WO2015021768A1 - 波导喇叭阵列及其方法和天线系统 - Google Patents

波导喇叭阵列及其方法和天线系统 Download PDF

Info

Publication number
WO2015021768A1
WO2015021768A1 PCT/CN2014/072484 CN2014072484W WO2015021768A1 WO 2015021768 A1 WO2015021768 A1 WO 2015021768A1 CN 2014072484 W CN2014072484 W CN 2014072484W WO 2015021768 A1 WO2015021768 A1 WO 2015021768A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular
antenna
metal plate
dielectric material
waveguide
Prior art date
Application number
PCT/CN2014/072484
Other languages
English (en)
French (fr)
Inventor
赵自然
陈志强
李元景
吴万龙
杨洁青
刘文国
罗希雷
桑斌
郑磊
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2015021768A1 publication Critical patent/WO2015021768A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/525Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between emitting and receiving antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0266Waveguide horns provided with a flange or a choke
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0283Apparatus or processes specially provided for manufacturing horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the present application relates to a microstrip antenna, and in particular to the field of broadband antenna technology. Background technique
  • the transmitting and receiving antenna In the millimeter wave holographic imaging technology, in order to obtain a three-dimensional image of the target to be measured, it is necessary to obtain complete data information by frequency sweep of a certain bandwidth.
  • the transmitting and receiving antenna In the scanning system, the transmitting and receiving antenna is located at the forefront, and is responsible for transmitting signals to the measured object and receiving signals reflected from the measured object.
  • the system has the following requirements for the integrated transmitting and receiving antenna: (1) small size, integration and integration (2) Strong directionality, the main beam direction is directly opposite the object to be measured; (3) Broadband, which satisfies the system's requirements for frequency bandwidth.
  • the microstrip antenna In system integration, there are a series of requirements for scanning transceiver antennas. From the perspectives of miniaturization, directionality, and integration with the system, the microstrip antenna is a very good choice. However, the bandwidth of a common microstrip antenna is generally narrow, and the voltage standing wave ratio is less than 2, and the relative bandwidth is generally ⁇ 10%. Taking an antenna with a frequency center of 30 GHz as an example, the voltage standing wave ratio ⁇ 2 has an operating bandwidth of 3 GHz, and this bandwidth is far from satisfactory.
  • Extending the frequency band by the above different methods generally requires an increase in volume or a decrease in efficiency, and the widening of the frequency band in different ways also causes a corresponding change in the pattern of the antenna.
  • Millimeter-wave broadband antennas have a history of development for many years, and the corresponding technologies have developed relatively well. However, for the directionality proposed in this paper, it is not common to expand the frequency band and have strong directionality. In the general method of extending the frequency band, the dielectric board is often slotted or added to the parasitic patch technology. It can only solve the bandwidth requirement of the antenna, and its directivity is low. Summary of the invention
  • a waveguide horn array matched to a small-sized microstrip antenna, a method thereof, and an antenna system are proposed.
  • a waveguide horn array comprising: a rectangular metal plate; wherein a plurality of holes having a rectangular cross section are formed on the rectangular metal plate along a length direction of the rectangular metal plate a rectangular waveguide is formed in a lower portion of each of the holes, and an upper portion of each of the holes forms a bell mouth; and an upper surface of the hole is formed on the upper surface of the rectangular metal plate to form a predetermined depth along an arrangement direction of the plurality of holes The groove.
  • a plurality of threaded holes are formed in the groove to couple the array of waveguide horns to the array antenna.
  • the groove has a width of 3.0 mm to 5.0 mm and a depth of 8.0 mm to 12.0 mm.
  • a method of forming a waveguide horn array comprising the steps of: processing a plurality of holes having a rectangular cross section on the rectangular metal plate along a length direction of a rectangular metal plate, each a lower portion of the hole forms a rectangular waveguide, and an upper portion of each hole forms a bell mouth; and on both sides of the rectangular metal plate, a groove of a predetermined depth extending along an arrangement direction of the plurality of holes is formed on both sides of the hole .
  • the method further comprises the step of: forming a plurality of threaded holes in the trench to couple the array of waveguide horns to the array antenna.
  • an antenna system comprising: an antenna array, comprising: a rectangular dielectric material substrate, a plurality of radiation patches arranged at intervals along a length direction of the dielectric material substrate, and formed On the upper surface of the dielectric material substrate; a plurality of coupling patches disposed corresponding to the plurality of radiation patches, each coupling patch being formed on an upper surface of the dielectric material substrate, from the medium One side of the material substrate extends to a predetermined distance from the corresponding radiation patch;
  • the waveguide horn array includes a rectangular metal plate, wherein a cross section of the rectangular metal plate is rectangular along the length direction of the rectangular metal plate a plurality of holes, a lower portion of each hole forming a rectangular waveguide, an upper portion of each hole forming a bell mouth; and a plurality of holes forming a predetermined depth along both sides of the hole on an upper surface of the rectangular metal plate a trench extending in a direction of alignment; wherein each of the rectangular waveguides of the waveguide
  • the array antenna includes a metal support disposed on a lower surface of the dielectric material substrate, and extending downward from a lower surface of the dielectric material substrate to form a predetermined thickness of air under the dielectric material substrate.
  • a metal support disposed on a lower surface of the dielectric material substrate, and extending downward from a lower surface of the dielectric material substrate to form a predetermined thickness of air under the dielectric material substrate.
  • the air layer has a thickness of from 0.5 mm to 3.0 mm.
  • the metal support is specifically a copper plate disposed on both sides of the dielectric material substrate.
  • the copper plate has a width of 0.4 mm to 0.6 mm.
  • FIG. 1 shows a top view of a microstrip antenna in accordance with one embodiment of the present application
  • FIG. 2 shows a right side view of a microstrip antenna in accordance with an embodiment of the present application
  • Figure 3 shows a front view of a microstrip antenna in accordance with one embodiment of the present application
  • FIG. 4 shows a bottom view of a microstrip antenna in accordance with an embodiment of the present application
  • Figure 5 is a cross-sectional view of the microstrip antenna in the direction shown in Figure 1 in accordance with one embodiment of the present application;
  • FIG. 6 is a schematic diagram showing a standing wave ratio of a microstrip antenna according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram showing an array antenna according to another embodiment of the present application.
  • FIG. 9 shows a top view of a waveguide horn array in accordance with another embodiment of the present application.
  • Figure 10 is a cross-sectional view showing the waveguide horn array shown in Figure 9;
  • Figure 11 is a diagram showing the standing wave ratio of the transmitting and receiving antennas
  • Figure 12 shows a pattern of the array antenna
  • Figure 13 shows the isolation of the array antenna when the flare array is not added
  • Figure 14 shows the isolation of the array antenna when the array of bells is added.
  • a wideband patch antenna includes: a rectangular dielectric material substrate; a radiation patch formed on an upper surface of the dielectric material substrate; a coupling patch formed on an upper surface of the dielectric material substrate, from one side of the dielectric material substrate Extending to a position at a predetermined distance from the radiation patch; a metal support disposed on a lower surface of the dielectric material substrate and extending downward from a vicinity of a lower surface edge of the dielectric material substrate, the dielectric material An air layer of a predetermined thickness is formed between the lower surface of the substrate and the ground.
  • the antenna of the above embodiment operates at a high frequency (for example, the center frequency is in the K-Ka band, the millimeter wave antenna), and the relative bandwidth is above 20%, and the main beam is concentrated in the space above the antenna, so that most of the energy can be Used for effective detection.
  • the antenna is small in size, for example, the antenna size is equivalent to the operating wavelength.
  • the antenna includes a holding dielectric material substrate 110, a radiation patch 120, and a coupling patch 130.
  • the antenna expands the bandwidth by adding air layer 160 dielectric and electromagnetic coupling, using a 50 ohm microstrip line feed.
  • a radiation patch 120 is formed on the upper surface of the dielectric material substrate 110.
  • the coupling patch 130 is formed on the upper surface of the dielectric material substrate 110, extending from one side of the dielectric material substrate 110 to a position spaced apart from the radiation patch 120 by a predetermined distance.
  • the metal support member 140 is disposed on the lower surface of the dielectric material substrate 110, and extends from the vicinity of the lower surface edge of the dielectric material substrate 110 to the ground 150, and an air layer 160 of a predetermined thickness ha is formed between the lower surface of the dielectric material substrate 110 and the ground. .
  • the dielectric material substrate 110 is a dielectric material of Roger S 5880 having a thickness in the range of 0.2 mm to 0.4 mm, preferably 0.254 mm, a dielectric constant ⁇ greater than 2, preferably 2.2, and a loss tangent of 0.0009.
  • the dielectric material substrate has a length of 6.5 mm to 8.5 mm, preferably 7.8 mm, and a width of 5 mm to 7 mm, preferably 6.1 mm.
  • the thickness ha of the air layer 160 is from 0.5 mm to 3.0 mm, preferably 1.0 mm.
  • the radiation patch 120 has a length lp of 4.0 mm to 5.0 mm, preferably 2.7 mm, and a width wp of 2.0 mm to 3.0 mm, preferably 4.5 mm.
  • the distance d between the feed patch 120 and the coupling patch 130 is 0.4 mm to 0.5 mm, preferably 0.45 mm.
  • the back surface of the dielectric material layer 160 is provided with a support member, specifically a copper plate, having a width of 0.4 mm-0.6 mm, preferably 0.5 mm. This aspect supports the dielectric material layer 110 while ensuring good installation. Grounding.
  • Figure 5 shows a cross-sectional view of the microstrip antenna in the direction shown in Figure 1 in accordance with one embodiment of the present application.
  • the metal supporting member 140 is disposed at the edge of the lower surface of the dielectric material layer and extends downward (to the right in the cross-sectional view of Fig. 5).
  • FIG. 6 shows a schematic diagram of a standing wave ratio of a microstrip antenna according to an embodiment of the present application.
  • the antenna's VSWR ⁇ 2 impedance bandwidth is 10GHzC23GHz-33GHz.
  • the center frequency is 28GHz and the relative bandwidth is 35.7%, which meets the requirements of ultra-wideband antennas.
  • the antenna is fabricated in a specific size as above, those skilled in the art can change the center frequency and relative bandwidth by appropriately changing the parameter values.
  • FIG. 8 shows a schematic diagram of an array antenna according to another embodiment of the present application.
  • the antenna array may be a transmitting antenna or a receiving antenna.
  • the antenna array includes a plurality of one-dimensionally arranged wideband patch antennas as shown in FIG.
  • a plurality of the above-described patch antennas may be provided with a single metal support.
  • an array antenna includes a rectangular dielectric material substrate with a plurality of radiation patches and a plurality of coupling patches disposed on an upper surface of the dielectric material substrate, respectively.
  • a plurality of radiation patches are spaced apart along the length direction of the dielectric material substrate and formed on the upper surface of the dielectric material substrate.
  • a plurality of coupling patches are disposed correspondingly to the plurality of radiation patches, each coupling patch being formed on an upper surface of the dielectric material substrate extending from one side of the dielectric material substrate to a predetermined distance from the corresponding radiation patch.
  • the array antenna further includes a metal support disposed on the lower surface of the dielectric material substrate and extending downward from the vicinity of the edge of the lower surface of the dielectric material substrate to form an air layer of a predetermined thickness between the lower surface of the dielectric material substrate and the ground. . In this manner, an antenna array having a plurality of wideband patch antennas can be formed.
  • antenna isolation refers to the ratio of a signal transmitted by one antenna to a signal received by another antenna and the signal of the transmitting antenna.
  • an obstacle blocking electromagnetic coupling may be disposed on the electromagnetic coupling channel between the transmitting and receiving antennas, or a duplex transmitting and receiving antenna may be adopted, and the transmitting and receiving are respectively orthogonal linear polarization or orthogonal circular polarization.
  • another coupling channel can be added between the transceiver antennas to cancel the original coupling signal.
  • the millimeter-wave microstrip antenna array described above may be designed to match the waveguide speaker radiator, and the isolation of the transceiver antenna may be improved on the basis of ensuring the broadband and directivity of the original transceiver antenna.
  • a single antenna in the antenna array spreads the bandwidth in the manner described above for adding an air dielectric layer and electromagnetic coupling, and employs a 50 ohm microstrip line feed.
  • the whole system adopts a one-dimensional antenna array.
  • the center distance of the antenna is 8.0mm-15.0mm, preferably 10.4mm.
  • the relative position between the transmitting and receiving antennas is shown in Figure 8.
  • the vertical spacing of the transmitting and receiving antennas is 20mm-40mm, preferably 30mm.
  • the position is 4.0mm-6.0mm, preferably 5.2mm, and the working state of the antenna array is single-issue.
  • the microstrip antenna in the antenna array can be designed in accordance with the embodiment shown in FIG.
  • a horn radiator matched to the array of antennas includes a rectangular waveguide and a horn.
  • the flare of the radiator consists of a length of rectangular waveguide and the horn itself.
  • the size of the rectangular waveguide is the same as the patch size of the corresponding microstrip antenna.
  • a waveguide horn array is provided.
  • a plurality of holes having a rectangular cross section are formed along the longitudinal direction of the rectangular metal plate 211, and a rectangular waveguide 214 is formed in the lower portion of each hole, and the upper portion of each hole forms a bell mouth 213.
  • Both sides of those holes on the upper surface of the rectangular metal plate form a groove 212 of a predetermined depth extending in the direction in which the plurality of holes are arranged.
  • the height of the horn is 10 mm - 14 mm, preferably 13 mm
  • the width of the bell mouth is the same as the width of the waveguide
  • the length of the horn is 9-12 mm, preferably l lmm.
  • Two 2mm wide metal walls are added on both sides of the horn array. The metal grooves on both sides are symmetrical. The symmetrical metal grooves keep the antenna pattern after the waveguide bell is symmetrical.
  • a plurality of threaded holes are formed in the trench 212 to couple the array of waveguide horns to the antenna array.
  • the waveguide horn array of claim 1 wherein the width of the trench 212 is from 3.0 mm to 5.0 mm, preferably 4 mm, and from 8.0 mm to 12.0 mm, preferably 10 mm.
  • Figure 11 and Figure 12 show the standing wave ratio and antenna pattern of the transmitting and receiving antennas respectively.
  • Figure 13 and Figure 14 show the comparison of the antenna isolation before and after the speaker array is added. It can be seen from Fig. 11 and Fig. 12 that the antenna after the addition of the waveguide bell still maintains the advantages of wide frequency band, concentrated main beam direction and small size.
  • the bandwidth of VSWR ⁇ 2 is 22.8 GHz-30.5 GHz, and the relative bandwidth reaches 28.9%. .
  • the waveguide bell array increases the isolation by 5-10 dB. In general, this new type of bell mouth array has achieved the goal of improving isolation.
  • the microstrip antenna according to the above embodiment has the advantages of small size and easy integration. Moreover, the above embodiment in which the microstrip antenna is combined with the waveguide horn radiator ensures that the antenna maintains good performance in terms of bandwidth and directivity, and at the same time improves the isolation of the system transceiver antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

公开了一种波导喇叭阵列及其方法和天线系统。该阵列包括:矩形金属板,其中,沿着所述矩形金属板的长度方向在所述矩形金属板上加工出的截面为矩形的多个孔,每个孔下段形成矩形波导,每个孔的上段形成喇叭口;以及在所述矩形金属板的上表面上所述孔的两侧形成预定深度的沿着所述多个孔的排列方向延伸的沟槽。利用上述方案,使天线在带宽、方向性等方面保持良好的性能,同时提高系统收发天线的隔离度。

Description

波导喇叭阵列及其方法和天线系统 技术领域
本申请涉及微带天线, 具体涉及宽带天线技术领域。 背景技术
在毫米波全息成像技术中, 为了得到被测目标三维图像, 必须通过一定带宽 的频率扫描来获取完整的数据信息。 在扫描系统中, 收发天线位于最前端, 负责向 被测物体发射信号并接收从被测物体反射回来的信号, 对系统集成的收发天线有以 下几点要求: (1 )体积小, 便与集成; (2)方向性强, 主波束方向正对被测物体; (3 ) 宽频带, 满足系统对频率带宽的要求。
在系统化集成中, 对扫描收发天线有一系列的要求, 从小型化、 方向性、 便 于与系统整合等几点综合考虑, 微带天线是一个非常好的选择。 但普通的微带天线 带宽普遍较窄, 以电压驻波比 <2 为标准计算, 相对带宽一般 <10%。 以频率中心为 30GHz的天线为例, 电压驻波比 <2的工作带宽为 3GHz, 这样的带宽远不能满足使 用需求。
通常, 微带天线增加带宽的几种方式如下: (1 ) 降低等效电路 Q值: (2) 增大介质厚度, 降低介质介电常数 , 增大介质损耗角正切 等, 这种方法使天 线的损耗较大; (3 ) 附加寄生贴片, 或采用电磁耦合等; (4) 设计阻抗匹配网 络, 但匹配网络大大增加了天线尺寸; (5 ) 利用阵列技术。
通过上述不同的方式展宽频带一般都要以体积的增大或效率的下降, 同时不 同方式的展宽频带也使得天线的方向图发生相应的变化。
毫米波宽带天线已有多年的发展历史, 相应的技术都有较完备的发展。 但针 对本文提出的方向性这点要求, 同时扩展频带并有较强的方向性的技术并不常见, 一般的扩展频带的方法中, 常采用介质板开槽或加入寄生贴片技术, 这些技术只能 解决天线的带宽要求, 其方向性较低。 发明内容
考虑到现有技术中存在的问题, 提出了一种与小尺寸的微带天线匹配的波 导喇叭阵列及其方法和天线系统。 在本发明的一个方面, 提出了一种波导喇叭阵列, 包括: 矩形金属板; 其 中, 沿着所述矩形金属板的长度方向在所述矩形金属板上加工出的截面为矩形的 多个孔, 每个孔下段形成矩形波导, 每个孔的上段形成喇叭口; 以及在所述矩形 金属板的上表面上所述孔的两侧形成预定深度的沿着所述多个孔的排列方向延 伸的沟槽。
优选地, 在所述沟槽中形成多个螺纹孔, 以将波导喇叭阵列与阵列天线耦 接。
优选地, 所述沟槽的宽度为 3.0mm-5.0mm, 深 8.0mm-12.0mm。
在本发明的另一方面, 提出了一种形成波导喇叭阵列的方法, 包括步骤: 沿着矩形金属板的长度方向在所述矩形金属板上加工出的截面为矩形的多个孔, 每个孔下段形成矩形波导, 每个孔的上段形成喇叭口; 以及在所述矩形金属板的 上表面上所述孔的两侧形成预定深度的沿着所述多个孔的排列方向延伸的沟槽。
优选地, 所述方法还包括步骤: 在所述沟槽中形成多个螺纹孔, 以将波导 喇叭阵列与阵列天线耦接。
在本发明的另一方面, 提出了一种天线系统, 包括: 天线阵列, 包括: 矩 形的介质材料基板, 多个辐射贴片, 沿着所述介质材料基板的长度方向间隔地排 列, 并且形成在所述介质材料基板的上表面上; 多个耦合贴片, 与所述多个辐射 贴片相应地设置, 每个耦合贴片形成在所述介质材料基板的上表面上, 从所述介 质材料基板的一边延伸到距离相应辐射贴片预定距离的位置; 波导喇叭阵列, 包 括矩形金属板, 其中, 沿着所述矩形金属板的长度方向在所述矩形金属板上加工 出的截面为矩形的多个孔,每个孔下段形成矩形波导,每个孔的上段形成喇叭口; 以及在所述矩形金属板的上表面上所述孔的两侧形成预定深度的沿着所述多个 孔的排列方向延伸的沟槽; 其中, 所述波导喇叭阵列的各个矩形波导的尺寸与所 述辐射贴片的尺寸相同并且各个矩形波导与相应的辐射贴片耦合。
优选地, 所述阵列天线包括金属支撑件, 设置在所述介质材料基板的下表 面, 并且从所述介质材料基板的下表面向下延伸接地, 在所述介质材料基板下方 形成预定厚度的空气层。
优选地, 所述空气层厚度为 0.5mm-3.0mm。
优选地, 所述金属支撑件具体为铜板, 设置在所述介质材料基板的两边。 优选地, 所述铜板的宽度为 0.4mm-0.6mm。 利用上述方案, 使天线在带宽、 方向性等方面保持良好的性能, 同时提高 系统收发天线的隔离度。 附图说明
下面的附图表明了本发明的实施方式。 这些附图和实施方式以非限制性、 非 穷举性的方式提供了本发明的一些实施例, 其中:
图 1示出了根据本申请一个实施例的微带天线的俯视图;
图 2示出了根据本申请一个实施例的微带天线的右视图;
图 3示出了根据本申请一个实施例的微带天线的正视图;
图 4示出了根据本申请一个实施例的微带天线的底视图;
图 5 示出了根据本申请一个实施例的微带天线的沿着图 1 所示方向的截面 图;
图 6示出了根据本申请实施例的微带天线的驻波比示意图;
图 7示出了根据本申请实施例的微带天线在 28GHz 时的方向图, 红色与蓝 色分别为 Phi=0° 与 Phi=90° ;
图 8示出了根据本申请另一实施例的阵列天线的示意图;
图 9示出了根据本申请另一实施例的波导喇叭阵列的俯视图;
图 10示出了如图 9所示的波导喇叭阵列的截面图;
图 11示出了收发天线的驻波比的示意图;
图 12示出了阵列天线的方向图;
图 13示出了未增加喇叭口阵列时阵列天线的隔离度;
图 14示出了增加了喇叭口阵列时阵列天线的隔离度。 具体实施方式
下面将详细描述本发明的具体实施例, 应当注意, 这里描述的实施例只用于 举例说明, 并不用于限制本发明。在以下描述中, 为了提供对本发明的透彻理解, 阐述了大量特定细节。 然而, 对于本领域普通技术人员显而易见的是: 不必采用 这些特定细节来实行本发明。 在其他实例中, 为了避免混淆本发明, 未具体描述 公知的电路、 材料或方法。
在整个说明书中, 对"一个实施例"、 "实施例"、 "一个示例"或"示例"的提及 意味着: 结合该实施例或示例描述的特定特征、 结构或特性被包含在本发明至少 一个实施例中。 因此, 在整个说明书的各个地方出现的短语"在一个实施例中"、 "在实施例中"、 "一个示例"或"示例"不一定都指同一实施例或示例。 此外, 可以 以任何适当的组合和 /或子组合将特定的特征、结构或特性组合在一个或多个实施 例或示例中。 此外, 本领域普通技术人员应当理解, 这里使用的术语"和 /或"包括 一个或多个相关列出的项目的任何和所有组合。
为了获得宽频带、 方向性强且尺寸小的天线, 本申请的一些实施例提出了 一种宽带贴片天线。 该天线包括: 矩形的介质材料基板; 辐射贴片, 形成在所述 介质材料基板的上表面上; 耦合贴片, 形成在所述介质材料基板的上表面上, 从 所述介质材料基板的一边延伸到距离所述辐射贴片预定距离的位置; 金属支撑 件, 设置在所述介质材料基板的下表面, 并且从所述介质材料基板的下表面边缘 附近向下延伸接地, 在所述介质材料基板下表面与地之间形成预定厚度的空气 层。 上述实施例的天线工作在高频率上 (例如, 中心频率在 K-Ka波段, 毫米波 天线), 并且相对带宽在 20%以上, 将主波束集中在天线上方的空间内, 使大部 分能量能够用于有效检测。此外, 该天线尺寸小, 例如天线尺寸与工作波长相当。
图 1、 图 2、 图 3、 和图 4分别示出了根据本申请一个实施例的微带天线的俯 视图、 右视图、 正视图和底视图。 如图 1所示, 该天线包括举行的介质材料基板 110、 辐射贴片 120、 耦合贴片 130。 如图 3所示, 该天线采用增加空气层 160介 质及电磁耦合的方式扩展带宽, 采用 50欧姆微带线边馈。
如图所示,辐射贴片 120形成在介质材料基板 110的上表面上。耦合贴片 130 形成在介质材料基板 110的上表面上, 从介质材料基板 110的一边延伸到距离辐 射贴片 120预定距离的位置。金属支撑件 140设置在介质材料基板 110的下表面, 并且从介质材料基板 110的下表面边缘附近向下延伸接地 150, 在介质材料基板 110下表面与地之间形成预定厚度 ha的空气层 160。
在一些实施例中, 介质材料基板 110采用 RogerS5880的介质材料, 厚度范围 为 0.2mm-0.4mm, 优选为 0.254mm, 介电常数 ε大于 2, 优选为 2.2, 损耗角正 切为 0.0009。 介质材料基板长 6.5mm-8.5mm, 优选为 7.8mm, 宽 5mm-7mm, 优 选为 6.1mm。
在一些实施例中, 空气层 160的厚度 ha为 0.5mm-3.0mm, 优选为 1.0mm。 耦合贴片 130 的长度 lpl 为 1.5mm-2.5mm, 优选为 =1.9mm, 宽度 wpl 为 0.5mm-1.2mm, 优选为 0.8mm。 辐射贴片 120的长度 lp为 4.0mm-5.0mm, 优选 为 2.7mm, 宽度 wp为 2.0mm-3.0mm, 优选为 4.5mm。 馈电贴片 120与耦合贴片 130间距离 d为 0.4mm-0.5mm, 优选为 0.45mm。 此外, 介质材料层 160背面设 置有支撑件, 具体为铜板, 其宽度为 0.4mm-0.6mm, 优选为 0.5mm, 这一方面对 介质材料层 110起到支撑作用, 同时在安装时保证良好的接地性。
图 5示出了根据本申请一个实施例的微带天线的沿着图 1所示方向的截面 图。 如图 5所示, 金属支撑部件 140设置在介质材料层下表面的边缘, 并且向下 延伸 (图 5的剖面图中向右延伸)。
图 6示出了根据本申请实施例的微带天线的驻波比示意图。 如图 2所示, 天线的 VSWR<2的阻抗带宽 10GHzC23GHz-33GHz),中心频率为 28GHz, 相对带 宽为 35.7%, 达到了超宽带天线的要求。 图 7示出了根据本申请实施例的微带天 线在 28GHz 时的方向图, 实线与虚线分别为 Phi=0 ° 与 Phi=90 ° 。 从图 7可以 看出, 天线主波束位于辐射面正上方, 符合应用要求。
虽然上面结合了具体的尺寸来制作天线, 但是本领域的技术人员可以可通 过适当更改参数值来改变中心频率及相对带宽。
以上描述的是单个微带天线的结构。 本领域的技术人员可以将其形成为天 线阵列。 图 8示出了根据本申请另一实施例的阵列天线的示意图。 如图 8所示, 该天线阵列可以为发射天线或接收天线。 在一些实施例中, 天线阵列包括多个一 维排列的如图 1所示的宽带贴片天线。 在其他实施例中, 也可以给多个上述的贴 片天线设置单一的金属支撑件。
在一些实施例中, 提供了一种阵列天线, 包括矩形的介质材料基板, 将多个 辐射贴片和多个耦合贴片相应地设置在介质材料基板的上表面。 例如, 多个辐射 贴片沿着介质材料基板的长度方向间隔地排列, 并且形成在介质材料基板的上表 面上。 多个耦合贴片与多个辐射贴片相应地设置, 每个耦合贴片形成在介质材料 基板的上表面上, 从介质材料基板的一边延伸到距离相应辐射贴片预定距离的位 置。 该阵列天线还包括金属支撑件, 设置在介质材料基板的下表面, 并且从介质 材料基板的下表面的边缘附近向下延伸接地, 在介质材料基板下表面和地之间形 成预定厚度的空气层。 按照这样的方式, 可以形成具有多个宽带贴片天线的天线 阵列。
发射天线和接收天线之间的隔离度通信系统中一个重要的指标。 当隔离度较 低时, 发射信号会串扰到接收信号中的信号强度较高, 通信质量相应降低。通常, 天线隔离度是指一个天线发射信号, 通过另一个天线接收的信号与该发射天线信 号的比值。
为了提高隔离度, 可以在收发天线之间的电磁耦合通道上设置障碍阻挡电磁 耦合, 或者采用双工状态的收发天线, 发射与接收分别采用正交线极化或正交圆 极化。 此外, 还可以在收发天线之间增加另外一个耦合通道, 使其与原耦合信号 抵消。
在一些实施例中, 可以给上述的毫米波微带天线阵列设计与之匹配的波导喇 叭辐射器, 在保证原有收发天线的宽带及方向性的基础上, 提高收发天线的隔离 度。
在一些实施例中, 天线阵列中的单个天线采用上述增加空气介质层和电磁耦 合的方式扩展带宽, 并且采用 50欧姆微带线边馈。 整体系统采用一维天线阵列, 天线中心间距为 8.0mm-15.0mm, 优选为 10.4mm, 收发天线之间相对位置如图 8 所示, 收发天线垂直间距为 20mm-40mm, 优选为 30mm, 水平相对位置为 4.0mm-6.0mm, 优选为 5.2mm, 天线阵列的工作状态为单收单发。
天线阵列中的微带天线可以按照如图 1所示的实施例来设计。 与所述天线阵 列匹配的喇叭辐射器包括矩形波导和喇叭。 例如, 在一些实施例中辐射器的喇叭 口由一段矩形波导及喇叭本身组成。矩形波导尺寸与对应的微带天线的贴片尺寸 一致。
如图 9和 10所示, 在一些实施例中, 提供了一种波导喇叭阵列。 在矩形金 属板 211上, 沿着矩形金属板 211的长度方向加工出的截面为矩形的多个孔, 每 个孔下段形成矩形波导 214, 每个孔的上段形成喇叭口 213。 在矩形金属板的上 表面上那些孔的两侧形成预定深度的沿着多个孔的排列方向延伸的沟槽 212。 例 如, 喇叭高度为 10mm-14mm, 优选为 13mm, 喇叭口宽度与波导宽度一致, 喇 叭口长 9-12mm, 优选为 l lmm。 在喇叭阵列两侧加上两个 2mm宽的金属壁, 其 中两侧的金属槽对称, 对称的金属槽使加上波导喇叭口后的天线方向图保持对 称。
此外, 在沟槽 212中形成多个螺纹孔 (未示出), 以将波导喇叭阵列与天线 阵列耦接。在一些实施例中 3、如权利要求 1所述的波导喇叭阵列, 其中沟槽 212 的宽度为 3.0mm-5.0mm, 优选 4mm, 深 8.0mm-12.0mm, 优选 10mm。 图 11和图 12分别为收发天线的驻波比和天线方向图, 图 13和图 14分别为 增加喇叭口阵列前后的天线隔离度对比。 从图 11图 12可以看出, 增加了波导喇 叭口后的天线仍然保持了宽频带、 主波束方向集中、 尺寸小的优点, VSWR<2的 带宽为 22.8GHz-30.5GHz, 相对带宽达到 28.9%。 从图 13和图 14的对比可以看 出,波导喇叭口阵列使得隔离度增加 5-10dB。总的来说这种新型的喇叭口阵列很 好的达到了提高隔离度的目的。
可见, 根据上述实施例的微带天线具有体积小, 便于集成的优点。 并且上述 将微带天线与波导喇叭辐射器结合的实施例, 使天线在带宽、 方向性等方面保持 良好的性能, 同时提高系统收发天线的隔离度。
虽然已参照几个典型实施例描述了本发明, 但应当理解, 所用的术语是说明 和示例性、 而非限制性的术语。 由于本发明能够以多种形式具体实施而不脱离发 明的精神或实质, 所以应当理解, 上述实施例不限于任何前述的细节, 而应在随 附权利要求所限定的精神和范围内广泛地解释, 因此落入权利要求或其等效范围 内的全部变化和改型都应为随附权利要求所涵盖。

Claims

权利要求书
1、 一种波导喇叭阵列, 包括:
矩形金属板,
其中, 沿着所述矩形金属板的长度方向在所述矩形金属板上加工出的截面 为矩形的多个孔, 每个孔下段形成矩形波导, 每个孔的上段形成喇叭口; 以及 在所述矩形金属板的上表面上所述孔的两侧形成预定深度的沿着所述多个 孔的排列方向延伸的沟槽。
2、如权利要求 1所述的波导喇叭阵列,其中在所述沟槽中形成多个螺纹孔, 以将波导喇叭阵列与阵列天线耦接。
3、 如权利要求 1 所述的波导喇叭阵列, 其中所述沟槽的宽度为 3.0mm-5.0mm, 深 8.0mm-12.0mm。
4、 一种形成波导喇叭阵列的方法, 包括步骤:
沿着矩形金属板的长度方向在所述矩形金属板上加工出的截面为矩形的多 个孔, 每个孔下段形成矩形波导, 每个孔的上段形成喇叭口; 以及
在所述矩形金属板的上表面上所述孔的两侧形成预定深度的沿着所述多个 孔的排列方向延伸的沟槽。
5、如权利要求 4所述的方法, 还包括步骤: 在所述沟槽中形成多个螺纹孔, 以将波导喇叭阵列与阵列天线耦接。
6、 一种天线系统, 包括:
天线阵列, 包括:
矩形的介质材料基板,
多个辐射贴片, 沿着所述介质材料基板的长度方向间隔地排列, 并且 形成在所述介质材料基板的上表面上;
多个耦合贴片, 与所述多个辐射贴片相应地设置, 每个耦合贴片形成 在所述介质材料基板的上表面上,从所述介质材料基板的一边延伸到距离相 应辐射贴片预定距离的位置;
波导喇叭阵列, 包括矩形金属板, 其中, 沿着所述矩形金属板的长度方向 在所述矩形金属板上加工出的截面为矩形的多个孔, 每个孔下段形成矩形波导, 每个孔的上段形成喇叭口; 以及在所述矩形金属板的上表面上所述孔的两侧形成 预定深度的沿着所述多个孔的排列方向延伸的沟槽;
其中, 所述波导喇叭阵列的各个矩形波导的尺寸与所述辐射贴片的尺寸相 同并且各个矩形波导与相应的辐射贴片耦合。
7、 如权利要求 6所述的天线系统, 其中所述阵列天线包括金属支撑件, 设 置在所述介质材料基板的下表面, 并且从所述介质材料基板的下表面向下延伸接 地, 在所述介质材料基板下方形成预定厚度的空气层。
8、 如权利要求 7所述的天线系统, 其中所述空气层厚度为 0.5mm-3.0mm。
9、 如权利要求 6所述的天线系统, 其中所述金属支撑件具体为铜板, 设置 在所述介质材料基板的两边。
10、 如权利要求 9所述的天线系统, 其中所述铜板的宽度为 0.4mm-0.6mm。
PCT/CN2014/072484 2013-08-15 2014-02-25 波导喇叭阵列及其方法和天线系统 WO2015021768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310356880.1 2013-08-15
CN201310356880.1A CN104377450B (zh) 2013-08-15 2013-08-15 波导喇叭阵列及其方法和天线系统

Publications (1)

Publication Number Publication Date
WO2015021768A1 true WO2015021768A1 (zh) 2015-02-19

Family

ID=50391077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072484 WO2015021768A1 (zh) 2013-08-15 2014-02-25 波导喇叭阵列及其方法和天线系统

Country Status (11)

Country Link
US (1) US9478864B2 (zh)
EP (1) EP2838160B1 (zh)
JP (1) JP5866409B2 (zh)
CN (1) CN104377450B (zh)
BR (1) BR102014014945B1 (zh)
GB (1) GB2517260A (zh)
HK (1) HK1204154A1 (zh)
PL (1) PL2838160T3 (zh)
RU (1) RU2589488C2 (zh)
UA (1) UA112208C2 (zh)
WO (1) WO2015021768A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8862524B2 (en) * 2012-08-01 2014-10-14 Yahoo! Inc. System and method for identifying abusive account registration
DE102017112552A1 (de) * 2017-06-07 2018-12-13 Lisa Dräxlmaier GmbH Antenne mit mehreren einzelstrahlern
CN109509983A (zh) * 2018-12-04 2019-03-22 安徽站乾科技有限公司 一种矩形喇叭阵列天线
RU195879U1 (ru) * 2019-11-27 2020-02-07 Акционерное общество "Научно-исследовательский институт Приборостроения имени В.В. Тихомирова" Модуль волноводно-рупорных излучателей
RU2723980C1 (ru) * 2019-12-06 2020-06-18 Публичное акционерное общество "Радиофизика" Рупорный излучатель для антенных решеток с круговой поляризацией
CN112162326B (zh) * 2020-08-18 2021-09-28 欧必翼太赫兹科技(北京)有限公司 全息成像安检系统以及安检方法
CN112382856B (zh) * 2020-10-21 2023-05-05 中国电子科技集团公司第十四研究所 一种低成本宽带毫米波阵列天线
CN112768881B (zh) * 2020-11-27 2022-06-24 南京理工大学 机载低剖面超高频平板阵列天线
CN112768916B (zh) * 2020-12-29 2022-06-10 中山大学 一种1×8宽带波束固定行波天线
US20220311131A1 (en) * 2021-03-29 2022-09-29 M2SL Corporation Communication system with portable interface mechanism and method of operation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885616A (zh) * 2005-06-23 2006-12-27 北京海域天华通讯设备有限公司 高增益波导喇叭阵列平板天线
WO2012100885A1 (en) * 2011-01-25 2012-08-02 Sony Corporation Optically controlled microwave antenna
CN202373697U (zh) * 2011-10-30 2012-08-08 北京无线电计量测试研究所 用于毫米波成像人体安检系统的超宽带角锥喇叭天线阵列
CN202513285U (zh) * 2012-01-18 2012-10-31 华南理工大学 一种加载零阶谐振器的多极化微带贴片天线
CN102891376A (zh) * 2012-10-24 2013-01-23 四川九洲空管科技有限责任公司 一种毫米波圆极化平板裂缝阵天线
CN203377377U (zh) * 2013-08-15 2014-01-01 清华大学 波导喇叭阵列和天线系统
CN203386904U (zh) * 2013-08-15 2014-01-08 同方威视技术股份有限公司 宽带微带天线和天线阵列

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE508373A (zh) * 1951-01-12
GB2058468B (en) * 1979-08-23 1983-10-12 Marconi Co Ltd Dual frequency aerial feed arrangement
FR2596585B1 (fr) * 1986-03-26 1988-09-16 Alcatel Thomson Faisceaux Antenne reseau sur circuit imprime
GB8619680D0 (en) * 1986-08-13 1986-09-24 Collins J L F C Flat plate array
WO1989009501A1 (en) * 1988-03-30 1989-10-05 British Satellite Broadcasting Limited Flat plate array antenna
JPH02214303A (ja) * 1989-02-15 1990-08-27 Sharp Corp 平面アンテナ
GB2265258B (en) * 1992-03-11 1995-09-27 Siemens Plessey Electronic Antenna array incorporating a choke
US6181290B1 (en) * 1999-10-20 2001-01-30 Beltran, Inc. Scanning antenna with ferrite control
JP2001308620A (ja) * 2000-04-21 2001-11-02 Murata Mfg Co Ltd アンテナ装置及び無線通信モジュ−ル
RU2246156C1 (ru) * 2003-08-18 2005-02-10 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Исток" Волноводно-щелевая антенная решетка
WO2005062424A1 (ja) * 2003-12-18 2005-07-07 Fujitsu Limited アンテナ装置、電波受信装置、及び、電波送信装置
JP4511406B2 (ja) * 2005-03-31 2010-07-28 株式会社デンソー 空中線装置
JP4822262B2 (ja) * 2006-01-23 2011-11-24 沖電気工業株式会社 円形導波管アンテナ及び円形導波管アレーアンテナ
US20090066598A1 (en) * 2007-09-07 2009-03-12 Tyco Electronics Corporation And M/A-Com, Inc. Modular waveguide feed horn
US7852270B2 (en) * 2007-09-07 2010-12-14 Sharp Kabushiki Kaisha Wireless communication device
JP2009088861A (ja) * 2007-09-28 2009-04-23 Kyocera Corp ホーンアレイアンテナおよび給電路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885616A (zh) * 2005-06-23 2006-12-27 北京海域天华通讯设备有限公司 高增益波导喇叭阵列平板天线
WO2012100885A1 (en) * 2011-01-25 2012-08-02 Sony Corporation Optically controlled microwave antenna
CN202373697U (zh) * 2011-10-30 2012-08-08 北京无线电计量测试研究所 用于毫米波成像人体安检系统的超宽带角锥喇叭天线阵列
CN202513285U (zh) * 2012-01-18 2012-10-31 华南理工大学 一种加载零阶谐振器的多极化微带贴片天线
CN102891376A (zh) * 2012-10-24 2013-01-23 四川九洲空管科技有限责任公司 一种毫米波圆极化平板裂缝阵天线
CN203377377U (zh) * 2013-08-15 2014-01-01 清华大学 波导喇叭阵列和天线系统
CN203386904U (zh) * 2013-08-15 2014-01-08 同方威视技术股份有限公司 宽带微带天线和天线阵列

Also Published As

Publication number Publication date
CN104377450A (zh) 2015-02-25
BR102014014945A2 (pt) 2015-10-06
UA112208C2 (uk) 2016-08-10
GB201410394D0 (en) 2014-07-23
RU2014124980A (ru) 2015-12-27
CN104377450B (zh) 2016-12-28
BR102014014945B1 (pt) 2022-01-18
JP5866409B2 (ja) 2016-02-17
PL2838160T3 (pl) 2017-02-28
HK1204154A1 (zh) 2015-11-06
JP2015037319A (ja) 2015-02-23
EP2838160A1 (en) 2015-02-18
GB2517260A (en) 2015-02-18
RU2589488C2 (ru) 2016-07-10
EP2838160B1 (en) 2016-07-27
US20150048984A1 (en) 2015-02-19
US9478864B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP5925243B2 (ja) ブロードバンドのマイクロストリップアンテナ及びアンテナアレイ
WO2015021768A1 (zh) 波导喇叭阵列及其方法和天线系统
US11329387B2 (en) Single and dual polarized dual-resonant cavity backed slot antenna (D-CBSA) elements
JP3093715B2 (ja) 共振器付着型マイクロストリップダイポールアンテナアレイ
JP2018511240A (ja) 低交差偏波ディケード帯域幅の超広帯域アンテナ素子およびアレイ
US9263807B2 (en) Waveguide or slot radiator for wide E-plane radiation pattern beamwidth with additional structures for dual polarized operation and beamwidth control
US20190198989A1 (en) Antenna array assembly
KR101784501B1 (ko) 고효율 알에프 전송선로 구조 및 상기 구조를 이용한 이중 직교 편파를 갖는 송수신 배열 안테나 장치
CN203377377U (zh) 波导喇叭阵列和天线系统
KR20190087270A (ko) 무선 통신 시스템에서 안테나 장치 및 이를 구비하는 전자기기
CN203386904U (zh) 宽带微带天线和天线阵列
US6992631B2 (en) Dual-band antenna
CN113410658B (zh) 一种毫米波高增益栅格缝隙阵列天线
CN102163768A (zh) 一种双频段低剖面阵列天线
CN102760945A (zh) 带有辐射型负载的直接馈电型全向印刷天线
KR100474825B1 (ko) 링 슬랏 안테나
KR20230150690A (ko) 안테나 어레이의 편파들 간 디커플링을 위한 정합 네트워크 및 이를 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836771

Country of ref document: EP

Kind code of ref document: A1