Further peak sets include 4.3 ⁇ 0.2, 5.5 ⁇ 0.2, 13.0 ⁇ 0.2, 13.7 ⁇ 0.2, 14.2 ⁇ 0.2, 16. 9 ⁇ 0.2, 17.3 ⁇ 0.2, 18.9 ⁇ 0.2, 20.2 ⁇ 0.2, 22.2 ⁇ 0.2, 24.1 ⁇ 0.2, 25.0 ⁇ 0.2, 25.3 ⁇ 0.2, 26.4 ⁇ 0.2, 27.0 ⁇ 0.2, 27.5 ⁇ 0.2, 28.1 ⁇ 0.2, 28.9 ⁇ 0. 2, 29.3 ⁇ 0.2, 30.0 ⁇ 0.2, 30.5 ⁇ 0.2, 30.9 ⁇ 0.2 and 32.5 ⁇ 0.2. Still other peak sets are 13.7 ⁇ 0.2, 24.1 ⁇ 0.2, 27.0 ⁇ 0.2, 27.5 ⁇ 0.2, and 28.9 ⁇ 0.2.
  • Endothermic peak of A-form crystal around 314 ° C (peak top temperature) : Around 316 ° C (onset temperature)
  • Endothermic peaks of Form B crystals around 78 ° C and around 292 ° C (peak top temperature) : Around 60 ° C and around 284 ° C (onset temperature)
  • Weight reduction of B-form crystals about 50-100 ° C: about 9%
  • Endothermic peak of D-form crystal around 290 ° C (peak top temperature) : Around 279 ° C (onset temperature)
  • the weight change and endothermic change in the thermal analysis may vary depending on the sample conditions and measurement conditions.
  • the 13 C solid state NMR spectrum was measured by CP / MAS method using an Avance DRX500 (Bruker) filled with a specimen in a 4 mm zirconia rotor. As an external standard, the carbonyl carbon of glycine was adjusted to 176.42 ppm. Measurement condition rotational speed: 10 kHz Contact time (P15): 3.0 msec Repeat time (d1): 5.0 sec Spectral charts of the obtained A, B, and D crystals are shown in FIGS. 7 to 9, respectively, and chemical shift values ( ⁇ (ppm)) to the first decimal place of typical peaks (up to the second decimal place). The chemical shift values ( ⁇ (ppm)) are shown in Tables 4 to 6, respectively.
  • the following peak set can be used for identification of the A-form crystal.
  • One peak set is 120.0 ⁇ 0.2, 116.9 ⁇ 0.2, and 109.4 ⁇ 0.2.
  • Other peak sets include 163.3 ⁇ 0.2, 141.2 ⁇ 0.2, 136.5 ⁇ 0.2, 132.4 ⁇ 0.2, 126.8 ⁇ 0.2, 123.5 ⁇ 0.2, 120.0 ⁇ 0.2, 116.9 ⁇ 0.2, 111.4 ⁇ 0.2 and 109.4 ⁇ 0.2.
  • Still other peak sets include 176.4 ⁇ 0.2, 163.3 ⁇ 0.2, 141.2 ⁇ 0.2, 136.5 ⁇ 0.2, 132.4 ⁇ 0.2, 126. 8 ⁇ 0.2, 123.5 ⁇ 0.2, 120.0 ⁇ 0.2, 116.9 ⁇ 0.2, 111.4 ⁇ 0.2, 109.4 ⁇ 0.2 and 85.5 ⁇ 0.2.
  • the following peak set can be used for identification of the B-form crystal.
  • One peak set is 162.4 ⁇ 0.2, 135.2 ⁇ 0.2, and 116.2 ⁇ 0.2.
  • Other peak sets include 163.6 ⁇ 0.2, 162.4 ⁇ 0.2, 141.0 ⁇ 0.2, 135.2 ⁇ 0.2, 132.5 ⁇ 0.2, 128.6. ⁇ 0.2, 126.5 ⁇ 0.2, 123.6 ⁇ 0.2, 121.5 ⁇ 0.2, 118.6 ⁇ 0.2, 116.2 ⁇ 0.2 and 109.7 ⁇ 0 .2.
  • Still other peak sets include 176.6 ⁇ 0.2, 174.4 ⁇ 0.2, 163.6 ⁇ 0.2, 162.4 ⁇ 0.2, 141.0 ⁇ 0.2, 135.
  • the following peak set can be used for identification of the D-form crystal.
  • One peak set is 127.3 ⁇ 0.2, 118.0 ⁇ 0.2, and 112.3 ⁇ 0.2.
  • Other peak sets include 163.4 ⁇ 0.2, 139.4 ⁇ 0.2, 133.0 ⁇ 0.2, 127.3 ⁇ 0.2, 123.1 ⁇ 0.2, 121.4. ⁇ 0.2, 118.0 ⁇ 0.2, 112.3 ⁇ 0.2 and 109.9 ⁇ 0.2.
  • Still other peak sets include 176.5 ⁇ 0.2, 163.4 ⁇ 0.2, 139.4 ⁇ 0.2, 133.0 ⁇ 0.2, 127.3 ⁇ 0.2, 123.
  • Example 4 C-form crystal A part (1.006 g) of the B-form crystal obtained in Example 2 was dried under reduced pressure at 80 ° C. overnight to obtain a C-form crystal (yield: 0.8936 g). With respect to the obtained C-form crystals, powder X-ray diffraction, thermal analysis, and 13 C solid state NMR spectrum were measured in the same manner as the A, B, and D-form crystals, and each data was obtained. Table 7 shows the diffraction angle (2 ⁇ (°)) and the relative intensity (%) of the representative diffraction peak obtained, and the chemical shift value ( ⁇ (ppm) up to the first decimal place of the representative peak is shown in Table 7.
  • the following peak set can be used to identify the C-form crystal.
  • One peak set is 5.4 ⁇ 0.2, 11.9 ⁇ 0.2, and 14.2 ⁇ 0.2.
  • Other peak sets include 5.4 ⁇ 0.2, 11.9 ⁇ 0.2, 12.7 ⁇ 0.2, 13.4 ⁇ 0.2, 13.7 ⁇ 0.2, 14.2. ⁇ 0.2, 16.6 ⁇ 0.2, 18.2 ⁇ 0.2, 19.6 ⁇ 0.2, 20.1 ⁇ 0.2, 27.0 ⁇ 0.2 and 27.5 ⁇ 0 .2.
  • Still other peak sets include 5.4 ⁇ 0.2, 11.9 ⁇ 0.2, 12.7 ⁇ 0.2, 13.4 ⁇ 0.2, 13.7 ⁇ 0.2, 14.
  • the following peak set can be used to identify the C-form crystal.
  • One peak set is 140.1 ⁇ 0.2, 134.3 ⁇ 0.2, and 122.0 ⁇ 0.2.
  • Other peak sets include 163.3 ⁇ 0.2, 140.1 ⁇ 0.2, 134.3 ⁇ 0.2, 132.8 ⁇ 0.2, 127.2 ⁇ 0.2, 124.8. ⁇ 0.2, 122.0 ⁇ 0.2, 118.7 ⁇ 0.2 and 110.1 ⁇ 0.2.
  • Still other peak sets include 176.6 ⁇ 0.2, 175.4 ⁇ 0.2, 163.3 ⁇ 0.2, 140.1 ⁇ 0.2, 134.3 ⁇ 0.2, 132. ⁇ . 8 ⁇ 0.2, 127.2 ⁇ 0.2, 124.8 ⁇ 0.2, 122.0 ⁇ 0.2, 118.7 ⁇ 0.2, 110.1 ⁇ 0.2, 89.0 ⁇ 0.2 and 87.2 ⁇ 0.2.
  • the following peak set can be used for identification of the A-form crystal.
  • One peak set is 2228 ⁇ 1, 1535 ⁇ 1, and 1516 ⁇ 1.
  • the following peak set can be used for identification of the B-form crystal.
  • One peak set is 2238 ⁇ 1, 1601 ⁇ 1, 1540 ⁇ 1, and 1516 ⁇ 1.
  • One peak set can be used to identify the C-form crystal.
  • One peak set is 2235 ⁇ 1, 1535 ⁇ 1 and 1509 ⁇ 1.
  • the following peak set can be used for identification of the D-form crystal.
  • One peak set is 2230 ⁇ 1, 1532 ⁇ 1 and 1508 ⁇ 1.
  • wave number according to the Fourier transform-Raman spectroscopy spectrum may slightly vary depending on the sample conditions and measurement conditions. Variation of typical wave number is about ⁇ 1 (cm -1).
  • the 13 C solid state NMR spectrum, powder X-ray diffraction and FT-Raman spectrum of each crystal form in the tablet can be measured by the same method as described above after the tablet is pulverized by slight pressure.
  • Crystal of Compound (B) With respect to the crystal of Compound (B) obtained by the method described in Example 188 of Patent Document 1, powder X-ray diffraction was measured in the same manner as the A, B, C, and D crystals. The obtained diffraction pattern is shown in FIG. (Comparative Example 2) Crystal of benzathine salt of compound (B) (hereinafter referred to as crystal of benzathine salt) 100 mg of compound (B), 43.2 mg of N, N′-dibenzylethylenediamine and 2 mL of a mixed solvent of ethanol / water (volume ratio 1/1) were mixed, heated to 80 ° C., and stirred for 1 hour. The mixture was allowed to cool at room temperature and stirred overnight.
  • the powder X-ray diffraction of the benzathine salt crystals obtained in Comparative Example 2 was measured in the same manner as the A, B, C, and D crystals.
  • the obtained diffraction pattern is shown in FIG.
  • the A-form crystal of the compound (A) can also be identified by combining the above peaks of powder X-ray diffraction, 13 C solid state NMR spectrum and FT-Raman spectroscopy.
  • Examples of the mode for identifying the form A crystal of the compound (A) include the following modes (A-1) to (A-3).
  • Examples of the mode for identifying the form B crystal of compound (A) include the following modes (B-1) to (B-3).
  • Examples of the mode for identifying the C-form crystal of compound (A) include the following modes (C-1) to (C-3).
  • Examples of the mode for identifying the D-form crystal of compound (A) include the following modes (D-1) to (D-3).
  • Solubility test HPLC conditions (1) were used for measurement conditions other than benzathine salt crystals, and solubility test HPLC conditions (2) were used for measurement conditions for benzathine salt crystals.
  • Solubility test HPLC conditions (1) Detector: UV-visible spectrophotometer / wavelength: 225 nm Column: L-column 2 ODS, 3 ⁇ m, 4.6 ⁇ 150 mm (manufactured by the Chemical Substance Evaluation Research Organization) Column temperature: around 40 ° C.
  • Constant temperature flow rate 1.0 mL / min
  • Mobile phase A Solution mobile phase in which 10 mmol potassium dihydrogen phosphate, 10 mmol dipotassium hydrogen phosphate and 1000 mL water are mixed
  • Detector UV-visible spectrophotometer / wavelength: 225 nm
  • Constant temperature flow rate 1.0 mL / min
  • Mobile phase A Solution mobile phase in which 10 mmol potassium dihydrogen phosphate, 10 mmol dipotassium hydrogen phosphate and 1000 mL water are mixed
  • Table 13 shows the solubility values of crystals A, B, C, and D, compound (B), and benzathine salt in water.
  • the solubility of each crystal 2 hours after the start of the test was compared.
  • the crystal of the benzathine salt is about 4 times the solubility of the crystal of the compound (B), whereas the crystals of A, B, C and D are about 400 times the crystal of the compound (B).
  • Solubilities of about 100 times, about 135 times, and about 434 times were observed. From the above, in the A, B, C and D type crystals, a remarkable improvement in solubility in the compound (B) was observed.
  • Test Example 2 Stability test 1 Forms A, B and D were stored in open air at 40 ° C. and 75% relative humidity, and the physical and chemical stability of each crystal form was examined. Measure the X-ray powder diffraction in the same manner as above to confirm the physical stability of the crystal form of the sample at the start and after 2 months, and measure the amount of related substances using the following HPLC measurement conditions. The chemical stability was confirmed. The results are shown in Table 14. Under storage at 40 ° C. and 75% relative humidity, no change in crystal form was observed for any of the crystals. In addition, all of the A, B, and D crystals were chemically stable.
  • HPLC condition detector UV-visible spectrophotometer / wavelength: 225 nm
  • Constant temperature flow rate 1.0 mL / min
  • Injection volume 5 ⁇ L
  • Sample solution A solution prepared by adding a mixed solution of mobile phase A and mobile phase B to a specimen to prepare about 0.5 mg / mL. Except for the peak derived from the blank, each peak area was measured by an automatic integration method, and those values were determined by an area percentage method.
  • Test Example 3 Stability test 2 A, B, C and D form crystals were stored at 40 ° C. and the physical and chemical stability of each crystal form was examined. It confirmed by the method similar to Test Example 2. The results are shown in Table 15. Under storage at 40 ° C., no change in crystal form was observed for any of the crystals. All the crystals were chemically stable.
  • the temperature and humidity were set to 25 ° C./0% RH, and the mass was stabilized for 30 minutes or more.
  • the relative humidity is 10% RH to 10% RH to 90% RH for adsorption, and 10% RH to 90% RH to 0% RH for desorption. Measured continuously.
  • the measurement conditions of the moisture adsorption / desorption measuring device were set as follows. ⁇ Measurement conditions> Initial Conditions: begin with Adoption scan First Humidity: 10% RH Flowrate: 250 mL / min Mode: F1 Min Time: 30 Minutes Timeout: 60 Minutes Wait Until: 99%
  • weight% represented the mass change before and behind adsorption
  • the form A crystal of the compound (A) had a water fluctuation of 1/3 compared to the crystal of the compound (B).
  • the compound (A) of the present invention showed extremely excellent solubility and stability. Furthermore, the A form crystal is more preferable as a drug substance because it has little moisture fluctuation.
  • the compound (A) according to the present invention has excellent solubility and other physical properties, is useful as a drug substance, and is suitable for industrial production of drugs.
  • FIG. 1 is a powder X-ray diffraction pattern of the A-form crystal obtained in Example 1.
  • FIG. The vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • 2 is a powder X-ray diffraction pattern of the B-form crystal obtained in Example 2.
  • FIG. The vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • FIG. 3 is a powder X-ray diffraction pattern of the D-form crystal obtained in Example 3.
  • the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • FIG. 4 is a TG-DTA measurement diagram of the A-form crystal obtained in Example 1.
  • FIG. The vertical axis (left) shows the weight (%) in the thermogravimetric (TG) curve
  • the vertical axis (right) shows the heat flux ( ⁇ V) in the differential thermal analysis (DTA) curve
  • the horizontal axis shows the temperature (° C.).
  • FIG. 5 is a TG-DTA measurement diagram of the B-type crystal obtained in Example 2.
  • the vertical axis (left) shows the weight (%) in the thermogravimetric (TG) curve
  • the vertical axis (right) shows the heat flux ( ⁇ V) in the differential thermal analysis (DTA) curve
  • the horizontal axis shows the temperature (° C.). Show.
  • FIG. 6 is a TG-DTA measurement diagram of the D-form crystal obtained in Example 3.
  • the vertical axis (left) shows the weight (%) in the thermogravimetric (TG) curve
  • the vertical axis (right) shows the heat flux ( ⁇ V) in the differential thermal analysis (DTA) curve
  • the horizontal axis shows the temperature (° C.).
  • FIG. 7 is a 13 C solid state NMR spectrum chart of the A-form crystal obtained in Example 1.
  • the vertical axis represents intensity
  • the horizontal axis represents the chemical shift value ( ⁇ (ppm)).
  • FIG. 8 is a 13 C solid state NMR spectrum chart of the B-form crystal obtained in Example 2.
  • the vertical axis represents intensity
  • the horizontal axis represents the chemical shift value ( ⁇ (ppm)).
  • FIG. 9 is a 13 C solid state NMR spectrum chart of the D-form crystal obtained in Example 3.
  • the vertical axis represents intensity, and the horizontal axis represents the chemical shift value ( ⁇ (ppm)).
  • FIG. 10 is a powder X-ray diffraction pattern of the C-form crystal obtained in Example 4.
  • the vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • FIG. 11 is a TG-DTA measurement diagram of the C-type crystal obtained in Example 4.
  • FIG. 12 is a 13 C solid state NMR spectrum chart of the C-form crystal obtained in Example 4.
  • the vertical axis represents intensity, and the horizontal axis represents the chemical shift value ( ⁇ (ppm)).
  • FIG. 13 is an FT-Raman spectrum chart of the A-form crystal obtained in Example 1.
  • the vertical axis represents intensity and the horizontal axis represents wave number (cm ⁇ 1 ).
  • FIG. 14 is an FT-Raman spectrum chart of the B-type crystal obtained in Example 2.
  • FIG. 15 is an FT-Raman spectrum chart of the C-type crystal obtained in Example 4.
  • the vertical axis represents intensity and the horizontal axis represents wave number (cm ⁇ 1 ).
  • FIG. 16 is an FT-Raman spectrum chart of the D-form crystal obtained in Example 3.
  • the vertical axis represents intensity and the horizontal axis represents wave number (cm ⁇ 1 ).
  • FIG. 17 is a powder X-ray diffraction pattern of the crystal of the compound (B) obtained in Comparative Example 1.
  • the vertical axis represents the X-ray diffraction intensity
  • the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • FIG. 18 is a powder X-ray diffraction pattern of benzathine salt crystals obtained in Comparative Example 2.
  • FIG. The vertical axis represents the X-ray diffraction intensity, and the horizontal axis represents the diffraction angle (2 ⁇ (°)).
  • FIG. 19 is a moisture adsorption / desorption isotherm of the A-form crystal.
  • a solid line shows an adsorption isotherm, and a broken line shows a desorption isotherm.
  • the vertical axis represents mass change (%), and the horizontal axis represents relative humidity (% RH).
  • FIG. 20 is a moisture adsorption / desorption isotherm of the crystal of the compound (B).
  • a solid line shows an adsorption isotherm, and a broken line shows a desorption isotherm.
  • the vertical axis represents mass change (%), and the horizontal axis represents relative humidity (% RH).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 本発明は、キサンチンオキシダーゼ阻害活性を有し、血清尿酸値異常に起因する疾患の予防又は治療薬として有用な、4-(3-シアノインドール-1-イル)-2-ヒドロキシ安息香酸の別異な形態を提供することを課題とする。本発明は、優れた溶解性及びその他物性を有し、医薬品原体として有用である上、医薬品の工業的生産に適している、4-(3-シアノインドール-1-イル)-2-ヒドロキシ安息香酸・ナトリウム塩及びその製造方法を提供する。

Description

インドール誘導体の塩及びその結晶
 本発明は、キサンチンオキシダーゼ阻害活性を有し、血清尿酸値異常に起因する疾患の予防又は治療薬として有用な、式:
Figure JPOXMLDOC01-appb-C000002
で表される化合物(化学名:4-(3-シアノインドール-1-イル)-2-ヒドロキシ安息香酸・ナトリウム塩;以下、化合物(A)と称する)及びその製造方法に関するものである。
 キサンチンオキシダーゼ阻害活性を有し、血清尿酸値異常に起因する疾患の予防又は治療薬として有用な、式:
Figure JPOXMLDOC01-appb-C000003
で表される化合物(以下、化合物(B)と称する)が特許文献1に開示されている。しかし、そのナトリウム塩については、一般的な塩として記載されているのみであり、化合物(A)の特性については何ら報告されていない。
国際公開第2008/126898号パンフレット
 医薬品原体としては一般的に結晶が望まれている。しかしながら、本発明者が鋭意検討した結果、特許文献1記載の化合物(B)の結晶は、下記の試験例1(溶解度試験)にて記載の通り、水への溶解性に問題があることが判明した。水への溶解性が悪い場合、その薬物吸収性が問題となることが多い。また、医薬品として用いるには製剤の工夫が必要となることもある。それゆえ、化合物(B)を医薬品原体として使用するには溶解性の改良が求められる。
 本発明は、高い溶解性を有し、医薬品原体としての使用に適する前記化合物(B)の別異な形態を提供することを課題とする。
 本発明者らは、上記課題に鑑み、鋭意検討した結果、4-(3-シアノインドール-1-イル)-2-ヒドロキシ安息香酸・ナトリウム塩が、極めて優れた溶解性を備え、しかも極めて良好な結晶性及び保存安定性を有していることから、医薬品原体として好適な化合物であることを見出し、本発明を完成するに至った。
 すなわち、前記課題を解決する為の手段は下記の通りである。
(1)式:
Figure JPOXMLDOC01-appb-C000004
で表される化合物。
(2)結晶性である、前記(1)記載の化合物。
(3)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として120.0±0.2、116.9±0.2及び109.4±0.2にピークを有するA形結晶である、前記(2)記載の化合物。
(4)以下の(a1)~(a3)からなる群から選択される1~3つの物理的特性によって特徴付けられるA形結晶である、前記(2)又は(3)記載の化合物:
(a1)6.8±0.2、13.2±0.2及び16.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
(a2)2228±1、1535±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
(a3)316℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
(5)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として162.4±0.2、135.2±0.2及び116.2±0.2にピークを有するB形結晶である、前記(2)記載化合物。
(6)以下の(b1)~(b3)からなる群から選択される1~3つの物理的特性によって特徴付けられるB形結晶である、前記(2)又は(5)記載の化合物:
(b1)6.2±0.2及び12.4±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
(b2)2238±1、1601±1、1540±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
(b3)60℃及び284℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
(7)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として140.1±0.2、134.3±0.2及び122.0±0.2にピークを有するC形結晶である、前記(2)記載の化合物。
(8)以下の(c1)~(c3)からなる群から選択される1~3つの物理的特性によって特徴付けられるC形結晶である、前記(7)記載の化合物:
(c1)5.4±0.2、11.9±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
(c2)2235±1、1535±1及び1509±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
(c3)285℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
(9)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として127.3±0.2、118.0±0.2及び112.3±0.2にピークを有するD形結晶である、前記(2)記載の化合物。
(10)以下の(d1)~(d3)からなる群から選択される1~3つの物理的特性によって特徴付けられるD形結晶である、前記(9)記載の化合物:
(d1)5.5±0.2、13.7±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
(d2)2230±1、1532±1及び1508±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
(d3)279℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
(11)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.4±0.2、163.3±0.2、141.2±0.2、136.5±0.2、132.4±0.2、126.8±0.2、123.5±0.2、120.0±0.2、116.9±0.2、111.4±0.2、109.4±0.2及び85.5±0.2にピークを有するA形結晶である、前記(2)記載の化合物。
(12)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.6±0.2、174.4±0.2、163.6±0.2、162.4±0.2、141.0±0.2、135.2±0.2、132.5±0.2、128.6±0.2、126.5±0.2、123.6±0.2、121.5±0.2、118.6±0.2、116.2±0.2、109.7±0.2及び86.7±0.2にピークを有するB形結晶である、前記(2)記載の化合物。
(13)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.5±0.2、163.4±0.2、139.4±0.2、133.0±0.2、127.3±0.2、123.1±0.2、121.4±0.2、118.0±0.2、112.3±0.2、109.9±0.2及び88.9±0.2にピークを有するD形結晶である、前記(2)記載の化合物。
(14)薬剤として使用するための、前記(1)~(13)のいずれかに記載の化合物。
(15)血清尿酸値異常に起因する疾患の予防又は治療に使用するための、前記(1)~(13)のいずれかに記載の化合物。
(16)前記(1)~(13)のいずれかに記載の化合物の有効量を投与することを特徴とする、血清尿酸値異常に起因する疾患の予防又は治療方法。
(17)前記(1)~(15)のいずれかに記載の化合物及び薬理学的に許容される医薬品添加物を含有する医薬組成物。
 本発明は、別の態様として、以下の(18)~(27)等に関する。
(18)粉末X線回折図において、回折角(2θ(°))として6.8、13.2、16.2、26.2及び27.8に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(19)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.37、163.32、141.18、136.46、132.42、126.81、123.47、119.95、116.88、111.44、109.43及び85.54に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(20)示差熱分析チャートにおいて、314℃付近に吸熱ピークを有することを特徴とする、前記(2)記載の化合物。
(21)粉末X線回折図において、回折角(2θ(°))として6.2、12.4、14.4、19.1及び28.9に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(22)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.59、174.36、163.61、162.42、140.98、135.24、132.47、128.64、126.54、123.55、121.53、118.55、116.21、109.73及び86.73に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(23)示差熱分析チャートにおいて、78℃及び292℃℃付近に吸熱ピークを有することを特徴とする、前記(2)記載の化合物。
(24)粉末X線回折図において、回折角(2θ(°))として13.7、24.1、27.0、27.5及び28.9に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(25)13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.54、163.42、139.43、133.02、127.27、123.11、121.41、118.03、112.30、109.86及び88.90に特徴的なピークを有することを特徴とする、前記(2)記載の化合物。
(26)示差熱分析チャートにおいて、290℃付近に吸熱ピークを有することを特徴とする、前記(2)記載の化合物。
(27)前記(18)~(26)のいずれかに記載の化合物を有効成分として含有する医薬組成物。
 本発明の化合物(A)は、極めて良好な溶解性、結晶性及び保存安定性を有する。また、化合物(A)の結晶は流動性に優れており、例えば、製剤化において取扱い易い結晶である。
 本発明の化合物(A)は、例えば、以下の方法により製造することができる。
 例えば、特許文献1に記載の方法又はそれに準拠した方法に従い製造できる遊離体である化合物(B)と、等量(1.0当量)又は小過剰量の塩基とを有機溶媒/水の混合溶媒中で混合及び加熱し、冷却後に析出した固体をろ取する。得られた固体を必要に応じ実験室雰囲気下(約25℃/50%相対湿度)で風乾、加熱又は(及び)減圧により乾燥、並びに乾燥後、必要に応じ加湿条件下で保存することにより、化合物(A)を製造することができる。塩基としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられ、水酸化ナトリウムが好ましい。有機溶媒としてはメタノール、エタノール、1-プロパノール、2-プロパノール、アセトン、アセトニトリル、テトラヒドロフランなどが挙げられる。有機溶媒と水の混合溶媒においては、A形結晶を得る場合には有機溶媒の比率を大きくするのが好ましく、B形結晶を得る場合には水の比率を大きくすることが好ましい。結晶の乾燥条件としては、B形結晶を得る場合には実験室雰囲気下(約25℃/50%相対湿度)で風乾、又は乾燥後に加湿条件下で保存することが好ましい。また、D形結晶は、例えば、上記に記載の方法又はそれに準拠した方法に従い製造できる化合物(A)に水と1,4-ジオキサンの混液を加え加熱溶解し、熱時ろ過して得られた溶液を凍結乾燥した後、得られた固体にアセトニトリルを加え混合し、混合物から固体を取り出し、乾燥することにより製造することもできる。
 本発明の化合物(A)は、水和物又は医薬品として許容される溶媒との溶媒和物も含まれる。
 本発明の化合物(A)は、尿酸生成抑制作用を有し、血清尿酸値異常に起因する疾患の予防又は治療薬として有用である。
 本発明の化合物(A)と慣用されている製剤担体とを混合することにより固形医薬組成物を調製することができる。
 これらの医薬組成物は、通常の調剤学的手法に従い、その剤形に応じ適当な賦形剤、崩壊剤、結合剤、滑沢剤などの医薬品添加物を適宜混合し、常法に従い調剤することにより製造することができる。
 例えば、散剤は、有効成分に必要に応じ、適当な賦形剤、滑沢剤などを加え、よく混和して散剤とする。例えば、錠剤は、有効成分に、適当な賦形剤、崩壊剤、結合剤、滑沢剤などを加え、常法に従い打錠して錠剤とし、さらに必要に応じ、適宜コーティングを施し、フィルムコート錠、糖衣錠、腸溶性皮錠などにする。例えば、カプセル剤は、有効成分に、適当な賦形剤、滑沢剤などを加え、よく混和した後、又は常法に従い顆粒又は細粒とした後、適当なカプセルに充填してカプセル剤とする。さらに、このような経口投与製剤の場合は予防又は治療方法に応じて、速放性もしくは徐放性製剤とすることもできる。
 本発明の医薬組成物を実際の予防又は治療に用いる場合、その有効成分である化合物(A)の投与量は、患者の年齢、性別、体重、疾患及び治療の程度等により適宜決定されるが、例えば、経口投与の場合成人1日当たり概ね1~2000mgの範囲で、一回又は数回に分けて投与することができる。
 本発明の内容を以下の実施例及び試験例を用いて、さらに詳細に説明するが、本発明はこれらの内容に限定されるものではない。
(実施例1)
A形結晶
 化合物(B)(1168.9mg)とエタノール(17.5mL)と水(1.6mL)を混合し80℃で加熱した。混合物に1mol/L水酸化ナトリウム水溶液(4.2mL)を加え、同温下にて約1時間、室温で3日間攪拌した。混合物から固体を取り出し,エタノールと水の混液(エタノール3容量と水1容量を混合した液)(500μL)で洗浄した。得られた固体を70℃にて3時間減圧乾燥し、A形結晶を得た(収量1179mg)。
H-NMR(DMSO-d)(δ(ppm)):6.79-6.85(2H,m)、7.33-7.41(2H,m)、7.65-7.67(1H,m)、7.72-7.74(1H,m)、7.82-7.86(1H,m)、8.57(1H,s)
(実施例2)
B形結晶
 化合物(B)(2035mg)と1mol/L水酸化ナトリウム水溶液7.31mLとエタノールと水の混液(エタノール1容量と水1容量を混合した液)(120mL)を混合し70℃にて加熱し溶解した。溶液を熱時ろ過し,得られた溶液を室温で約2時間攪拌した。析出した固体をろ取し,エタノールと水の混液(エタノール1容量と水1容量を混合した液)(1mL)で2回洗浄した。得られた固体を実験室雰囲気下(約25℃/50%相対湿度)で約3時間風乾し、B形結晶を得た(収量1.85g)。なお、B形結晶は水和物である。
H-NMR(DMSO-d)(δ(ppm)):6.80-6.85(2H,m)、7.34-7.41(2H,m)、7.65-7.67(1H,m)、7.72-7.74(1H,m)、7.83-7.87(1H,m)、8.57(1H,s)
(実施例3)
D形結晶
 化合物(A)(2000mg)と水と1,4-ジオキサン混液(体積比1:1)100mLを混合し、70℃で加熱し溶解した。得られた溶液を水と1,4-ジオキサン混液(体積比1:1)20mLにて洗い込みながらグラスフィルターでろ過した。得られたろ液をドライアイス-アセトンバスにて急激に冷却し固体とした。その後、得られた固体を取り出し,その固体を約1日間減圧乾燥した(収量1956mg)。得られた固体の一部(1100mg)を取り出し、室温下でアセトニトリル20mLを加え、すぐに70℃の湯浴で1分加温し、室温下で10分間撹拌した。混合物から固体を取り出し、アセトニトリル1mLで洗い込み、約1時間室温下にて減圧乾燥し、D形結晶を得た(収量923mg)。
H-NMR(DMSO-d)(δ(ppm)):6.81-6.83(2H,m)、7.34-7.41(2H,m)、7.65-7.67(1H,m)、7.73-7.75(1H,m)、7.84-7.86(1H,m)、8.57(1H,s)
 得られたA、B及びD形結晶について、粉末X線回折、熱分析及び13C固体NMRスペクトルを以下の条件で測定し、各データを得た。
 粉末X線回折については、結晶を軽く乳鉢粉砕して粗大な粒子を粉砕した後、粉末X線回折装置X’Pert Pro MPD(スペクトリス株式会社パナリティカル事業部)を用いて反射法で測定した。
測定条件
放射線源:CuKα線
管電圧:45kV
管電流:40mA
 得られたA、B及びD形結晶の回折図を図1~3にそれぞれ示し、代表的な回折ピークの回折角(2θ(°))及び回折ピークの相対強度(%)を表1~3にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000005
 A形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、6.8±0.2、13.2±0.2及び16.2±0.2である。別のピークセットとしては、6.8±0.2、13.2±0.2、16.2±0.2、26.2±0.2及び27.8±0.2である。さらに別のピークセットとしては、6.8±0.2、13.2±0.2、16.2±0.2、17.2±0.2、23.7±0.2、24.4±0.2、25.0±0.2、26.2±0.2、27.6±0.2、27.8±0.2及び28.4±0.2である。  
Figure JPOXMLDOC01-appb-T000006
 B形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、6.2±0.2及び12.4±0.2である。別のピークセットとしては、6.2±0.2、12.4±0.2、14.4±0.2、19.1±0.2及び28.9±0.2である。さらに別のピークセットとしては、6.2±0.2、12.4±0.2、14.4±0.2、14.8±0.2、19.1±0.2、20.2±0.2、27.7±0.2及び28.9±0.2である。
Figure JPOXMLDOC01-appb-T000007
 D形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、5.5±0.2、13.7±0.2及び14.2±0.2である。別のピークセットとしては、5.5±0.2、13.7±0.2、14.2±0.2、24.1±0.2、27.0±0.2、27.5±0.2及び28.9±0.2である。さらに別のピークセットとしては、5.5±0.2、13.7±0.2、14.2±0.2、16.9±0.2、24.1±0.2、25.0±0.2、25.3±0.2、26.4±0.2、27.0±0.2、27.5±0.2及び28.9±0.2である。さらに別のピークセットとしては、4.3±0.2、5.5±0.2、13.0±0.2、13.7±0.2、14.2±0.2、16.9±0.2、17.3±0.2、18.9±0.2、20.2±0.2、22.2±0.2、24.1±0.2、25.0±0.2、25.3±0.2、26.4±0.2、27.0±0.2、27.5±0.2、28.1±0.2、28.9±0.2、29.3±0.2、30.0±0.2、30.5±0.2、30.9±0.2及び32.5±0.2である。さらに別のピークセットとしては、13.7±0.2、24.1±0.2、27.0±0.2、27.5±0.2及び28.9±0.2である。
 X線回折パターンにおける相対強度が、試料条件や測定条件によって変動しうることは、一般に公知である。なお、粉末X線回折による回折パターンの2θ値は、試料条件や測定条件によって僅かに変動することがある。典型的な2θ値の変動は、約±0.2(°)である。
 熱分析については、差動型示差熱天秤TG-DTA TG8120(株式会社リガク)を用いて窒素ガス雰囲気下にて測定した。
測定条件
昇温速度:10℃/分
基準物質:酸化アルミニウム
 得られたA、B及びD形結晶のチャートを図4~6にそれぞれ示す。
A形結晶の吸熱ピーク:314℃付近(ピークトップの温度)
          :316℃付近(オンセットの温度)
B形結晶の吸熱ピーク:78℃付近及び292℃付近(ピークトップの温度)
          :60℃付近及び284℃付近(オンセットの温度)
B形結晶の重量減少(約50~100℃付近):約9%
D形結晶の吸熱ピーク:290℃付近(ピークトップの温度)
          :279℃付近(オンセットの温度)
 なお、熱分析における重量変化及び吸熱変化は、試料条件や測定条件によって変動することがある。
 13C固体NMRスペクトルについては、検体を4 mmのジルコニア製のローターに充填し、Avance DRX500(Bruker社)を用いて、CP/MAS法により測定した。また、外部標準として、グリシンのカルボニル炭素を176.42ppmに合わせた。
測定条件
回転速度:10kHz
コンタクトタイム(P15):3.0m秒
繰り返し時間(d1):5.0秒 
 得られたA、B及びD形結晶のスペクトルチャートを図7~9にそれぞれ示し、代表的なピークの小数点以下第1位までの化学シフト値(δ(ppm))(小数点以下第2位までの化学シフト値(δ(ppm)))を表4~6にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000008
 A形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、120.0±0.2、116.9±0.2及び109.4±0.2である。別のピークセットとしては、163.3±0.2、141.2±0.2、136.5±0.2、132.4±0.2、126.8±0.2、123.5±0.2、120.0±0.2、116.9±0.2、111.4±0.2及び109.4±0.2である。さらに別のピークセットとしては、176.4±0.2、163.3±0.2、141.2±0.2、136.5±0.2、132.4±0.2、126.8±0.2、123.5±0.2、120.0±0.2、116.9±0.2、111.4±0.2、109.4±0.2及び85.5±0.2である。
Figure JPOXMLDOC01-appb-T000009
 B形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、162.4±0.2、135.2±0.2及び116.2±0.2である。別のピークセットとしては、163.6±0.2、162.4±0.2、141.0±0.2、135.2±0.2、132.5±0.2、128.6±0.2、126.5±0.2、123.6±0.2、121.5±0.2、118.6±0.2、116.2±0.2及び109.7±0.2である。さらに別のピークセットとしては、176.6±0.2、174.4±0.2、163.6±0.2、162.4±0.2、141.0±0.2、135.2±0.2、132.5±0.2、128.6±0.2、126.5±0.2、123.6±0.2、121.5±0.2、118.6±0.2、116.2±0.2、109.7±0.2及び86.7±0.2である。
Figure JPOXMLDOC01-appb-T000010
 D形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、127.3±0.2、118.0±0.2及び112.3±0.2である。別のピークセットとしては、163.4±0.2、139.4±0.2、133.0±0.2、127.3±0.2、123.1±0.2、121.4±0.2、118.0±0.2、112.3±0.2及び109.9±0.2である。さらに別のピークセットとしては、176.5±0.2、163.4±0.2、139.4±0.2、133.0±0.2、127.3±0.2、123.1±0.2、121.4±0.2、118.0±0.2、112.3±0.2、109.9±0.2及び88.9±0.2である。
 なお、13C固体NMRスペクトルによる化学シフト値は、試料条件や測定条件によって僅かに変動することがある。典型的な化学シフト値の変動は、約±0.2(δ(ppm))である。
(実施例4)
C形結晶
 実施例2で得たB形結晶の一部(1.006g)を80℃にて終夜減圧乾燥し、C形結晶を得た(収量:0.8936g)。
 得られたC形結晶について、A、B及びD形結晶と同様の方法で、粉末X線回折、熱分析及び13C固体NMRスペクトルを測定し、各データを得た。
 得られた代表的な回折ピークの回折角(2θ(°))及び回折ピークの相対強度(%)を表7に、代表的なピークの小数点以下第1位までの化学シフト値(δ(ppm))(小数点以下第2位までの化学シフト値(δ(ppm)))を表8にそれぞれ示し、各図を図10~12にそれぞれ示す。
C形結晶の吸熱ピーク:295℃付近(ピークトップの温度)
:285℃付近(オンセットの温度)  
Figure JPOXMLDOC01-appb-T000011
 C形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、5.4±0.2、11.9±0.2及び14.2±0.2である。別のピークセットとしては、5.4±0.2、11.9±0.2、12.7±0.2、13.4±0.2、13.7±0.2、14.2±0.2、16.6±0.2、18.2±0.2、19.6±0.2、20.1±0.2、27.0±0.2及び27.5±0.2である。さらに別のピークセットとしては、5.4±0.2、11.9±0.2、12.7±0.2、13.4±0.2、13.7±0.2、14.2±0.2、16.5±0.2、16.6±0.2、17.2±0.2、18.2±0.2、19.6±0.2、20.1±0.2、27.0±0.2、27.5±0.2、28.1±0.2及び31.5±0.2である。
Figure JPOXMLDOC01-appb-T000012
 C形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、140.1±0.2、134.3±0.2及び122.0±0.2である。別のピークセットとしては、163.3±0.2、140.1±0.2、134.3±0.2、132.8±0.2、127.2±0.2、124.8±0.2、122.0±0.2、118.7±0.2及び110.1±0.2である。さらに別のピークセットとしては、176.6±0.2、175.4±0.2、163.3±0.2、140.1±0.2、134.3±0.2、132.8±0.2、127.2±0.2、124.8±0.2、122.0±0.2、118.7±0.2、110.1±0.2、89.0±0.2及び87.2±0.2である。
フーリエ変換-ラマン分光の測定
 A、B、C及びD形結晶について、RAM II FT-ラマンモジュール付Vertex70 FT-IR分光器(Bruker社)を用い、サンプルローター(Ventacon、UK)を使用して、フーリエ変換-ラマン分光(FT-ラマン)を測定した。
測定条件
近赤外レーザー:1064 nm
検出器:液体窒素冷却型ゲルマニウム検出器
レーザー出力:200mW(A、B及びC形結晶)
      :100mW(D形結晶)
 A、B、C及びD形結晶の得られた代表的なピークを以下の表9~12にそれぞれ示し、スペクトルチャートを図13~16にそれぞれ示す。強度は一番強いピーク強度を1とし、s=強い(強度1~0.51)、m=中間(強度0.5~0.25)、w=弱い(強度<0.25)で表示した。
Figure JPOXMLDOC01-appb-T000013
 A形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、2228±1、1535±1及び1516±1である。
Figure JPOXMLDOC01-appb-T000014
 B形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、2238±1、1601±1、1540±1及び1516±1である。
Figure JPOXMLDOC01-appb-T000015
 C形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、2235±1、1535±1及び1509±1である。
Figure JPOXMLDOC01-appb-T000016
 D形結晶の同定は、例えば、以下のピークセットを使用することができる。一つのピークセットとしては、2230±1、1532±1及び1508±1である。
 なお、フーリエ変換-ラマン分光スペクトルによる波数は、試料条件や測定条件によって僅かに変動することがある。典型的な波数の変動は、約±1(cm-1)である。
 例えば、錠剤中の各結晶形の13C固体NMRスペクトル、粉末X線回折及びFT-ラマンスペクトルは、錠剤をわずかな圧力により粉砕した後、上述の方法と同様の方法で測定することができる。
(比較例1)
化合物(B)の結晶
 特許文献1の実施例188に記載の方法で得られた化合物(B)の結晶について、粉末X線回折をA、B、C及びD形結晶と同様に測定した。得られた回折図を図17に示す。
(比較例2)
化合物(B)のベンザチン塩の結晶(以下、ベンザチン塩の結晶と称する)
 化合物(B)100mgとN,N’-ジベンジルエチレンジアミン43.2mgとエタノール/水の混合溶媒(体積比1/1)2mLを混合し、80℃に加温し、1時間撹拌した。混合物を室温下で放冷し、終夜撹拌した。混合物から固体を取り出し、エタノール/水の混合溶媒(体積比1/1)100μLで2回洗浄した。得られた固体を30分間風乾した後、70℃で3時間減圧乾燥し、ベンザチン塩の結晶を得た(収量109.0mg)

H-NMR(DMSO-d)(δ(ppm)):3.04(2H,s)、4.05(2H,s)、6.95-6.98(2H,m)、7.35-7.46(7H,m)、7.67-7.75(2H,m)、7.88-7.90(1H,m)、8.61(1H,s)
 比較例2で得られたベンザチン塩の結晶について、粉末X線回折をA、B、C及びD形結晶と同様に測定した。得られた回折図を図18に示す。
 本発明において、化合物(A)のA形結晶は、粉末X線回折、13C固体NMRスペクトル及びFT-ラマン分光の上記ピークを組み合わせて、同定することもできる。
 化合物(A)のA形結晶を同定する態様として、例えば、以下の(A-1)~(A-3)態様が挙げられる。
(A-1)120.0±0.2、116.9±0.2及び109.4±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2228±1、1535±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
(A-2)120.0±0.2、116.9±0.2及び109.4±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
6.8±0.2、13.2±0.2及び16.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン。
(A-3)6.8±0.2、13.2±0.2及び16.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
120.0±0.2、116.9±0.2及び109.4±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2228±1、1535±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
 化合物(A)のB形結晶を同定する態様として、例えば、以下の(B-1)~(B-3)態様が挙げられる。
(B-1)162.4±0.2、135.2±0.2及び116.2±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2238±1、1601±1、1540±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
(B-2)162.4±0.2、135.2±0.2及び116.2±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
6.2±0.2及び12.4±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン。
(B-3)6.2±0.2及び12.4±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
162.4±0.2、135.2±0.2及び116.2±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2238±1、1601±1、1540±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
 化合物(A)のC形結晶を同定する態様として、例えば、以下の(C-1)~(C-3)態様が挙げられる。
(C-1)140.1±0.2、134.2±0.2及び122.0±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2235±1、1535±1及び1509±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
(C-2)140.1±0.2、134.2±0.2及び122.0±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
5.4±0.2、11.9±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン。
(C-3)5.4±0.2、11.9±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
140.1±0.2、134.2±0.2及び122.0±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2235±1、1535±1及び1509±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
 化合物(A)のD形結晶を同定する態様として、例えば、以下の(D-1)~(D-3)態様が挙げられる。
(D-1)127.3±0.2、118.0±0.2及び112.3±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2230±1、1532±1及び1508±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
(D-2)127.3±0.2、118.0±0.2及び112.3±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
5.5±0.2、13.7±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン。
(D-3)5.5±0.2、13.7±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
127.3±0.2、118.0±0.2及び112.3±0.2の化学シフト値(δ(ppm))におけるピークを含む13C固体NMRスペクトル;及び
2230±1、1532±1及び1508±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル。
(試験例1)
溶解度試験
 A、B、C及びD形結晶、化合物(B)及びベンザチン塩の結晶を、それぞれ、水に懸濁させ37℃で振とうした。このとき、各結晶20mgに対して、水2mL又は各結晶30mgに対して水6mLを加え懸濁液を調製した。各懸濁液の一部をろ過し、得られたろ液をHPLCにより測定した。別途、調製した既知濃度の標準溶液を同様の条件でHPLCにより測定し、得られた面積値から検量線を作成した。得られた検量線よりそれぞれの結晶の溶解度を計算し比較した。HPLCによる測定条件は下記の通りである。
 ベンザチン塩の結晶以外の測定条件については溶解度試験HPLC条件(1)、ベンザチン塩の結晶の測定条件については溶解度試験HPLC条件(2)を用いた。 
 
溶解度試験HPLC条件(1)
検出器:紫外可視吸光光度計/波長:225nm
カラム:L-column2 ODS、3μm、4.6×150mm(一般財団法人化学物質評価研究機構製)
カラム温度:40℃付近一定温度
流量:1.0mL/分
移動相A:10mmolのリン酸二水素カリウム、10mmolのリン酸水素二カリウム及び水1000mLを混合した溶液
移動相B:アセトニトリル
移動相比率
0~7.5分:移動相A/移動相B=60/40
 
溶解度試験HPLC条件(2)
検出器:紫外可視吸光光度計/波長:225nm
カラム:L-column2 ODS、3μm、4.6×150mm(一般財団法人化学物質評価研究機構製)
カラム温度:40℃付近一定温度
流量:1.0mL/分
移動相A:10mmolのリン酸二水素カリウム、10mmolのリン酸水素二カリウム及び水1000mLを混合した溶液
移動相B:アセトニトリル
移動相比率
0~17分:移動相A/移動相B=70/30
 水におけるA、B、C及びD形結晶、化合物(B)及びベンザチン塩の結晶の溶解度値を表13に示す。試験開始2時間後の各結晶の溶解度を比較した。化合物(B)の結晶に対して、ベンザチン塩の結晶が約4倍の溶解度であるのに対し、A、B、C及びD形結晶は、化合物(B)の結晶に対してそれぞれ約400倍、約100倍、約135倍、約434倍の溶解度が認められた。上記のことから、A、B、C及びD形結晶では、化合物(B)に対して顕著な溶解性の向上が認められた。
Figure JPOXMLDOC01-appb-T000017
(試験例2)
安定性試験1
 A、B及びD形結晶を40℃75%相対湿度で開放下において保存し、それぞれの結晶形の物理的安定性及び化学的安定性を調べた。検体の開始時と2箇月後の試料につき、粉末X線回折を上記と同様に測定して結晶形の物理的安定性を確認し、類縁物質の量を下記のHPLC測定条件を用いて測定して化学的安定性を確認した。結果を表14に示す。40℃75%相対湿度開放保存下において、いずれの結晶も結晶形の変化は認められなかった。また、A、B及びD形結晶は、いずれも、化学的に安定であった。
HPLC条件
検出器:紫外可視吸光光度計/波長:225nm
カラム:L-column2 ODS、3μm、4.6×150mm(一般財団法人化学物質評価研究機構製)
カラム温度:40℃付近一定温度
流量:1.0mL/分
移動相A:20mmol/Lリン酸二水素カリウム溶液に1mol/L水酸化ナトリウム溶液を加えpHを6.0に調整した液
移動相B:アセトニトリル
移動相比率
0~10分:移動相A/移動相B=70/30
10~20分:移動相A/移動相B=70/30~25/75(グラジエント)
20~30分:移動相A/移動相B=25/75
注入量:5μL
試料溶液:検体に移動相Aと移動相Bの混液を加え、約0.5mg/mLに調製した液。
 ブランクに由来するピークを除き、各々のピーク面積を自動積分法により測定し、面積百分率法によりそれらの値を求めた。
Figure JPOXMLDOC01-appb-T000018
(試験例3)
安定性試験2
 A、B、C及びD形結晶を40℃で保存し、それぞれの結晶形の物理的安定性及び化学的安定性を調べた。試験例2と同様の方法で確認した。結果を表15に示す。40℃保存下において、いずれの結晶も結晶形の変化は認められなかった。また、いずれの結晶も化学的に安定であった。
Figure JPOXMLDOC01-appb-T000019
(試験例4)
水分吸脱着試験
 化合物(A)のA形結晶及び化合物(B)について、水分吸脱着の測定を以下の条件で行った。結果を表16に示し、水分吸脱着等温線を図19~20に示す。
(使用機器)
水分吸脱着測定装置IGAsorp(Hiden Isochema社)
(操作)
<測定に使用した検体及び量>
化合物(B)の結晶:約5mg
A形結晶:約17mg
<前処理:乾燥>
 各検体を水分吸脱着測定装置内におき,温湿度を60℃/0%RHに設定し,60分以上乾燥した。乾燥後,温湿度を25℃/0%RHに設定し,30分以上質量を安定化させた。
<測定>
 乾燥した上記検体につき,吸着については相対湿度を10%RH~90%RHまで10%RH毎,脱着については90%RH~0%RHまで10%RH毎,相対湿度を制御しながら検体質量を連続的に測定した。水分吸脱着測定装置の測定条件設定は,以下のとおりとした。

<測定条件>
Initial Conditions:begin with Adsorption scan
First Humidity:10%RH
Flowrate:250mL/min
Mode:F1
Min Time:30 Minutes
Timeout:60 Minutes
Wait Until:99 %
Figure JPOXMLDOC01-appb-T000020
 なお、重量%は、乾燥試料を基準とし、吸着(又は脱着)前後における質量変化を質量百分率で表した。
 上記条件において、化合物(A)のA形結晶は、化合物(B)の結晶と比較し、1/3の水分変動であった。
 以上の通り、本発明の化合物(A)は極めて優れた溶解性及び安定性を示した。更にA形結晶は水分変動も少なく医薬品原体としてより好ましい。
 本発明に係る化合物(A)は、優れた溶解性やその他物性を有しており、医薬品原体として有用である上、医薬品の工業的生産に適している。
図1は、実施例1で得られたA形結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図2は、実施例2で得られたB形結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図3は、実施例3で得られたD形結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図4は、実施例1で得られたA形結晶のTG-DTA測定図である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 図5は、実施例2で得られたB形結晶のTG-DTA測定図である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 図6は、実施例3で得られたD形結晶のTG-DTA測定図である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 図7は、実施例1で得られたA形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 図8は、実施例2で得られたB形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 図9は、実施例3で得られたD形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 図10は、実施例4で得られたC形結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図11は、実施例4で得られたC形結晶のTG-DTA測定図である。縦軸(左)は熱重量(TG)曲線における重量(%)を示し、縦軸(右)は示差熱分析(DTA)曲線における熱流束(μV)を示し、横軸は温度(℃)を示す。 図12は、実施例4で得られたC形結晶の13C固体NMRスペクトルチャートである。縦軸は強度を示し、横軸は化学シフト値(δ(ppm))を示す。 図13は、実施例1で得られたA形結晶のFT-ラマンスペクトルチャートである。縦軸は強度を示し、横軸は波数(cm-1)を示す。 図14は、実施例2で得られたB形結晶のFT-ラマンスペクトルチャートである。縦軸は強度を示し、横軸は波数(cm-1)を示す。 図15は、実施例4で得られたC形結晶のFT-ラマンスペクトルチャートである。縦軸は強度を示し、横軸は波数(cm-1)を示す。 図16は、実施例3で得られたD形結晶のFT-ラマンスペクトルチャートである。縦軸は強度を示し、横軸は波数(cm-1)を示す。 図17は、比較例1で得られた化合物(B)の結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図18は、比較例2で得られたベンザチン塩の結晶の粉末X線回折図である。縦軸はX線の回折強度を示し、横軸は回折角(2θ(°))を示す。 図19は、A形結晶の水分吸脱着等温線である。実線は吸着等温線を示し、破線は脱着等温線を示す。縦軸は質量変化(%)を示し、横軸は相対湿度(%RH)を示す。 図20は、化合物(B)の結晶の水分吸脱着等温線である。実線は吸着等温線を示し、破線は脱着等温線を示す。縦軸は質量変化(%)示し、横軸は相対湿度(%RH)を示す。

Claims (17)

  1. 式:
    Figure JPOXMLDOC01-appb-C000001
    で表される化合物。
  2. 結晶性である、請求項1記載の化合物。
  3. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として120.0±0.2、116.9±0.2及び109.4±0.2にピークを有するA形結晶である、請求項2記載の化合物。
  4. 以下の(a1)~(a3)からなる群から選択される1~3つの物理的特性によって特徴付けられるA形結晶である、請求項2又は3に記載の化合物:
    (a1)6.8±0.2、13.2±0.2及び16.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
    (a2)2228±1、1535±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
    (a3)316℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
  5. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として162.4±0.2、135.2±0.2及び116.2±0.2にピークを有するB形結晶である、請求項2記載の化合物。
  6. 以下の(b1)~(b3)からなる群から選択される1~3つの物理的特性によって特徴付けられるB形結晶である、請求項2又は5に記載の化合物:
    (b1)6.2±0.2及び12.4±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
    (b2)2238±1、1601±1、1540±1及び1516±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
    (b3)60℃及び284℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
  7. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として140.1±0.2、134.3±0.2及び122.0±0.2にピークを有するC形結晶である、請求項2記載の化合物。
  8. 以下の(c1)~(c3)からなる群から選択される1~3つの物理的特性によって特徴付けられるC形結晶である、請求項7記載の化合物:
    (c1)5.4±0.2、11.9±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
    (c2)2235±1、1535±1及び1509±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
    (c3)285℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
  9. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として127.3±0.2、118.0±0.2及び112.3±0.2にピークを有するD形結晶である、請求項2記載の化合物。
  10. 以下の(d1)~(d3)からなる群から選択される1~3つの物理的特性によって特徴付けられるD形結晶である、請求項9記載の化合物:
    (d1)5.5±0.2、13.7±0.2及び14.2±0.2の回折角(2θ(°))におけるピークを含む粉末X線回折パターン;
    (d2)2230±1、1532±1及び1508±1の波数(cm-1)におけるピークを含むFT-ラマンスペクトル;及び
    (d3)279℃付近に吸熱ピークのオンセット温度を有する示差熱分析スペクトル。
  11. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.4±0.2、163.3±0.2、141.2±0.2、136.5±0.2、132.4±0.2、126.8±0.2、123.5±0.2、120.0±0.2、116.9±0.2、111.4±0.2、109.4±0.2及び85.5±0.2にピークを有するA形結晶である、請求項2記載の化合物。
  12. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.6±0.2、174.4±0.2、163.6±0.2、162.4±0.2、141.0±0.2、135.2±0.2、132.5±0.2、128.6±0.2、126.5±0.2、123.6±0.2、121.5±0.2、118.6±0.2、116.2±0.2、109.7±0.2及び86.7±0.2にピークを有するB形結晶である、請求項2記載の化合物。
  13. 13C固体NMRスペクトルチャートにおいて、化学シフト値(δ(ppm))として176.5±0.2、163.4±0.2、139.4±0.2、133.0±0.2、127.3±0.2、123.1±0.2、121.4±0.2、118.0±0.2、112.3±0.2、109.9±0.2及び88.9±0.2にピークを有するD形結晶である、請求項2記載の化合物。
  14. 薬剤として使用するための、請求項1~13のいずれかに記載の化合物。
  15. 血清尿酸値異常に起因する疾患の予防又は治療に使用するための、請求項1~13のいずれかに記載の化合物。
  16. 請求項1~13のいずれかに記載の化合物の有効量を投与することを特徴とする、血清尿酸値異常に起因する疾患の予防又は治療方法。
  17. 請求項1~15 のいずれかに記載の化合物および薬理学的に許容される医薬品添加物を含有する医薬組成物。
     
PCT/JP2014/071861 2013-08-22 2014-08-21 インドール誘導体の塩及びその結晶 WO2015025914A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013172120 2013-08-22
JP2013-172120 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025914A1 true WO2015025914A1 (ja) 2015-02-26

Family

ID=52483685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071861 WO2015025914A1 (ja) 2013-08-22 2014-08-21 インドール誘導体の塩及びその結晶

Country Status (2)

Country Link
TW (1) TWI754605B (ja)
WO (1) WO2015025914A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126898A1 (ja) * 2007-04-11 2008-10-23 Kissei Pharmaceutical Co., Ltd. (アザ)インドール誘導体及びその医薬用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126898A1 (ja) * 2007-04-11 2008-10-23 Kissei Pharmaceutical Co., Ltd. (アザ)インドール誘導体及びその医薬用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BAVIN, M.: "Polymorphism in Process Development", CHEMISTRY & INDUSTRY, vol. 16, 1989, pages 527 - 529, XP001180136 *
BRADLEY D. ANDERSON ET AL.: "En Keisei ni yoru Suiyosei Yuki Kagobutsu no Chosei", THE PRACTICE OF MEDICINAL CHEMISTRY, 25 September 1999 (1999-09-25), pages 347 - 365 *
BYRN, S. ET AL.: "Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations", PHARMACEUTICAL RESEARCH, vol. 12, no. 7, 1995, pages 945 - 954, XP000996386, DOI: doi:10.1023/A:1016241927429 *
MITSURU HASHIDA: "Keiko Toyo Seizai no Sekkei to Hyoka", KABUSHIKI KAISHA YAKUGYO JIHOSHA, 10 February 1995 (1995-02-10), pages 76 - 79 , 171 TO 172 *
TERUZO ASAHARA ET AL., YOZAI HANDBOOK, 1 September 1985 (1985-09-01), pages 47 - 51 *

Also Published As

Publication number Publication date
TW201518276A (zh) 2015-05-16
TWI754605B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
US10723730B2 (en) Solid forms of a selective CDK4/6 inhibitor
JP6946194B2 (ja) キナーゼを調節する化合物の固体形態
JP4053073B2 (ja) 選択的cdk4阻害剤のイセチオン酸塩
US7981897B2 (en) Crystal form of (3-cyano-1H-Indo1-7-yl)-[4-(4-fluorophenethyl)piperazin-1-yl]methanone, hydrochloride
AU2015330554B2 (en) Crystal form of bisulfate of JAK inhibitor and preparation method therefor
JP2015522042A (ja) チロシンキナーゼ阻害剤二マレイン酸塩のi型結晶およびその製造法
EP3647312A1 (en) Crystal form of deuterated azd9291, preparation method therefor, and use thereof
CN112047893B (zh) 吉非替尼与水杨酸共晶体
JP6934945B2 (ja) P2x3アンタゴニストの結晶塩および多形
KR102402501B1 (ko) 피마살탄 트로메타민염 및 이를 포함하는 약제학적 조성물
EP3023421A1 (en) Crystalline forms of afatinib dimaleate
JP2012512145A (ja) フリバンセリンの結晶性の塩形態
WO2021000687A1 (zh) Pac-1晶型的制备方法
WO2015025914A1 (ja) インドール誘導体の塩及びその結晶
JP5744017B2 (ja) チエノピリミジン誘導体の結晶
JP6823359B2 (ja) インドール誘導体の塩及びその結晶
CN113754596A (zh) 一种吉非替尼的共晶体
WO2018162393A1 (en) Vinpocetine co-crystals and preparation process thereof
CN110128429A (zh) 一种西地那非-安赛蜜盐型及其制备方法和用途
CN114437036A (zh) 2-氨基吡啶衍生物的新晶型及制备方法
WO2018162395A1 (en) Vinpocetine hydrochloride co-crystals
JPWO2002088109A1 (ja) 6−[4−(4−ピリジルアミノ)フェニル]−4,5−ジヒドロ−3(2h)ピリダジノン塩酸塩三水和物の結晶
NZ710138B2 (en) Solid forms of a selective cdk4/6 inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP