WO2015025534A1 - 自己洗浄槽保有型膜ろ過装置 - Google Patents

自己洗浄槽保有型膜ろ過装置 Download PDF

Info

Publication number
WO2015025534A1
WO2015025534A1 PCT/JP2014/053143 JP2014053143W WO2015025534A1 WO 2015025534 A1 WO2015025534 A1 WO 2015025534A1 JP 2014053143 W JP2014053143 W JP 2014053143W WO 2015025534 A1 WO2015025534 A1 WO 2015025534A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
backwash
tank
cleaning
Prior art date
Application number
PCT/JP2014/053143
Other languages
English (en)
French (fr)
Inventor
正伸 櫻井
Original Assignee
アタカ大機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アタカ大機株式会社 filed Critical アタカ大機株式会社
Publication of WO2015025534A1 publication Critical patent/WO2015025534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/24Quality control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/001Upstream control, i.e. monitoring for predictive control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/11Turbidity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention is a membrane filtration apparatus provided with a membrane module, more specifically, a self-cleaning tank possessing type membrane filtration apparatus that is provided with a washing water tank used for physical cleaning in the apparatus and can continue the membrane filtration process efficiently It is about.
  • the present applicant has already proposed this type of self-cleaning tank-owned membrane filtration device (see Patent Document 1 below).
  • the backwash metering tank is housed in the wash water tank, and a water passage space is formed between the inner wall of the wash water tank and the outer wall of the backwash metering tank.
  • a communication hole that connects the backwash metering tank and the water passage space is formed at the bottom of the backwash metering tank, and a plurality of membrane modules are erected outside the wash water tank.
  • the membrane filtrate filtered by the membrane module flows from the upper part of the water passage space toward the lower part, and passes through the communication hole to perform the backwash measurement.
  • compressed air is supplied to the surface of the membrane filtrate stored in the backwash metering tank, and the membrane filtrate in the backwash metering tank is connected to the communication hole.
  • the inside of the membrane module is configured to be backwashed by flowing back through the water passage space from the lower part toward the upper part and supplying the membrane filtrate to the membrane module.
  • the membrane filtration device described in Patent Document 1 forms a water passage space between the inner wall of the washing water tank and the outer wall of the backwash metering tank, and the water passage space is used as a water passage for the membrane filtration water during filtration and physical cleaning.
  • the present invention has been conceived in view of the above problems, and its purpose is to perform chemical injection efficiently and evenly to each membrane module and to sample membrane filtrate from each membrane module. It is an object of the present invention to provide a self-cleaning tank possessing type membrane filtration device that can be performed evenly with respect to each membrane module.
  • the invention according to claim 1 of the present invention is: A backwash metering tank is housed in the washwater tank, and a water passage space is formed between the inner wall of the washwater tank and the outer wall of the backwash metering tank, and at the bottom of the backwash metering tank, A communication hole communicating with the water channel space is formed, A plurality of membrane modules are erected outside the washing water tank, The backwash metering tank and the wash water tank are arranged concentrically, and the communication hole is formed at the center of the backwash metering tank bottom, At the time of filtration, the membrane filtrate filtered by the membrane module flows from the upper part of the water passage space toward the lower part, flows into the backwash metering tank through the communication hole, and is stored.
  • compressed air is supplied to the liquid level of the membrane filtrate stored in the backwash metering tank, and the membrane filtrate in the backwash metering tank passes through the communication hole. It is configured to flow backward from the lower part of the water passage space toward the upper part and supply membrane filtrate to the membrane module.
  • a chemical solution injection tube for injecting a chemical solution and membrane filtrate water flowing into the backwash metering vessel through the communication hole for measuring the membrane filtration water turbidity are provided at a substantially central portion in the backwash metering vessel.
  • the membrane filtrate sampling pipe when sampling the membrane filtrate, since the membrane filtrate sampling pipe is disposed at the substantially central portion in the backwash metering tank, it is collected from each membrane module through the water passage space, The membrane filtrate flowing into the backwash metering tank will flow equally from each membrane module. Therefore, the membrane filtrate water is not sampled in a state biased to any one of the membrane modules, and the membrane filtrate water can be sampled in a uniform state in each membrane module.
  • the chemical solution when the chemical solution is injected, since the chemical solution injection tube is disposed at the substantially central portion in the backwash metering tank, the chemical solution supplied from the water passage space to each membrane module flows evenly into each membrane module. Will do.
  • the chemical solution injection tube and the membrane filtrate sampling tube need only be disposed at the substantially central portion in the backwash metering tank, and the chemical solution injection tube and the membrane filtrate sampling tube are the chemical solution injection tube. It may be a case of a double pipe structure in which a membrane filtration water sampling pipe is arranged inside, and two pipes respectively used as a chemical solution injection pipe and a membrane filtration water sampling pipe are individually provided. The structure which provides may be sufficient.
  • the invention described in claim 2 is the self-cleaning tank holding type membrane filtration device according to claim 1, wherein the chemical solution injection pipe and the membrane filtrate sampling tube are provided with a membrane filtered water sampling inside the chemical injection pipe. It is characterized by comprising a double tube structure in which tubes are arranged.
  • the invention described in claim 3 is the self-cleaning tank-owned membrane filtration device according to claim 1 or 2, wherein the turbidity measurement is performed to measure the turbidity of the membrane filtrate sampled from the membrane filtrate sampling tube. And when the measured turbidity value by the turbidity measuring means is equal to or higher than the first set value, the sampling water supplied to the turbidity measuring means flows into the backwash tank and is stored And a pipe switching means for switching from filtrate to membrane filtrate for each membrane module.
  • the turbidity measurement means measures turbidity of the membrane filtrate for each membrane module, and the measured turbidity value is set to a second value. When the value is greater than or equal to the value, it is determined that the membrane module that has exceeded the second set value is a membrane module that has undergone membrane breakage, and the use of the membrane module is stopped.
  • the membrane filtrate can be sampled in a uniform state in each membrane module.
  • the accuracy of film rupture by turbidity measurement is improved.
  • the invention according to claim 4 is the self-cleaning tank holding type membrane filtration device according to claim 1 or 2, wherein the membrane filtration water turbidity is detected as a membrane breakage detecting means for detecting the membrane breakage of the membrane module.
  • the film breakage detection is performed periodically by the second film breakage detection means instead of the first film breakage detection means.
  • turbidity measurement method Only by the turbidity measurement method, membrane breakage of the membrane module cannot be detected when the raw water is not very dirty. Therefore, normally, turbidity is monitored, and membrane breakage is detected by a method based on a pressure holding test, so that it is possible to detect membrane breakage even when raw water is not very dirty. Moreover, since the power by compressed air is used for physical washing
  • the invention according to claim 5 is the self-cleaning tank holding type membrane filtration device according to claim 1 or 2, wherein the turbidity measurement is performed to measure the turbidity of the membrane filtrate sampled from the membrane filtrate sampling tube.
  • a membrane filtered water sample for each membrane module as a means for identifying the membrane module that has caused membrane breakage when the turbidity value measured by the turbidity measuring device is equal to or higher than the first set value.
  • One of the means for switching and the means specified by the air leak test can be selected.
  • the "air leak test” means that air pressure is applied from the raw water side of the membrane module, and in the membrane module where membrane breakage exists, bubbles are generated on the membrane filtrate water side, thereby depressing the liquid level of the membrane breakage detector, By this, it means the test which specifies the membrane module which has produced the membrane fracture
  • the invention according to claim 6 is the self-cleaning tank holding type membrane filtration device according to claim 1 or 2, wherein the chemical solution storage tank for storing the chemical solution, and the chemical solution in the chemical solution storage tank are supplied to the chemical injection pipe. And a chemical supply means for supplying the air, and an air supply valve for adjusting a flow rate of the compressed air supplied to the liquid surface of the backwash metering tank at the time of the chemical cleaning, minimizing the opening of the air supply valve, The driving force of the chemical solution supply means is maximized to perform immersion cleaning with the chemical solution.
  • immersion cleaning with a high concentration chemical can be performed by minimizing the opening of the air supply valve and maximizing the driving force of the chemical supply means.
  • the invention according to claim 7 is the self-cleaning tank holding type membrane filtration apparatus according to claim 1 or 2, wherein the flow rate of the compressed air supplied to the liquid surface of the backwashing measuring tank at the time of the physical cleaning is adjusted.
  • An air supply valve, a liquid level measuring means for measuring the liquid level of the membrane filtrate stored in the backwash metering tank, and compressed air is supplied to the liquid level of the backwash metering tank.
  • the cleaning flow rate is calculated by measuring the liquid level lowering speed when the liquid level of the backwash measuring tank is lowered, and the opening of the air supply valve is adjusted so that the calculated cleaning flow rate is obtained at the next physical cleaning.
  • a valve control means is used to adjust the liquid level of the membrane filtration apparatus.
  • the membrane module whose membrane permeability changes according to the temperature of the raw water can be washed with an optimum washing flow rate.
  • the invention described in claim 8 is the self-cleaning tank holding type membrane filtration device according to claim 1 or 2, wherein the chemical solution storage tank for storing the chemical solution, and the chemical solution in the chemical solution storage tank are supplied to the chemical injection pipe.
  • a chemical supply means for supplying to the backwash, a backwash air on / off valve for supplying / blocking the compressed air supplied to the backwash metering tank liquid level during the chemical cleaning to the backwash metering tank liquid level, and chemical discharge water In order to dilute the raw water with the raw water, the raw water pipe for supplying the raw water to the drain pipe for draining the chemical discharge water, the raw water drain valve provided in the raw water pipe for supplying / blocking the raw water to the drain pipe, and the membrane After the immersion cleaning is completed in which the chemical solution is immersed in the module, the raw water drain valve is opened, and the backwash air on / off valve is opened for the first set time while the raw water drain valve is kept open.
  • the raw water drain valve when draining chemical discharge water after completion of immersion cleaning, the raw water drain valve is opened and the chemical discharge water is diluted and discharged with raw water, but the upper limit of the raw water flow rate is limited.
  • the chemical discharge water cannot be diluted to a predetermined concentration. Therefore, while maintaining the open state of the raw water drain valve, the backwash air on / off valve is opened for the first set time, and after the first set time is closed, the backwash air on / off valve is closed for the second set time.
  • the open state and the closed state are repeated a predetermined number of times. Thereby, since the amount of drainage of chemical liquid discharge water per unit time is limited, the dilution ratio of the chemical liquid discharge water after immersion cleaning can be substantially changed and discharged. As a result, as a whole, the discharge of the chemical solution discharge water is diluted to a predetermined concentration and drained.
  • FIG. 4 is a cross-sectional view taken along line aa in FIG. 3.
  • FIG. 4 is a cross-sectional view taken along line bb in FIG. 3.
  • the schematic diagram of the structural member and piping structure etc. which are required for the membrane fracture
  • FIG. 7A is a plan view of the piping member 49
  • FIG. 7B is a cross-sectional view of the piping member 49.
  • FIG. FIG. 6 is a schematic diagram of a piping structure and the like related to air supply in the second embodiment.
  • FIG. 1 is a conceptual diagram of the overall configuration of a self-cleaning tank-holding membrane filtration device according to the present invention
  • FIG. 2 is a perspective view showing a mounting state of a membrane module
  • FIG. 3 is a plan view of the self-cleaning tank-holding membrane filtration device
  • 4 is a cross-sectional view taken along line aa in FIG. 3
  • FIG. 5 is a cross-sectional view taken along line bb in FIG.
  • FIG. 1 shows a conceptual configuration of a self-cleaning tank holding type membrane filtration apparatus according to the present invention. Specific configurations of components and piping systems constituting the membrane filtration apparatus are shown in FIGS. 5.
  • the membrane filtration device 1 has a return / drainage tank 2, a washing water tank 3, and a backwash metering tank 4 arranged at the center of the apparatus.
  • the return / drainage tank 2, the washing water tank 3, and the backwashing measuring tank 4 are integrally formed in this order from the bottom to the top. More specifically, the backwash metering tank 4 is accommodated in the wash water tank 3, and a water passage space 60 is formed between the inner wall of the wash water tank 3 and the outer wall of the backwash metering tank 4.
  • a communication hole 4 a that connects the backwash metering tank 4 and the water passage space 60 is formed at the bottom of the backwash metering tank 4.
  • the backwash metering tank 4 and the wash water tank 3 are arranged concentrically, and the communication hole 4 a is formed at the center of the bottom of the backwash metering tank 4. Therefore, the membrane filtrate flowing into the washing water tank 3 passes through the water passage space 60 and flows into the backwashing measuring tank 4 from the bottom of the backwashing measuring tank 4.
  • a disk-shaped raw water supply block 5 is disposed at the lower part of the membrane filtration device 1, and a disk-shaped membrane filtrate collection block 6 is disposed at the upper part of the membrane filtration device 1.
  • a plurality of (10 in the present embodiment) membrane modules 7a to 7j (referred to by the reference numeral 7 collectively) When each membrane module is indicated individually, reference numerals 7 are attached with suffixes a to j). As shown in FIG. 2, these membrane modules 7 are erected on the circumference centering on the central portion of the membrane filtration device 1. Therefore, the distance between each membrane module 7 and the center of the membrane filtration device 1 is equal.
  • the membrane module 7 used in the present invention the casing housing type pressurization type MF membrane module of Asahi Kasei Chemicals Co., Ltd. is selected, but the manufacturer, model and membrane type are not limited, and the pressurization type MF If it is a membrane module, it has a compatible structure that can be used. In FIG. 1, only one membrane module 7 is shown for the sake of simplification of the drawing.
  • the raw water supply block 5 includes a central hole 8. As shown in FIGS. 4 and 5, the central hole 8 is inserted with a drain pipe 9 and an exterior pipe 30 that covers the vicinity of the lower end of the drain pipe 9. The upper end of the drain pipe 9 communicates with the bottom of the return / drain tank 2. Moreover, the exterior pipe 30 is connected to the raw water inflow pipe L10 as shown in FIGS. 4 and 5 so that the raw water can flow from the raw water inlet 5a of the raw water supply block 5 through the outer pipe 30 as described later. It has become. Further, the outer tube 30 communicates with the circulating water pipe L2 as shown in FIGS.
  • the circulating water can flow from the raw water inlet 5a of the raw water supply block 5 through the outer tube 30 as will be described later. It has become.
  • a raw water inlet 5a and a raw water supply flow path 11 (see FIGS. 4 and 5) extending radially from the raw water inlet 5a to each membrane module 7 are formed.
  • the raw water flowing into the raw water supply block 5 from the raw water inlet 5 a is supplied to the lower part of each membrane module 7 through each raw water supply flow path 11.
  • the membrane filtrate collection block 6 is provided with a central hole 12.
  • the upper portion of the backwash metering tank 4 is fitted into the central hole 12 and is arranged so as to close the upper opening of the wash water tank 3 that houses the backwash metering tank 4.
  • the membrane filtrate collection block 6 is formed with a plurality of membrane filtrate collection channels 13 (see FIGS. 4 and 5) that communicate with the upper part of each membrane module 7 and extend toward the washing water tank 3. With such a configuration, the membrane filtrate filtered by each membrane module 7 is collected in the washing water tank 3 through each membrane filtrate collection channel 13.
  • a communication pipe 14 is provided between each membrane module 7 and the return / drain tank 2.
  • the communication pipe 14 serves to guide the circulating water from the membrane module 7 to the return / drainage tank 2 during filtration, and to pass the membrane filtrate in the washing water tank 3 from the membrane filtration water collecting flow path 13 to the membrane module 7 during backwashing. It returns to the return / drainage tank 2 via
  • an air tank 15 is provided below the return / drain tank 2, and a compressor 16 is connected to the air tank 15.
  • the air tank 15 is connected to the upper part of the backwashing measuring tank 4 through the pipe L1.
  • the return / drainage tank 2 and the raw water supply block 5 are communicated with each other via a drainage pipe 9, a circulating water pipe L ⁇ b> 2, and an exterior pipe 30.
  • the circulating water pipe L2 is provided with a circulating pump P1.
  • circulating pump P1 circulating water is returned / drain tank 2 ⁇ drain pipe 9 ⁇ circulating water pipe L2 ⁇ exterior pipe 30 ⁇ raw water supply block 5 ⁇ membrane module 7 ⁇ communication pipe 14 ⁇ return / drain tank 2 path It is supposed to be circulated through.
  • a membrane module inspection port 20 and a membrane break detector 21 are provided in the upper part of the membrane module 7.
  • the membrane module inspection port 20 has the same diameter as the membrane module 7 and does not use a connector having a narrowed shape as in the conventional example, there is an advantage that the membrane module can be repaired without removing the membrane module from the apparatus. .
  • the membrane module is repaired by closing the broken membrane tube with a dedicated repair pin.
  • the membrane filtrate collecting channel 13 is provided with an emergency shutoff valve ASV. As will be described later, when a membrane rupture of the membrane module 7 is detected by the membrane rupture detector 21, the emergency shutoff valve ASV is in a “closed” state so that the membrane can be repaired from the membrane module inspection port 20. It has become.
  • the upper opening of the backwash metering tank 4 is closed by a top plate 22, and a backwash metering tank level meter A 1 for measuring the liquid level in the backwash metering tank 4 is provided on the top plate 22. ing.
  • the level meter A1 can continuously measure the liquid level from the high level position H to the low level position L. This level meter A1 is used when measuring the liquid level lowering speed of the backwash metering tank 4 during backwashing.
  • a membrane filtered water outflow pipe 41 is connected to the top plate 22.
  • Each raw water supply flow path 11 in the raw water supply block 5 is provided with a membrane module supply source valve V20.
  • V1 is a raw water inflow valve
  • V2 is a filtered water outflow valve
  • V3 is a circulating water valve
  • V4 is an air supply valve
  • V5 is a washing drain valve
  • V6 is a return / drain tank air vent valve
  • V7 is air scrubbing. It is a valve.
  • L40 is a raw water pipe
  • this raw water pipe L40 is a pipe for supplying raw water to the drain pipe 9, and the chemical drainage discharged from the drain pipe 9 in the chemical cleaning step is the raw water. Used for dilution.
  • FIG. 1 is a raw water inflow valve
  • V2 is a filtered water outflow valve
  • V3 is a circulating water valve
  • V4 is an air supply valve
  • V5 is a washing drain valve
  • V6 is a return / drain tank air vent valve
  • V7 is air scrubbing. It is a valve.
  • L40 is a raw water pipe
  • this raw water pipe L40 is a
  • V40 is a raw water drain valve, and this raw water drain valve V40 is an open / close valve that is provided in the raw water pipe 9 and supplies and shuts off the drain pipe 9.
  • the raw water in the raw water storage tank (raw water storage tank) is supplied to the membrane filtration device 1 by driving a raw water pump (not shown).
  • a raw water pump not shown.
  • Embodiment 2 since the raw water can be naturally supplied when the raw water storage tank is present above the membrane filtration device 1, a configuration (Embodiment 2) in which the raw water pump to be forcibly supplied may be omitted.
  • a piping member 49 is provided in the backwash metering tank 4.
  • the piping member 49 includes a disk-shaped base 50 and a pipe body 51 that extends downward from the lower surface of the disk-shaped base 50.
  • the pipe body 51 has a double pipe structure in which a membrane filtrate sampling tube 51b for sampling membrane filtrate is disposed inside a drug solution injection tube 51a for injecting a drug solution.
  • the lower end portion of the tubular body 51 is disposed so as to be positioned in the vicinity of the communication hole 4 a.
  • the upper end of the chemical solution injection pipe 51 a is in contact with the lower surface of the disk-shaped base 50.
  • a check valve 59 composed of a rubber-like closing body 58 that covers the lower end portion is provided at the lower end portion of the chemical solution injection pipe 51a.
  • the check valve 59 is configured such that when the chemical solution is injected, the closing body 58 is opened by the injection pressure, and when the chemical solution is not injected, the closing body 58 is closed by the water pressure of the membrane filtration water. Thereby, the chemical solution is injected only when the chemical solution is injected, and the membrane filtrate is prevented from flowing into the chemical solution injection pipe 51a at other times.
  • the chemical liquid injection path 52 formed between the chemical liquid injection pipe 51 a and the membrane filtrate sampling pipe 51 b formed in the tube body 51 communicates with the chemical liquid injection path 53 formed in the disc-like base 50.
  • the upper end of the membrane filtered water sampling pipe 51 b passes through the chemical injection path 53 and penetrates into the disc-shaped base 50.
  • Pipe connection ports 54 and 55 are formed in the disk-shaped base 50.
  • One end of the pipe L3 is connected to the pipe connection port 54, and the other end of the pipe L3 is connected to the turbidimeter 45.
  • the membrane filtrate sampling pipe 51b is connected to the turbidimeter 45 via the pipe L3, and the membrane filtrate in the backwash metering tank 4 is sampled from the membrane filtrate sampling pipe 51b and given to the turbidimeter 45.
  • the turbidity is measured by the turbidimeter 45.
  • an open / close valve V30 is provided in the pipe L3.
  • one end of a pipe L20 is connected to the pipe connection port 55 of the disk-shaped base 50.
  • the other end of the pipe L20 is connected to a storage tank 100 that stores a cleaning chemical (sodium hypochlorite) via an injection pump 101 described later.
  • the cleaning chemical stored in the storage tank 100 is injected into the bottom communication hole 4a of the backwash metering tank 4 by the injection pump 101 through the pipe L20, the chemical injection path 53, and the chemical injection path 52.
  • the piping member 49 having the above structure in the backwashing measuring tank 4, it is possible to easily dispose constituent members, piping structures and the like necessary for film breakage detection and chemical cleaning.
  • the turbidimeter 45 is an open / close valve V32a to 32j provided corresponding to the pipe L4 and each of the membrane modules 7a to 7j (when the open / close valve is generically indicated by the reference symbol V32, each open / close valve is individually indicated.
  • the reference numerals V32 are indicated by subscripts a to j), and are individually connected to the membrane modules 7a to 7j.
  • the pipe L4 is provided with an open / close valve V31.
  • a storage tank 100 for storing a cleaning chemical (sodium hypochlorite) and an injection pump 101 for injecting the chemical are provided.
  • a membrane module outlet pressure gauge A ⁇ b> 2 is provided in the upper part of the water passage space 60 and in the vicinity of the outlet side of the membrane filtrate collection block 6. This membrane module outlet pressure gauge A2 can measure the pressure on the membrane module filtrate water side.
  • the membrane filtration device 1 includes a control device 80 as shown in FIG.
  • the control device 80 receives measurement signals from various measuring instruments provided in the membrane filtration device 1, performs opening / closing control and opening degree adjustment of each valve, and drives / stops various pumps and compressors. Control. Further, the control device 80 controls processing of various processes (for example, a filtration process, a physical cleaning process, a membrane breakage detection process, a chemical liquid cleaning process, etc.) related to the operation of the membrane filtration apparatus 1.
  • various processes for example, a filtration process, a physical cleaning process, a membrane breakage detection process, a chemical liquid cleaning process, etc.
  • the raw water supplied to the raw water supply block 5 is uniformly distributed and supplied to each membrane module 7, and the membrane filtrate from each membrane module 7 is supplied to the membrane filtration water collecting block 6.
  • the water is uniformly collected in the washing water tank 3 disposed in the central portion through the water, and the circulating water is uniformly distributed from each membrane module 7 to the return / drainage tank 2 disposed in the central portion via each communication pipe 14. Water will be collected.
  • natural water with the strainer 40 is a pre-process which filters with a membrane module.
  • A. Filtration process The raw water inflow valve V1 and the filtrate water outflow valve V2 are set to the “open” state. Thereby, the raw water is supplied to the lower part of the membrane module 7 through the raw water supply flow path 11 of the raw water supply block 5. The raw water is subjected to membrane filtration when passing through the membrane module 7. The membrane filtrate flows from the upper part of the membrane module 7 into the washing water tank 3 through the membrane filtrate collection channel 13 of the membrane filtrate collection block 6. Further, during the filtration process, the circulation pump P1 is set to the “running” state, and the circulation water valve V3 is set to the “open” state.
  • the circulating water stored in the return / drainage tank 2 flows into the raw water supply flow path 11 of the raw water supply block 5, passes through the membrane surface of the membrane module 7, and passes from the communication pipe 14 to the return / drainage tank 2. Go around the return path.
  • the circulating water passes through the membrane surface of the membrane module 7 to prevent fouling due to crossflow. After such a filtration process is performed for a predetermined time, the process proceeds to a physical cleaning process.
  • the physical cleaning step is performed for 1-2 minutes per filtration duration every 30-90 minutes.
  • the raw water inflow valve V1, the filtrate water outflow valve V2 and the circulating water valve V3 are set to the “closed” state, and the circulation pump P1 is “stopped”. Further, the air supply valve V4 and the cleaning drain valve V5 are set to the “open” state.
  • the flow of the circulating water is stopped by setting the circulating water valve V3 to the “closed” state and “stopping” the circulation pump P1. Further, by setting the air supply valve V4 to the “open” state, the filtrate in the backwash metering tank 4 flows back from the upper part of the washwater tank 3, and the membrane filtrate collection channel 13 of the membrane filtrate collection block 6 is used. Then, it is supplied to the membrane module 7 and the inside of the membrane module 7 is backwashed.
  • the membrane permeability in the membrane module 7 changes due to the water viscosity due to the change in the raw water temperature (specifically, the higher the water temperature, the higher the membrane permeability, and the lower the water temperature, the membrane permeability).
  • the permeability at a water temperature of 25 ° C. is 1, and 0 ° C.
  • the permeability is 0.5. Is going. That is, the cleaning flow rate is calculated by measuring the liquid level lowering speed of the backwashing measuring tank 4, and the membrane module 7 whose membrane permeability changes according to the raw water temperature is washed at the optimum washing flow rate. I have control. This will be specifically described below.
  • the opening of the air supply valve V4 is set to an initial value Q% (meaning Q% with respect to full opening; 80% in this embodiment), and the air supply valve.
  • Q% meaning Q% with respect to full opening; 80% in this embodiment
  • Time required for discharging all membrane filtrate in the backwash metering tank 4 to the side of the water channel space at an opening Q% of V4 (in other words, the liquid level of the backwash metering tank 4 from the high level position H
  • the time until the low level position L is reached is set in advance to a predetermined time T (30 seconds in the present embodiment where the capacity of the backwashing measuring tank 4 is 800 L).
  • the opening of the air supply valve V4 is set to 80%
  • the supply time of the compressed air by the air supply valve V4 is set to 30 seconds
  • the membrane filtrate in the backwash metering tank 4 is connected to the communication hole 4a.
  • the membrane filtrate is fed back to the membrane module 7 by flowing backward from the lower part of the water passage space 60 toward the upper part.
  • the level gauge A1 measures the change in the liquid level in the backwash metering tank 4 (level change from the high level position H to the low level position L).
  • the opening of the air supply valve V4 is set to (80 + 0.1)% obtained by adding 0.1% to 80%.
  • the opening degree of the air supply valve V4 is set to (80-0.1)% obtained by subtracting 0.1% from 80%.
  • the opening adjustment of the air supply valve V4 is performed in the same manner as described above in the subsequent backwashing. That is, if the low level position L is not reached even after 30 seconds from the high level position H as measured by the level meter A1, the opening degree of the air supply valve V4 is set to the current opening degree (80.1)%. Is set to (80.1 + 0.1)%. If the low level position L is reached 30 seconds before the high level position H is measured by the level meter A1, the opening of the air supply valve V4 is reduced to 0.1 to the current opening (80.1)%. % Is set to (80.1-0.1)%.
  • the membrane module 7 can be cleaned with an optimal cleaning flow rate by adjusting the opening of the air supply valve V4 in accordance with the measurement result of the level meter A1.
  • the emergency shutoff valve ASV related to the membrane module 7 having the membrane rupture is set to the “closed” state, and the membrane module 7 is stopped, and normal operation is continued by the other membrane module 7. Therefore, in this case, the cleaning flow rate for all the membrane modules 7 is sufficient if the flow rate is reduced by the cleaning flow rate for the membrane modules 7 whose use has been stopped.
  • a low level position L corresponding to the number of remaining membrane modules 7 is set (for example, for all (10) membrane modules 7).
  • the initial value L is -600 mm
  • the opening of the air supply valve V4 is adjusted according to the measurement result of the level meter A1, and the membrane module 7 is cleaned at an optimal cleaning flow rate.
  • the effluent from the membrane module 7 is led to the return / drainage tank 2 through the communication pipe 14 and discharged out of the system through the washing drain valve V5.
  • An air scrubbing process is performed simultaneously with the backwash process. That is, when the air scrubbing valve V7 is in the “open” state, the compressed air in the air tank 15 flows from the lower part of the membrane module 7, and the hollow fiber membrane in the membrane module 7 is vibrated to peel and remove the membrane surface deposits. To do. Then, after a predetermined time has elapsed, the air scrubbing valve V7 is set to the “closed” state, and the air scrubbing process ends. In this way, after the backflow cleaning process and the air scrubbing process are completed, the flushing process is executed.
  • the raw water inlet valve V1 is set to the “open” state.
  • the raw water supplied to the membrane module 7 rinses the membrane surface without passing through the filtration membrane and flows into the return / drainage tank 2.
  • the cleaning drain valve V5 is set to the “closed” state.
  • membrane rupture detection and a method for specifying a membrane rupture module when membrane rupture is detected are broadly classified as follows: (1) Method by measuring turbidity of membrane filtrate ( Membrane rupture is detected by turbidity measurement of membrane filtration water, and when membrane rupture is detected, the membrane rupture module is specified by turbidity measurement for each membrane module), and (2) for membrane modules using compressed air A method is used in which a film break is detected by a pressure holding test, and when a film break is detected, a film break module is specified by an air leak test. Usually, the turbidity is monitored by the method of turbidity measurement described in (1) above.
  • the turbidity meter 45 determines whether the turbidity of the sampling water is greater than the predetermined value X1, and if the turbidity of the sampling water is less than the predetermined value X1, it is determined that no membrane breakage has occurred, In this case, the turbidity monitoring is continued by moving to the next turbidity measurement.
  • the predetermined value X1 (corresponding to the first set value) is a reference value (predetermined value X2 (corresponding to the second set value), which will be described later) that can be determined as the occurrence of film breakage for one membrane module 7. It is the value diluted according to the total number. For example, when the total number of membrane modules 7 is 10, the predetermined value X1 is (1/10) times the reference value (predetermined value X2 described later).
  • the membrane module 7 that has broken the membrane is identified.
  • switching of the open / close state of the open / close valve V30 and the open / close valve V31 is performed. That is, the on-off valve V30 is set to “closed” and the on-off valve V31 is set to “open”.
  • a membrane filtered water sampling piping path is formed from the upper part of the membrane module 7 to the on-off valve V 32 corresponding to the membrane module 7 ⁇ the pipe L 3 ⁇ the on-off valve V 31 ⁇ the turbidimeter 45. It is possible to measure the turbidity every time and to identify the membrane module 7 having a membrane rupture.
  • the on-off valve V32 corresponding to the selected membrane module 7 to be measured for turbidity is set to the “open” state, and the other on-off valves V32 are set to the “closed” state.
  • the on-off valve V32a is set to the “open” state, and the other on-off valves V32b to V32j are set to the “closed” state.
  • the turbidity of the sampling water is greater than the predetermined value X2. If the turbidity of the sampling water is less than the predetermined value X2, it is determined that no membrane breakage has occurred in the membrane module 7, and Measurement is performed with respect to the membrane module 7.
  • the pressure holding test utilizes the fact that the hollow fiber membrane used in the membrane module 7 does not allow air to permeate, and applies air pressure from the membrane filtered water outflow side to check whether the pressure is maintained. By doing so, the existence of film breakage is judged. Further, when it is determined by the pressure holding test that the membrane is broken, an air leak test is performed to identify the broken membrane module.
  • the opening of the air supply valve V4 is adjusted and the compressed air is continuously sent with the flow rate adjusted.
  • the overflow air supplied into the backwash metering tank 4 is supplied to the upper part of the membrane module 7 through the water passage space 60.
  • transmits a membrane with compressed air, and flows out to the raw
  • the raw water side is in an atmospheric pressure state with the drain valve V5 opened.
  • the membrane module filtrate water side is filled with air, and the pressure gradually increases. Then, the pressure is confirmed by the membrane module outlet pressure gauge A2, and when the pressure is increased to 200 KPa, the air supply valve V4 is set to the “closed” state, the supply of compressed air is stopped, and the pressure is held by the membrane module outlet pressure gauge A2 for 3 minutes. Check if it is done.
  • the membrane module 7 is once filled with membrane filtered water, the membrane filtered water side is opened to atmospheric pressure, and compressed air is supplied from the air scrubbine valve V7 to the membrane module raw water side (outside the hollow fiber membrane). Start by.
  • the membrane module raw water side is filled with air and the pressure gradually rises, but air leaks from the location where membrane breakage occurs, and bubbles are generated on the membrane filtered water side of the membrane module.
  • the air bubbles cause an air reservoir in the membrane break detector 21 (specifically, the float switch) installed above the membrane module, and the float switch is changed from the normal ON state to the OFF state due to the decrease in the liquid level.
  • the membrane breakage detector 21 can identify the membrane module 7 that has caused the membrane breakage.
  • the membrane module 7 for which membrane breakage is specified by the membrane breakage detector 21 is separated by the emergency shutoff valve ASV, and membrane filtration is resumed by the other membrane modules 7.
  • immersion cleaning with high-concentration sodium hypochlorite is performed by minimizing the supply of cleaning air and maximizing the driving of the injection pump 101.
  • the air supply valve V4 has an opening of 70 to 90% for normal physical cleaning and 50 m3 / hr for chemical cleaning, and 0.3 m3 / hr for chemical cleaning with a flow rate of 160 m, which is 0.3 m3 / hr. Is possible.
  • the raw water is drained as it is, and the high-concentration sodium hypochlorite waste liquor is diluted to a normal purified water residual chlorine concentration and drained.
  • rinse cleaning is performed to return to the normal filtration process.
  • the lower end portion of the chemical solution injection pipe 51a is located in the vicinity of the communication hole 4a existing at the center of the bottom of the backwash metering tank 4, so that it is supplied from the water passage space 60 to each membrane module 7.
  • the chemical solution flows uniformly into each membrane module 7. Therefore, since the chemical liquid can be supplied to all the membrane modules 7 by the chemical liquid injection by one chemical liquid injection tube 51a, the efficiency of the chemical liquid injection is good.
  • the chemical solution is evenly supplied to each membrane module 7, there is no membrane module 7 that is not sufficiently cleaned, and each membrane module 7 is always subjected to uniform high-quality cleaning.
  • the membrane filtration apparatus according to the second embodiment is characterized in that a chemical solution (stock solution) used in a simple chemical solution cleaning step is diluted to a predetermined concentration and discharged.
  • the membrane filtration device according to the second embodiment basically has the same configuration as the membrane filtration device according to the first embodiment, and corresponding constituent members / components are denoted by the same numbers. .
  • the raw water pump is omitted, and instead of the air supply valve V4 shown in FIG. 1, a backwash flow rate adjusting valve for adjusting the air flow rate as shown in FIG. V60 and backwash air on-off valve V61.
  • a predetermined set value necessary for the simple chemical cleaning control process is input by operating an input unit (for example, a touch panel) of the control device 80.
  • Predetermined set values include chemical concentration M1 to be used (concentration of sodium hypochlorite stock solution M1), concentration M2 of the immersed sodium hypochlorite solution immersed in the membrane filtration device for chemical cleaning, Maximum injection amount M3, operating range M4 of injection pump 101, initial opening degree M5 of backwash flow rate adjustment valve V60, immersion time M6, residual water residual chlorine concentration M7, “open” time M8 during discharge, raw water waste flow rate M9 , Rinse washing repetition number M10.
  • the specific processing time or the like changes according to the input values of M1 to M10.
  • the predetermined set values M1 to M10 are specifically set to the following values.
  • the sodium hypochlorite stock solution concentration M1 is 12%
  • the immersion sodium hypochlorite solution concentration M2 is 1800 mg / L
  • the maximum injection amount M3 of the injection pump 101 is 50 mL / min
  • the operation movable range M4 of the injection pump 101 is 100.
  • the initial opening degree M5 of the backwash flow rate control valve V60 is 6.0%
  • the immersion time M6 is 240 minutes
  • the residual water residual chlorine concentration M7 is 5 mg / L
  • the “open” time M8 at the time of discharge is 5 seconds
  • the raw water waste flow rate M9 is 10.0 m ⁇ 3> / hr
  • the number of rinse cleaning repetitions M10 is 5 times.
  • the control device 80 is programmed so that the control process proceeds according to the change in the water level H of the backwash metering tank 4.
  • the emergency shutoff valve ASV is set to “open” and the cleaning drain valve V5 is set to “open”.
  • the initial opening degree of the backwash flow rate control valve V60 is 6.0%, backwashing.
  • the membrane permeability in the membrane module 7 changes according to the temperature of the raw water, so that the set dilution water flow rate (set to 0.20 m3 / hr in the present embodiment) is not achieved. There is a case. Therefore, in the dilution water flow rate adjustment step, sodium hypochlorite is not yet injected, and the dilution water flow rate is adjusted in this state to correct the dilution water flow rate.
  • the adjustment process of the dilution water flow rate can be performed 10 times until the water level reaches 800 mm to 750 mm, a maximum correction of 1% can be performed, and the dilution water flow rate approximated by the set dilution water flow rate is Will be obtained.
  • Such dilution water flow rate adjustment is also performed at the time of sodium hypochlorite injection after reaching the water level of 750 mm, and continues until the raw water discarding step described later.
  • the raw water drain valve V40 is set to “open”.
  • the immersed sodium hypochlorite solution is diluted with raw water.
  • the flow rate of raw water is limited (100 m3 / hr)
  • the residual chlorine concentration in the discharged water cannot be 5 mg / L. Therefore, the dilution ratio is adjusted so that the residual chlorine concentration in the discharged water is 5 mg / L.
  • the backwash air on / off valve V61 is set to “open”, this “open” state is maintained for 5 sec (corresponding to the first set time), and after 5 sec, the backwash air on / off valve V61 is set to “closed”.
  • the "closed” state is maintained for 30.7 sec (corresponding to the second set time), and when 30.7 sec elapses, the backwash air on-off valve V61 is set to "open” again, and such processing is repeated.
  • the injection pump 101 also operates / stops according to the opening / closing of the backwash air on / off valve V61.
  • the "open" time during discharge is 5 seconds
  • the interval time during discharge is 30.7 seconds
  • the process proceeds to the soaking hypochlorite adjustment feeding stop, the raw water discarding stop, and the hyposalt soaking start process.
  • the backwash air open / close valve V61 is set to “closed” as the submerged hypochlorite adjustment feeding stop process
  • the raw water drain valve V40 is set to “closed” as the raw water drain stop process
  • the hypochlorite soaking start process The backwash flow rate control valve V60 is fixed at the initial opening and the injection pump 101 is stopped. And this state is maintained for 240 minutes. That is, the immersion time is 240 min.
  • the fixed matter of the membrane module 7 is cleaned with the chemical solution within this immersion time.
  • the discharging process of the immersed sodium hypochlorite solution is started. That is, the immersion sodium hypochlorite solution is diluted to a predetermined concentration and discharged. Specifically, the raw water drain valve V40 is set to “open”. The backwash flow rate control valve V60 remains fixed at the initial opening. Then, similarly to the adjustment process of the dilution ratio in the raw water discarding step, the backwash air on-off valve V61 is set to “open”, and this “open” state is maintained for 5 seconds (corresponding to the first set time), and 5 seconds have elapsed. For example, the backwash air on / off valve V61 is set to “closed”, and this “closed” state is maintained for 30.7 sec (corresponding to the second set time). And repeat this process.
  • Rinse washing process When the water level reaches 50 mm, the process proceeds to the rinse cleaning step. As a specific process in the rinse cleaning step, the water level is filtered from 50 mm to 800 mm, and when the water level reaches 800 mm, the filtration process is stopped and the back washing process is started, and when the water level reaches 50 mm, Stop the cleaning process. Then, such filtration process and backwash process are repeated a predetermined number of times (5 times in the present embodiment). Thus, when the rinse cleaning process is completed, the simple chemical cleaning process is completed. Thereafter, a normal filtration process or the like is performed.
  • the pressure supply during the physical cleaning is performed by the compressor.
  • a pneumatic cylinder, a hydraulic cylinder, a pressurized water supply pump, or the like may be used.
  • the tube body 51 is provided in the central portion of the backwash metering tank 4, and this tube body 51 is provided with membrane filtered water inside the chemical solution injection tube 51a for injecting the chemical solution.
  • this invention is not limited to this, A chemical
  • the air supply valve V4 of the first embodiment is configured to adjust the flow rate of the compressed air at both the physical cleaning time and the chemical liquid cleaning time.
  • a pipe that reaches the measuring tank 4 may be branched into two paths on the way, a physical cleaning air supply valve may be provided in one path, and a chemical solution air supply valve may be provided in the other path.
  • the turbidity is usually monitored, and when the measured turbidity value is equal to or greater than the predetermined value X1 (corresponding to the first set value), the membrane filtrate sample is switched for each membrane module.
  • Measure the turbidity specify the membrane module whose measured turbidity value is equal to or greater than the predetermined value X2 (corresponding to the second setting value) as membrane rupture, detect the membrane rupture based on the measured turbidity value, specify the membrane module
  • the membrane module is configured to periodically detect the membrane breakage by the pressure holding test and to identify the membrane module having the membrane breakage by the air leak test.
  • the present invention is not limited to this, and when the measured turbidity value is equal to or greater than the predetermined value X1, as means for specifying the membrane module causing membrane breakage, means for switching the membrane filtrate sample for each membrane module; Further, it may be configured to select any one of the means specified by the air leak test.
  • the membrane breakage is detected by the pressure holding test, and when the membrane breakage is detected, it may be configured to switch the membrane filtrate sample for each membrane module and specify the membrane module that has broken the membrane, In such a configuration, since it takes time (about 30 minutes) to identify the membrane module that has broken the membrane, there is a concern that high turbidity filtered water may be supplied during that time.
  • membrane breakage it is preferable that the membrane module that has undergone membrane breakage is identified by an air leak test.
  • the present invention is applied to a self-cleaning tank holding type membrane filtration apparatus in which a cleaning water tank used for physical cleaning is integrally provided in the apparatus and the membrane filtration treatment can be continued efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 薬液注入を効率良く且つ各膜モジュールに対して均等に行うこと及び、各膜モジュールから膜ろ過水をサンプリングするに際して各膜モジュールに対して偏ることなく均等に行うことを可能にした自己洗浄槽保有型膜ろ過装置を提供する。 逆洗計量槽4が洗浄水槽3内に収納され、洗浄水槽3の内壁と逆洗計量槽4の外壁との間に通水路空間60が形成されている。逆洗計量槽4の底部には、逆洗計量槽4と通水路空間60とを連通する連通孔4aが形成されている。洗浄水槽3の外側には複数の膜モジュール7が立設されている。逆洗計量槽4内には、管体51を備えた配管部材49が設けられている。管体51は、薬液注入管51aの内側に膜ろ過水サンプリング管51bが配置された2重管構造を有する。管体51は上下に延び且つその下端部が連通孔4aの近傍に位置するように配設されている。

Description

自己洗浄槽保有型膜ろ過装置
 本発明は、膜モジュールを備えた膜ろ過装置であって、より詳しくは装置内に物理洗浄に使用する洗浄水槽を一体に設け、効率良く膜ろ過処理を継続できる自己洗浄槽保有型膜ろ過装置に関するものである。
 本願出願人は、この種の自己洗浄槽保有型膜ろ過装置を既に提案している(以下の特許文献1参照)。この既に提案している自己洗浄槽保有型膜ろ過装置は、逆洗計量槽が洗浄水槽内に収納され、洗浄水槽の内壁と逆洗計量槽の外壁との間に通水路空間が形成されると共に、逆洗計量槽の底部には逆洗計量槽と前記通水路空間とを連通する連通孔が形成され、洗浄水槽の外側には複数の膜モジュールが立設された構成とされている。そして、当該自己洗浄槽保有型膜ろ過装置においては、ろ過処理時には、膜モジュールによってろ過された膜ろ過水が通水路空間の上部から下部に向けて流入し、連通孔を通って前記逆洗計量槽内に流入して貯留され、物理洗浄時には、逆洗計量槽内に貯留されている膜ろ過水の液面に圧縮空気を供給して、逆洗計量槽内の膜ろ過水を連通孔を通って通水路空間の下部から上部に向けて逆流させて、膜ろ過水を膜モジュールに供給することにより、膜モジュール内を逆流洗浄するように構成されている。
特開2011-272104号公報
 上記特許文献1記載の膜ろ過装置は、洗浄水槽の内壁と逆洗計量槽の外壁との間に通水路空間を形成し、ろ過処理時及び物理洗浄時には通水路空間を膜ろ過水の通水路として利用することにより、コンパクトな装置で且つ効率良く、膜モジュールから逆洗計量槽への流入や、逆洗計量槽から膜モジュールへの流出を行うことが可能である。
 しかし、上記特許文献1記載の膜ろ過装置では薬液洗浄についての記載はなく、また、膜破断検出方法について各膜モジュール個別に行う方法についてのみ記載するに留まっている。
 そこで、上記特許文献1記載の膜ろ過装置において、薬液洗浄を行なう構成を追加すること、及び、膜破断検出方法についても各膜モジュール個別に行う方法に加えて、全ての膜モジュールからの膜ろ過水をサンプリングし、サンプリングした全ての膜ろ過水について濁度を測定して膜破断を検出する方法を行う構成を追加することが要望されていた。
 一方、薬液洗浄を行なう構成を追加し、全ての膜モジュールからの膜ろ過水をサンプリングし濁度測定する構成を追加するとした場合において、薬液注入を効率良く且つ各膜モジュールに対して均等に行うこと及び、各膜モジュールから膜ろ過水をサンプリングするに際して各膜モジュールに対して偏ることなく均等に行うことが要望されている。
 本発明は、上記課題に鑑みて考え出されたものであり、その目的は、薬液注入を効率良く且つ各膜モジュールに対して均等に行うこと及び、各膜モジュールから膜ろ過水をサンプリングするに際して各膜モジュールに対して偏ることなく均等に行うことを可能にした自己洗浄槽保有型膜ろ過装置を提供することである。
 上記目的を達成するため本発明のうちの請求項1記載の発明は、
 逆洗計量槽が洗浄水槽内に収納され、洗浄水槽の内壁と逆洗計量槽の外壁との間に通水路空間が形成されると共に、逆洗計量槽の底部には逆洗計量槽と前記通水路空間とを連通する連通孔が形成されるように構成され、
 前記洗浄水槽の外側には複数の膜モジュールが立設されており、
 前記逆洗計量槽と前記洗浄水槽とは同心状に配置されており、且つ前記連通孔は前記逆洗計量槽底部の中央位置に形成されており、
 ろ過処理時には、前記膜モジュールによってろ過された膜ろ過水が前記通水路空間の上部から下部に向けて流入し、前記連通孔を通って前記逆洗計量槽内に流入して貯留され、
 物理洗浄時及び薬液洗浄時には、前記逆洗計量槽内に貯留されている膜ろ過水の液面に圧縮空気を供給して、逆洗計量槽内の膜ろ過水を前記連通孔を通って前記通水路空間の下部から上部に向けて逆流させ膜ろ過水を膜モジュールに供給するように構成され、
 更に、前記逆洗計量槽内の略中央部には、薬液を注入する薬液注入管と、膜ろ過水濁度測定のため前記連通孔を通って逆洗計量槽内に流入する膜ろ過水をサンプリングする膜ろ過水サンプリング管とが配設されていることを特徴とする自己洗浄槽保有型膜ろ過装置である。
 上記構成によれば、膜ろ過水のサンプリングに際しては、膜ろ過水サンプリング管が逆洗計量槽内の略中央部に配設されているので、各膜モジュールから通水路空間を通って集められ、逆洗計量槽内に流入する膜ろ過水は、各膜モジュールから均等に流入することになる。従って、いずれかの膜モジュールに偏った状態で膜ろ過水のサンプリングが行われることはなく、各膜モジュールに均等な状態で膜ろ過水のサンプリングを行うことができる。
 また、薬液注入に際しては、薬液注入管が逆洗計量槽内の略中央部に配設されているので、通水路空間から各膜モジュールに供給される薬液は各膜モジュールに対して均等に流入することになる。従って、1つの薬液注入管による薬液注入により全ての膜モジュールに対して薬液を供給することができるので薬液注入の効率が良い。加えて、各膜モジュールに均等に薬液が供給されるので、洗浄が不十分である膜モジュールが存在せず、各膜モジュールは常に均等な高品質の洗浄がなされることになる。
 なお、本願発明は、逆洗計量槽内の略中央部に、薬液注入管と膜ろ過水サンプリング管とが配設されていればよく、薬液注入管及び膜ろ過水サンプリング管が、薬液注入管の内側に膜ろ過水サンプリング管が配置された2重管構造で構成されている場合であってもよく、また、薬液注入管及び膜ろ過水サンプリング管としてそれぞれ使用する2個の管を個別に設けるような構成であってもよい。
 また、請求項2記載の発明は、請求項1記載の自己洗浄槽保有型膜ろ過装置であって、前記薬液注入管及び前記膜ろ過水サンプリング管は、薬液注入管の内側に膜ろ過水サンプリング管が配置された2重管構造で構成されていることを特徴とする。
 上記構成によれば、1つの2重管を設置すればよく、薬液注入管及び膜ろ過水サンプリング管それぞれの個別の設置作業が不要となる。従って、設置作業が容易となり、また、設置のための作業時間が短くなる。更に、1つの2重管を用いることにより、薬液注入管及び膜ろ過水サンプリング管の逆洗計量槽内中央部ヘの設置精度が高まるので、(1)各膜モジュールにより均等に薬液が供給され、(2)また、各膜モジュールからより均等な状態で膜ろ過水のサンプリングを行うことができる。
 また、請求項3記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、前記膜ろ過水サンプリング管からサンプリングした膜ろ過水の濁度を測定する濁度測定手段と、前記濁度測定手段による測定濁度値が第1設定値以上になった場合は、濁度測定手段に供給されるサンプリング水を、逆洗計量槽内に流入して貯留される膜ろ過水から膜モジュール毎の膜ろ過水に切替える配管切替手段と、を備え、前記濁度測定手段により、前記膜モジュール毎に膜ろ過水の濁度測定を行い、測定濁度値が第2設定値以上になった場合は、第2設定値以上になった当該膜モジュールを膜破断した膜モジュールと判定し、当該膜モジュールの使用を停止することを特徴とする。
 上記構成によれば、膜ろ過水サンプリング管からサンプリングした膜ろ過水の濁度を測定することにより、各膜モジュールに均等な状態で膜ろ過水のサンプリングを行うことができるので、膜ろ過水の濁度測定による膜破断の精度が向上する。
 また、請求項4記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、前記膜モジュールの膜破断を検出する膜破断検出手段として、膜ろ過水濁度の異常検出により膜破断を検出する第1膜破断検出手段と、圧力保持試験により膜破断を検出する第2膜破断検出手段とを備え、通常時は前記第1膜破断検出手段によって膜破断検出を行い、定期的に前記第1膜破断検出手段に代えて前記第2膜破断検出手段によって膜破断検出を行うように構成されていることを特徴とする。
 濁度測定による方法のみでは、原水があまり汚れていない場合には膜モジュールの膜破断を検出できない。そこで、通常は濁度を監視し、定期的に圧力保持試験による方法により膜破断検出を行うことにより、原水があまり汚れていない場合にも膜破断を検出することが可能となる。また、物理洗浄に圧縮空気による動力を用いていることから、その空気源を利用して圧力保持試験を行うことができる。従って、圧力保持試験のために、特別に空気源を設ける必要がなく、コストの低減を図ることができる。
 なお、「圧力保持試験」とは、膜モジュールの膜ろ過水流出側から空気圧を掛け、その圧力が一定時間保持されるか否かを確認し、保持されない場合は膜破断が存在しているものと判断する試験を意味する。
 また、請求項5記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、前記膜ろ過水サンプリング管からサンプリングした膜ろ過水の濁度を測定する濁度測定手段を備え、前記濁度測定手段による測定濁度値が第1設定値以上になった場合において、膜破断を生じている膜モジュールを特定する手段として、膜ろ過水サンプルを各膜モジュール毎に切替える手段と、エアリーク試験により特定する手段のいずれかを選択できるように構成されていることを特徴とする。
 上記の如く、膜破断を生じている膜モジュールを特定する手段を2種類設け、いずれかを選択できるように構成することにより、膜破断を生じている膜モジュールを効率よく特定することが可能となる。
 なお、「エアリーク試験」とは、膜モジュールの原水側から空気圧を掛け、膜破断が存在している膜モジュールでは膜ろ過水側に気泡が生じることにより、膜破断検出器の液面を押し下げ、これにより異常を検出することによって膜破断を生じている膜モジュールを特定する試験を意味する。
 また、請求項6記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、薬液を貯留する薬液貯留タンクと、前記薬液貯留タンク内の薬液を前記薬液注入管に供給する薬液供給手段と、前記薬液洗浄時に前記逆洗計量槽液面に供給される圧縮空気の流量を調整するエア供給弁と、を備え、前記エア供給弁の開度を最小とし、前記薬液供給手段の駆動力を最大として、薬液による浸漬洗浄を行うことを特徴とする。
 上記の如く、エア供給弁の開度を最小とし、前記薬液供給手段の駆動力を最大とすることで高濃度の薬液による浸漬洗浄を行うことが可能となる。
 また、請求項7記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、前記物理洗浄時に前記逆洗計量槽液面に供給される圧縮空気の流量を調整するエア供給弁と、前記逆洗計量槽に貯留されている膜ろ過水の液面レベルを計測する液面レベル計測手段と、前記逆洗計量槽液面に圧縮空気が供給されることにより、逆洗計量槽液面が下降する際の液面下降速度を計測して洗浄流量を算出し、次回の物理洗浄時において前記算出された洗浄流量になるようにエア供給弁の開度を調整する弁制御手段と、を備えたことを特徴とする。
 上記構成によれば、原水の水温に応じて膜透過性が変化する膜モジュールに対して最適な洗浄流量により洗浄を行うことが可能となる。
 また、請求項8記載の発明は、請求項1又は2記載の自己洗浄槽保有型膜ろ過装置であって、薬液を貯留する薬液貯留タンクと、前記薬液貯留タンク内の薬液を前記薬液注入管に供給する薬液供給手段と、前記薬液洗浄時に前記逆洗計量槽液面に供給される圧縮空気の前記逆洗計量槽液面への供給・遮断を行う逆洗エア開閉弁と、薬液排出水を原水で希釈化すべく、薬液排出水を排水する排水管に原水を供給する原水配管と、前記原水配管に設けられ、原水の前記排水管への供給・遮断を行う原水ドレン弁と、前記膜モジュール内に薬液を浸漬させて洗浄を行う浸漬洗浄完了後に、前記原水ドレン弁を開状態にし、この原水ドレン弁の開状態を維持したまま、前記逆洗エア開閉弁を第1設定時間だけ開状態とし、第1設定時間終了後は第2設定時間だけ閉状態とし、この逆洗エア開閉弁の開状態と閉状態とを所定回数繰り返し、浸漬洗浄後の薬液排出水の希釈比率を実質的に変化させて排出する希釈化制御手段と、を備えたことを特徴とする。
 上記構成によれば、浸漬洗浄完了後、薬液排出水を排水するに際して、原水ドレン弁を開状態にして薬液排出水を原水で希釈して放流するが、原水流量の上限が制限されているため、薬液排出水を所定濃度まで希釈化できない。そこで、原水ドレン弁の開状態を維持したまま、逆洗エア開閉弁を第1設定時間だけ開状態とし、第1設定時間終了後は第2設定時間だけ閉状態とし、この逆洗エア開閉弁の開状態と閉状態とを所定回数繰り返す。これにより、単位時間当たりの薬液排出水の排水量が制限されるので、浸漬洗浄後の薬液排出水の希釈比率を実質的に変化させて排出することができる。この結果、薬液排出水の放流全体としてみると、所定濃度まで希釈化されて排水されたことになる。
 本発明によれば、薬液注入を効率良く且つ各膜モジュールに対して均等に行うこと及び、各膜モジュールから膜ろ過水をサンプリングするに際して各膜モジュールに対して偏ることなく均等に行うことが可能となる。
本発明に係る自己洗浄槽保有型膜ろ過装置の全体構成の概念図。 膜モジュールの取付状態を示す斜視図。 自己洗浄槽保有型膜ろ過装置の平面図。 図3のa-a線矢視断面図。 図3のb-b線矢視断面図。 自己洗浄槽保有型膜ろ過装置に備えられている膜破断検出及び薬液洗浄に必要な構成部材・配管構造等の模式図。 配管部材49の構成を示す図であり、そのうち図7(1)は配管部材49の平面図、図7(2)は配管部材49の断面図。 実施の形態2におけるエア供給に関する配管構造等の模式図。
 以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。
 (実施の形態1)
 図1は本発明に係る自己洗浄槽保有型膜ろ過装置の全体構成の概念図、図2は膜モジュールの取付状態を示す斜視図、図3は自己洗浄槽保有型膜ろ過装置の平面図、図4は図3のa-a線矢視断面図、図5は図3のb-b線矢視断面図である。尚、図1は本発明に係る自己洗浄槽保有型膜ろ過装置の概念構成を示すものであり、該膜ろ過装置を構成する各構成部品や配管系統等の具体的な構成は図2~図5に示されている。
 膜ろ過装置1は、装置中央部に配置された返送・排水槽2、洗浄水槽3、及び逆洗計量槽4を有する。これら返送・排水槽2、洗浄水槽3、及び逆洗計量槽4は、下方から上方向に向けてこの順序で一体的に形成されている。より詳しくは、逆洗計量槽4が洗浄水槽3内に収納され、洗浄水槽3の内壁と逆洗計量槽4の外壁との間に通水路空間60が形成されている。尚、逆洗計量槽4の底部には、逆洗計量槽4と通水路空間60とを連通する連通孔4aが形成されている。また、逆洗計量槽4と洗浄水槽3とは同心状に配置されており、且つ連通孔4aは逆洗計量槽4底部の中央位置に形成されている。従って、洗浄水槽3内に流入した膜ろ過水は通水路空間60を通り、逆洗計量槽4の底部から逆洗計量槽4内に流入するようになっている。
 膜ろ過装置1の下部には円盤状の原水供給ブロック5が配置され、膜ろ過装置1の上部には円盤状の膜ろ過水集水ブロック6が配置され、原水供給ブロック5の外方側端部と膜ろ過水集水ブロック6の外方側端部との間には複数個(本実施の形態では10個)の膜モジュール7a~7j(膜モジュールを総称するときは参照符号7で示し、各膜モジュールを個別に示すときは参照符号7に添字a~jを付して示す。)が介在されている。これら膜モジュール7は、図2に示すように、膜ろ過装置1の中心部を中心とした円周上に立設されている。従って、各膜モジュール7と膜ろ過装置1の中心部との距離は、等しい。ここで、本発明で使用する膜モジュール7は、旭化成ケミカルズ(株)のケーシング収納型加圧型MF膜モジュールを選定しているが、メーカー、型式、膜種を限定するものではなく、加圧型MF膜モジュールであれば使用することができる互換性を有する構造としている。尚、図1においては図面の簡略化を図るため、1つの膜モジュール7のみが描かれている。
 原水供給ブロック5は中央孔8を備えている。この中央孔8には、図4及び図5に示すように、排水管9及び排水管9の下端部付近を外装する外装管30が挿通している。排水管9の上端は返送・排水槽2の底部と連通している。また、外装管30は図4及び図5に示すように原水流入配管L10と接続されており、後述するように原水が外装管30を介して原水供給ブロック5の原水流入口5aから流入可能となっている。更に、外装管30は図3及び図4に示すように循環水配管L2と連通しており、後述するように循環水が外装管30を介して原水供給ブロック5の原水流入口5aから流入可能となっている。
 原水供給ブロック5には、原水流入口5aと、原水流入口5aから放射線状に延び各膜モジュール7に至る原水供給流路11(図4及び図5参照)とが形成されている。原水流入口5aから原水供給ブロック5内に流入した原水は、各原水供給流路11を通って各膜モジュール7の下部に供給されるようになっている。
 膜ろ過水集水ブロック6は中央孔12を備えている。この中央孔12には逆洗計量槽4の上部が嵌り込み、逆洗計量槽4を収納する洗浄水槽3の上方開口を塞ぐようにして配置されている。膜ろ過水集水ブロック6は、各膜モジュール7の上部に連通し且つ洗浄水槽3に向けて延びる複数の膜ろ過水集水流路13(図4及び図5参照)が形成されている。このような構成により、各膜モジュール7でろ過された膜ろ過水は、各膜ろ過水集水流路13を通って洗浄水槽3に集水されることになる。
 また、各膜モジュール7と返送・排水槽2との間には連通管14が設けられている。この連通管14は、ろ過時には循環水を膜モジュール7から返送・排水槽2に導く働きをし、逆洗浄時には洗浄水槽3内の膜ろ過水を、膜ろ過水集水流路13から膜モジュール7を経て返送・排水槽2に導く働きをする。
 また、返送・排水槽2の下方には空気槽15が設けられており、この空気槽15にはコンプレッサ16が接続されている。空気槽15は配管L1を介して逆洗計量槽4の上部に接続されている。
 また、返送・排水槽2と原水供給ブロック5とは、排水管9、循環水配管L2及び外装管30を介して連通されている。この循環水配管L2には循環ポンプP1が設けられている。循環ポンプP1の駆動により、循環水は、返送・排水槽2→排水管9→循環水配管L2→外装管30→原水供給ブロック5→膜モジュール7→連通管14→返送・排水槽2の経路を経て循環されるようになっている。
 また、膜モジュール7の上部には膜モジュール点検口20及び膜破断検出器21が備えられている。膜モジュール点検口20は膜モジュール7と同一径であり、従来例のような絞り込む形状のコネクタを用いていないので、装置から膜モジュールを取り外すことなく膜モジュールを修繕することが可能という利点がある。尚、膜モジュールの修繕は、破断した膜チューブを専用の補修ピンで塞ぐことにより行われる。
 また、膜ろ過水集水流路13には緊急遮断弁ASVが設けられている。後述するように、膜モジュール7の膜破断が膜破断検出器21によって検出されたときは、緊急遮断弁ASVは「閉」状態となり、膜モジュール点検口20から膜を修繕することができるようになっている。
 また、逆洗計量槽4の上部開口は天板22によって閉止されており、この天板22には、逆洗計量槽4内の液面レベルを計測する逆洗計量槽レベル計A1が設けられている。レベル計A1は、液面レベルがハイレベル位置Hからローレベル位置Lまでのレベルを連続的に計測可能となっている。このレベル計A1は逆洗浄時に逆洗計量槽4の液面下降速度を計測する際に使用される。
 また、天板22には膜ろ過水流出管41が接続されている。原水供給ブロック5内の各原水供給流路11には、膜モジュール供給元弁V20が設けられている。
尚、図1において、V1は原水流入弁、V2はろ過水流出弁、V3は循環水弁、V4はエア供給弁、V5は洗浄排水弁、V6は返送・排水槽エア抜弁、V7はエアスクラビング弁である。
 また、図5において、L40は原水配管であり、この原水配管L40は排水管9に原水を供給するための配管であって、薬液洗浄工程において排水管9から排出される薬液排出水を原水で希釈化するため等に用いられる。また、図5において、V40は原水ドレン弁であり、この原水ドレン弁V40は原水配管9に設けられ排水管9への供給・遮断を行う開閉弁である。尚、原水貯留槽(原水貯留タンク)内の原水は、原水ポンプ(図示せず)の駆動によって膜ろ過装置1に供給される。但し、原水貯留槽が膜ろ過装置1の上方に存在する場合は、原水が自然に供給され得ることから、強制的に供給する原水ポンプを省略する構成(実施の形態2)としてもよい。
 更に、図1、図5及び図6に示すように、膜破断検出及び薬液洗浄に必要な構成部材・配管構造等が備えられている。即ち、逆洗計量槽4内には、配管部材49が設けられている。この配管部材49は、図7に示すように、円盤状基台50と、円盤状基台50の下面から下方に延びる管体51とを備える。管体51は、薬液を注入する薬液注入管51aの内側に膜ろ過水をサンプリングする膜ろ過水サンプリング管51bが配置された2重管構造をなしている。この管体51の下端部は、図4及び図5に示すように、連通孔4aの近傍に位置するように配設されている。薬液注入管51aの上端は円盤状基台50の下面に接触している。この薬液注入管51aの下端部には、その下端部を覆おうゴム状の閉止体58から構成されるチャッキ弁59が設けられている。このチャッキ弁59は、薬液注入時には注入圧で閉止体58が開状態となり、薬液注入時でないときは膜ろ過水の水圧で閉止体58が閉状態となるように構成されている。これにより、薬液注入時のみ薬液が注入され、それ以外のときに膜ろ過水が薬液注入管51a内に流入することが防がれている。
 また、管体51に形成された、薬液注入管51aと膜ろ過水サンプリング管51bとの間の薬液注入路52は、円盤状基台50に形成されている薬液注入路53と連通している。一方、膜ろ過水サンプリング管51bは、その上端が薬液注入路53を通って円盤状基台50内に貫入している。円盤状基台50には、配管接続口54,55が形成されている。この配管接続口54には配管L3の一端が接続され、この配管L3の他端は濁度計45に接続されている。これにより、膜ろ過水サンプリング管51bは配管L3を介して濁度計45に接続され、逆洗計量槽4内の膜ろ過水は膜ろ過水サンプリング管51bからサンプリングされて濁度計45に与えられ、濁度計45によって濁度が測定される。なお、配管L3には開閉弁V30が設けられている。
 一方、円盤状基台50の配管接続口55には、配管L20の一端が接続されている。この配管L20の他端は、後述する注入ポンプ101を介して洗浄用薬液(次亜塩素酸ナトリウム)を貯留する貯留槽100に接続されている。これにより、貯留槽100に貯留されている洗浄用薬液は、注入ポンプ101によって、配管L20、薬液注入路53、及び薬液注入路52を経て逆洗計量槽4の底部連通孔4aに注入される。
 このように、上記構造の配管部材49を逆洗計量槽4に設けることにより、膜破断検出及び薬液洗浄に必要な構成部材・配管構造等を容易に配設することができる。
 また、濁度計45は、配管L4、各膜モジュール7a~7jに対応して設けられた開閉弁V32a~32j(開閉弁を総称するときは参照符号V32で示し、各開閉弁を個別に示すときは参照符号V32に添字a~jを付して示す。)を介して各膜モジュール7a~7jに個別に接続されている。配管L4には、開閉弁V31が設けられている。
 また、洗浄用薬液(次亜塩素酸ナトリウム)を貯留する貯留槽100及び薬液注入用の注入ポンプ101が設けられている。薬液洗浄に際しては、注入ポンプ101駆動によって貯留槽100内の薬液が薬液注入管51aから逆洗計量槽4の底部連通孔4aに注入されるようになっている。また、図6に明瞭に示すように、通水路空間60の上部で且つ膜ろ過水集水ブロック6出口側近傍には、膜モジュール出口圧力計A2が設けられている。この膜モジュール出口圧力計A2によって膜モジュールろ過水側の圧力を計測することができる。
 また、本発明に係る膜ろ過装置1は、図1に示すように制御装置80を備えている。制御装置80は、膜ろ過装置1に備えられた各種の計測器等からの計測信号を受け、各弁の開閉制御や開度調整等を行い、また、各種のポンプやコンプレッサの駆動/停止を制御する。また、制御装置80は、膜ろ過装置1の運転動作に関連する種々の工程(例えば、ろ過工程、物理洗浄工程、膜破断検出工程、薬液洗浄工程等)の処理を制御する。
 上記構成の膜ろ過装置では、原水供給ブロック5に供給された原水は各膜モジュール7に対して均一に分配供給され、また、各膜モジュール7からの膜ろ過水は膜ろ過水集水ブロック6を通って中心部に配置された洗浄水槽3に均一に集水され、更に、循環水は各膜モジュール7から各連通管14を介して中心部に配置された返送・排水槽2に均一に集水されることになる。このことは、各膜モジュール7に対して均一な原水の供給、膜ろ過水および循環水の流出、逆洗水の供給を行うことができることを意味する。従って、従来の直管配置方式に比べると、膜モジュール間に生じていた不均一なファウリングを解消することができ、低動力で稼動することが可能となる。
 尚、本発明に係る膜ろ過装置ではストレーナ40を設け、膜モジュールでろ過する前段処理としてストレーナ40によって原水を予めろ過しておくことが好ましい。
 次いで、上記構成の膜ろ過装置の運転動作について説明する。
A.ろ過工程
 原水流入弁V1及びろ過水流出弁V2を「開」状態とする。これにより、原水は、原水供給ブロック5の原水供給流路11を経て膜モジュール7の下部に供給される。そして、原水は膜モジュール7を通過する際に膜ろ過処理される。膜ろ過水は、膜モジュール7の上部から膜ろ過水集水ブロック6の膜ろ過水集水流路13を通って洗浄水槽3に流入する。また、ろ過処理時においては、循環ポンプP1を「運転」状態とし、循環水弁V3を「開」状態とする。これにより、返送・排水槽2に貯留されている循環水が、原水供給ブロック5の原水供給流路11に流入し、膜モジュール7の膜表面を通り、連通管14から返送・排水槽2に戻る循環経路を巡る。そして、循環水が膜モジュール7の膜表面を通過することにより、クロスフローによるファウリング防止が行われる。このようなろ過工程が所定時間行われた後、物理洗浄工程に移る。
 B.物理洗浄工程
 物理洗浄工程はろ過継続時間30~90分毎に1回当たり1~2分間行われる。
 原水流入弁V1、ろ過水流出弁V2及び循環水弁V3を「閉」状態とし、循環ポンプP1を「停止」する。また、エア供給弁V4及び洗浄排水弁V5を「開」状態とする。循環水弁V3を「閉」状態とし、循環ポンプP1を「停止」することにより、循環水の流れを停止する。また、エア供給弁V4を「開」状態とすることにより、逆洗計量槽4内のろ過水が洗浄水槽3上部から逆流して、膜ろ過水集水ブロック6の膜ろ過水集水流路13を通って膜モジュール7に供給され、膜モジュール7内が逆流洗浄されることになる。
 ここで、原水の水温の変化による水の粘性特性から、膜モジュール7内の膜透過特性が変化する(具体的には水温が高ければ膜透過性は高くなり、水温が低ければ膜透過性も低くなる。当該選定膜モジュールでは、水温25℃のときの透過性を1としたとき、0℃では0.5となる。)ことから、膜モジュール7の逆流洗浄に際しては以下のような制御を行っている。即ち、逆洗計量槽4の液面下降速度を計測して洗浄流量を演算し、原水の水温に応じて膜透過性が変化する膜モジュール7に対して最適な洗浄流量により洗浄を行うように制御している。以下、具体的に説明する。
 先ず、物理洗浄工程時には、エア供給弁V4の開度が初期値Q%(全開に対してQ%を意味する。本実施の形態では80%とする。)に設定され、且つ、エア供給弁V4の開度Q%で逆洗計量槽4内の全ての膜ろ過水を通水路空間側に排出するのに要する時間(換言すれば、逆洗計量槽4の液面がハイレベル位置Hからローレベル位置Lに達するまでの時間)を所定時間T(逆洗計量槽4の容量が800Lの場合である本実施の形態では30秒)に予め設定されている。
 そして、運転当初の逆流洗浄に際しては、エア供給弁V4の開度を80%、エア供給弁V4による圧縮空気の供給時間を30秒として、逆洗計量槽4内の膜ろ過水を連通孔4aを通って通水路空間60の下部から上部に向けて逆流させて、膜ろ過水を膜モジュール7に供給する。一方、この逆流洗浄時において、レベル計A1によって、逆洗計量槽4の液面の変化(ハイレベル位置Hからローレベル位置Lまでのレベル変化)が計測されている。そして、レベル計A1による計測によって、ハイレベル位置Hから30秒経過してもローレベル位置Lに達していない場合は、原水の温度が低く膜モジュール7内の膜透過性が低く、そのため充分な洗浄流量が供給できていないと判定し、次回の逆流洗浄に際しては、エア供給弁V4の開度をアップする。本実施の形態では、エア供給弁V4の開度を、80%に0.1%を付加した(80+0.1)%に設定する。
 一方、レベル計A1による計測によって、ハイレベル位置Hから30秒経過前にローレベル位置Lに達した場合は、原水の温度が高く膜モジュール7内の膜透過性が高く、そのため過剰な洗浄流量を供給していると判定し、次回の逆流洗浄に際しては、エア供給弁V4の開度をダウンする。本実施の形態では、エア供給弁V4の開度を、80%に0.1%を減じた(80-0.1)%に設定する。
 そして、次回以降の逆流洗浄に際しても、上記と同様のエア供給弁V4の開度調整が行われる。即ち、レベル計A1による計測によって、ハイレベル位置Hから30秒経過してもローレベル位置Lに達していない場合は、エア供給弁V4の開度を、現在の開度(80.1)%に0.1%を付加した(80.1+0.1)%に設定する。レベル計A1による計測によって、ハイレベル位置Hから30秒経過前にローレベル位置Lに達した場合は、エア供給弁V4の開度を、現在の開度(80.1)%に0.1%を減じた(80.1-0.1)%に設定する。
 こうして、レベル計A1による計測結果に応じてエア供給弁V4の開度調整を行うことにより、膜モジュール7に対して最適な洗浄流量により洗浄を行うことが可能となる。
 尚、後述するように膜破断検出工程により膜破断している膜モジュール7が特定された場合は、その膜破断している膜モジュール7に関する緊急遮断弁ASVを「閉」状態とし、当該膜モジュール7の使用を停止し、その他の膜モジュール7によって通常運転を続行するようになっている。従って、この場合には、全ての膜モジュール7に対する洗浄流量は、使用停止した膜モジュール7に対する洗浄流量分だけ減じられた流量で充分である。そのため、膜破断している膜モジュール7が検出された場合には、残りの膜モジュール7の本数に応じたローレベル位置Lを設定し(例えば、全本数(10本)の膜モジュール7に対しての初期値Lを-600mmとする場合において、1本の膜モジュール7に膜破断が検出されると、初期値Lを-600×(9/10)=-540mmと設定し)、エア供給弁V4の開度についても初期値Q%を設定し(同様に、初期値Q%を80×(9/10)=72%と設定し)上記初期値Q%が80%である場合と同様にレベル計A1による計測結果に応じてエア供給弁V4の開度調整を行い、膜モジュール7に対して最適な洗浄流量により洗浄を行うようになっている。
 尚、逆流洗浄時には、膜モジュール7からの流出水は、連通管14を通り返送・排水槽2に導かれ、洗浄排水弁V5を介して系外に排出される。この逆流洗浄処理と同時にエアスクラビング処理が実行される。即ち、エアスクラビング弁V7の「開」状態により、空気槽15内の圧縮空気が膜モジュール7の下部から流入し、膜モジュール7内の中空糸膜を振動させて膜面付着物を剥離・除去する。そして、所定時間経過後に、エアスクラビング弁V7を「閉」状態とし、エアスクラビング処理が終了する。このようにして、逆流洗浄処理及びエアスクラビング処理が終了した後は、フラッシング処理が実行される。
 フラッシング処理においては、原水流入弁V1を「開」状態とする。これにより、膜モジュール7に供給された原水はろ過膜を透過することなく膜表面をリンスし、返送・排水槽2に流入される。そして、フラッシング処理時間経過後は、洗浄排水弁V5を「閉」状態とする。
 こうして、物理洗浄工程が行われた後は原則的にはろ過工程に戻り、ろ過工程と物理洗浄工程とが繰り返し行われる。但し、2~3日に1回程度、物理洗浄の逆流洗浄及びエアスクラビング処理が終了した後に、膜破断検出工程(膜破断が検出された場合に、膜破断を生じている膜モジュールを特定する処理工程を含む)が行われる。
 C.膜破断検出工程
 本実施の形態においては、膜破断検出及び膜膜破断が検出された場合に膜破断モジュールを特定する方法としては、大別して、(1)膜ろ過水の濁度測定による方法(膜ろ過水の濁度測定により膜破断を検出し、膜破断が検出された場合は膜モジュール毎の濁度測定により膜破断モジュールを特定する)と、(2)圧縮空気を利用した膜モジュールに対する圧力保持試験により膜破断を検出し、膜破断が検出された場合はエアリーク試験により膜破断モジュールを特定する方法を用いている。
 通常は上記(1)の濁度測定による方法によって濁度を監視している。しかし、原水があまり汚れていない場合には濁度監視のみでは、膜モジュールの膜破断を検出できない。そこで、本実施の形態では、通常は濁度を監視し、定期的(例えば10日間隔)に上記(2)の圧力保持試験及びエアリーク試験による方法により膜破断検出(膜破断モジュールの特定を含む)を行っている。
 (1)膜ろ過水の濁度測定による方法による膜破断検出(膜破断が検出された場合に、膜破断を生じている膜モジュールを特定する処理工程を含む)
 先ず、通常時は、濁度計45により膜モジュール7の濁度を監視している。即ち、開閉弁V30及び開閉弁V31の開閉状態を、開閉弁V30を「開」、開閉弁V31を「閉」に設定する。これにより、膜ろ過水サンプリング管51bから膜ろ過水をサンプリングし、濁度計45により濁度の測定が行われる。この膜ろ過水のサンプリングに際しては、膜ろ過水サンプリング管51bの下端部が逆洗計量槽4の底部中央位置に存在する連通孔4a近傍に位置しているので、各膜モジュール7から通水路空間60を通って集められ、逆洗計量槽4内に流入する膜ろ過水は各膜モジュール7から均等に流入することになる。従って、いずれかの膜モジュール7に偏った状態で膜ろ過水のサンプリングが行われることはなく、各膜モジュール7に均等な状態で膜ろ過水のサンプリングを行うことができる。これにより、膜ろ過水の濁度測定による膜破断の精度が向上する。
 次いで、濁度計45によって、サンプリング水の濁度が所定値X1より大きいか否かが判断され、サンプリング水の濁度が所定値X1未満の場合は膜破断が発生していないと判断され、この場合は次回の濁度測定に移り、濁度監視が継続される。尚、所定値X1(第1設定値に相当)は1本の膜モジュール7に関する膜破断発生と判断し得る基準値(後述する所定値X2(第2設定値に相当))を膜モジュール7の総本数に対応して希釈化した値である。例えば、膜モジュール7の総本数が10本の場合には、所定値X1は当該基準値(後述する所定値X2)の(1/10)倍となっている。
 一方、サンプリング水の濁度が所定値X1以上の場合は膜破断が発生していると判断され、膜破断している膜モジュール7の特定処理が行われる。先ず、膜モジュール7の特定処理のために開閉弁V30及び開閉弁V31の開閉状態の切替えが行われる。即ち、開閉弁V30を「閉」、開閉弁V31を「開」に設定する。これにより、膜モジュール7毎に、膜モジュール7上部→膜モジュール7に対応する開閉弁V32→配管L3→開閉弁V31→濁度計45に至る膜ろ過水サンプリング配管経路が構成され、膜モジュール7毎に濁度の測定を行い、膜破断している膜モジュール7の特定を行うことが可能となる。尚、各膜モジュール7の濁度測定に際しては、濁度測定すべき選択された膜モジュール7に対応した開閉弁V32を「開」状態とし、その他の開閉弁V32は「閉」状態とする。(例えば、膜モジュール7aを選択する場合は、開閉弁V32aを「開」状態とし、その他の開閉弁V32b~V32jを「閉」状態とする。そして、各膜モジュールに対して、濁度計45によって、サンプリング水の濁度が所定値X2より大きいか否かが判断され、サンプリング水の濁度が所定値X2未満の場合は当該膜モジュール7に膜破断が発生していないと判断され、次の膜モジュール7に関して測定を行う。 一方、サンプリング水の濁度が所定値X2以上の場合は、当該膜モジュール7に膜破断が発生していると判断され、当該膜モジュール7に関する緊急遮断弁ASVを「閉」状態とし、当該膜モジュール7の使用を停止し、その他の膜モジュール7によって通常運転を続行する。
 (2)圧力保持試験及びエアリーク試験による方法により膜破断検出
 本装置において、物理洗浄に圧縮空気による動力を用いていることから、その空気源を利用した圧力保持試験を行うことが可能である。ここで、圧力保持試験は、膜モジュール7で使用されている中空糸膜が空気を透過させないことを利用し、膜ろ過水流出側から空気圧を掛け、その圧力が保持されるか否かを確認することにより膜破断の存在を判断するものである。また、圧力保持試験により膜破断が発生していると判断した場合は、破断した膜モジュールを特定するためにエアリーク試験を行う。
 以下、圧力保持試験及びエアリーク試験について具体的に説明する。
 物理洗浄での逆流洗浄終了後、引き続いて、エア供給弁V4の開度を調整して圧縮空気を流量を加減して送り続ける。これにより、逆洗計量槽4内に供給され溢れた空気は通水路空間60を通り膜モジュール7上部に供給される。そして、膜モジュール7のろ過水側(中空糸膜の内側)にあるろ過水は、圧縮空気により膜を透過し、原水側に流出する。尚、この時、原水側は排水弁V5を「開」とし大気圧の状態となっている。
 供給された圧縮空気は、中空糸膜を透過できないことから、膜モジュールろ過水側が空気で満たされ、圧力が徐々に上昇する。そして、膜モジュール出口圧力計A2により圧力が確認され、200KPaまで昇圧したらエア供給弁V4を「閉」状態とし、圧縮空気の供給をストップし、膜モジュール出口圧力計A2により当該圧力が3分間保持されるか確認する。
 圧力が保持されれば、膜破断はないものと判定する。圧力の低下が確認されれば、膜破断が生じているものと判定し、破断膜モジュールを特定するためにエアリーク試験に移行する。
 エアリーク試験では、膜モジュール7を一旦膜ろ過水で満水とした後に、膜ろ過水側を大気圧に開放し、膜モジュール原水側(中空糸膜の外側)にエアスクラビン弁V7から圧縮空気を供給することにより開始する。
 膜モジュール原水側が空気で満たされ、圧力が徐々に上昇するが、膜破断を生じている箇所から空気がリークし、膜モジュールの膜ろ過水側に気泡が生じる。
 気泡は、膜モジュール上方に装備された膜破断検出器21(具体的にはフロートスイッチ)に空気溜りを生じさせ、フロートスイッチが液面の低下により通常のON状態からOFF状態になり、こうして、膜破断検出器21により膜破断を生じている膜モジュール7を特定することができることになる。
 尚、膜破断検出器21で膜破断が特定された膜モジュール7は、緊急遮断弁ASVで分離され、その他の膜モジュール7で膜ろ過が再開される。
 D.薬液洗浄工程
 有機系の汚染によりろ過能力が低下した場合、次亜塩素酸ナトリウムによる簡易薬液洗浄を行う。
 洗浄用薬液貯留槽100内の次亜塩素酸ナトリウムは、注入ポンプ101の駆動によって薬液配管L20を通って薬液注入管51aから逆洗計量槽4の底部連通孔4aに注入される。そして、注入された次亜塩素酸ナトリウムは通水路空間60を通り各膜モジュール7に供給され、これにより薬液洗浄が行われる。ここで、注目すべきは、逆流洗浄時に逆洗水の流量をコントロールするエア供給弁V4の開度を調整することにより、逆洗水流量を微妙にコントロールすることが可能な機能を利用する。
 即ち、洗浄用エアの供給を最少で、注入ポンプ101の駆動を最大とすることで高濃度次亜塩素酸ナトリウムによる浸漬洗浄を行う。ここで、エア供給弁V4の開度は、通常の物理洗浄では70~90%開度で、50m3/hr、薬液洗浄では5~6%開度で0.3m3/hrと160倍の流量制御が可能である。
 また、浸漬洗浄中は原水をそのまま排水し、高濃度次亜塩素酸ナトリウム廃液を通常の浄水残留塩素濃度迄希釈し排水する。尚、浸漬洗浄後は、リンス洗浄を行い通常のろ過工程に復帰する。
 尚、薬液注入に際しては、薬液注入管51aの下端部が逆洗計量槽4の底部中央位置に存在する連通孔4a近傍に位置しているので、通水路空間60から各膜モジュール7に供給される薬液は各膜モジュール7に対して均等に流入することになる。従って、1つの薬液注入管51aによる薬液注入により全ての膜モジュール7に対して薬液を供給することができるので、薬液注入の効率が良い。加えて、各膜モジュール7に均等に薬液が供給されるので、洗浄が不十分である膜モジュール7が存在せず、各膜モジュール7は常に均等な高品質の洗浄がなされることになる。
 (実施の形態2)
 本実施の形態2に係る膜ろ過装置は、簡易薬液洗浄工程において使用する薬液(原液)を所定濃度まで希釈化して放流することを特徴とするものである。
 本実施の形態2に係る膜ろ過装置は、基本的には上記実施の形態1に係る膜ろ過装置と同様の構成を有しており、対応する構成部材・構成要素については同一の番号を付す。実施の形態1と相違する構成としては、原水ポンプが省略されており、また、図1に示すエア供給弁V4に代えて、図8に示すように、エア流量を調整する逆洗流量調節弁V60と逆洗エア開閉弁V61を備えていることである。
 次いで、制御装置80による具体的な簡易薬液洗浄の制御処理を説明する。
 先ず、制御装置80の入力部(例えばタッチパネル)の操作によって、簡易薬液洗浄制御処理に必要な所定の設定値を入力する。所定の設定値としては、使用する薬液濃度M1(次亜塩素酸ナトリウム原液濃度M1)、薬液洗浄のために膜ろ過装置内に浸漬する浸漬次亜塩素酸ナトリウム溶液の濃度M2、注入ポンプ101の最大注入量M3、注入ポンプ101の運転可動域M4、逆洗流量調節弁V60の初期開度M5、浸漬時間M6、放流水残留塩素濃度M7、放流時「開」時間M8、原水捨水流量M9、リンス洗浄繰返し回数M10が挙げられる。M1~M10の入力値に応じて、具体的な処理時間等が変化する。
 本実施の形態においては、所定の設定値M1~M10は具体的には以下の値に設定される。次亜塩素酸ナトリウム原液濃度M1は12%、浸漬次亜塩素酸ナトリウム溶液の濃度M2は1800mg/L、注入ポンプ101の最大注入量M3は50mL/min、注入ポンプ101の運転可動域M4は100%、逆洗流量調節弁V60の初期開度M5は6.0%、浸漬時間M6は240min、放流水残留塩素濃度M7は5mg/L、放流時「開」時間M8は5sec、原水捨水流量M9は10.0m3/hr、リンス洗浄繰返し回数M10は5回である。
 次いで、簡易薬液洗浄の制御処理工程について説明する。なお、逆洗計量槽4の水位Hの変化に応じて制御処理工程が進行するように制御装置80にプログラムされている。また、簡易薬液洗浄の制御処理工程の開始に際しては、緊急遮断弁ASVが「開」に、洗浄排水弁V5が「開」に設定される。
 先ず、逆洗計量槽4の上部凹凸部等により、逆洗計量槽4が満杯の時の水位Hにバラツキがあるため、逆洗流量調節弁V60の初期開度を6.0%、逆洗エア開閉弁V61を「開」とし、逆洗計量槽4の水面を押下げ、水位H=H1(希釈水流量調整開始水位、本実施の形態ではH1=800mmに設定)になった時、希釈水流量調整工程を開始する。
 (希釈水流量調整工程)
 実施の形態1において述べたように、原水の温度に応じて膜モジュール7内の膜透過性が変化するので、設定した希釈水流量(本実施の形態では0.20m3/hrに設定)とならない場合がある。そのため、希釈水流量調整工程では、未だ次亜塩素酸ナトリウムを注入せず、この状態において希釈水流量を調整して、希釈水流量の補正を行う。
 具体的な処理としては、水位Hが5mm毎に低下する到達時間を計測し、29.8secより早い場合は逆洗流量調節弁V60の開度を「0.1%」閉じる制御行い、29.8secより遅い場合は逆洗流量調節弁V60の開度を「0.1%」開く制御行う。
 このような希釈水流量調整を、水位H=H2(浸漬次亜塩調整送液開始水位、本実施の形態ではH2=750mmに設定)に到達するまで行う。従って、水位が800mmから750mmに到達するまで、希釈水流量の調整処理を10回行うことができ、最大1%の補正を行うことができ、設定された希釈水流量により近似した希釈水流量が得られることになる。
 なお、このような希釈水流量調整は、水位750mm到達後の次亜塩素酸ナトリウム注入時も行われ、後述する原水捨水併用工程まで継続する。
 (浸漬次亜塩調整送液工程)
 注入ポンプ101の運転を開始する。これにより、次亜塩素酸ナトリウムが薬液注入管51aの下端部から注入され、逆洗計量槽4から通水路空間60に流れ込む膜ろ過水(洗浄水に相当)と混合され希釈化され、浸漬次亜塩酸ナトリウム溶液の調整が行われる。このような浸漬次亜塩調整送液工程は、水位H=H3(原水捨水開始水位、本実施の形態ではH3=550mmに設定)に到達するまで行う。なお、水位が550mmに到達するまでは、単なる水である洗浄水は排出されるけれども、浸漬次亜塩酸ナトリウム溶液は膜ろ過装置内に留まっており、外部に排出されない。
 (原水捨水併用工程)
 水位がH3(550mm)に到達すると、原水捨水併用工程に進む。即ち、水位が550mmを過ぎると、浸漬次亜塩酸ナトリウム溶液が排出される可能性がある。かかる浸漬次亜塩酸ナトリウム溶液は高濃度であるため、このまま放流することは環境上の制約等でできない。そこで、原水の供給により希釈化して放流することとしている。
 具体的には、原水ドレン弁V40を「開」にする。これにより、浸漬次亜塩酸ナトリウム溶液は原水により希釈化される。但し、原水の流量が限られている(100m3/hr)ため、放流水残留塩素濃度を5mg/Lとすることができない。そこで、希釈比率の調整処理を行って、放流水残留塩素濃度を5mg/Lとして放流するようにしている。具体的には、逆洗エア開閉弁V61を「開」とし、この「開」状態を5sec(第1設定時間に相当)維持し、5sec経過すれば逆洗エア開閉弁V61を「閉」とし、この「閉」状態を30.7sec(第2設定時間に相当)維持し、30.7sec経過すれば、再び逆洗エア開閉弁V61を「開」とし、このような処理を繰り返し行う。なお、注入ポンプ101も逆洗エア開閉弁V61の開閉に応じて運転/停止を行う。このような逆洗エア開閉弁V61の開閉及び注入ポンプ101の運転/停止を繰り返し行うことにより、放流時「開」時間を5sec、放流時インターバル時間を30.7sec、つまり、5sec間放流、30.7sec停止が繰り返えされ、送液量の制限によって全体として希釈比率の調整処理が行われる。そして、このような原水捨水工程は、水位H=H4(浸漬次亜塩調整送液停止水位、本実施の形態ではH4=400mmに設定)に到達するまで行う。   
 (浸漬次亜塩調整送液停止工程)
 水位がH4(400mm)に到達すると、浸漬次亜塩調整送液停止・原水捨水停止・次亜塩浸漬開始工程に進む。具体的には、浸漬次亜塩調整送液停止工程として逆洗エア開閉弁V61を「閉」とし、原水捨水停止工程としては原水ドレン弁V40を「閉」とし、次亜塩浸漬開始工程としては逆洗流量調節弁V60を初期開度に固定し注入ポンプ101を停止する。そして、この状態を240min維持する。つまり、浸漬時間240minとする。この浸漬時間内に膜モジュール7の固着物が薬液洗浄されることになる。
 (浸漬次亜塩酸ナトリウム溶液排出工程)
 浸漬時間240minが経過すると、浸漬次亜塩酸ナトリウム溶液の排出処理が開始される。即ち、浸漬次亜塩酸ナトリウム溶液を所定濃度に希釈化して放流が行われる。
 具体的には、原水ドレン弁V40を「開」にする。逆洗流量調節弁V60は、初期開度に固定したままである。そして、上記原水捨水工程の希釈比率の調整処理と同様に、逆洗エア開閉弁V61を「開」とし、この「開」状態を5sec(第1設定時間に相当)維持し、5sec経過すれば逆洗エア開閉弁V61を「閉」とし、この「閉」状態を30.7sec(第2設定時間に相当)維持し、30.7sec経過すれば、再び逆洗エア開閉弁V61を「開」とし、このような処理を繰り返し行う。
 このような浸漬次亜塩酸ナトリウム溶液排出工程は、水位H=H5(浸漬次亜塩酸ナトリウム溶液排出停止水位、本実施の形態ではH5=50mmに設定)に到達するまで行う。水位が50mmに到達すれば、実質的には浸漬次亜塩酸ナトリウム溶液が全て排出されたものとみなされる。
 (リンス洗浄工程)
 水位が50mmに到達すると、リンス洗浄工程に進む。リンス洗浄工程における具体的な処理としては、水位が50mmから800mmまでろ過処理を行い、水位が800mmに到達すると、ろ過処理を停止して逆流洗浄処理を開始し、水位が50mmに到達すると、逆流洗浄処理を停止する。そして、このようなろ過処理及び逆流洗浄処理を所定繰り返し回数(本実施の形態では5回)繰り返す。
 こうして、リンス洗浄工程が終了すると、簡易薬液洗浄処理が完了することになる。その後は、通常のろ過処理等が行われることになる。
(その他の事項)
 (1)上記実施の形態では、物理洗浄時の圧力供給はコンプレッサで行なっていたが、空気圧シリンダ、油圧シリンダ、加圧給水ポンプ等を用いてもよい。
 (2)上記実施の形態では、逆洗計量槽4内の中央部に、管体51が備えられており、この管体51は、薬液を注入する薬液注入管51aの内側に膜ろ過水をサンプリングする膜ろ過水サンプリング管51bが配置された2重管構造をなした構成とされていたが、本発明はこれに限定されず、逆洗計量槽4内の中央部に、薬液注入管及び膜ろ過水サンプリング管としてそれぞれ使用する2個の管を個別に設けるような構成であってもよい。
 (3)上記実施の形態1のエア供給弁V4は、物理洗浄時及び薬液洗浄時のいずれの時おいても、圧縮空気の流量を調整するように構成されたが、注入ポンプ101から逆洗計量槽4に至る配管を途中で2経路に分岐し、一方の経路に物理洗浄用エア供給弁を設け、他方の経路に薬液用エア供給弁を設けるように構成してもよい。
 (4)上記実施の形態1では、通常は濁度を監視し測定濁度値が所定値X1(第1設定値に相当)以上になった場合には膜ろ過水サンプルを膜モジュール毎に切替え、濁度測定を行い測定濁度値が所定値X2(第2設定値に相当)以上になった膜モジュールを膜破断と特定し、このような測定濁度値による膜破断検出・膜モジュール特定を行い、定期的に圧力保持試験による膜破断検出及びエアリーク試験による膜破断した膜モジュールの特定を行うように構成していた。本発明はこれに限定されず、測定濁度値が所定値X1以上になった場合において、膜破断を生じている膜モジュールを特定する手段として、膜ろ過水サンプルを膜モジュール毎に切替える手段と、エアリーク試験により特定する手段のいずれかを選択するような構成であってもよい。なお、圧力保持試験により膜破断を検出し、膜破断が検出された場合には膜ろ過水サンプルを膜モジュール毎に切替えて膜破断した膜モジュールの特定を行うように構成してもよいが、このような構成では膜破断した膜モジュールの特定までに時間(30分程度)を要するため、その間に高濁度ろ過水が供給される懸念があることから、圧力保持試験により膜破断を検出し、膜破断が検出された場合にはエアリーク試験により膜破断した膜モジュールの特定する構成とするのが好ましい。
 本発明は、装置内に物理洗浄に使用する洗浄水槽を一体に設け、効率良く膜ろ過処理を継続できる自己洗浄槽保有型膜ろ過装置に適用される。
   1:膜ろ過装置             2:返送・排水槽
   3:洗浄水槽              4:逆洗計量槽
   4a:連通孔              5:原水供給ブロック
   6:膜ろ過水集水ブロック    7a~7j:膜モジュール
   15:空気槽             16:コンプレッサ
   21:膜破断検出器       30,31:開閉弁
   45:濁度計             49:配管部材
   50:円盤状基台           51:管体
   51a:薬液注入管         51b:膜ろ過水サンプリング管
   52,53:薬液注入路     54,55:配管接続口
   58:閉止体             59:チャッキ弁
   60:通水路空間          100:貯留槽
   101:注入ポンプ          A1:逆洗計量槽レベル計
   A2:膜モジュール出口圧力計     V4:エア供給弁
   V7:エアスクラビング
   V30,V31,V32a~SV32j:開閉弁
   ASV:緊急遮断弁         V40:原水ドレン弁
   V60:逆洗流量調節弁       V61:逆洗エア開閉弁

Claims (8)

  1.  逆洗計量槽が洗浄水槽内に収納され、洗浄水槽の内壁と逆洗計量槽の外壁との間に通水路空間が形成されると共に、逆洗計量槽の底部には逆洗計量槽と前記通水路空間とを連通する連通孔が形成されるように構成され、
     前記洗浄水槽の外側には複数の膜モジュールが立設されており、
     前記逆洗計量槽と前記洗浄水槽とは同心状に配置されており、且つ前記連通孔は前記逆洗計量槽底部の中央位置に形成されており、
     ろ過処理時には、前記膜モジュールによってろ過された膜ろ過水が前記通水路空間の上部から下部に向けて流入し、前記連通孔を通って前記逆洗計量槽内に流入して貯留され、
     物理洗浄時及び薬液洗浄時には、前記逆洗計量槽内に貯留されている膜ろ過水の液面に圧縮空気を供給して、逆洗計量槽内の膜ろ過水を前記連通孔を通って前記通水路空間の下部から上部に向けて逆流させ膜ろ過水を膜モジュールに供給するように構成され、
     更に、前記逆洗計量槽内の略中央部には、薬液を注入する薬液注入管と、膜ろ過水濁度測定のため前記連通孔を通って逆洗計量槽内に流入する膜ろ過水をサンプリングする膜ろ過水サンプリング管とが配設されていることを特徴とする自己洗浄槽保有型膜ろ過装置。
  2.  前記薬液注入管及び前記膜ろ過水サンプリング管は、薬液注入管の内側に膜ろ過水サンプリング管が配置された2重管構造で構成されている請求項1記載の自己洗浄槽保有型膜ろ過装置。
  3.  前記膜ろ過水サンプリング管からサンプリングした膜ろ過水の濁度を測定する濁度測定手段と、
     前記濁度測定手段による測定濁度値が第1設定値以上になった場合は、濁度測定手段に供給されるサンプリング水を、逆洗計量槽内に流入して貯留される膜ろ過水から膜モジュール毎の膜ろ過水に切替える配管切替手段と、を備え、
     前記濁度測定手段により、前記膜モジュール毎に膜ろ過水の濁度測定を行い、測定濁度値が第2設定値以上になった場合は、第2設定値以上になった当該膜モジュールを膜破断した膜モジュールと判定し、当該膜モジュールの使用を停止する請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
  4.  前記膜モジュールの膜破断を検出する膜破断検出手段として、膜ろ過水濁度の異常検出により膜破断を検出する第1膜破断検出手段と、圧力保持試験により膜破断を検出する第2膜破断検出手段とを備え、
     通常時は前記第1膜破断検出手段によって膜破断検出を行い、定期的に前記第1膜破断検出手段に代えて前記第2膜破断検出手段によって膜破断検出を行うように構成されている請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
  5.  前記膜ろ過水サンプリング管からサンプリングした膜ろ過水の濁度を測定する濁度測定手段を備え、
     前記濁度測定手段による測定濁度値が第1設定値以上になった場合において、膜破断を生じている膜モジュールを特定する手段として、膜ろ過水サンプルを各膜モジュール毎に切替える手段と、エアリーク試験により特定する手段のいずれかを選択できるように構成されている請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
  6.  薬液を貯留する薬液貯留タンクと、
     前記薬液貯留タンク内の薬液を前記薬液注入管に供給する薬液供給手段と、
     前記薬液洗浄時に前記逆洗計量槽液面に供給される圧縮空気の流量を調整するエア供給弁と、を備え、
     前記エア供給弁の開度を最小とし、前記薬液供給手段の駆動力を最大として、薬液による浸漬洗浄を行う請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
  7.  前記物理洗浄時に前記逆洗計量槽液面に供給される圧縮空気の流量を調整するエア供給弁と、
     前記逆洗計量槽に貯留されている膜ろ過水の液面レベルを計測する液面レベル計測手段と、
     前記逆洗計量槽液面に圧縮空気が供給されることにより、逆洗計量槽液面が下降する際の液面下降速度を計測して洗浄流量を算出し、次回の物理洗浄時において前記算出された洗浄流量になるようにエア供給弁の開度を調整する弁制御手段と、
    を備えた請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
  8.  薬液を貯留する薬液貯留タンクと、
     前記薬液貯留タンク内の薬液を前記薬液注入管に供給する薬液供給手段と、
     前記薬液洗浄時に前記逆洗計量槽液面に供給される圧縮空気の前記逆洗計量槽液面への供給・遮断を行う逆洗エア開閉弁と、
     薬液排出水を原水で希釈化すべく、薬液排出水を排水する排水管に原水を供給する原水配管と、
     前記原水配管に設けられ、原水の前記排水管への供給・遮断を行う原水ドレン弁と、
     前記膜モジュール内に薬液を浸漬させて洗浄を行う浸漬洗浄完了後に、前記原水ドレン弁を開状態にし、この原水ドレン弁の開状態を維持したまま、前記逆洗エア開閉弁を第1設定時間だけ開状態とし、第1設定時間終了後は第2設定時間だけ閉状態とし、この逆洗エア開閉弁の開状態と閉状態とを所定回数繰り返し、浸漬洗浄後の薬液排出水の希釈比率を実質的に変化させて排出する希釈化制御手段と、
    を備えた請求項1又は2記載の自己洗浄槽保有型膜ろ過装置。
PCT/JP2014/053143 2013-08-21 2014-02-12 自己洗浄槽保有型膜ろ過装置 WO2015025534A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013171190 2013-08-21
JP2013-171190 2013-08-21
JP2013263357A JP5695727B2 (ja) 2013-08-21 2013-12-20 自己洗浄槽保有型膜ろ過装置
JP2013-263357 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015025534A1 true WO2015025534A1 (ja) 2015-02-26

Family

ID=52483326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053143 WO2015025534A1 (ja) 2013-08-21 2014-02-12 自己洗浄槽保有型膜ろ過装置

Country Status (2)

Country Link
JP (1) JP5695727B2 (ja)
WO (1) WO2015025534A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042738A (ja) * 2015-08-28 2017-03-02 日立造船株式会社 自己洗浄槽保有型膜ろ過装置
CN109876530A (zh) * 2019-03-29 2019-06-14 深圳市优美环境治理有限公司 过滤系统的在线药洗装置及在线药洗方法
CN111729513A (zh) * 2020-07-23 2020-10-02 南京环美科技股份有限公司 一种一体化全自动微滤膜中试机
CN115754193A (zh) * 2022-11-04 2023-03-07 哈尔滨乐普实业有限公司 一种数字化膜组件及其方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106178961B (zh) * 2016-08-03 2018-10-02 海南立昇净水科技实业有限公司 超滤膜设备清洗装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179173A (ja) * 1997-12-24 1999-07-06 Japan Organo Co Ltd 膜分離装置の運転方法及び膜分離装置
JP2003024938A (ja) * 2001-07-10 2003-01-28 Japan Organo Co Ltd 膜濾過システム及びその運転方法
JP2013123652A (ja) * 2011-12-13 2013-06-24 Daiki Ataka Engineering Co Ltd 自己洗浄槽保有型膜ろ過装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3123456U (ja) * 2006-01-17 2006-07-20 久雄 泉 逆洗浄濾過装置
JP3123473U (ja) * 2006-02-20 2006-07-20 久雄 泉 フイルターハウジング濾過装置
JP5175695B2 (ja) * 2008-11-25 2013-04-03 アタカ大機株式会社 膜分離装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11179173A (ja) * 1997-12-24 1999-07-06 Japan Organo Co Ltd 膜分離装置の運転方法及び膜分離装置
JP2003024938A (ja) * 2001-07-10 2003-01-28 Japan Organo Co Ltd 膜濾過システム及びその運転方法
JP2013123652A (ja) * 2011-12-13 2013-06-24 Daiki Ataka Engineering Co Ltd 自己洗浄槽保有型膜ろ過装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042738A (ja) * 2015-08-28 2017-03-02 日立造船株式会社 自己洗浄槽保有型膜ろ過装置
CN109876530A (zh) * 2019-03-29 2019-06-14 深圳市优美环境治理有限公司 过滤系统的在线药洗装置及在线药洗方法
CN109876530B (zh) * 2019-03-29 2024-03-29 深圳市优美环境治理有限公司 过滤系统的在线药洗装置及在线药洗方法
CN111729513A (zh) * 2020-07-23 2020-10-02 南京环美科技股份有限公司 一种一体化全自动微滤膜中试机
CN115754193A (zh) * 2022-11-04 2023-03-07 哈尔滨乐普实业有限公司 一种数字化膜组件及其方法

Also Published As

Publication number Publication date
JP5695727B2 (ja) 2015-04-08
JP2015061718A (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5695727B2 (ja) 自己洗浄槽保有型膜ろ過装置
WO2003059495A1 (en) Methods for improving filtration performance of hollow fiber membranes
JP2001232160A (ja) 膜ろ過装置
US7833420B2 (en) Method for cleaning reclaimed water reuse device
KR101299165B1 (ko) 약품 투입 자동 제어가 가능한 가압식 막 여과 장치 및 방법
CN102616954A (zh) 一体化净水供水方法及系统
JP5855778B2 (ja) 自己洗浄槽保有型膜ろ過装置
JP5147267B2 (ja) 膜ろ過システムの洗浄方法
JP2009195804A (ja) 逆浸透膜モジュールの洗浄方法及び装置
US20070127028A1 (en) Optical measuring device
KR100613401B1 (ko) 컬러 필터용 현상 시스템
JP5761803B2 (ja) 自己洗浄槽保有型膜ろ過装置
JP3818467B2 (ja) 電気脱塩装置の運転方法及びその方法の実施に使用する電気脱塩装置
KR100788906B1 (ko) 처리액 공급 방법
US20230390706A1 (en) Water treatment device and estimation method
JP6457904B2 (ja) 自己洗浄槽保有型膜ろ過装置
CN207002442U (zh) 一种具有反冲洗功能的净水系统
WO2021065422A1 (ja) 膜濾過装置
JP2007245060A (ja) ろ過膜の膜損傷検知試験方法
JPH08229362A (ja) 浸漬型膜濾過装置における膜の薬液洗浄方法及び薬液洗浄装置
JP5987087B2 (ja) 自己洗浄槽保有型膜ろ過装置
JPH11179173A (ja) 膜分離装置の運転方法及び膜分離装置
CN107050981B (zh) 一种循环清洗的过滤设备
JP5251522B2 (ja) 膜分離装置
CN110862160A (zh) 一种二次供水水质监测水路控制系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837585

Country of ref document: EP

Kind code of ref document: A1