WO2015021916A1 - 一种用于摄像头模组的控制方法及摄像头模组 - Google Patents

一种用于摄像头模组的控制方法及摄像头模组 Download PDF

Info

Publication number
WO2015021916A1
WO2015021916A1 PCT/CN2014/084254 CN2014084254W WO2015021916A1 WO 2015021916 A1 WO2015021916 A1 WO 2015021916A1 CN 2014084254 W CN2014084254 W CN 2014084254W WO 2015021916 A1 WO2015021916 A1 WO 2015021916A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lens module
coil
lens
current
Prior art date
Application number
PCT/CN2014/084254
Other languages
English (en)
French (fr)
Inventor
赵立新
侯欣楠
Original Assignee
格科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格科微电子(上海)有限公司 filed Critical 格科微电子(上海)有限公司
Priority to US14/911,844 priority Critical patent/US9897895B2/en
Publication of WO2015021916A1 publication Critical patent/WO2015021916A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the invention relates to a miniature camera module, which can control the moving direction and the moving distance of the lens barrel to realize the telescopic and/or focusing function of the lens barrel.
  • the camera module is composed of a photosensitive chip and an imaging lens group, and the imaging lens group is placed in the lens barrel of the module, and the organic position of the lens barrel and the photosensitive chip can obtain the image or video of the high-quality shield.
  • Modern handheld devices on the one hand, are designed to be thinner and thinner for aesthetic needs, the height of the camera module is also lower and lower, the total height of the corresponding lens group is reduced, and on the other hand, for the purpose of image quality, the photosensitive chip The size of the sensitized face-to-face line is getting larger and larger. How to ensure the field of view of the lens group is constant, increasing the size of the sensor chip, and meeting the design requirements of the thinner body of the handheld device has always been a problem in the research of the handheld device design industry. .
  • Digital cameras especially ultra-thin digital cameras, use telescopic lens sets to solve this problem, such as thread/nut structures, gear structures, or mechanical transmission structures such as turbine worms, but such structures are relatively large and cannot be placed in mobile phones. , thinner devices such as laptops, pads, etc.
  • the existing microphones commonly used in thin and light equipment cannot extend beyond the camera module, and can only be used for auto focusing.
  • the function of the lens group can not be achieved when working, so the height of the camera module cannot be solved. The problem is getting lower and lower.
  • the thin and light electronic device needs a new miniature camera module to solve the contradiction between the above existing module thickness and image quality, and to solve the problems existing in the existing module, the new camera mode
  • the group can extend the lens barrel out of the module to ensure that the size of the photosensitive chip is increased under the condition of constant viewing angle, and the image quality is improved.
  • the structure is simple, and can be applied to thin and light electronic devices such as mobile phones and pads.
  • a first aspect of the present invention provides a control method for a camera module, wherein the camera module includes an imaging module, a sleeve module, and is disposed in the sleeve module to correspond to a sleeve module.
  • the control method comprising the steps of:
  • the elastic member is pressed against the lens module, the shape of the elastic member perpendicular to the optical axis direction becomes a radial positive pressure applied to the lens module, and the elastic member passes the positive pressure at the elastic a frictional force along a direction of the optical axis is generated on a contact surface of the component with the lens module, the frictional force holding the lens module in a state of being stationary with respect to the elastic component in an optical axis direction, or
  • the elastic member is fixedly coupled to the lens module, the elastic member is pressed against an electric conductor disposed between the lens module and the sleeve module, and the electric conductor and the sleeve module are relatively stationary.
  • the shape of the elastic member perpendicular to the optical axis direction becomes that the lens module and the elastic member integrally apply a radial positive pressure to the electric conductor, and the elastic member passes the positive pressure at the a frictional force in an optical axis direction is generated on a contact surface of the electric conductor and the elastic member, the frictional force that allows the lens module and the elastic member to remain stationary with respect to the sleeve module in an optical axis direction;
  • the lens module being subjected to an electromagnetic force in a direction along the optical axis,
  • the electromagnetic force acts as a driving force for linear movement of the lens module along the optical axis direction to drive the lens module to move.
  • the current flowing in the at least one coil is pulsed, so that the lens module realizes a discontinuous motion;
  • the ratio of the maximum value of the pulse current to the absolute value of the minimum value is at least 1.2 times;
  • the single pulse width of the pulse current is less than 2 s, that is, the time of each continuous motion of the lens module is less than 2 s.
  • the magnitude of the initial current is gradually increased to cause relative movement of the at least one turns and the at least one magnetic component, resulting in a voltage in the at least one coil divided by a current
  • the value of the second relationship that is, U/I>R; detecting a change in the first relationship in which the voltage of the at least one coil is divided by the value of the current can determine the at least one turn and the at least one magnetic
  • the component undergoes relative motion and a critical current value is obtained that causes relative motion of the at least one coil and the at least one magnetic component.
  • the movement of the lens module is a relative forward or reverse movement with respect to the elastic member in the optical axis direction, the relative forward or The reverse motion has a first moving distance, the first moving distance is a radial positive pressure of the elastic member, a magnitude of a pulse current in the at least one coil, a rising rate, a waveform width, the lens module and the The coefficient of friction between the resilient members is determined; changing one or more of the parameters can change the first range of motion to control the motion of the lens module.
  • the movement of the lens module is a relative forward or reverse movement with respect to the sleeve module in the optical axis direction, and the relative forward direction of each time Or the reverse motion has a first moving distance, the first moving distance is a radial positive pressure of the elastic member, a magnitude of a pulse current in the at least one turn, a rising rate, a waveform width, the electrical conductor and The coefficient of friction between the elastic members is determined; changing one or more of the parameters can change the first distance of movement to control movement of the lens module and the elastic member.
  • the lens module further includes a motion carrier, a lens barrel, and a friction member;
  • the lens barrel is disposed in the motion carrier, the motion carrier and the lens barrel may be integrated into one body; the motion carrier has a plurality of extensions that are radially divergent; the at least one coil is placed The extension is adapted to move with the lens module; the friction member is disposed between the extension and the elastic member.
  • the lens module further includes a motion carrier, a lens barrel, and a friction member
  • the lens barrel is disposed in the moving carrier, the moving carrier and the lens barrel may be integrated into one; the outer surface of the moving carrier is provided with the magnetic component, and may be adapted to be
  • the lens module moves together; the sleeve module is disposed at a position corresponding to the magnetic component, and the at least one coil is disposed; the interior of the sleeve module does not correspond to the position of the at least one magnetic component, and the setting is
  • the elastic member is disposed between the moving carrier and the at least one elastic member.
  • the lens module further includes a motion carrier and a lens barrel
  • the lens barrel is disposed in the motion carrier, and the motion carrier and the lens barrel are combined to be integrally formed or independently assembled;
  • the motion carrier has a plurality of extension portions that are radially divergent;
  • a coil is disposed in the extension and adapted to move with the lens module;
  • the elastic member is coupled to the extension or the outside of the coil such that the elastic member and the lens module are Exercise together.
  • the electrical conductor is in contact with the power supply end, and the elastic component is electrically conductive or has a conductive portion, and the at least one coil is in contact with the elastic component, thereby providing a power supply end.
  • the at least one coil can be supplied with current through the electrical conductor through the electrical conductor.
  • the lens module can have two structural states in step a.
  • a first state the lens module initially has a state of focusing directly imaging an infinite object
  • a second state the lens module does not initially have a state of focusing on direct imaging of an infinite object, the lens module needs to supply current through the coil, and the lens module protrudes from the sleeve module
  • the telescoping process adjusts the state of the focus into the image of the infinity object.
  • a second aspect of the present invention provides a camera module, where the camera module includes an imaging module and a sleeve module, and is disposed in the sleeve module to be movable relative to the optical axis of the sleeve module.
  • a lens module, at least one coil, at least one magnetic component, and an elastic component disposed between the lens module and the sleeve module, wherein
  • the elastic member is pressed against the lens module, the shape of the elastic member perpendicular to the optical axis direction is changed to the lens module to apply a radial positive pressure, and the elastic member passes the positive pressure at the elastic member a frictional force along a direction of the optical axis is generated on a contact surface of the lens module, the frictional force enabling the lens module to remain stationary relative to the elastic member in an optical axis direction, or
  • the elastic member is fixedly connected to the lens module, the elastic member is pressed against an electric conductor, and the electric conductor is directly or indirectly fixed to the sleeve module, and the elastic member is perpendicular to the light.
  • the shape of the axial direction becomes a radial positive pressure applied to the electric conductor, and the elastic member generates a frictional force in the optical axis direction at a contact surface of the elastic member and the electric conductor by the positive pressure, the friction a force that allows the lens module and the elastic member to remain stationary relative to the sleeve module in the optical axis direction;
  • the camera module further includes a power supply control device that supplies current to the at least one coil, the at least one coil or the at least one magnetic component being selectively matched to the lens module, the lens module being subjected to An electromagnetic force along the optical axis direction, the electromagnetic force acts as a driving force for linear movement of the lens module along the optical axis direction to drive the lens module to move.
  • the power supply control device is pulsed in the current flowing in the at least one coil, so that the lens module realizes a discontinuous motion;
  • the ratio of the maximum value of the pulse current to the absolute value of the minimum value is at least 1.2 times; the single pulse width of the pulse current is less than 2 s.
  • the movement of the lens module is a relative forward or reverse movement relative to the elastic member in the optical axis direction, and each of the relative forward or reverse movements has a first motion a distance, the first moving distance is a radial positive pressure of the elastic member, a magnitude of a pulse current in the at least one coil, a rate of rise, a width of the waveform, a coefficient of friction between the lens module and the elastic member Deciding; changing one or more of the parameters can change the first distance of motion to control movement of the lens module.
  • the movement of the lens module is a relative forward or reverse movement with respect to the sleeve module in the optical axis direction with respect to the elastic member, the relative forward or reverse of each The movement has a first movement distance, the first movement distance is a radial positive pressure of the elastic member, a magnitude of a pulse current in the at least one coil, a rate of rise, a width of the waveform, the electrical conductor and the elastic member
  • the coefficient of friction between the two determines; changing one or more of the parameters can change the first distance of motion to control the motion of the lens module.
  • the lens module further includes a motion carrier, a lens barrel, and a friction member
  • the lens barrel is disposed in the motion carrier, the motion carrier and the lens barrel may be integrated into one body; the motion carrier has a plurality of extensions that are radially divergent; the at least one coil is placed The extension is adapted to move with the lens module; the friction member is disposed between the extension and the elastic member.
  • the lens module further includes a motion carrier and a lens barrel
  • the lens barrel is disposed in the motion carrier, and the motion carrier and the lens barrel are combined to be integrally formed or independently assembled;
  • the motion carrier has a plurality of extension portions that are radially divergent;
  • a coil is disposed in the extension and adapted to move with the lens module;
  • the elastic member is coupled to the extension portion or the outside of the coil such that the elastic member and the lens module are Exercise together.
  • the lens module further includes a motion carrier, a lens barrel, and a friction member;
  • the lens barrel is disposed in the motion carrier, the motion carrier and the lens barrel may be integrated into one body; the outer surface of the motion carrier is provided with the magnetic component, and may be adapted to be
  • the lens module moves together; the sleeve module is disposed at a position corresponding to the magnetic component, and the at least one coil is disposed; the interior of the sleeve module does not correspond to a position of the at least one magnetic component, and is disposed The elastic member; the friction member is disposed between the moving carrier and the at least one elastic member.
  • the electrical conductor is in contact with the power supply end
  • the elastic member is electrically conductive or has a conductive portion, and the at least one turn is in contact with the elastic member, thereby providing a power supply end.
  • the at least one coil can be supplied with current through the electrical conductor through the electrical conductor.
  • the lens module can have two structural states in the step a.
  • the lens module initially has a state of focusing for direct imaging of an infinite object
  • the lens module does not initially have a focus of direct imaging of an infinite object, the lens module needs to supply current through the coil, and the lens module protrudes from the sleeve module
  • the telescoping process adjusts the state of the focus into the image of the infinity object.
  • the optimal control of the camera can be realized, so that the new camera module can extend the lens barrel to ensure that the angle of view is constant.
  • the size of the sensor chip is increased, the image shield is increased, and the structure is simple, and can be applied to thin and light electronic devices such as mobile phones and pads.
  • no additional current is required when the lens barrel is stationary, thereby saving power consumption of the camera module, which is especially important for portable devices.
  • 1 is a perspective view showing the appearance of a camera module according to the present invention
  • 2 is a schematic exploded view showing the structure of a camera module according to a first embodiment of the present invention
  • Figure 3 is a side cross-sectional view of the camera module in the optical axis direction according to the first embodiment of the present invention
  • Figure 4 is a block diagram showing the structure of a camera module in accordance with a second embodiment of the present invention.
  • Figure 5 is a side cross-sectional view of the camera module in the optical axis direction according to a second embodiment of the present invention.
  • Figure 6 is a structural exploded view of a camera module in accordance with a third embodiment of the present invention.
  • Figure 7 is a top plan view of the camera module in the optical axis direction according to a third embodiment of the present invention.
  • Figure 8 is a schematic diagram of voltage and current signals driven by a voltage source in accordance with the present invention
  • Figure 9 is a schematic diagram of current and voltage signals driven by a current source in accordance with the present invention
  • Figure 10 is a control lens assembly lens assembly in accordance with the present invention. Flow chart of the method of single step movement. detailed description
  • FIG. 1 is a schematic perspective view showing the appearance of a camera module according to the present invention.
  • the central lens module can extend beyond the entire module and can be in three states: no extension, extension, and extension to the far end.
  • FIG. 2 is a schematic exploded view of a camera module according to a first embodiment of the present invention
  • FIG. 3 is a side cross-sectional view of the camera module in the optical axis direction according to the first embodiment of the present invention
  • the camera module according to the present invention comprises: an imaging module 12, a sleeve module 20, and a lens disposed in the sleeve module 20 corresponding to the movement of the sleeve module 20 relative to the optical axis.
  • Module 30 at least one coil 7 (in this embodiment) a coil), at least one magnetic component 4 (in this embodiment, eight magnetic components that can be combined into one turn), and an elastic component 9 disposed between the lens module 30 and the sleeve module 20, wherein
  • the elastic member 9 is pressed against the lens module 30, and the elastic member is capable of maintaining a state of rest in a stationary state to maintain a state of rest and thereby reducing the power consumption of the entire camera module.
  • the lens module 30 applies a radial positive pressure
  • the elastic member 9 generates a frictional force in the optical axis direction on the contact surface of the elastic member 9 and the lens module 30 by the positive pressure, and the frictional force can be Keeping the lens module 30 stationary relative to the elastic member 9 in the optical axis direction;
  • the power supply device supplies current to the camera module, and is controlled by the power supply control device (shown in FIG. 8) of the imaging module to supply current to the coil 7.
  • the coil 7 is matched with the lens module 30, and the lens module is matched. 30 is subjected to an electromagnetic force in the direction of the optical axis, and the electromagnetic force acts as a driving force for linear movement of the lens module 30 along the optical axis direction to drive the lens module 30 to move.
  • FIG. 8 is a schematic diagram of voltage and current signals driven by a voltage source according to the present invention
  • FIG. 9 is a current and voltage driven by a current source according to the present invention.
  • Signal Schematic FIG. 10 is a flow chart of a method of controlling a single-step motion of a camera module lens barrel in accordance with the present invention.
  • the driving unit (not labeled) is controlled by the power supply control device (not labeled) so that the current flowing in the coil 7 is pulsed, so that the lens module 30 realizes discontinuous motion, and the maximum value of the pulse current
  • the ratio to the absolute value of the minimum value is at least 1.2 times, twice in the present embodiment, and the single pulse width of the pulse current is less than 2 s, which is ls in this embodiment.
  • the magnitude of the initial current will be gradually increased to cause relative movement of the coil 7 and the magnetic member 4, resulting in the voltage in the coil 7 divided by the value of the current as a second relationship, that is, U/I>R; detecting feedback unit detecting coil
  • the change in the first relationship of the voltage divided by the value of the current in 7 can determine that the coil 7 and the magnetic member 4 have moved relative to each other, and the coil 7 and the magnetic member 4 are obtained.
  • the movement of the lens module 30 is relative forward or reverse movement relative to the elastic member in the optical axis direction, and each of the relative forward or reverse movements has a first movement distance, the first movement distance being The radial positive pressure of the elastic member 9, the magnitude of the pulse current in the coil 7, the rate of rise, the width of the waveform, and the coefficient of friction between the lens module 30 and the elastic member 9 are determined by:
  • n is the number of turns
  • B is the magnetic induction
  • L is the effective length of a twist
  • m is the mass of the moving part
  • f is the magnitude of the friction
  • 0 is the direction of movement of the barrel and gravity Angle
  • At is the square wave pulse width.
  • Changing the one or more parameters can change the first motion distance to control the motion of the lens module 30.
  • the lens module 30 further includes a motion carrier 6, a lens barrel (not shown in the motion carrier), and a friction member 8;
  • the lens barrel is disposed in the moving carrier 6, and the moving carrier and the lens barrel may be combined into one piece or separately formed separately;
  • the moving carrier 6 has a plurality of extending portions 61 radially diverging;
  • the coil 7 is placed at the extending portion 61 is adapted to move with the lens module 30;
  • the friction member 8 is placed between the extension 61 and the elastic member 9.
  • the sleeve module 20 further includes a yoke ring 2 and a sleeve unit 1 disposed inside the yoke ring 2, and the sleeve unit 20 extends beyond the outer end surface of the yoke ring 2 by 0.2 mm or more.
  • the lens module 30 guides and protects the function of the lens mold 30 block.
  • a yoke block 3 may be disposed in the yoke ring 2, and the yoke block 3 is made of a magnetic conductive material to function as a magnetic material for the magnetic member 4; between the yoke block 3 and the inner wall surface of the yoke ring 2
  • the air gap, the wire ⁇ 7 is placed in the air gap and can move in the optical axis direction, and the optical axis direction length of the air gap accounts for more than one third of the total thickness of the camera module in the optical axis direction.
  • the yoke ring 2 of the sleeve module 20, the sleeve unit 1 and the yoke block 3 are integrally formed or separately provided.
  • the coil 7 is connected to a first conductive portion (not labeled) on the lens module 30, the conductive portion is in contact with the elastic member 9, the elastic member 9 is in contact with the power supply end for being powered by the power supply device, and the elastic member 9 is electrically conductive or Having a second conductive portion, thereby The power supply end is enabled to supply current to the coil 7 through the elastic member 9 or the second conductive portion of the elastic member 9.
  • the coil 7 includes two fixing structures. In the first fixing structure, the coil 7 is directly fixedly connected to the extending portion 61. In the second fixing structure, the coil 7 and the extending portion 61 are opposite in the optical axis direction. The distance of movement is relatively between 10 microns and 1 mm.
  • the control of the power supply control device sends a control signal to the driving unit and further provides a corresponding driving signal of the coil 7 of the camera module.
  • the current has two driving modes, the first driving mode: the coil 7 is connected to the current in the opposite direction, and directly pushes the lens module 30 to move; the second driving mode: the line
  • the ⁇ 7 is connected to a current in a direction opposite to the opposite direction, so that the lens module 30 stores a certain elastic potential energy and then passes a current in a direction corresponding to the forward direction, pushing the lens module 30 to move, and under the action of friction still.
  • the current driving mode is as follows: a current corresponding to the opposite direction is passed to the coil 7 to store the coil 7 with a certain elastic potential energy and then to pass a current in a direction opposite to the forward direction.
  • the electromagnetic force is positive, and the coil 7 accumulates kinetic energy and collides with the lens module 30 to push the lens module 30 to move and is stationary under the action of friction.
  • the camera module is further provided with a base 10, and the base 10 is disposed on the imaging module 12 to define a moving position of the lens module 30 in the optical axis direction, and the camera module may further include an infrared filter, which is laid on the imaging module. 12 on the photosensitive surface of the image sensor.
  • FIG. 4 is a schematic exploded view of a camera module according to a second embodiment of the present invention
  • FIG. 5 is a second implementation according to the present invention. a side view of the camera module in the optical axis direction;
  • the driving unit is controlled by the power supply control device to be the coil 7, and the current flowing in the pulse is pulsed, so that the lens module 30 realizes discontinuous motion, and the ratio of the maximum value of the pulse current to the absolute value of the minimum value is At least 1.2 times, twice in the present embodiment, and the single pulse width of the pulse current is less than 2 s, which is ls in this embodiment.
  • the magnitude of the initial current is gradually increased, and the coil 7 and the magnetic member 4 are relatively moved, resulting in the voltage in the coil 7, divided by the value of the current as a second relationship, that is, U/I>R;
  • the feedback unit detects the coil 7, and the change in the first relationship of the voltage divided by the value of the current can determine that the coil 7 and the magnetic member 4 have undergone relative motion, and the relative movement of the coil 7 and the magnetic member 4 is obtained.
  • Critical current value is
  • the movement of the lens module 30 is relative to the elastic member 9, relative to the forward or reverse movement in the optical axis direction, and each of the relative forward or reverse movements has a first movement distance, the first The moving distance is determined by the radial positive pressure of the elastic member 9, the magnitude of the pulse current in the coil 7, the rate of rise, the width of the waveform, the coefficient of friction between the lens module 30 and the elastic member 9, and for:
  • n is the effective number of turns of the line of magnetic force
  • B is the magnetic induction
  • L is the effective length of a coil
  • m is the mass of the moving part
  • f is the magnitude of the friction
  • 0 is the direction of movement of the barrel
  • the angle with gravity is the square wave pulse width.
  • Changing the one or more parameters can change the first motion distance to control the motion of the lens module 30'.
  • the lens module 30 further includes a motion carrier 6, a lens barrel (not labeled), and a friction member (not labeled);
  • the lens barrel is disposed in the moving carrier 6, the middle, the moving carrier 6, and the lens barrel can be combined into an integral motion carrier 6, which is provided with an outwardly extending spaced apart plurality of extensions 6 ⁇ , the outer surface of the moving carrier 6,
  • a magnetic member 4 the magnetic member 4 is disposed between the extending portions 61, and is adapted to move together with the lens module 30; the sleeve module 20, corresponding to the position of the magnetic member 4',
  • the coil 7 is disposed; between the sleeve module 20 and the lens module 30, an elastic member 9 is disposed, and the friction member 8 is disposed between the extending portion 61 and the elastic member 9.
  • the camera module further includes: a base 10, the base 10 is disposed on the imaging module 12, and functions as a working coil 7 for defining a moving position of the lens module 30' in the optical axis direction, directly contacting the power supply end, and the power supply end is a line ⁇ 7, providing current.
  • Magnetic component 4 comprising two fixed structures, In the first fixed structure, the magnetic member 4 is directly fixedly connected to the extending portion 61' on the moving carrier 6, and the magnetic member 4 in the second fixing structure is in the optical axis direction with the moving carrier 6. There is a relative motion distance, and the relative motion distance is between 10 meters and 1 meter.
  • the control of the power supply control device sends a control signal to the drive unit to provide the coil 7 of the camera module and the corresponding drive signal.
  • there are two driving modes of current In the first fixed structure of the second embodiment, there are two driving modes of current,
  • the first driving mode the coil 7 is connected to a current in a direction corresponding to the forward direction, thereby causing the magnetic member 4 to directly push the lens module 30 to move;
  • the second driving mode the coil 7 is connected to a current in a direction opposite to the opposite direction, so that the lens module 30 stores a certain elastic potential energy, and then passes a current in a direction corresponding to the forward direction, resulting in magnetic
  • the component 4 pushes the lens module 30, moves, and is stationary under the action of friction.
  • the current driving mode is: first, the current ⁇ 7' is connected to a current in a direction opposite to the opposite direction, so that the magnetic component 4 ′ stores a certain elastic potential energy, and then re-enters and relatively
  • the current in the forward direction is positive, the electromagnetic force is positive, and the magnetic member 4 accumulates kinetic energy and collides with the lens module 30 to push the lens module 30, move, and rest under friction.
  • Figure 6 is a schematic exploded view showing the structure of a camera module according to a third embodiment of the present invention.
  • the camera module according to the present invention includes: an imaging module 12", a sleeve module 20"
  • the lens module 30" disposed in the sleeve module 20" may correspond to the movement of the sleeve module 20 relative to the optical axis direction (this portion may refer to the first embodiment, but the lens module 30 in this embodiment is not set) a friction member), at least one coil 7" (in this embodiment, a coil), at least one magnetic member 4" (in this embodiment, two magnetic members that can be combined vertically, but not
  • the elastic member 9" disposed between the lens module 30" and the sleeve module 20" wherein the entire camera module is reduced in order to maintain the static state in a static state.
  • the elastic portion The piece 9" is snap-connected to the lens module 30", and the elastic member 9" is pressed against an electric conductor 13" disposed between the lens module 30" and the sleeve module 20", the electric conductor 13" and the sleeve module 20 Directly or indirectly fixed relative to the stationary; the elastic member 9" perpendicular to the optical axis direction becomes the lens module 30" and the elastic member 9" integrally applies a radial positive pressure to the electrical conductor 13", and the elastic member 9" passes the positive pressure A frictional force in the direction of the optical axis is generated on the contact surface of the conductor 13" and the elastic member 9", and the frictional force can keep the lens module 30" and the elastic member 9" integral with respect to the sleeve module 20" in the optical axis direction. State; and
  • the power supply device supplies current to the camera module, and is controlled by the power supply control device (shown in FIG. 8) of the imaging module to supply current to the coil 7", and the switch 7" matches the lens module 30".
  • the lens module 30" receives an electromagnetic force along the optical axis direction, and the electromagnetic force acts as a driving force for the linear movement of the lens module 30" along the optical axis direction to drive the lens module 30 to move.
  • FIG. 8 is a schematic diagram of voltage and current signals driven by a voltage source according to the present invention
  • FIG. 9 is a current and voltage driven by a current source according to the present invention.
  • Signal Schematic FIG. 10 is a flow chart of a method of controlling a single-step motion of a camera module lens barrel in accordance with the present invention.
  • the driving unit (not labeled) is controlled by the power supply control device (not labeled) so that the current flowing in the coil 7" is pulsed, so that the lens module 30" realizes discontinuous motion, pulse current
  • the ratio of the absolute values of the maximum value to the minimum value is at least 1.2 times, twice in the present embodiment, and the single pulse width of the pulse current is less than 2 s, which is ls in this embodiment.
  • the drive unit passes the initial current to the coil 7 through the control of the power supply control device, so that the coil 7" and the magnetic member 4" are relatively stationary, passing through the detection coil 7" of the feedback unit (not labeled)
  • the initial current will be gradually increased to cause the relative motion of the coil 7" and the magnetic member 4, causing the voltage in the coil 7" to be divided by the current value as the second relationship, that is, U/I>R
  • the detection feedback unit detects that the change in the first relationship of the voltage divided by the value of the current in the line ⁇ 7" can determine that the coil 7" and the magnetic member 4" have moved relative to each other, and the wire ⁇ 7" and the magnetic member are obtained, 4 The critical current value of relative motion occurs.
  • the movement of the lens module 30" is integral with the elastic member 9, relative to the sleeve module 20, along the optical axis
  • the relative forward or reverse movement of each of said ones has a first movement distance, said first movement distance being by the radial positive pressure of said elastic member 9", said coil 7
  • the coefficient of friction between the magnitude of the pulse current, the rate of rise, the width of the waveform, the elastic member 9" and the conductor 13, is determined by:
  • n is the number of turns of the coil
  • B is the magnetic induction
  • L is the effective length of a twist
  • m is the mass of the moving part
  • f is the magnitude of the friction
  • is the drive current
  • 0 is the direction of movement of the barrel and gravity Angle
  • At is the square wave pulse width.
  • Changing the one or more parameters can change the first motion distance to control the motion of the lens module 30.
  • the lens module 30" may further include a motion carrier 6" and a lens barrel (not indicated in the motion carrier);
  • the lens barrel is disposed in the moving carrier 6", and the moving carrier 6" and the lens barrel may be combined into one piece or separately formed separately; the moving carrier 6" has a plurality of extensions 61 "radially diverging”; the coil 7" Placed in the extension portion 61, and adapted to "move” with the lens module 30;
  • this embodiment may also be the same as the first embodiment, and the corresponding sleeve module 20" further includes a yoke ring 2, and a sleeve unit 1" disposed inside the yoke ring 2", the sleeve The unit 20" extends beyond the outer end surface of the yoke ring 2" by 0.2 mm or more to function as a guide for the lens module 30 to "guide and protect the lens module 30".
  • a yoke can be placed in the yoke ring 2,
  • the iron block 3", the yoke block 3" is a magnetically permeable material, functions as a magnetic guide for the magnetic member 4;
  • the yoke block 3" and the yoke ring 2 have an air gap between the inner wall faces, and the wire ⁇ 7 "In the air gap and movable in the optical axis direction, the optical axis direction length of the air gap accounts for more than one third of the total thickness of the camera module in the optical axis direction.
  • the yoke ring 2" of the sleeve module 20", the sleeve unit 1, and the yoke block 3" are integrally formed or separately provided.
  • the wire ⁇ 7" is connected to the first conductive portion (not labeled) on the lens module 30", the first conductive portion is in contact with the elastic member 9", and the elastic member 9" is in contact with the power supply terminal for supplying power through the power supply device, and
  • the elastic member 9" can be electrically conductive or have a second conductive portion, so that the power supply end can pass through the conductive portion 9" or the conductive portion of the elastic member 9"
  • the coil 7" provides current.
  • the coil 7" includes two fixed structures in which the coil 7" is directly fixedly coupled to the extension 61"; in the second fixed configuration, the coil 7" and the extension 61" There is a relative movement distance between the optical axis directions, and the relative motion distance is between 10 micrometers and 1 millimeter.
  • the control of the power supply control device sends a control signal to the driving unit and is further provided to the coil module 7 of the camera module.
  • the corresponding driving signal is in the first fixed structure, and the current has two driving modes.
  • the first driving mode the line ⁇ 7 "Proceeding a current in a direction that is consistent with the forward direction, directly pushing the lens module 30 to move;
  • the second driving mode the wire ⁇ 7" opens a current that coincides with the opposite direction of the reverse direction, so that the lens module 30 is "stored” A certain amount of elastic potential energy and then a current in a direction that is consistent with the forward direction pushes the lens module 30 "moving" and rests under friction.
  • the current drive mode is: for the coil 7" to pass a current in a direction opposite to the opposite direction, so that the coil 7" stores a certain elastic potential energy and then re-enters the direction in the opposite direction.
  • the current the electromagnetic force 4 is positive, and the coil 7" accumulates kinetic energy and collides with the lens module 30" to push the lens module 30, move, and rest under friction.
  • the camera module is further provided with a pedestal 10", and the pedestal 10" is disposed on the imaging module 12" to define a moving position of the lens module 30 in the optical axis direction, and the camera module may further include an infrared filter. Laying on the photosensitive surface of the image sensor of the imaging module 12.
  • the lens modules 30, 30, 30 have two optical in-focus states in the initial optical state, respectively:
  • the first state the lens module 30, 30, 30" initially has a state of focusing for direct imaging of an infinite object
  • the second state the lens module 30, 30, 30" does not have a state of focusing directly imaging the infinite object at the beginning, and the lens modules 30, 30, 30, need to pass the coil 7, 7', 7 "Providing current, expanding the telescopic process of the lens module 30, 30, 30" in the sleeve module 20, adjusting the state of focusing into imaging the infinite object.
  • the lens The modules 30, 30, 30" complete the extension of the sleeve module 20, 20, 20" end face or retract the sleeve module 20, 20, 20” for less than 20 seconds.
  • the lens modules 30, 30, 30" are discontinuously moved, and the distance of each continuous motion is not more than 100 micrometers, and the function of searching for the focus position is realized.
  • the lens module 30, 30, 30 And outputting an image through the imaging module 12, 12, 12" relative to the sleeve module 20, 20, 20", detecting the image sharpness, determining and matching according to the change in image sharpness In the first state or the second state, the telescopic and/or focusing functions of the lens modules 30, 30, 30" are implemented.
  • Figs. 8 and 9 two different schematic diagrams of using a voltage source and a current source, respectively, are shown in Figs. 8 and 9. Ignore the inductance of the coils 7, 7, and 7".
  • the current value I is constant, a.
  • the line ⁇ 7, 7, and 7" move, as the motion speed increases, the line ⁇ 7, 7, and 7"
  • the terminal voltage U also gradually increases; b.
  • the voltage U at both ends of the coil 7, 7 ⁇ 7" is constant. Thereby, the movement of the lens module 30 or 30 can be controlled.
  • Figure 10 is a flow chart showing a method of controlling the camera module lens barrel for single step motion in accordance with the present invention. Please refer to FIG. 8 and FIG. 9 simultaneously, during the movement of the lens barrel, detect the change of the voltage generated by the movement of the lens unit 30, 30, 30 in the feedback unit detection coils 7, 7, 7" divided by the value of the current. And transmitting the relevant detection information to the power supply control device, and the power supply control device obtains a critical current value for causing the relative movement of the lens modules 30, 30, and 30 according to the change of the ratio, and provides a corresponding control signal to the driving unit.
  • the driving unit provides a driving signal to the camera module, and controls the lens modules 30, 30, 30 in the camera module to move in the synchronous optical axis direction of the coils 7, 7 in the first embodiment and the third embodiment, respectively.
  • the optical axis direction is moved, and Excessive detection feedback, control calculations, and actuation cause relative positive and negative movements of the lens modules 30, 30, 30" in the sleeve modules 20, 20, 20".
  • the power supply control device divides the voltage by the change of the value of the current, and applies a corresponding pulse current in the line ⁇ 7, 7, and 7" to make the electromagnetic force of the driving lens module 30, 30, and 30" overcome the friction.
  • the resistance is equal to the resistance, and the lens barrel is pushed to slide against the contact surface of the elastic member 9, 9, 9", and then stopped at a certain position by the dynamic friction force, that is, the lens module 30 or 30, to realize one step.
  • one step of the lens module 30, 30, 30" that is, the lens module 30, 30', 30" slides a certain distance with respect to the contact surface of the elastic members 9, 9', 9", and the optional lens module 30 , 30, 30" are elastic members 9, 9, 9" integral, at this time, the elastic members 9, 9, 9" and the lens modules 30, 30, 30" with respect to the sleeve modules 20, 20, 20" slides a certain distance, which is determined by the radial elastic force, axial stiffness, electromagnetic force, friction coefficient and other factors of the elastic members 9, 9, 9", each step is not more than 100 microns, and has Repeatability, so repeating the above stepping process, the position of the lens module 30, 30, 30" can be controlled to realize the telescopic and/or focusing function of the camera module.
  • the lens module 30, 30, 30" changes from the motion to the module is relatively stationary, and the electromagnetic driving force is controlled to make one step at a time.
  • the lens modules 30, 30, and 30" slide a certain distance with respect to the contact faces of the elastic members 9, 9, 9".
  • the optimal control of the camera can be realized, so that the new camera module can make the lens module 30, 30, 30, out of the module, and ensure Under the condition that the field of view angle is constant, the size of the photosensitive chip is increased, the image quality is improved, and the structure is simple, and can be applied to thin and light electronic devices such as mobile phones and pads. Furthermore, no additional current is required when the lens modules 30, 30, 30" are stationary, thereby saving power consumption of the camera module, which is especially important for portable devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

一种摄像头模组及其控制方法,摄像头模组包括成像模块(12)、套筒模块(20)、镜头模块(30)、至少一个线圈(7)、至少一个磁性部件(4)、弹性部件(9);该方法包括:弹性部件(9)压靠于镜头模块(30)上,通过正压力在弹性部件(9)与镜头模块(30)的接触面上产生沿光轴方向摩擦力,使镜头模块(30)相对弹性部件(9)在光轴方向上保持静止状态;为至少一个线圈(7)提供电流,至少一个线圈(7)或磁性部件(4)可选择地与镜头模块(30)相匹配,镜头模块(30)受到沿光轴方向的电磁力,以带动镜头模块(30)运动。该摄像头模组能减小模组厚度,在保证在视场角不变的条件下,加大感光芯片的尺寸,提高图像质量。

Description

一种用于摄像头模组的控制方法及摄像头模组 技术领域
本发明涉及一种微型摄像头模组,所述模组能够控制所述镜筒的 运动方向和运动距离, 实现所述镜筒的伸缩和 /或对焦功能。 背景技术
摄像头模组由感光芯片和成像镜片组组成, 成像镜片组置于模组 的镜筒中, 镜筒位置和感光芯片的有机配合才能获取高品盾的图像或 视频。 现代的手持设备, 一方面为了美观的需要被设计得越来越薄, 摄像头模组的高度也随之越来越低, 对应镜片组总高度降低, 另一方 面为了图像品质的需要, 感光芯片的感光面对角线尺寸越来越大, 如 何保证镜片組的视场角不变, 加大感光芯片尺寸, 并满足更薄机身的 手持设备外观设计要求一直是手持设备设计行业研究的问题。 数码相 机尤其是超薄的数码相机采用伸縮镜片组来解决这个问题, 诸如螺紋 / 螺母结构、 齿轮结构、 或者涡轮涡杆等结构的机械传动结构, 但这样 的结构相对庞大, 无法放置在像手机、 笔记本电脑、 Pad等更薄的设备 中。 而现有轻薄型设备中普遍使用的音圏电机, 其镜筒无法伸出摄像 头模组外, 只能用做自动聚焦, 工作时不能实现镜片组伸缩的功能, 因而无法解决上述摄像头模组高度越来越低而带来的问题。 另外, 现 有的摄像头模组, 要使镜筒保持在一定位置, 需要持续给线圏提供电 流以平衡弹性体的弹力, 模组的功耗比较大, 而且, 镜筒在沿光轴方 向作直线运动时, 由于光轴方向缺少导向结构, 容易发生晃动, 导致 光路偏心, 影响图像质量。
可见, 轻薄型电子设备需要有一种新的微型摄像头模组来解决上 述现有模组厚度和图像质量之间的矛盾, 以及解决现有的模组中所 存在的问题, 这种新的摄像头模组能够使镜筒伸出模组外, 保证在 视场角不变的条件下, 加大感光芯片的尺寸, 提高图像质量, 同时 要求结构简单, 能够应用于手机、 pad等轻薄型电子设备中。 发明内容
鉴于对背景技术中的技术问题的理解, 如果能够提出一种适于 轻薄化的消费类电子产品的新型的摄像头模组以及用于此类的摄像 头模组的相应的控制方法, 那将是非常有益的。
本发明的第一方面提出了一种用于摄像头模组的控制方法, 其 中, 所述摄像头模组包括成像模块、 套筒模块、 安置于所述套筒模 块中的可对应于套筒模块相对于光轴方向运动的镜头模块、 至少一 个线圏、 至少一个磁性部件、 设置于所述镜头模块与所述套筒模块 之间的弹性部件, 所述控制方法包括以下步骤:
al . 所述弹性部件压靠于所述镜头模块上, 所述弹性部件垂直 于光轴方向的形变为所述镜头模块施加径向正压力, 所述弹性部件 通过所述正压力在所述弹性部件与所述镜头模块的接触面上产生沿 光轴方向的摩擦力, 所述摩擦力可使所述镜头模块相对所述弹性部 件在光轴方向上保持静止状态, 或者
a2. 所述弹性部件固定连接于所述镜头模块上,所述弹性部件压 靠于设置于所述镜头模块与套筒模块之间的一个导电体, 所述的导 电体与套筒模块相对静止地直接或间接固定; 所述弹性部件垂直于 光轴方向的形变为所述镜头模块与弹性部件一体地向所述导电体施 加径向正压力, 所述弹性部件通过所述正压力在所述导电体与所述 弹性部件的接触面上产生沿光轴方向的摩擦力, 所述摩擦力可使所 述镜头模块与弹性部件一体相对所述套筒模块在光轴方向上保持静 止状态; 以及
b. 为所述至少一个线圈提供电流, 所述至少一个线圈或所述至 少一个磁性部件可选择地与所述镜头模块相匹配, 所述镜头模块受 到沿所述光轴方向的电磁力, 所述电磁力作为所述镜头模块沿所述 光轴方向做直线运动的驱动力, 以带动所述镜头模块运动。
优选地, 在依据本发明的一个实施例中, 所述至少一个线圏中 通入的电流是脉冲式的, 使所述镜头模块实现非连续性运动; 所述脉冲电流的最大值与最小值的绝对值之比为至少 1.2倍; 所述脉沖电流的单个脉宽小于 2s, 即所述镜头模块的每次持续 运动的时间小于 2s。
在依据本发明的一个实施例中, 在所述步骤 b 中, 给所述至少 一个线圏通入初始电流, 4吏所述至少一个线圈与所述至少一个磁性 部件相对静止, 所述至少一个线圈中的电压除以电流的值保持为第 一关系, 即: U/I=R。
在依据本发明的一个实施例中, 逐步加大所述初始电流的大小, 使所述至少一个线圏和所述至少一个磁性部件发生相对运动, 导致 所述至少一个线圈中的电压除以电流的值为第二关系, 即 U/I>R; 检 测所述至少一个线圈中电压除以电流的值的所述第一关系发生的改 变能够判断所述至少一个线圏和所述至少一个磁性部件发生了相对 运动, 并且得到使所述至少一个线圈和所述至少一个磁性部件发生 相对运动的临界电流值。
在依据本发明的一个实施例中, 在所述步骤 b 中, 所述镜头模 块的运动为相对于弹性部件沿光轴方向的相对正向或反向运动, 所 述每一次的相对正向或反向运动具有第一运动距离, 所述第一运动 距离由所述弹性部件的径向正压力、 所述至少一个线圈中的脉冲电 流大小、 上升速率、 波形宽度、 所述镜头模块与所述弹性部件之间 的摩擦系数决定; 改变其中一个或多个参数能够改变所述第一运动 距离, 以控制所述镜头模块的运动。
在依据本发明的一个实施例中, 在所述步骤 b 中, 所述镜头模 块的运动为相对于套筒模块沿光轴方向的相对正向或反向运动, 所 述每一次的相对正向或反向运动具有第一运动距离, 所述第一运动 距离由所述弹性部件的径向正压力、 所述至少一个线圏中的脉沖电 流大小、 上升速率、 波形宽度、 所述导电体与所述弹性部件之间的 摩擦系数决定; 改变其中一个或多个参数能够改变所述第一运动距 离, 以控制所述镜头模块与弹性部件的运动。 在依据本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒可 合并为一体; 所述运动载座具有于径向发散的若干延伸部; 所述至 少一个线圈置于所述延伸部中,并适于与所述镜头模块一起运动; 所 述摩擦部件置于所述延伸部与所述弹性部件之间。
在依据本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒可 合并为一体; 所述运动载座的外表面设置有所述磁性部件, 并可适 于与所述镜头模块一起运动; 所述套筒模块对应于所述磁性部件的 位置处, 设置所述至少一个线圈; 所述套筒模块的内部不对应于所 述至少一个磁性部件的位置处, 设置有所述弹性部件; 所述摩 ^"部 件置于所述运动载座与所述至少一个弹性部件之间。
在依据本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体成型或独立装配成型; 所述运动载座具有于径向发散的若 干延伸部; 所述至少一个线圈置于所述延伸部中, 并适于与所述镜 头模块一起运动; 所述的弹性部件连接于所述延伸部或所述线圈的 外部, 使得所述弹性部件与所述的镜头模块一起运动。
在依据本发明的一个实施例中, 所述的导电体接触于供电端上, 且所述弹性部件能够导电或具有导电部位, 所述至少一个线圈与所 述的弹性部件接触连接, 从而供电端能够通过导电体再经弹性部件 为所述至少一个线圏提供电流。
在依据本发明的一个实施例中, 所述镜头模块在步骤 a 中可有 两种结构状态,
第一种状态: 所述镜头模块初始时具有对无穷远物体进行直接 成像的对焦的状态; 第二种状态: 所述镜头模块在初始时未具有对无穷远物体进行 直接成像的对焦的状态, 所述镜头模块需通过所述线圏提供电流, 将镜头模块于套筒模块中伸出的伸缩过程, 调整进入对无穷远物体 进行成像的对焦的状态。
此外, 本发明的第二方面提出了一种摄像头模组, 所述摄像头 模组包括成像模块、 套筒模块、 安置于所述套筒模块中的可对应于 套筒模块相对于光轴方向运动的镜头模块、 至少一个线圏、 至少一 个磁性部件、 设置于所述镜头模块与所述套筒模块之间的弹性部件, 其特征在于,
所述弹性部件压靠于所述镜头模块上, 所述弹性部件垂直于光 轴方向的形变为所述镜头模块施加径向正压力, 所述弹性部件通过 所述正压力在所述弹性部件与所述镜头模块的接触面上产生沿光轴 方向的摩擦力, 所述摩擦力可使所述镜头模块相对所述弹性部件在 光轴方向上保持静止状态, 或者
所述弹性部件固定连接于所述镜头模块上, 所述的弹性部件压 靠于一个导电体上, 所述的导电体与套筒模块相对静止的直接或间 接固定, 所述弹性部件垂直于光轴方向的形变为所述导电体施加径 向正压力, 所述弹性部件通过所述正压力在所述弹性部件与所述导 电体的接触面上产生沿光轴方向的摩擦力, 所述摩擦力可使所述镜 头模块与弹性部件一体相对于套筒模块在光轴方向上保持静止状 态; 并且
所述摄像头模组还包括供电控制装置, 其为所述至少一个线圏 提供电流, 所述至少一个线圈或所述至少一个磁性部件可选择地与 所述镜头模块相匹配, 所述镜头模块受到沿所述光轴方向的电磁力, 所述电磁力作为所述镜头模块沿所述光轴方向做直线运动的驱动 力, 以带动所述镜头模块运动。
在依据本发明的一个实施例中, 所述供电控制装置为所述至少 一个线圏中通入的电流是脉冲式的, 使所述镜头模块实现非连续性 运动; 所述脉冲电流的最大值与最小值的绝对值之比为至少 1.2倍; 所述脉冲电流的单个脉宽小于 2s。
在依据本发明的一个实施例中, 所述镜头模块的运动为相对于 弹性部件沿光轴方向的相对正向或反向运动, 所述每一次的相对正 向或反向运动具有第一运动距离, 所述第一运动距离由所述弹性部 件的径向正压力、 所述至少一个线圈中的脉冲电流大小、 上升速率、 波形宽度、 所述镜头模块与所述弹性部件之间的摩擦系数决定; 改 变其中一个或多个参数能够改变所述第一运动距离, 以控制所述镜 头模块的运动。
在依据本发明的一个实施例中, 所述镜头模块的运动为与弹性 部件一体相对于套筒模块沿光轴方向的相对正向或反向运动, 所述 每一次的相对正向或反向运动具有第一运动距离, 所述第一运动距 离由所述弹性部件的径向正压力、 所述至少一个线圈中的脉冲电流 大小、 上升速率、 波形宽度、 所述导电体与所述弹性部件之间的摩 擦系数决定; 改变其中一个或多个参数能够改变所述第一运动距离, 以控制所述镜头模块的运动。
在依据本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述鏡筒可 合并为一体; 所述运动载座具有于径向发散的若干延伸部; 所述至 少一个线圈置于所述延伸部中,并适于与所述镜头模块一起运动; 所 述摩擦部件置于所述延伸部与所述弹性部件之间。
在依据本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体成型或独立装配成型; 所述运动载座具有于径向发散的若 干延伸部; 所述至少一个线圈置于所述延伸部中, 并适于与所述镜 头模块一起运动; 所述的弹性部件连接于所述延生部或所述线圈的 外部, 使得所述弹性部件与所述的镜头模块一起运动。 在依椐本发明的一个实施例中, 所述镜头模块还包括运动载座、 镜筒、 摩擦部件;
所迷镜筒安置于所述运动载座中, 所述运动载座和所述镜筒可 合并为一体; 所述运动载座的外表面设置有所述磁性部件, 并可适 于与所述镜头模块一起运动; 所述套筒模块对应于所述磁性部件的 位置处, 设置所述至少一个线圏; 所述套筒模块的内部不对应于所 述至少一个磁性部件的位置处, 设置有所述弹性部件; 所述摩擦部 件置于所述运动载座与所述至少一个弹性部件之间。
在依据本发明的一个实施例中, 所述导电体接触于供电端上, 且所述弹性部件能够导电或具有导电部位, 所述至少一个线圏与所 述的弹性部件接触连接, 从而供电端能够通过导电体再经弹性部件 为所述至少一个线圈提供电流。
在依据本发明的一个实施例中, 所述镜头模块在步錄 a 中可有 两种结构状态,
第一种状态: 所述镜头模块初始时具有对无穷远物体进行直接 成像的对焦的状态;
第二种状态: 所述镜头模块在初始时未具有对无穷远物体进行 直接成像的对焦的状悉, 所述镜头模块需通过所述线圈提供电流, 将镜头模块于套筒模块中伸出的伸缩过程, 调整进入对无穷远物体 进行成像的对焦的状态。
借助于依椐本发明所述的控制方法和摄像头模组能够实现摄像 头的优化控制, 从而使得这种新的摄像头模组能够使镜筒伸出模組 夕卜, 保证在视场角不变的奈件下, 加大感光芯片的尺寸, 提高图像 盾量, 同时其结构简单, 能够应用于手机、 pad等轻薄型电子设备中。 再者, 在镜筒静止时不需要额外的电流, 从而节省了摄像头模组的 功耗, 这点对于便携式设备尤其重要。 附图说明
图 1是根据本发明的摄像头模组的外观立体结构示意图; 图 2是根据本发明的第一种实施例的摄像头模组的结构分解示 意图;
图 3 是根据本发明的第一种实施例的摄像头模组沿光轴方向的 侧面剖视图;
图 4是根据本发明的第二种实施例的摄像头模组的结构分解示 意图;
图 5 是根据本发明的第二种实施例的摄像头模组沿光轴方向的 侧面剖视图;
图 6 是根据本发明的第三种实施例的摄像头模组的结构分解示 意图;
图 7是根据本发明第三种实施例的摄像头模组沿光轴方向的俯 视图;
图 8是根据本发明的电压源驱动下的电压和电流信号示意图; 图 9是根据本发明的电流源驱动下的电流和电压信号示意图; 图 10是根据本发明的控制摄像头模组镜筒作单步运动的方法的 流程图。 具体实施方式
以下结合附图 1-10, 详细描述本发明的具体实施例。
图 1 是根据本发明的摄像头模组的外观立体结构示意图。 从图 中可以看出, 在中央的镜头模组能够伸出整个模组之外, 并且能够 处于未伸出、 伸出一部分以及伸出至最远端等三种状态。
第一实施例:
图 2是根据本发明的第一种实施例的摄像头模组的结构分解示 意图, 图 3 是根据本发明的第一种实施例的摄像头模组沿光轴方向 的侧面剖视图;
从图中可以看出, 依据本发明所述的摄像头模组包括: 成像模 块 12、 套筒模块 20、 安置于套筒模块 20中的可对应于套筒模块 20 相对于光轴方向运动的镜头模块 30、 至少一个线圈 7 (在本实施例 中为一个线圈)、 至少一个磁性部件 4 (在本实施例中为可组合为一 圈的八个磁性部件) 、 设置于镜头模块 30与套筒模块 20之间的弹 性部件 9, 其中, 为了能够在静止状态下不需要电流来维持谅静止状 态从而减小整个摄像头模组的耗电功率, 在依据本发明所述的摄像 头模组中, 弹性部件 9压靠于镜头模块 30上, 弹性部件 9垂直于光 轴方向的形变为镜头模块 30施加径向正压力, 弹性部件 9通过该正 压力在弹性部件 9与镜头模块 30的接触面上产生沿光轴方向的摩擦 力, 该摩擦力可使镜头模块 30相对弹性部件 9在光轴方向上保持静 止状态; 并且
在本实施例中, 电源装置为该摄像头模组提供电流, 经由成像 模块的供电控制装置 (如图 8所示) 进行控制为线圏 7提供电流, 线圈 7与镜头模块 30相匹配, 镜头模块 30受到沿光轴方向的电磁 力, 电磁力作为镜头模块 30沿光轴方向做直线运动的驱动力, 以带 动所述镜头模块 30运动。
同时参见图 2、 图 3 、 图 8、 图 9、 图 10, 图 8是根据本发明的 电压源驱动下的电压和电流信号示意图; 图 9是根据本发明的电流 源驱动下的电流和电压信号示意图; 图 10是根据本发明的控制摄像 头模组镜筒作单步运动的方法的流程图。 具体地, 驱动单元 (未标注) 通过供电控制装置 (未标注) 的控制为线圏 7 中通入的电流是脉冲 式的, 使所述镜头模块 30实现非连续性运动, 脉沖电流的最大值与 最小值的绝对值之比为至少 1.2倍, 在本实施例中采用 2倍, 并且脉 冲电流的单个脉宽小于 2s, 在本实施例中为 ls。 在第一时刻时, 驱 动单元通过供电控制装置的控制给线圈 7 通入初始电流, 使线圈 7 与磁性部件 4相对静止, 通过检测反馈单元(未标注)的检测线圏 7 中的电压除以电流的值保持为第一关系, 即: U/I=R。 接着, 将逐步 加大初始电流的大小, 使线圈 7和磁性部件 4发生相对运动, 导致 线圈 7中的电压除以电流的值为第二关系, 即 U/I>R; 检测反馈单元 检测线圈 7 中电压除以电流的值的第一关系发生的改变能够判断线 圈 7和磁性部件 4发生了相对运动,并且得到使线圏 7和磁性部件 4 发生相对运动的临界电流值。 其中, 镜头模块 30的运动为相对于弹 性部件沿光轴方向的相对正向或反向运动, 所述每一次的相对正向 或反向运动具有第一运动距离,所述第一运动距离由所述弹性部件 9 的径向正压力、 所述线圏 7 中的脉冲电流大小、 上升速率、 波形宽 度、 镜头模块 30与弹性部件 9之间的摩擦系数决定; 具体为:
单步运动的距离公式
nBLIw (nBLI - / + mgcosQ') _
S = At
2m{f ― mgcosd')
其中, n是线圏匝数, B是磁感应强度, L是一匝线圏的有效长 度, m是运动部件的质量, f是摩擦力大小, 是驱动电流, 0是镜筒 运动方向与重力的夹角, At是方波脉宽。
改变其中一个或多个参数能够改变所述第一运动距离, 以控制 所述镜头模块 30的运动。
如图 2、 图 3所示, 所述镜头模块 30还包括运动载座 6、 镜筒 (位于运动载座内未标明) 、 摩擦部件 8;
镜筒安置于运动载座 6 中, 运动载座和镜筒可合并为一体成型 也可单独分别成型; 运动载座 6具有于径向发散的若干延伸部 61 ; 线圈 7置于所述延伸部 61 中,并适于与镜头模块 30—起运动; 摩擦 部件 8置于延伸部 61 与所述弹性部件 9之间。 此外, 套筒模块 20 还包括磁轭环 2与置于所述磁轭环 2 内部的套筒单元 1 , 套筒单元 20伸出所述磁轭环 2的外端面 0.2mm以上, 起到为镜头模块 30导 向和保护镜头模 30块的作用。 再者, 磁轭环 2中可置有轭铁块 3 , 轭铁块 3 为导磁材质, 起到了为磁性部件 4导磁的作用; 轭铁块 3 与磁轭环 2 内壁面之间有空气间隙, 线圏 7置于空气间隙中并且能 够沿光轴方向运动, 空气间隙的光轴方向长度占摄像头模组的光轴 方向总厚度的三分之一以上。 其中, 套筒模块 20的磁轭环 2、 套筒 单元 1与轭铁块 3为一体成型或单独设置的。
线圈 7与镜头模块 30上的第一导电部位 (未标注)相连接, 导 电部位与弹性部件 9相接触, 弹性部件 9接触于供电端上适于通过 电源装置供电, 且弹性部件 9 能够导电或具有第二导电部位, 从而 使得供电端能够通过弹性部件 9或弹性部件 9的第二导电部位为线 圏 7提供电流。 线圏 7 包括两种固定结构, 在第一固定结构中, 线 圈 7直接与延伸部 61相固定连接; 在第二固定结构中, 线圏 7与延 伸部 61 之间在光轴方向上具有相对运动距离, 相对运动距离在 10 微米与 1 毫米之间。 供电控制装置的控制发送控制信号至驱动单元 进而提供于摄像头模组的线圏 7相应的驱动信号
在第一固定结构中, 所述电流存在两种驱动方式, 第一驱动方 式: 线圈 7通入与相对正向方向相一致的电流, 直接推动所述镜头 模块 30移动; 第二驱动方式: 线圏 7通入与相对反向方向相一致的 电流, 使镜头模块 30存储一定的弹性势能并且随后再通入与相对正 向方向相一致的电流, 推动镜头模块 30移动, 并在摩擦力作用下静 止。
在第二固定结构中电流驱动方式为: 为线圏 7通入与相对反向 方向相一致的电流, 使线圏 7存储一定的弹性势能并且随后再通入 与相对正向方向相一致的电流, 电磁力故正功, 线圈 7积累动能并 且与所述镜头模块 30碰撞, 以推动所述镜头模块 30移动, 并且在 摩擦力作用下静止。 此外, 摄像头模组还设置有基座 10 , 基座 10 设置于成像模块 12上起到限定镜头模块 30光轴方向运动位置的作 用, 摄像头模组还可包括红外滤光片, 铺设于成像模块 12的图像传 感器的感光面上。
第二实施例:
请同时参照图 4、 图 5、 图 8、 图 9、 图 10, 图 4是根据本发明 的第二种实施例的摄像头模组的结构分解示意图; 图 5 是根据本发 明的第二种实施例的摄像头模组沿光轴方向的侧面剖视图;
驱动单元通过供电控制装置的控制为线圏 7,中通入的电流是脉 冲式的, 使所述镜头模块 30,实现非连续性运动, 脉冲电流的最大值 与最小值的绝对值之比为至少 1.2倍, 在本实施例中采用 2倍, 并且 脉冲电流的单个脉宽小于 2s, 在本实施例中为 ls。 在第一时刻时, 驱动单元通过供电控制装置的控制给线圈 7,通入初始电流, 使线圈 7,与磁性部件 4,相对静止, 通过检测反馈单元的检测线圏 7,中的电 压除以电流的值保持为第一关系, 即: U/I=R。 接着, 将逐步加大初 始电流的大小, 使线圈 7,和磁性部件 4,发生相对运动, 导致线圏 7, 中的电压除以电流的值为第二关系, 即 U/I>R; 检测反馈单元检测线 圈 7,中电压除以电流的值的第一关系发生的改变能够判断线圈 7,和 磁性部件 4,发生了相对运动, 并且得到使线圈 7,和磁性部件 4,发生 相对运动的临界电流值。 其中, 镜头模块 30,的运动为相对于弹性部 件 9,沿光轴方向的相对正向或反向运动, 所述每一次的相对正向或 反向运动具有第一运动距离, 所述第一运动距离由所述弹性部件 9, 的径向正压力、 所述线圏 7,中的脉冲电流大小、 上升速率、 波形宽 度、 镜头模块 30,与弹性部件 9,之间的摩擦系数决定; 具体为:
单步运动的距离公式
_ nBLIw nBLIw— / + mgcosg) λ 2
2m f― mgcosG^
其中, n是切割磁力线的有效线圏匝数, B是磁感应强度, L是 一匝线圈的有效长度, m是运动部件的质量, f是摩擦力大小, 是 驱动电流, 0是镜筒运动方向与重力的夹角, 是方波脉宽。
改变其中一个或多个参数能够改变所述第一运动距离, 以控制 所述镜头模块 30'的运动。
请参照图 4、 图 5 所示, 在本发明的第二实施例中, 镜头模块 30,还包括运动载座 6,、 镜筒(未标注)、 摩擦部件 (未标注) ;
镜筒安置于运动载座 6,中, 运动载座 6,和镜筒可合并为一体运 动载座 6,设置有向外延伸的间隔设置的若干延伸部 6Γ,运动载座 6, 的外表面设置有磁性部件 4,, 磁性部件 4,设置于所述的延伸部 61, 之间、 并可适于与镜头模块 30,一起运动; 套筒模块 20,对应于磁性 部件 4'的位置处, 设置线圈 7,; 套筒模块 20,与镜头模块 30,之间, 设置有弹性部件 9,, 摩擦部件 8置于延伸部 61与所述弹性部件 9之 间。 摄像头模组还包括: 基座 10,,基座 10,设置于成像模块 12,上起 到限定镜头模块 30'光轴方向运动位置的作用线圈 7,直接接触于供 电端上, 供电端为线圏 7,提供电流。 磁性部件 4,包括两种固定结构, 第一固定结构中,磁性部件 4,直接与运动载座 6,上的延伸部 61 '相固 定连接; 第二固定结构中所述磁性部件 4,与运动载座 6,之间沿光轴 方向上具有相对运动距离, 相对运动距离在 10 米与 1亳米之间。 供电控制装置的控制发送控制信号至驱动单元进而提供于摄像头模 组的线圈 7,相应的驱动信号。 在第二实施例的第一固定结构中, 电 流存在两种驱动方式,
第一驱动方式: 线圈 7,通入与相对正向方向相一致的电流, 导 致所述磁性部件 4,直接推动所述镜头模块 30,移动;
第二驱动方式: 线圈 7,通入与相对反向方向相一致的电流, 使 所述镜头模块 30,存储一定的弹性势能, 并且随后再通入与相对正向 方向相一致的电流, 导致磁性部件 4,推动所述镜头模块 30,移动, 并 且在摩擦力作用下静止。 在所述第二固定结构中, 电流驱动方式为: 先给线圏 7'通入与相对反向方向相一致的电流, 使磁性部件 4'存储 一定的弹性势能, 并且随后再通入与相对正向方向相一致的电流, 电磁力做正功, 磁性部件 4,积累动能并且与所述镜头模块 30,碰撞, 以推动所述镜头模块 30,移动, 并在摩擦力作用下静止。
第三实施例
请参照图 6、 图 7。 图 6是根据本发明的第三种实施例的摄像头 模组的结构分解示意图;
图 7是根据本发明第三种实施例的摄像头模组沿光轴方向的俯 视图; 从图中可以看出, 依据本发明所述的摄像头模组包括: 成像 模块 12"、 套筒模块 20"、 安置于套筒模块 20"中的可对应于套筒模 块 20相对于光轴方向运动的镜头模块 30" (此部分可参照第一实施 例, 但本实施例中的镜头模块 30"未设置有摩擦部件) 、 至少一个 线圈 7" (在本实施例中为一个线圏)、 至少一个磁性部件 4" (在本 实施例中为可组合为的竖直设置的 2个磁性部件, 但不以此为限) 、 设置于镜头模块 30"与套筒模块 20"之间的弹性部件 9", 其中, 为 了能够在静止状态下不需要电流来维持该静止状悉从而减小整个摄 像头模组的耗电功率, 在依据本发明所述的摄像头模组中, 弹性部 件 9"卡扣连接于镜头模块 30"上,弹性部件 9"压靠于设置于镜头模 块 30"与套筒模块 20"之间的一导电体 13" ,导电体 13"与套筒模块 20,,相对静止的直接或间接固定; 弹性部件 9"垂直于光轴方向的形 变为镜头模块 30"与弹性部件 9"一体向导电体 13"施加径向正压 力,弹性部件 9"通过正压力在导电体 13"与弹性部件 9"的接触面上 产生沿光轴方向的摩擦力, 摩擦力可使镜头模块 30"与弹性部件 9" 一体相对套筒模块 20"在光轴方向上保持静止状态; 并且
在本实施例中, 电源装置为该摄像头模组提供电流, 经由成像 模块的供电控制装置 (如图 8所示) 进行控制为线圈 7"提供电流, 线圏 7"与镜头模块 30"相匹配, 镜头模块 30"受到沿光轴方向的电 磁力, 电磁力作为镜头模块 30"沿光轴方向做直线运动的驱动力, 以带动所述镜头模块 30"运动。
同时参见图 6、 图 7、 图 8、 图 9、 图 10 , 图 8是根据本发明的 电压源驱动下的电压和电流信号示意图; 图 9是根据本发明的电流 源驱动下的电流和电压信号示意图; 图 10是根据本发明的控制摄像 头模组镜筒作单步运动的方法的流程图。 具体地, 驱动单元 (未标注) 通过供电控制装置 (未标注) 的控制为线圏 7"中通入的电流是脉冲 式的, 使所述镜头模块 30"实现非连续性运动, 脉冲电流的最大值 与最小值的绝对值之比为至少 1.2倍, 在本实施例中采用 2倍, 并且 脉冲电流的单个脉宽小于 2s, 在本实施例中为 ls。 在第一时刻时, 驱动单元通过供电控制装置的控制给线圏 7"通入初始电流, 使线圈 7"与磁性部件 4"相对静止, 通过检测反馈单元(未标注)的检测线 圈 7"中的电压除以电流的值保持为第一关系, 即: U/I=R。 接着, 将逐步加大初始电流的大小, 使线圏 7"和磁性部件 4,,发生相对运 动, 导致线圏 7"中的电压除以电流的值为第二关系, 即 U/I>R; 检 测反馈单元检测线圏 7"中电压除以电流的值的第一关系发生的改变 能够判断线圈 7"和磁性部件 4"发生了相对运动, 并且得到使线圏 7"和磁性部件,,4发生相对运动的临界电流值。 其中, 镜头模块 30" 的运动为与弹性部件 9,,一体的相对于套筒模块 20,,沿光轴方向的相 对正向或反向运动, ; 所述每一次的相对正向或反向运动具有第一 运动距离, 所述第一运动距离由所述弹性部件 9"的径向正压力、 所 述线圈 7"中的脉冲电流大小、 上升速率、 波形宽度、 弹性部件 9" 与导电体 13,,之间的摩擦系数决定; 具体为:
单步运动的距离公式
g _ 7tBLIw(nBUw - / + mgcosO) 2
2m{f― mgcosfl)
其中, n是线圈匝数, B是磁感应强度, L是一匝线圏的有效长 度, m是运动部件的质量, f是摩擦力大小, ^是驱动电流, 0是镜筒 运动方向与重力的夹角, At是方波脉宽。
改变其中一个或多个参数能够改变所述第一运动距离, 以控制 所述镜头模块 30的运动。
如图 6、 图 7所示, 所述镜头模块 30"还可包括运动载座 6"、 镜筒 (位于运动载座内未标明) ;
镜筒安置于运动载座 6"中,运动载座 6"和镜筒可合并为一体成 型也可单独分别成型; 运动载座 6"具有于径向发散的若干延伸部 61 "; 线圈 7"置于所述延伸部 61,,中,并适于与镜头模块 30"—起运 动; 。 此外, 本实施例还可与第一实施例相同, 对应的于套筒模块 20"还包括磁轭环 2,,与置于所述磁轭环 2"内部的套筒单元 1 " , 套 筒单元 20"伸出所述磁轭环 2"的外端面 0.2mm以上,起到为镜头模 块 30"导向和保护镜头模块 30"的作用。 再者, 磁轭环 2,,中可置有 轭铁块 3" , 轭铁块 3"为导磁材质, 起到了为磁性部件 4"导磁的作 用; 轭铁块 3"与磁轭环 2,,内壁面之间有空气间隙, 线圏 7"置于空 气间隙中并且能够沿光轴方向运动, 空气间隙的光轴方向长度占摄 像头模组的光轴方向总厚度的三分之一以上。 其中, 套筒模块 20" 的磁轭环 2"、 套筒单元 1,,与轭铁块 3 "为一体成型或单独设置的。
线圏 7"与镜头模块 30"上的第一导电部位 (未标注) 相连接, 第一导电部位与弹性部件 9"接触,弹性部件 9"接触于供电端上适于 通过电源装置供电, 且弹性部件 9"能够导电或具有第二导电部位, 从而使得供电端能够通过弹性部件 9"或弹性部件 9"的导电部位为 线圈 7"提供电流。 线圈 7"包括两种固定结构, 在第一固定结构中, 线圈 7"直接与延伸部 61 "相固定连接; 在第二固定结构中, 线圈 7" 与延伸部 61 "之间在光轴方向上具有相对运动距离, 相对运动距离 在 10微米与 1毫米之间。 供电控制装置的控制发送控制信号至驱动 单元进而提供于摄像头模组的线圏 7"相应的驱动信号在第一固定结 构中, 所述电流存在两种驱动方式, 第一驱动方式: 线圏 7"通入与 相对正向方向相一致的电流, 直接推动所述镜头模块 30"移动; 第 二驱动方式: 线圏 7"通入与相对反向方向相一致的电流, 使镜头模 块 30"存储一定的弹性势能并且随后再通入与相对正向方向相一致 的电流, 推动镜头模块 30"移动, 并在摩擦力作用下静止。
在第二固定结构中电流驱动方式为: 为线圏 7"通入与相对反向 方向相一致的电流, 使线圈 7"存储一定的弹性势能并且随后再通入 与相对正向方向相一致的电流, 电磁力 4故正功, 线圏 7"积累动能并 且与所述镜头模块 30"碰撞, 以推动所述镜头模块 30,,移动, 并且在 摩擦力作用下静止。 此外, 摄像头模组还设置有基座 10" , 基座 10" 设置于成像模块 12"上起到限定镜头模块 30"光轴方向运动位置的 作用, 摄像头模组还可包括红外滤光片, 铺设于成像模块 12,,的图 像传感器的感光面上。
请参照第一实施例、 第二实施例和第三实施例的结构中, 镜头 模块 30、 30,、 30"在最初的光学状态时都有两种光学对焦状态, 分 别为:
第一种状态: 镜头模块 30、 30,、 30"初始时具有对无穷远物体 进行直接成像的对焦的状态;
第二种状态: 镜头模块 30、 30,、 30"在初始时未具有对无穷远 物体进行直接成像的对焦的状态, 镜头模块 30、 30,、 30,,需通过线 圈 7、 7'、 7"提供电流, 将镜头模块 30、 30,、 30"于套筒模块 20, 中伸出的伸缩过程, 调整进入对无穷远物体进行成像的对焦的状态。 当所述第二种状态时, 镜头模块 30、 30,、 30"完成伸出套筒模块 20、 20,、 20"端面或缩回套筒模块 20、 20,、 20"内的时间小于 20s。 当 第一状态或第二状态时, 镜头模块 30、 30,、 30"为不连续地运动, 每次持续运动的距离不大于 100微米, 实现搜索对焦位置的功能。 镜头模块 30、 30,、 30,,相对所述套筒模块 20、 20,、 20"移动时, 通 过所述成像模块 12、 12,、 12"输出图像, 检测所述图像清晰度, 根 据图像清晰度的变化确定并匹配所述第一状态或第二状态, 实现所 述镜头模块 30、 30,、 30"的伸缩和 /或对焦功能。
在第一实施例、 第二实施例与第三实施例中, 如图 8和图 9分 别示出了两种不同的分别采用电压源和电流源的示意图。 忽略线圈 7、 7,、 7"的电感,线圈 7、 7,、 7"两端电压与电流关系为 U=RI+nBLv, 其中, U是线圈 7、 7,、 7"两端电压, R是线圏 7、 7,、 7,,的电阻值, I是线圏 7、 7,、 7"中的电流值, n是线圏匝数, B是磁感应强度, L 是一匝线圏 7、 T、 7"的有效长度, V是线圏 7、 7,、 7"运动速度。
根据该公式可知, 如图 8所示, 采用电压源时, 电压值 U恒定, a. 当线圏 7、 T、 7"运动时, 根据力学原理, 运动速度会先增大再 恒定, 所以线圈 7、 7,、 7"中的电流 I会先减小再恒定; b. 当线圈 7、 7\ 7"不运动时, 线圈 7、 7,、 7"中的电流 I恒定。
而如图 9所示, 采用电流源时, 电流值 I恒定, a. 当线圏 7、 7,、 7"运动时, 随着运动速度的增大, 线圏 7、 7,、 7"两端电压 U也逐 渐增大; b. 当线圈不运动时, 线圈 7、 7\ 7"两端电压 U恒定。 由 此便能控制镜头模块 30或 30,的运动。
图 10示出了根据本发明的控制摄像头模组镜筒作单步运动的方 法的流程图。 请同时参照图 8、 图 9在镜筒运动过程中, 检测反馈单 元检测线圈 7、 7,、 7"中因镜头模块 30、 30,、 30"运动所产生的电 压除以电流的值的变化, 将相关检测信息传送至供电控制装置, 供 电控制装置根据这一比值的变化, 得出使镜头模块 30、 30,、 30,,发 生相对运动的临界电流值, 并提供相应控制信号至驱动单元, 驱动 单元提供驱动信号至摄像头模组,控制摄像头模组中的镜头模块 30、 30,、 30"分别在第一实施例、 第三实施例中的线圈 7、 7"同步光轴 方向运动或在第二实施例中与磁性部件 4,同步光轴方向运动, 并通 过不断的检测反馈、 控制计算、 驱动致使镜头模块 30、 30,、 30"在 套筒模块 20、 20,、 20"中相对的正向与反向运动。
具体的,供电控制装置根据电压除以电流的值的变化,在线圏 7、 7,、 7"中通上相应大小的脉冲电流, 使驱动镜头模块 30、 30,、 30" 的电磁力克服摩擦力等阻力, 推动镜筒相对弹性部件 9、 9,、 9"的接 触面滑动, 然后在动摩擦力作用下停止在某一位置, 即镜头模块 30 或 30,实现一次步进。
优选地, 镜头模块 30、 30,、 30"的一次步进, 即镜头模块 30、 30'、 30"相对弹性部件 9、 9'、 9"的接触面滑动一定距离, 可选择的 镜头模块 30、 30,、 30"为弹性部件 9、 9,、 9"一体, 此时, 弹性部 件 9、 9,、 9"与镜头模块 30、 30,、 30"相对于套筒模块 20、 20,、 20" 滑动一定距离, 该距离由弹性部件 9、 9,、 9"的径向弹力, 轴向刚度、 电磁力、 摩擦系数等因素决定, 每一次步进的距离不大于 100微米, 且具备可重复性, 所以重复上述步进过程, 就能够控制镜头模块 30、 30,、 30"的位置, 实现摄像头模组的伸缩和 /或对焦功能。
在镜头模块 30、 30,、 30"步进过程中, 镜头模块 30、 30,、 30" 由运动变为与模组相对静止的过程中, 通过电磁驱动力的控制, 使 每次的一次步进, 即镜头模块 30、 30,、 30"相对弹性部件 9、 9,、 9" 的接触面滑动一定距离。
借助于依据本发明所述的控制方法和摄像头模组能够实现摄像 头的优化控制, 从而使得这种新的摄像头模组能够使镜头模块 30、 30,、 30,,伸出模组外, 保证在视场角不变的条件下, 加大感光芯片 的尺寸, 提高图像质量, 同时其结构简单, 能够应用于手机、 pad等 轻薄型电子设备中。 再者, 在鏡头模块 30、 30,、 30"静止时不需要 额外的电流, 从而节省了摄像头模组的功耗, 这点对于便携式设备 尤其重要。
尽管在附图和前述的描述中详细阐明和描述了本发明, 应认为 该阐明和描述是说明性的和示例性的, 而不是限制性的; 本发明不 限于上述实施方式。 那些本技术领域的一般技术人员能够通过研究说明书、 公开的 内容及附图和所附的权利要求书, 理解和实施对披露的实施方式的 其他改变。 在本发明的实际应用中, 一个零件可能执行权利要求中 所引用的多个技术特征的功能。 在权利要求中, 措词 "包括" 不排 除其他的元素和步骤, 并且措辞 "一个" 不排除复数。 权利要求中 的任何附图标记不应理解为对范围的限制。

Claims

权 利 要 求 书
1. 一种摄像头模组的控制方法, 其中, 所述摄像头模组包括成 像模块、 套筒模块、 安置于所述套筒模块中的可对应于套筒模块相 对于光轴方向运动的镜头模块、 至少一个线圏、 至少一个磁性部件、 设置于所述镜头模块与所述套筒模块之间的弹性部件, 所述控制方 法包括以下步骤:
al . 所述弹性部件压靠于所述镜头模块上, 所述弹性部件垂直 于光轴方向的形变为所述镜头模块施加径向正压力, 所述弹性部件 通过所述正压力在所述弹性部件与所述镜头模块的接触面上产生沿 光轴方向的摩檫力, 所述摩擦力可使所述镜头模块相对所述弹性部 件在光轴方向上保持静止状态, 或者
a2. 所述弹性部件固定连接于所述镜头模块上,所述弹性部件压 靠于设置于所述镜头模块与套筒模块之间的一个导电体, 所述的导 电体与套筒模块相对静止地直接或间接固定; 所述弹性部件垂直于 光轴方向的形变为所述镜头模块与弹性部件一体地向所述导电体施 弹性部件的接触面上产生沿光轴方向的摩擦力, 所述摩擦力可使所 述镜头模块与弹性部件一体相对所述套筒模块在光轴方向上保持静 止^!夫态; 以及
b. 为所述至少一个线圈提供电流, 所述至少一个线圈或所述至 少一个磁性部件选择地与所述镜头模块相匹配, 所述镜头模块受到 沿所述光轴方向的电磁力, 所述电磁力作为所述镜头模块沿所述光 轴方向做直线运动的驱动力, 以带动所述镜头模块运动。
2. 根据权利要求 1所述的方法, 其特征在于, 在所述步 b中, 所述至少一个线圏中通入的电流是脉冲式的, 使所述镜头模块实现 非连续性运动;
所述脉冲电流的最大值与最小值的绝对值之比为至少 1.2倍; 所述脉冲电流的单个脉宽小于 2s。
3. 根据权利要求 2所述的方法, 其特征在于, 在所述步骤 b中, 给所述至少一个线圏通入初始电流, 使所述至少一个线圏与所述至 少一个磁性部件相对静止, 所述至少一个线圏中的电压除以电流的 值保持为第一关系, 即: U/I=R。
4. 根据权利要求 3所述的方法, 其特征在于, 逐步加大所述初 始电流的大小, 使所述至少一个线圏和所述至少一个磁性部件发生 相对运动, 导致所述至少一个线圏中的电压除以电流的值为第二关 系, 即 1;/1>1; 检测所述至少一个线圈中电压除以电流的值的所述第 一关系发生的改变能够判断所述至少一个线圏和所述至少一个磁性 部件发生了相对运动。
5. 根据权利要求 1所述的方法, 其特征在于, 在所述步骤 b中, 所述镜头模块的运动为相对于弹性部件沿光轴方向的相对正向或反 向运动, 所述每一次的相对正向或反向运动具有第一运动距离, 所 述第一运动距离由所述弹性部件的径向正压力、 所述至少一个线圏 中的脉冲电流大小、 上升速率、 波形宽度、 所述镜头模块与所述弹 性部件之间的摩擦系数决定; 改变其中一个或多个参数能够改变所 述第一运动距离, 以控制所述镜头模块的运动。
6. 根据权利要求 1所述的方法, 其特征在于, 在所述步骤 b中, 所述镜头模块的运动为相对于套筒模块沿光轴方向的相对正向或反 向运动, 所述每一次的相对正向或反向运动具有第一运动距离, 所 述第一运动距离由所述弹性部件的径向正压力、 所述至少一个线圈 中的脉冲电流大小、 上升速率、 波形宽度、 所述导电体与所述弹性 部件之间的摩擦系数决定; 改变其中一个或多个参数能够改变所述 第一运动距离, 以控制所述镜头模块与弹性部件的运动。
7. 根据权利要求 1所述的方法, 其特征在于, 所述镜头模块还 包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体成型或独立装配成型; 所述运动载座具有于径向发散的若 干延伸部; 所述至少一个线圈置于所述延伸部中,并适于与所述镜头 模块一起运动; 所述摩擦部件置于所述延伸部与所述弹性部件之间。
8. 根据权利要求 1所述的方法, 其特征在于, 所述镜头模块还 包括运动载座、 镜筒;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体成型或独立装配成型; 所述运动载座具有于径向发散的若 干延伸部; 所述至少一个线圏置于所述延伸部中, 并适于与所述镜 头模块一起运动; 所述的弹性部件连接于所述延伸部或所述线圏的 外部, 使得所述弹性部件与所述的镜头模块一起运动。
9. 根据权利要求 7或 8所述的方法, 其特征在于, 所述套筒模 块包括磁轭环与置于所述磁轭钚内部的套筒单元, 所述套筒单元伸 出所述磁轭环的外端面 0.2mm以上, 起到为所述镜头模块导向和保 护镜头模块的作用。
10. 根据权利要求 9 所述的方法, 其特征在于, 所述磁轭环中 置有轭铁块; 所述轭铁块与所述磁轭环内壁面之间有空气间隙, 所 述至少一个线圈置于所述空气间隙中并且能够沿光轴方向运动, 所 述空气间隙的光轴方向长度占所述摄像头模组的光轴方向总厚度的 三分之一以上。
1 1. 根据权利要求 9 所述的方法, 其特征在于, 所述套筒模块 的所述磁轭环、 所述套筒单元与所述轭铁块为一体成型或单独设置。
12. 根据权利要求 1 所述的方法, 其特征在于, 所述至少一个 线圈与所述镜头模块上的导电部位相连接, 所述导电部位与所述弹 性部件相接触, 所述弹性部件接触于供电端上, 且所述弹性部件能 够导电或具有导电部位, 从而使得所述供电端能够通过所述弹性部 件或所述弹性部件的导电部位为所述至少一个线圈提供电流。
13. 根据权利要求 1所述的方法, 其特征在于, 所述的导电体接 触于供电端上, 且所述弹性部件能够导电或具有导电部位, 所述至 少一个线圈与所述的弹性部件接触连接, 从而供电端能够通过导电 体再经弹性部件为所述至少一个线圏提供电流。
14. 根据权利要求 7或 8所述的方法, 其特征在于, 所述至少 一个线圏包括两种固定结构, 在第一固定结构中, 所述至少一个线 圏直接与所述延伸部相固定连接; 在第二固定结构中, 所述至少一 个线圈与所述延伸部之间在光轴方向上具有相对运动距离, 所述相 对运动距离在 10微米与 1亳米之间。
15. 根据权利要求 14所述的方法, 其特征在于, 在所述第一固 定结构中, 所述电流存在两种驱动方式,
第一驱动方式: 所述至少一个线圏通入与相对正向方向相一致 的电流, 直接推动所述镜头模块移动;
第二驱动方式: 所述至少一个线圏通入与相对反向方向相一致 的电流, 使所述镜头模块存储一定的弹性势能并且随后再通入与相 对正向方向相一致的电流, 推动所述镜头模块移动, 并在所述摩擦 力作用下静止。
16. 根据权利要求 14所述的方法, 其特征在于, 在所迷第二固 定结构中, 所述电流驱动方式为: 为所述至少一个线圏通入与相对 反向方向相一致的电流, 使所述至少一个线圈存储一定的弹性势能 并且随后再通入与相对正向方向相一致的电流, 电磁力 ί正功, 所 述至少一个线圏积累动能并且与所述镜头模块碰撞, 以推动所述镜 头模块移动, 并且在摩擦力作用下静止。
17. 根据权利要求 1所述的方法, 其特征在于, 所述镜头模块还 包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体或单独设置; 所述运动载座的外表面设置有所述磁性部件, 并可适于与所述镜头模块一起运动; 所述套筒模块对应于所述磁性 部件的位置处, 设置所述至少一个线圏; 所述套筒模块与所述镜头 模块之间, 设置有所述弹性部件; 所述摩擦部件置于所述运动载座 与所述至少一个弹性部件之间。
18. 根据权利要求 17所述的方法, 其特征在于, 所述套筒模块 包括基座与置于所述基座内部的套筒单元, 所述套筒单元伸出所述 基座的外端面 0.2mm以上, 起到为所述镜头模块导向和保护镜头模 块的作用。
19. 根据权利要求 17所述的方法, 其特征在于, 所述至少一个 线圏直接接触于供电端上, 所述供电端为所述至少一个线圏提供电 流。
20. 根据权利要求 17所述的方法, 其特征在于, 所述磁性部件 包括两种固定结构, 第一固定结构中, 所述至少一个磁性部件直接 与所述延伸部相固定连接; 第二固定结构中所述至少一个磁性部件 与所述运动载座之间沿光轴方向上具有相对运动距离, 所述相对运 动距离在 10微米与 1毫米之间。
21. 根据权利要求 20所述的方法, 其特征在于, 所述第一固定 结构中, 所述电流存在两种驱动方式,
第一驱动方式: 所述至少一个线圏通入与相对正向方向相一致 的电流, 导致所述磁性部件直接推动所述镜头模块移动;
第二驱动方式: 所述至少一个线圏通入与相对反向方向相一致 的电流, 使所述镜头模块存储一定的弹性势能, 并且随后再通入与 相对正向方向相一致的电流, 导致所述磁性部件推动所述镜头模块 移动, 并且在所述摩擦力作用下静止。
22. 根据权利要求 20所述的方法, 其特征在于, 在所述第二固 定结构中, 所述电流驱动方式为: 先给所述至少一个线圈通入与相 对反向方向相一致的电流, 使所述至少一个磁性部件存储一定的弹 性势能, 并且随后再通入与相对正向方向相一致的电流, 电磁力做 正功, 所述至少一个磁性部件积累动能并且与所述镜头模块碰撞, 以推动所述镜头模块移动, 并在摩擦力作用下静止。
23. 根据权利要求 1 所述的方法, 其特征在于, 所述镜头模块 在步骤 a中可有两种结构状态,
第一种状态: 所述镜头模块初始时具有对无穷远物体进行直接 成像的对焦的状态;
第二种状态: 所述镜头模块在初始时未具有对无穷远物体进行 直接成像的对焦的状态, 所述镜头模块需通过所述线圈提供电流, 将镜头模块于套筒模块中伸出的伸缩过程, 调整进入对无穷远物体 进行成像的对焦的状态。
24. 根据权利要求 23所述的方法, 其特征在于, 当所述第二种 状态时, 所述镜头模块完成伸出套筒模块端面或缩回套筒模块内的 时间小于 20s。
25. 根据权利要求 24所述的方法, 其特征在于, 当所述第一状 态或第二状态时, 所述镜头模块为不连续地运动, 每次持续运动的 距离不大于 100微米, 实现搜索对焦位置的功能。
26. 根据权利要求 24所述的方法, 其特征在于, 所述镜头模块 相对所述套筒模块移动时, 通过所述成像模块输出图像, 检测所述 图像清晰度, 根据所述图像清晰度的变化确定并匹配所述第一状态 或第二状态, 实现所述镜头模块的伸缩和 /或对焦功能。
27. 一种摄像头模组, 所述摄像头模组包括成像模块、 套筒模 块、 安置于所述套筒模块中的可对应于套筒模块相对于光轴方向运 动的镜头模块、 至少一个线圈、 至少一个磁性部件、 设置于所述镜 头模块与所述套筒模块之间的弹性部件, 其特征在于,
所述弹性部件压靠于所述镜头模块上, 所述弹性部件垂直于光 轴方向的形变为所述镜头模块施加径向正压力, 所述弹性部件通过 所述正压力在所述弹性部件与所述镜头模块的接触面上产生沿光轴 方向的摩擦力, 所述摩擦力可使所述镜头模块相对所述弹性部件在 光轴方向上保持静止状态, 或者
所述弹性部件固定连接于所述镜头模块上, 所述的弹性部件压 靠于一个导电体上, 所述的导电体与套筒模块相对静止的直接或间 接固定, 所述弹性部件垂直于光轴方向的形变为所述导电体施加径 向正压力, 所述弹性部件通过所述正压力在所述弹性部件与所述导 电体的接触面上产生沿光轴方向的摩擦力, 所述摩擦力可使所述镜 头模块与弹性部件一体相对于套筒模块在光轴方向上保持静止状 态; 并且
所述摄像头模组还包括供电控制装置, 其为所述至少一个线圈 提供电流, 所述至少一个线圏或所述至少一个磁性部件可选择地与 所述镜头模块相匹配, 所述镜头模块受到沿所述光轴方向的电磁力, 所述电磁力作为所述镜头模块沿所述光轴方向做直线运动的驱动 力, 以带动所述镜头模块运动。
28. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述供 电控制装置为所述至少一个线圏中通入的电流是脉冲式的, 使所述 镜头模块实现非连续性运动;
所述脉冲电流的最大值与最小值的绝对值之比为至少 1.2倍; 所述脉冲电流的单个脉宽小于 2s。
29. 根据权利要求 28所述的摄像头模组, 其特征在于, 所述供 电控制装置为所述至少一个线圏通入初始电流, 使所述至少一个线 圏与所述至少一个磁性部件相对静止, 所述至少一个线圏中的电压 除以电流的值保持为第一关系, 即: U/I= 0
30. 根椐权利要求 29所述的摄像头模组, 其特征在于, 逐步加 大所述初始电流的大小, 使所述至少一个线圏和所述至少一个磁性 部件发生相对运动, 导致所述至少一个线圈中的电压除以电流的值 为第二关系, 即 U/I>R; 检测所述至少一个线圈中电压除以电流的值 的所述第一关系发生的改变能够判断所述至少一个线圏和所述至少 一个磁性部件发生了相对运动。
31, 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块的运动为相对于弹性部件沿光轴方向的相对正向或反向运 动, 所述每一次的相对正向或反向运动具有第一运动距离, 所述第 一运动距离由所述弹性部件的径向正压力、 所述至少一个线圏中的 脉冲电流大小、 上升速率、 波形宽度、 所述镜头模块与所述弹性部 件之间的摩擦系数决定; 改变其中一个或多个参数能够改变所述第 一运动距离, 以控制所述镜头模块的运动。
32. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块的运动为与弹性部件一体相对于套筒模块沿光轴方向的相对 正向或反向运动, 所述每一次的相对正向或反向运动具有第一运动 距离, 所述第一运动距离由所述弹性部件的径向正压力、 所述至少 一个线圏中的脉冲电流大小、 上升速率、 波形宽度、 所述导电体与 所述弹性部件之间的摩擦系数决定; 改变其中一个或多个参数能够 改变所述第一运动距离, 以控制所述镜头模块的运动。
33. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块还包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒可 合并为一体; 所述运动载座具有于径向发散的若干延伸部; 所述至 少一个线圈置于所述延伸部中,并适于与所述镜头模块一起运动; 所 述摩擦部件置于所述延伸部与所述弹性部件之间。
34. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块还包括运动载座、 镜筒;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒合 并为一体成型或独立装配成型; 所迷运动载座具有于径向发散的若 干延伸部; 所述至少一个线圏置于所述延伸部中, 并适于与所述镜 头模块一起运动; 所述的弹性部件连接于所述延生部或所述线圏的 外部, 使得所述弹性部件与所述的镜头模块一起运动。
35. 根据权利要求 33或 34所述的摄像头模组, 其特征在于, 所述套筒模块包括磁轭环与置于所迷磁轭环内部的套筒单元, 所述 套筒单元伸出所述磁轭 ί不的外端面 0.2mm以上, 起到为所述镜头模 块导向和保护镜头模块的作用。
36. 根据权利要求 35所述的摄像头模组, 其特征在于, 所述磁 轭环中置有轭铁块; 所述轭铁块与所述磁轭环内壁面之间有空气间 隙, 所述至少一个线圏置于所述空气间隙中并且能够沿光轴方向运 动, 所述空气间隙的光轴方向长度占所述摄像头模组的光轴方向总 厚度的三分之一以上。
37. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述至 少一个线圏与所述镜头模块上的导电部位相连接, 所述导电部位与 所述弹性部件相接触, 所述弹性部件接触于供电端上, 且所述弹性 部件能够导电或具有导电部位, 从而使得所述供电端能够通过所述 弹性部件或所述弹性部件的导电部位为所述至少一个线圏提供电 流
38. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述导 电体接触于供电端上, 且所述弹性部件能够导电或具有导电部位, 所述至少一个线圏与所述的弹性部件接触连接, 从而供电端能够通 过导电体再经弹性部件为所述至少一个线圏提供电流。
39. 根据权利要求 33或 34所述的摄像头模组, 其特征在于, 所述至少一个线圈包括两种固定结构, 在第一固定结构中, 所述至 少一个线圈直接与所述延伸部相固定连接; 在第二固定结构中, 所 述至少一个线圏与所述延伸部之间在光轴方向上具有相对运动距 离, 所述相对运动距离在 10 米与 1亳米之间。
40. 根据权利要求 38所述的摄像头模组, 其特征在于, 在所述 第一固定结构中, 所述电流存在两种驱动方式,
第一驱动方式: 所述至少一个线圏通入与相对正向方向相一致 的电流, 直接推动所述镜头模块移动;
第二驱动方式: 所述至少一个线圏通入与相对反向方向相一致 的电流, 使所述镜头模块存储一定的弹性势能并且随后再通入与相 对正向方向相一致的电流, 推动所述镜头模块移动, 并在所述摩擦 力作用下"^止。
41. 根据权利要求 39所述的摄像头模组, 其特征在于, 在所述 第二固定结构中, 所述电流驱动方式为: 为所述至少一个线圏通入 与相对反向方向相一致的电流, 使所述至少一个线圏存储一定的弹 性势能并且随后再通入与相对正向方向相一致的电流, 电磁力做正 功, 所述至少一个线圈积累动能并且与所述镜头模块碰撞, 以推动 所述镜头模块移动, 并且在摩擦力作用下静止。
42. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块还包括运动载座、 镜筒、 摩擦部件;
所述镜筒安置于所述运动载座中, 所述运动载座和所述镜筒可 合并为一体; 所述运动载座的外表面设置有所述磁性部件, 并可适 于与所述镜头模块一起运动; 所述套筒模块对应于所述磁性部件的 位置处, 设置所述至少一个线圈; 所述套筒模块的内部不对应于所 述至少一个磁性部件的位置处, 设置有所述弹性部件; 所述摩擦部 件置于所述运动载座与所述至少一个弹性部件之间。
43. 根据权利要求 42所述的摄像头模组, 其特征在于, 所述磁 性部件包括两种固定结构, 第一固定结构中, 所述至少一个磁性部 件直接与所述延伸部相固定连接; 第二固定结构中所述至少一个磁 相对运动距离在 1C 米与 1亳米之间。
44. 根据权利要求 43所述的摄像头模组, 其特征在于, 所述第 一固定结构中, 所述电流存在两种驱动方式,
第一驱动方式: 所述至少一个线圏通入与相对正向方向相一致 的电流, 导致所述磁性部件直接推动所述镜头模块移动;
第二驱动方式: 所述至少一个线圏通入与相对反向方向相一致 的电流, 使所述镜头模块存储一定的弹性势能, 并且随后再通入与 相对正向方向相一致的电流, 导致所述磁性部件推动所述镜头模块 移动, 并且在所述摩擦力作用下静止。
45. 根据权利要求 42所述的摄像头模组, 其特征在于, 在所述 第二固定结构中, 所述电流驱动方式为: 先给所述至少一个线圏通 入与相对反向方向相一致的电流 , 使所述至少一个磁性部件存储一 定的弹性势能, 并且随后再通入与相对正向方向相一致的电流, 电 磁力做正功, 所述至少一个磁性部件积累动能并且与所述镜头模块 碰撞, 以推动所述镜头模块移动, 并在摩擦力作用下静止。
46. 根据权利要求 27所述的摄像头模组, 其特征在于, 所述镜 头模块在步骤 a中可有两种结构状态,
第一种状态: 所述镜头模块初始时具有对无穷远物体进行直接 成像的对焦的状态;
第二种状态:所述镜头模块在初始时未具有对无穷远物体进行直 接成像的对焦的状态, 所述镜头模块需通过所述线圈提供电流, 将 镜头模块于套筒模块中伸出的伸缩过程, 调整进入对无穷远物体进 行成像的对焦的状态。
PCT/CN2014/084254 2013-08-13 2014-08-13 一种用于摄像头模组的控制方法及摄像头模组 WO2015021916A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/911,844 US9897895B2 (en) 2013-08-13 2014-08-13 Method for controlling a camera module, and associated camera module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310352412.7 2013-08-13
CN201310352412 2013-08-13
CN201310451996.3 2013-09-27
CN201310451996.3A CN103501402B (zh) 2013-08-13 2013-09-27 一种用于摄像头模组的控制方法及摄像头模组

Publications (1)

Publication Number Publication Date
WO2015021916A1 true WO2015021916A1 (zh) 2015-02-19

Family

ID=49866570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084254 WO2015021916A1 (zh) 2013-08-13 2014-08-13 一种用于摄像头模组的控制方法及摄像头模组

Country Status (3)

Country Link
US (1) US9897895B2 (zh)
CN (1) CN103501402B (zh)
WO (1) WO2015021916A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501402B (zh) * 2013-08-13 2017-10-13 格科微电子(上海)有限公司 一种用于摄像头模组的控制方法及摄像头模组
CN104267480B (zh) * 2014-09-23 2017-12-26 格科微电子(上海)有限公司 用于摄像头模组的控制方法及摄像头模组
KR102542645B1 (ko) 2015-08-18 2023-06-14 엘지이노텍 주식회사 렌즈구동장치, 카메라 모듈 및 광학기기
KR101859377B1 (ko) * 2015-12-07 2018-05-21 삼성전기주식회사 액추에이터 구동 장치 및 이를 포함하는 카메라 모듈
DE112017006938B4 (de) * 2017-01-27 2022-06-02 Fujifilm Corporation Kamerasystem, kamera, wechselobjektiv und kompatibilitätsbestimmungsverfahrendes kamerasystems
CN107147904B (zh) * 2017-06-08 2019-05-24 Oppo广东移动通信有限公司 摄像头模组的测试方法、装置及及计算机可读存储介质
CN110703540B (zh) * 2018-07-09 2022-07-15 格科微电子(上海)有限公司 光学指纹摄像头模组的实现方法
CN108600602A (zh) * 2018-07-26 2018-09-28 维沃移动通信有限公司 一种移动终端及移动终端的摄像模组
CN111212199A (zh) * 2018-11-21 2020-05-29 北京小米移动软件有限公司 驱动机构、摄像头模组及电子设备
CN112653827B (zh) * 2020-12-25 2022-05-10 维沃移动通信有限公司 摄像头组件和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239437A (ja) * 1994-02-25 1995-09-12 Sony Corp 電磁駆動装置及び電磁駆動装置を用いたレンズ駆動機構
CN1881068A (zh) * 2005-06-14 2006-12-20 力相光学股份有限公司 镜头自动对焦装置
CN101191889A (zh) * 2006-11-22 2008-06-04 鸿富锦精密工业(深圳)有限公司 镜头模组
CN101398526A (zh) * 2007-09-25 2009-04-01 中山联合光电科技有限公司 电磁力驱动对焦的高像素微型光学自动对焦系统
CN101520538A (zh) * 2008-02-28 2009-09-02 三美电机株式会社 透镜驱动装置
CN102437706A (zh) * 2011-12-21 2012-05-02 格科微电子(上海)有限公司 实现驱动物体直线运动装置的方法和直线电动机
CN103176260A (zh) * 2011-12-23 2013-06-26 鸿富锦精密工业(深圳)有限公司 驱动装置
CN103501402A (zh) * 2013-08-13 2014-01-08 格科微电子(上海)有限公司 一种用于摄像头模组的控制方法及摄像头模组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4946675B2 (ja) * 2007-07-05 2012-06-06 コニカミノルタオプト株式会社 形状記憶合金の駆動装置およびそれを用いる撮像装置ならびに形状記憶合金の駆動方法
JP2009110581A (ja) * 2007-10-29 2009-05-21 Toshiba Corp 光ディスク装置及び光ディスク処理方法
JP2009204714A (ja) * 2008-02-26 2009-09-10 Sanyo Electric Co Ltd 撮像装置
KR101058679B1 (ko) * 2009-02-16 2011-08-22 삼성전자주식회사 카메라 렌즈 어셈블리
US8189280B2 (en) * 2010-07-16 2012-05-29 Nokia Corporation Voice coil motor with pulse-width modulation driver
US20120069238A1 (en) * 2010-09-16 2012-03-22 Panasonic Corporation Image capturing device
JP5870278B2 (ja) * 2011-01-05 2016-02-24 パナソニックIpマネジメント株式会社 半導体発光素子の点灯装置およびそれを用いた照明器具
TWI493838B (zh) * 2011-06-03 2015-07-21 Hon Hai Prec Ind Co Ltd 音圈馬達及取像模組
CN203054321U (zh) 2012-12-25 2013-07-10 格科微电子(上海)有限公司 一种驱动微型镜头直线运动的装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239437A (ja) * 1994-02-25 1995-09-12 Sony Corp 電磁駆動装置及び電磁駆動装置を用いたレンズ駆動機構
CN1881068A (zh) * 2005-06-14 2006-12-20 力相光学股份有限公司 镜头自动对焦装置
CN101191889A (zh) * 2006-11-22 2008-06-04 鸿富锦精密工业(深圳)有限公司 镜头模组
CN101398526A (zh) * 2007-09-25 2009-04-01 中山联合光电科技有限公司 电磁力驱动对焦的高像素微型光学自动对焦系统
CN101520538A (zh) * 2008-02-28 2009-09-02 三美电机株式会社 透镜驱动装置
CN102437706A (zh) * 2011-12-21 2012-05-02 格科微电子(上海)有限公司 实现驱动物体直线运动装置的方法和直线电动机
CN103176260A (zh) * 2011-12-23 2013-06-26 鸿富锦精密工业(深圳)有限公司 驱动装置
CN103501402A (zh) * 2013-08-13 2014-01-08 格科微电子(上海)有限公司 一种用于摄像头模组的控制方法及摄像头模组

Also Published As

Publication number Publication date
US20160195794A1 (en) 2016-07-07
US9897895B2 (en) 2018-02-20
CN103501402B (zh) 2017-10-13
CN103501402A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2015021916A1 (zh) 一种用于摄像头模组的控制方法及摄像头模组
JP6185014B2 (ja) ボイスコイルモーター、カメラ及び携帯電話
TWI427350B (zh) 電磁式鏡頭驅動裝置
AU2014360133B2 (en) Zoom/focus device and zoom lens
US8964316B2 (en) Lens driver
US20070046109A1 (en) Miniature linear motor driving device and auto-focus lens device using the same
TWI477877B (zh) 相機模組
CN104267480B (zh) 用于摄像头模组的控制方法及摄像头模组
KR20190101762A (ko) 카메라 모듈
JP2010097016A (ja) レンズ駆動装置および弾性部材の付勢力調整方法
CN103076707A (zh) 摄像头模组镜筒步进运动的实现方法、模组及便携设备
CN111025521B (zh) 自动对焦滚珠式usm的透镜驱动装置、相机装置及电子设备
CN111474670B (zh) 摄像头模组的驱动装置
TWI413345B (zh) 電磁驅動裝置
KR100568295B1 (ko) 전자기력을 이용한 카메라 촛점조절장치
KR20100005313A (ko) 모바일 기기용 카메라모듈
CN203522875U (zh) 一种适用于便携式电子装置的摄像头模组
TWI355185B (en) A digital still camera module
WO2017113547A1 (zh) 一种中置马达
US20070274699A1 (en) Lens module
CN114624845A (zh) 摄像头模组、数码装置
CN101354467A (zh) 音圈马达定位装置
KR200460569Y1 (ko) 압전 액추에이터를 구비한 자동초점렌즈모듈
CN217034387U (zh) 摄像头模组、数码装置
KR102217464B1 (ko) 보이스 코일 모터 및 이를 포함하는 카메라모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835749

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835749

Country of ref document: EP

Kind code of ref document: A1