WO2015024352A1 - 一种整体式气弹簧组件及地层流体取样器 - Google Patents

一种整体式气弹簧组件及地层流体取样器 Download PDF

Info

Publication number
WO2015024352A1
WO2015024352A1 PCT/CN2013/090641 CN2013090641W WO2015024352A1 WO 2015024352 A1 WO2015024352 A1 WO 2015024352A1 CN 2013090641 W CN2013090641 W CN 2013090641W WO 2015024352 A1 WO2015024352 A1 WO 2015024352A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
gas spring
spring assembly
cylinder
formation fluid
Prior art date
Application number
PCT/CN2013/090641
Other languages
English (en)
French (fr)
Inventor
谭显忠
Original Assignee
中国海洋石油总公司
中海油田服务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国海洋石油总公司, 中海油田服务股份有限公司 filed Critical 中国海洋石油总公司
Publication of WO2015024352A1 publication Critical patent/WO2015024352A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/02Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using gas only or vacuum
    • F16F9/0209Telescopic
    • F16F9/0218Mono-tubular units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids

Definitions

  • the invention relates to the technical field of petroleum exploration equipment, and in particular to an integral gas spring assembly and a formation fluid sampler.
  • high pressure nitrogen is commonly used at home and abroad as a pressure compensation method for "air cushion", that is, a "piston” is added in the same sample bottle casing, and a high pressure nitrogen chamber is isolated as a pressure maintaining air cushion.
  • this method is to directly connect a nitrogen chamber in series in the sampling bottle, and this nitrogen chamber is not a separate sealed whole, and the application is extremely inconvenient.
  • the structure is complicated to manufacture and the cost is increased. It is not only easy to cause leakage of nitrogen into the sample chamber, but also requires a set of high-pressure gas injection equipment. After each sampling operation, pressure relief, disassembly, maintenance, reassembly, gas injection, Sealing and other maintenance work, the operation is very inconvenient, and the maintenance of frequent construction is also very difficult.
  • the present invention provides an integral gas spring assembly that is resistant to high temperatures, high pressure, inflating, and long life, including:
  • a cylinder having a seal on an outer diameter of the cylinder and the cylinder can be installed in a sealed container and sealed by the seal;
  • the high pressure nitrogen gas is filled between the piston and the bottom of the cylinder to form a compressed nitrogen chamber in the cylinder;
  • the piston generates an upward thrust under the action of the high pressure nitrogen gas, wherein the effective stroke of the piston is H;
  • the length of the cylinder is less than the sum of the length of the piston and the effective stroke H of the piston, and a portion of the piston can be moved outside the cylinder.
  • the gas spring assembly can be installed in the sealed container such that the volume reduction caused by the temperature reduction of the liquid or gas in the sealed container can be compensated by the stroke of the piston of the gas spring assembly;
  • the pressure maintained in the sealed container is determined by the thrust of the piston and the area of the piston.
  • the invention also provides a formation fluid sampler, comprising:
  • integral gas spring assembly seals and separates the upper sampling chamber and the lower sampling chamber of the sample bottle housing, and the integral gas spring assembly is movable up and down within the sample bottle housing.
  • the formation fluid sampler is configured to maintain the pressure of the high-pressure undisturbed fluid of the formation through the thrust generated by the movement of the piston of the integral gas spring assembly after the liquid or gaseous formation high-pressure undisturbed fluid is returned to the ground. Not less than the required value.
  • the present application utilizes the piston volume compensation function of the integral gas spring assembly to solve the volume reduced by the temperature drop after the formation fluid is sampled, and at the same time, the predetermined top layer fluid pressure holding value is generated by the piston spring force of the nitrogen gas spring;
  • the integral gas spring assembly of the present application has the characteristics of maintenance-free and high working life, can be professionally produced, and greatly simplifies the sampling operation process, and the sampling bottle has a simple structure and a low manufacturing cost;
  • the gas spring assembly in the sampler described in the present application is an integrally fabricated component (high-life 10,000 times or more, maintenance-free), which can be directly placed into the sampling bottle, and high-pressure nitrogen gas is inside the gas spring assembly instead of In the sampling bottle, it is equivalent to the double-layer bottle structure.
  • the nitrogen gas spring does not need to be deflated, and does not need to be re-inflated every time. Compared with the prior art, the operation is very convenient;
  • the gas spring assembly of the present application functions to seal and isolate the sampling chamber and the mud chamber in the sampling bottle, and the volume is filled by the gas spring piston, and the thrust (pressure) generated by the gas spring piston maintains the pressure of the formation high pressure undisturbed fluid. Below the required value; 5.
  • the gas spring assembly of the present application has a seal on the outer diameter thereof. When the whole is placed in the formation fluid sampling bottle, the gas spring assembly can move up and down and separate the sampling chamber and the mud chamber.
  • the present invention utilizes the increased volume of the piston of the gas spring assembly to compensate for the volume reduction of the formation fluid sampling bottle as the temperature decreases after sampling, while maintaining the predetermined formation fluid holding pressure by the piston spring force of the gas spring;
  • the gas spring of the present application can fill high pressure nitrogen gas of different pressures to form gas springs of different pressure levels, thereby matching different sampling formation pressures, thereby satisfying the requirement that the pressure of the formation high pressure undisturbed fluid is not lower than the required value; the user can pass through the formation Pressure to select integral gas springs of different pressure levels;
  • the gas spring component of the present application is embedded in the sampling bottle and belongs to a double-layer structure.
  • the nitrogen gas does not easily leak into the formation fluid sampling cavity, and the work is safer and more reliable.
  • Figure 1 is a schematic illustration of a prior art formation fluid sampler
  • Figure 2 is a schematic illustration of a gas spring assembly in accordance with one embodiment of the present invention.
  • Figure 3 is a schematic view of a gas spring assembly in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic view showing the operation of the gas spring assembly in the closed container according to the embodiment of the present invention
  • FIG. 5 is a schematic view showing the assembly of the formation fluid sampler of the embodiment of the present invention after assembling the gas spring assembly
  • Figure 6 is a schematic illustration of volume compensation after the formation fluid sampler of the embodiment of the present invention is assembled with a gas spring assembly.
  • the gas spring assembly of the embodiment of the present invention mainly includes a cylinder block, a piston, an inner seal member, an outer seal member, a gas injection port and the like, wherein the outer diameter of the cylinder block is provided with a seal member.
  • the cylinder body can be installed in a sealed container and sealed by the sealing member, a piston is arranged in the cylinder body, and a high-pressure nitrogen gas is filled between the piston and the bottom of the cylinder body to form a compressed nitrogen gas in the cylinder body. Cavity.
  • the piston generates an upward thrust under the action of high pressure nitrogen, and the effective stroke of the piston is H.
  • the cylinder body can have two types of cylinder lengths, one is a long cylinder body as shown in FIG. 2, that is, the length of the cylinder body is greater than or equal to the sum of the length of the piston and the effective stroke H of the piston, at this time, the piston Moving in the cylinder; the other is a short cylinder as shown in Fig. 3, that is, the length of the cylinder is less than the sum of the length of the piston and the effective stroke H of the piston, at which point a portion of the piston moves outside the cylinder.
  • the above-mentioned gas spring assembly is easy to manufacture and specialize in production. It can be directly used for on-site use of products with different pressure levels. High-pressure nitrogen does not need to be replaced every time, and maintenance-free, which greatly simplifies the work difficulty and technical requirements of field operators.
  • the gas spring assembly described above is configured to be applied to a sealed container such that when the liquid or gas in the sealed container is reduced in temperature and the volume is reduced, the piston stroke (extension) of the gas spring assembly can be used. Compensate for the reduced volume; the pressure maintained is determined by the thrust of the gas spring piston (within the effective stroke H) and the piston area.
  • an embodiment of the present invention further provides a formation fluid sampler.
  • the formation fluid sampler includes a sampling bottle, and some fittings and sealing elements, wherein the sample bottle housing is provided with the gas spring assembly described above.
  • the gas spring assembly functions to isolate the upper sampling chamber (ie, the formation fluid sampling chamber) and the lower sampling chamber (ie, the mud chamber) in the sampling bottle, and the pressure holding device of the sampling chamber.
  • the gas spring assembly is used to compensate for the volume and pressure loss.
  • the volume V of the formation fluid sampling chamber reduced by the temperature drop is compensated according to the following formula, and the formation fluid sample is maintained at a predetermined holding pressure P or more:
  • Holding pressure? piston top force Q / piston area S;
  • the gas spring assembly of the embodiment of the present invention is used in a formation fluid sampler as follows: In a formation fluid sampling bottle, a set of fully independent and self-sealing high pressure "gas springs are separately installed. "Component”, the component can move up and down in the sampling bottle, and isolate the "sampling chamber” of the filling formation fluid from the "mud chamber” of the wellbore slurry; at the same time, the piston is reset by the gas spring to compensate the sampling chamber The volume that decreases with decreasing temperature; using the energy of the gas spring (piston thrust), keeps the pressure of the sample obtained within the required value.
  • the piston movement and the generated thrust in the gas spring assembly can compensate for the volume reduction of the sampling fluid "sampling chamber” with temperature drop, and can also be used for the sample cavity. Provide adequate pressure to maintain.
  • the gas spring assembly is an integrally formed component which can be directly placed in the sampling bottle, and the high pressure nitrogen gas is inside the gas spring assembly instead of the sampling bottle, which is equivalent to double
  • the layered bottle structure is very convenient to operate compared to the related art. When the sample bottle is maintained, the gas spring does not need to be deflated, and it is not necessary to re-inflate each time.
  • the gas spring of the embodiment of the invention can fill high pressure nitrogen gas of different pressures to form gas springs of different pressure levels, thereby matching different sampling formation pressures, thereby satisfying the requirement that the pressure of the formation high pressure undisturbed fluid is not lower than the required value; Integral gas springs of different pressure levels can be selected by formation pressure.
  • the embodiment of the present invention can compensate for the volume reduction of the sampling fluid "sampling chamber" with temperature drop by utilizing the integrally formed gas spring assembly, and at the same time, maintain the predetermined formation fluid pressure holding value by using the piston spring force of the gas spring.
  • the structure is simple and the manufacturing cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种整体式气弹簧组件及地层流体取样器被公开。气弹簧组件包括缸体、活塞、密封件、注气口,其中活塞与缸体底部之间填充有高压氮气,在缸体内形成一个压缩氮气腔;活塞在高压氮气的作用下产生向上的推力,其中活塞的有效行程为H;缸体的长度小于活塞的长度与活塞的有效行程H之和,活塞的一部分能够移动到缸体外。气弹簧组件的外径上有密封件,当整体置于地层流体取样瓶内时,气弹簧组件可以上下移动并分隔取样腔和泥浆腔。该气弹簧组件利用活塞伸出所增加的体积来补偿地层流体取样瓶在取样后随温度下降而减少的体积量,同时利用活塞顶力维持预定的地层流体保压值。

Description

一种整体式气弹簧组件及地层流体取样器
技术领域
本发明涉及石油勘探设备技术领域, 尤其涉及一种整体式气弹簧组件及 地层流体取样器。
背景技术
石油勘探过程中, 需要用地层测试仪器下井抽取地层流体样品, 当地层 测试仪器返回地面后, 为保持所获样品不因温度的降低而发生相变, 通常需 要使取样瓶具有压力补偿及维持装置。
目前国内外普遍釆用高压氮气作为 "气垫" 的压力补偿方式, 即在同一 个取样瓶外壳内, 增加一个 "活塞" , 并隔离出一个高压氮气腔作为保压气 垫。 结合图 1所示, 这种方法是在取样瓶内直接串联了一个氮气腔, 而这种 氮气腔不是一个独立的密封整体, 应用极为不便。 该结构制作复杂、 成本上 升, 不但容易产生氮气泄漏到样品腔的被污染现象, 而且还需要一套高压注 气设备, 每次取样作业之后需要泄压、 拆卸、 保养、 重新装配、 注气、 密封 等一系列维修保养工作, 操作十分不便, 频繁施工的维修保养难度也很大。
发明内容
为了解决现有技术存在的问题, 本发明提供了一种耐高温、 耐高压、 免 充气、 寿命长的整体式气弹簧组件, 包括:
缸体, 所述缸体的外径上设有密封件, 并且所述缸体能够安装在密封容 器内并利用所述密封件实现密封;
活塞, 所述活塞设置在所述缸体内;
其中所述活塞与所述缸体底部之间填充有高压氮气, 从而在所述缸体内 形成一个压缩氮气腔;
所述活塞在所述高压氮气的作用下产生向上的推力, 其中所述活塞的有 效行程为 H; 所述缸体的长度小于所述活塞的长度与所述活塞的有效行程 H之和, 所 述活塞的一部分能够移动到所述缸体外。 其中, 所述气弹簧组件可以安装在密封容器之内, 使得所述密封容器内 的液体或气体受温度降低而引起的体积量减少可利用所述气弹簧组件的活塞 的行程来补偿; 在所述密封容器内维持的压力由所述活塞的推力与活塞面积 所决定。 本发明还提供了一种地层流体取样器, 包括:
取样瓶外壳,
如上所述的整体式气弹簧组件, 其安装于所述取样瓶外壳内,
其中所述整体式气弹簧组件密封并分隔所述取样瓶外壳的上取样腔和下 取样腔, 且所述整体式气弹簧组件可在所述取样瓶外壳内上下移动。
其中, 所述地层流体取样器设置成能够在井下获取液态或气态的地层高 压原状流体返回地面后, 通过所述整体式气弹簧组件的活塞移动所产生的推 力维持所述地层高压原状流体的压力不低于所需要的值。 与相关技术相比, 本申请上述方案具有如下有益效果:
1、本申请利用整体式气弹簧组件的活塞体积补偿作用, 解决地层流体取 样后随温度下降而减少的体积, 同时利用氮气弹簧的活塞顶力产生预定的地 层流体保压值;
2、 本申请整体式气弹簧组件具有免维护、 工作寿命高的特点, 可以专业 化制作, 并大大简化取样操作流程, 同时取样瓶的结构简单, 制造成本较低;
3、本申请所述的取样器中的气弹簧组件是一个整体制成的元件(高寿命 10000 次以上、 免维护) , 可直接放入取样瓶内, 高压氮气在气弹簧组件内 部, 而不是在取样瓶里, 因而相当于双层瓶子结构, 在保养取样瓶时, 氮气 弹簧不用放气, 无需每次作业都重新充气, 相较于现有技术, 其操作非常方 便;
4、 本申请气弹簧组件起到密封和隔离取样瓶内的取样腔和泥浆腔的作 用, 由气弹簧活塞进行体积填充、 且气弹簧活塞产生的推力 (压强) 维持地 层高压原状流体的压力不低于所需要的值; 5、本申请气弹簧组件的外径上有密封件, 当整体置于地层流体取样瓶内 时, 气弹簧组件可以上下移动并分隔取样腔和泥浆腔。 本发明利用气弹簧组 件的活塞伸出所增加的体积来补偿地层流体取样瓶在取样后随温度下降而减 少的体积量, 同时利用气弹簧的活塞顶力维持预定的地层流体保压值; 6、本申请气弹簧可以填充不同压力的高压氮气, 以形成不同压力等级的 气弹簧, 进而匹配不同取样地层压力, 从而满足维持地层高压原状流体的压 力不低于所需要值的要求; 用户可以通过地层压力来选取不同压力等级的整 体式气弹簧;
7、 本申请气弹簧组件镶套在取样瓶内, 属于双层结构, 氮气不容易泄漏 到地层流体取样腔, 而且工作更加安全、 可靠。 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说 明书中变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优 点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述 附图用来提供对本发明技术方案的进一步理解, 并且构成说明书的一部 分, 与本申请的实施例一起用于解释本发明的技术方案, 并不构成对本发明 技术方案的限制。
图 1是现有技术的地层流体取样器的示意图;
图 2是本发明一个实施例的气弹簧组件的示意图;
图 3是本发明另一实施例的气弹簧组件的示意图;
图 4是本发明实施例的气弹簧组件应用于密闭容器内的工作示意图; 图 5 是本发明实施例的地层流体取样器装配气弹簧组件后的总装示意 图;
图 6是本发明实施例的地层流体取样器装配气弹簧组件后的体积补偿示 意图。
本发明的较佳实施方式 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的是, 在 不冲突的情况下, 本发明实施例及实施例中的特征可以相互任意组合。
如图 2和图 3所示, 本发明实施例的气弹簧组件主要包括缸体、 活塞、 内密封件、 外密封件、 注气口等, 其中, 所述缸体的外径上设有密封件, 并 且所述缸体能够安装在密封容器内并利用所述密封件实现密封, 缸体内设有 活塞, 且活塞与缸体底部之间填充有高压氮气, 从而在缸体内形成一个压缩 氮气腔。 活塞在高压氮气的作用下产生向上的推力, 活塞的有效行程为 H。
其中, 缸体可具有两种型式的缸体长度, 一种为如图 2所示的长缸体, 即缸体的长度大于或等于活塞的长度与活塞的有效行程 H之和, 此时活塞在 缸体内移动; 另一种为如图 3所示的短缸体, 即缸体的长度小于活塞的长度 与活塞的有效行程 H之和, 此时活塞的一部分移动到缸体外。
上述的气弹簧组件, 便于制造和专业化生产, 可以做成不同压力等级的 产品直接提供现场使用, 高压氮气无需每次更换, 免维护, 大大简化了现场 操作人员的工作难度和技术要求。
如图 4所示, 上述的气弹簧组件设置成可以应用于密封容器之内, 使得 当密封容器内的液体或气体受温度降低而体积减少时, 可用气弹簧组件的活 塞行程(伸出) 来补偿减少的体积量; 其维持的压力则由气弹簧活塞(在有 效行程 H以内) 的推力与活塞面积所决定。
此外, 本发明实施例还提供了一种地层流体取样器, 如图 5所示, 该地 层流体取样器包括取样瓶, 及一些装配件和密封元件, 其中取样瓶外壳内装 有上述的气弹簧组件, 该气弹簧组件起到隔离取样瓶里的上取样腔(即地层 流体取样腔)和下取样腔(即泥浆腔) 、 以及取样腔的保压装置作用。
如图 6所示为取样器在井下获取地层高压原状流体(液体或气体)后, 依靠上述气弹簧组件弥补体积和压力损失的示意图。 利用气弹簧组件的补偿 活塞顶力 Q和活塞行程 H, 根据以下公式来补偿地层流体取样腔因温度下降 减少的体积量 V, 维持地层流体样品在预定的保压压力 P以上:
保压压力?=活塞顶力 Q/活塞面积 S;
补偿体积 =活塞面积 S*活塞行程 H。 结合图 5、 图 6所示, 本发明实施例的氮气弹簧组件在地层流体取样器 中的使用过程如下: 在地层流体取样瓶内, 单独装进一组完全独立和自密封 的高压 "气弹簧组件" , 该组件在取样瓶内可上下移动, 并把灌装地层流体 的 "取样腔" 和井筒泥浆的 "泥浆腔" 隔离开来; 同时, 利用气弹簧的活塞 复位行程 H, 补偿取样腔随温度降低而减少的体积; 利用气弹簧的能量(活 塞推力) , 保持所获样品的压力维持在所需要的值以内。 釆用本发明实施例的地层流体取样器, 通过气弹簧组件中的活塞移动和 产生的推力, 可以弥补地层流体 "取样腔" 随温度下降产生的体积减少量, 同时还可以为此样品腔内提供足够压力维持。
此外, 本发明实施例的地层流体取样器中, 气弹簧组件是一个整体制成 的元件, 可直接放入取样瓶内, 高压氮气在气弹簧组件内部, 而不是在取样 瓶里, 相当于双层瓶子结构, 相较于相关技术, 其操作非常方便, 保养取样 瓶时, 气弹簧不用放气, 而无需每次作业都重新充气。
本发明实施例的气弹簧可以填充不同压力的高压氮气, 以形成不同压力 等级的气弹簧, 进而匹配不同取样地层压力, 从而满足维持地层高压原状流 体的压力不低于所需要值的要求; 用户可以通过地层压力来选取不同压力等 级的整体式气弹簧。
本领域的技术人员应该明白, 虽然本发明所揭露的实施方式如上, 但所 述的内容仅为便于理解本发明而釆用的实施方式, 并非用以限定本发明。 任 何本发明所属领域内的技术人员, 在不脱离本发明所揭露的精神和范围的前 提下, 可以在实施的形式及细节上进行任何的修改与变化, 但本发明的专利 保护范围, 仍须以所附的权利要求书所界定的范围为准。
工业实用性 本发明实施例通过利用整体制成的气弹簧组件, 能够弥补地层流体 "取 样腔" 随温度下降产生的体积减少量, 同时利用气弹簧的活塞顶力维持预定 的地层流体保压值, 结构简单且制造成本较低。

Claims

权 利 要 求 书
1、 一种整体式气弹簧组件, 包括:
缸体, 所述缸体的外径上设有密封件, 并且所述缸体能够安装在密封容 器内并利用所述密封件实现密封;
活塞, 所述活塞设置在所述缸体内;
其中所述活塞与所述缸体底部之间填充有高压氮气, 从而在所述缸体内 形成一个压缩氮气腔;
所述活塞在所述高压氮气的作用下产生向上的推力, 其中所述活塞的有 效行程为 H;
所述缸体的长度小于所述活塞的长度与所述活塞的有效行程 H之和, 所 述活塞的一部分能够移动到所述缸体外。
2、 如权利要求 1所述的整体式气弹簧组件, 其中, 所述整体式气弹簧组 件设置成能够安装在密封容器之内, 使得所述密封容器内的液体或气体受温 度降低而引起的体积减少量可利用所述整体式气弹簧组件的活塞的行程来补 偿; 在所述密封容器内维持的压力由所述活塞的推力与活塞面积所决定。
3、 一种地层流体取样器, 包括:
取样瓶外壳,
如所述权利要求 1或 2所述的整体式气弹簧组件, 其安装于所述取样瓶 外壳内,
其中所述整体式气弹簧组件密封并分隔所述取样瓶外壳的上取样腔和下 取样腔, 且所述整体式气弹簧组件可在所述取样瓶外壳内上下移动。
4、 如权利要求 3所述的地层流体取样器, 其中, 所述地层流体取样器设 置成能够在井下获取液态或气态的地层高压原状流体返回地面后, 通过所述 整体式气弹簧组件的活塞移动所产生的推力维持所述地层高压原状流体的压 力不低于所需要的值。
PCT/CN2013/090641 2013-08-19 2013-12-27 一种整体式气弹簧组件及地层流体取样器 WO2015024352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310361836.X 2013-08-19
CN201310361836.XA CN103410506B (zh) 2013-08-19 2013-08-19 一种气弹簧组件及地层流体取样器

Publications (1)

Publication Number Publication Date
WO2015024352A1 true WO2015024352A1 (zh) 2015-02-26

Family

ID=49603540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090641 WO2015024352A1 (zh) 2013-08-19 2013-12-27 一种整体式气弹簧组件及地层流体取样器

Country Status (2)

Country Link
CN (1) CN103410506B (zh)
WO (1) WO2015024352A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103410506B (zh) * 2013-08-19 2015-11-25 中国海洋石油总公司 一种气弹簧组件及地层流体取样器
CN104089797A (zh) * 2014-07-01 2014-10-08 聚光科技(杭州)股份有限公司 多通道采样装置
CN109025986B (zh) * 2018-08-15 2021-09-28 中国石油天然气股份有限公司 一种井下流体的取样装置及方法
CN112832997B (zh) * 2020-08-12 2022-05-17 中联重科股份有限公司 用于确定泵送设备的泵送方量的方法和装置及泵送设备
CN114136715B (zh) * 2021-11-23 2024-02-20 杭州电子科技大学 一种机械式水下取样器
CN115898390A (zh) * 2022-12-28 2023-04-04 中国航天空气动力技术研究院 一种随钻地层流体取样装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482609Y (zh) * 2000-11-17 2002-03-20 李占奎 气压弹簧
CN1614384A (zh) * 2004-11-29 2005-05-11 天津大学 海底火山热液采样器
CN201339470Y (zh) * 2009-01-06 2009-11-04 中国海洋石油总公司 一种单相地层流体便携式取样筒
CN201487116U (zh) * 2009-06-15 2010-05-26 南通金桑机械精密部件有限公司 一种可锁定拉力气弹簧
CN202484175U (zh) * 2011-12-29 2012-10-10 长城汽车股份有限公司 高密封性氮气弹簧
DE202012010132U1 (de) * 2012-10-23 2013-02-01 Wolfgang Katz Stickstoff-Gaszylinder
EP2624887A2 (en) * 2010-10-08 2013-08-14 Sanofi-Aventis Deutschland GmbH Reusable engine for an auto-injector
CN103410506A (zh) * 2013-08-19 2013-11-27 中国海洋石油总公司 一种气弹簧组件及地层流体取样器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482609Y (zh) * 2000-11-17 2002-03-20 李占奎 气压弹簧
CN1614384A (zh) * 2004-11-29 2005-05-11 天津大学 海底火山热液采样器
CN201339470Y (zh) * 2009-01-06 2009-11-04 中国海洋石油总公司 一种单相地层流体便携式取样筒
CN201487116U (zh) * 2009-06-15 2010-05-26 南通金桑机械精密部件有限公司 一种可锁定拉力气弹簧
EP2624887A2 (en) * 2010-10-08 2013-08-14 Sanofi-Aventis Deutschland GmbH Reusable engine for an auto-injector
CN202484175U (zh) * 2011-12-29 2012-10-10 长城汽车股份有限公司 高密封性氮气弹簧
DE202012010132U1 (de) * 2012-10-23 2013-02-01 Wolfgang Katz Stickstoff-Gaszylinder
CN103410506A (zh) * 2013-08-19 2013-11-27 中国海洋石油总公司 一种气弹簧组件及地层流体取样器

Also Published As

Publication number Publication date
CN103410506A (zh) 2013-11-27
CN103410506B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015024352A1 (zh) 一种整体式气弹簧组件及地层流体取样器
CN102071900B (zh) 自定压扩张式裸眼封隔器
CN107701639B (zh) 双缸可控气弹簧
CN106285552B (zh) 自膨胀式热采裸眼金属封隔器
CN103696728B (zh) 一种双级自封热采封隔器
CN103216213A (zh) 一种井下环空控制阀
CN106640011B (zh) 一种分层点火注气管柱
SG166754A1 (en) Bimetallic diaphragm for trapped fluid expansion
CN209586328U (zh) 一种防砂内置弹爪井下压控循环开关阀
CN203929521U (zh) 封隔器胶筒坐封可视化试验装置
CN203383783U (zh) 闭式底部换向开关
CN202544800U (zh) 水平井裸眼压裂封隔器
CN201857927U (zh) 双解封封隔器
RU2013152474A (ru) Пакер-пробка и монтажный инструмент для посадки его в скважине (варианты)
CN201546696U (zh) 一种压力平衡机构
CN204002701U (zh) 压控式测试阀
CN110159223A (zh) 一种高温抗硫化氢超膨胀密封热采封隔器
CN202937223U (zh) 组合密封压裂封隔器
CN110118071A (zh) 一种热采井分层段封隔装置及方法
CN203822217U (zh) 内循环孔隐藏式反循环阀
CN209707047U (zh) 带碟簧位移补偿及双验封功能的地面模拟试验装置
CN210918984U (zh) 一种井下节流测试阀
CN202338278U (zh) 水平井用油管单流器
CN203308442U (zh) φ95mm地面直控式配产器
CN201031655Y (zh) 抽油井调偏光杆密封器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891764

Country of ref document: EP

Kind code of ref document: A1