WO2015021673A1 - 实现gnss卫星信号转换为基带信号功能的射频电路结构 - Google Patents

实现gnss卫星信号转换为基带信号功能的射频电路结构 Download PDF

Info

Publication number
WO2015021673A1
WO2015021673A1 PCT/CN2013/082599 CN2013082599W WO2015021673A1 WO 2015021673 A1 WO2015021673 A1 WO 2015021673A1 CN 2013082599 W CN2013082599 W CN 2013082599W WO 2015021673 A1 WO2015021673 A1 WO 2015021673A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
local oscillator
frequency
global navigation
circuit structure
Prior art date
Application number
PCT/CN2013/082599
Other languages
English (en)
French (fr)
Inventor
刘杰
王永泉
宋阳
Original Assignee
上海司南卫星导航技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海司南卫星导航技术有限公司 filed Critical 上海司南卫星导航技术有限公司
Priority to US14/912,040 priority Critical patent/US10101461B2/en
Publication of WO2015021673A1 publication Critical patent/WO2015021673A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/33Multimode operation in different systems which transmit time stamped messages, e.g. GPS/GLONASS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/32Multimode operation in a single same satellite system, e.g. GPS L1/L2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the invention relates to the field of global navigation satellite systems, in particular to the field of radio frequency circuits of global navigation satellite system receivers, and specifically relates to a radio frequency circuit structure for realizing the function of converting satellite signals of a global navigation satellite system into baseband signals.
  • Beidou satellite navigation system (specifically, Beidou II satellite navigation system), GPS (Global Navigation Satellite System), GLONASS (Glonas, acronym for Global Navigation Satellite System in Russian) and Galileo (Galileo, European satellite)
  • GPS Global Navigation Satellite System
  • GLONASS Global Navigation Satellite System
  • Galileo Galileo, European satellite
  • the navigation system is a global satellite navigation and positioning system established by China, the United States, Russia and the European Union.
  • the mainstream navigation positioning method refers to providing navigation data to the receiver to determine the position of the satellite when transmitting the signal, and the ranging code enables the user receiver to determine the transmission delay of the signal, thereby determining the distance from the satellite to the user. Therefore, the GNSS (Global Navigation Satellite System) receiver is a critical user equipment.
  • GNSS Global Navigation Satellite System
  • the currently applied GNSS receiver circuit is generally composed of an antenna unit, a radio frequency unit, and a baseband digital signal processing unit.
  • the role of the RF unit is to filter out GNSS multimode multi-frequency satellite signals from ambient noise and provide appropriate gain to meet the needs of subsequent baseband digital signal processing units.
  • this requires an A/D conversion (analog-to-digital conversion) sampling frequency of more than 1 GHz, and the processing speed of the baseband circuit is very high, which is difficult to implement and extremely expensive under the current technical conditions. Therefore, the usual method is to downconvert the GNSS multimode multi-frequency satellite signal using a mixer. This can greatly reduce the technical requirements for the A/D conversion circuit and the baseband processing circuit.
  • the existing design scheme is similar to the conventional superheterodyne radio structure, and uses two-stage frequency conversion to reduce the carrier frequency of the satellite signal step by step by mixing, and to perform low-pass or band-pass sampling at a low intermediate frequency.
  • This design has an extremely complex circuit structure. When dealing with GNSS multimode multi-frequency satellite signals of up to 8 frequency bands, it must be equipped with numerous local oscillator circuits and mixing circuits. This creates great difficulties in debugging the system and results in a significant increase in cost, power and size of the overall system, which runs counter to the needs of portable applications for GNSS receivers.
  • the radio frequency circuit structure for realizing the conversion of the satellite signal of the global navigation satellite system into the baseband signal function of the present invention has the following constitution:
  • the radio frequency circuit structure for realizing the conversion of the satellite signal of the global navigation satellite system into the baseband signal function is characterized in that: the circuit structure comprises:
  • a branching function module configured to divide the satellite signals of the GNSS into satellite signals of several channels according to carrier frequencies
  • each of the frequency conversion function modules is configured to frequency convert the signal of the output channel of the corresponding branch function module Is a near zero frequency signal;
  • each of the local oscillator signal modules is configured to generate a local oscillator signal and output the corresponding frequency conversion function module;
  • analog-to-digital conversion module has a one-to-one correspondence with the variable frequency function module, and each of the analog-to-digital conversion modules is configured to process an output signal of the corresponding variable frequency function module and output corresponding Digital signal.
  • each of the variable frequency function modules includes a band pass filter and a mixing circuit, and the signal of the output channel of the shunt function module corresponding to each of the variable frequency function modules is output to the band pass filter to the An input end of the mixing circuit, another input end of the mixing circuit is connected to an output end of the corresponding local oscillator signal module, and the mixing circuit outputs a near zero frequency signal to the corresponding end Analog to digital conversion module.
  • the frequency conversion function module further includes a single channel split function circuit
  • the mixer circuit includes two mixers
  • the single channel split function module uses the band pass filter
  • the output signal is divided into two channels of the same channel, and the two channels of the same channel are respectively output to the two mixers, and the two mixers respectively output the first near zero frequency signal and the second near zero Frequency signals to the analog to digital conversion module.
  • the local oscillator signal module includes a local oscillator signal circuit and a phase shift circuit, and the local oscillator signal circuit generates a local oscillator signal, and outputs a first local oscillator signal and a second copy via the phase shift circuit. Vibration signal.
  • first local oscillation signal and the second local oscillation signal have a phase difference of 90.
  • the single channel shunt circuit is a power splitter.
  • the mixer is an image rejection mixer.
  • the image rejection mixer has a degree of suppression of image interference greater than 20 dB.
  • each of the analog-to-digital conversion modules includes a low pass filter, an automatic gain control loop, and an analog to digital conversion circuit, wherein the first near zero frequency signal and the second near zero frequency signal are low.
  • the pass filter and the automatic gain control loop are then converted into digital signal outputs by the analog to digital conversion circuit.
  • the automatic gain control loop includes two variable gain amplifiers, and the first near zero frequency signal and the second near zero frequency signal are respectively output to the Two variable gain amplifiers.
  • analog-to-digital conversion circuit is two analog-to-digital converters corresponding to the variable gain amplifiers, and the output signals of the respective variable gain amplifiers are respectively converted by corresponding analog-to-digital conversion The converter converts to a digital signal output.
  • the shunt function module divides the satellite signal of the global navigation satellite system into a GPS L1/L2/L5 signal, a Beidou second generation B1/B2/B3 signal, and a GLONASS L1/ L2 signal.
  • the shunt function module is a power splitter.
  • the GNSS multi-mode multi-frequency satellite signal is directly converted from the 1.15 ⁇ 1.65GHz frequency band to the vicinity of zero frequency using only one frequency conversion, which greatly reduces the complexity of the system and reduces the cost of the system. Power consumption and volume, and avoiding the DC offset problem of the zero-IF scheme.
  • the rejection of image interference is greater than 20dB, ensuring signal quality, using high-isolation mixers and power dividers, so that the local oscillator leaks signals to the antenna RF port.
  • the power level is below -102dBm.
  • the GNSS satellite signals in each frequency band are separately subjected to frequency conversion and subsequent signal processing, which reduces crosstalk between satellite signals, ensures signal quality, and provides sufficient signal-to-noise ratio for baseband processing circuits, and has wider application. range. DRAWINGS
  • FIG. 1 is a schematic diagram showing the overall structure of a radio frequency circuit structure for realizing a function of converting a satellite signal of a global navigation satellite system into a baseband signal according to the present invention.
  • variable frequency function module and the local oscillator signal module of the present invention.
  • FIG. 3 is a schematic diagram showing the circuit structure of an analog-to-digital conversion module of the present invention. detailed description
  • FIG. 1 is a schematic diagram showing the overall structure of an RF circuit structure for realizing the conversion of a satellite signal of a global navigation satellite system into a baseband signal function according to the present invention.
  • the RF circuit structure for realizing the conversion of satellite signals of a global navigation satellite system into a baseband signal function including:
  • a branching function module for dividing the satellite signals of the GNSS into satellite signals of several channels according to carrier frequencies
  • the split function module divides the satellite signal of the global navigation satellite system into a GPS L1/L2/L5 signal, a Beidou second generation B1/B2/B3 signal, and a GLONASS L1/L2 signal.
  • the shunt function module is a power splitter.
  • each of the frequency conversion function modules is configured to output a channel of the corresponding branch function module.
  • the signal is converted to a near zero frequency signal
  • Each of the variable frequency function modules includes a band pass filter and a mixing circuit, and a signal of an output channel of the branch function module corresponding to each of the variable frequency function modules is output to the An input end of the mixing circuit, the other input end of the mixing circuit is connected to an output end of the corresponding local oscillator signal module, and the mixing circuit outputs a near zero frequency signal to the corresponding mode Number conversion module.
  • variable frequency function module further includes a single channel shunt function circuit
  • the mixing circuit includes two mixers
  • the single channel shunt function module outputs the band pass filter.
  • the signal is divided into two channels of the same channel, and the two channels of the same channel are respectively output to the two mixers, and the two mixers respectively output the first near zero frequency signal and the second near zero frequency Signaling to the analog-to-digital conversion module;
  • the single-channel shunt circuit may be a power splitter, the mixer is an image-suppressing mixer, and the image-suppressing mixer interferes with the image The suppression is greater than 20dB.
  • the local oscillator signal module includes a local oscillator signal circuit and a phase shift circuit, and the local oscillator signal circuit generates a local oscillator signal, and then outputs a first local oscillator signal and a second local oscillator signal via the phase shift circuit.
  • the phase of the first local oscillator signal and the second local oscillator signal are different by 90°.
  • analog-to-digital conversion modules (4) a plurality of analog-to-digital conversion modules, wherein the analog-to-digital conversion module is in one-to-one correspondence with the variable frequency function module, and each of the analog-to-digital conversion modules is configured to process an output signal of the corresponding variable frequency function module And output the corresponding digital letter number.
  • Each of the analog-to-digital conversion modules includes a low pass filter, an automatic gain control loop, and an analog to digital conversion circuit, and the first near zero frequency signal and the second near zero frequency signal are subjected to the low pass filtering.
  • the automatic gain control loop is then converted to a digital signal output by the analog to digital conversion circuit.
  • the automatic gain control loop includes two variable gain amplifiers, and the first near zero frequency signal and the second near zero frequency signal are respectively output to the Two variable gain amplifiers, wherein the analog to digital conversion circuit is two analog-to-digital converters corresponding to the variable gain amplifiers, and the output signals of the respective variable gain amplifiers are respectively corresponding to The analog to digital converter converts to a digital signal output.
  • ⁇ Converting GNSS multi-mode multi-frequency satellite signals into baseband signals by using the circuit structure of the present invention includes dividing the GNSS multi-mode multi-frequency satellite signals into antennas and dividing them into GPS L1/L2/L5 signals according to different carrier frequencies, Beidou II Generation of B1/B2/B3 signals and GLONASS L1/L2 signals for a total of eight channels; including the process of converting GNSS multimode multi-frequency satellite signals into near-zero-frequency signals; including near-zero-frequency signals filtered, VGA amplified , A / D conversion to get the I and Q digital signals.
  • FIG. 2 is a schematic diagram showing the circuit structure of the variable frequency function module and the local oscillator signal module of the present invention.
  • the variable frequency function module and the local oscillator signal module implement a process of downconverting the GNSS satellite signals of each frequency band into two orthogonal near zero frequency signals.
  • the GNSS satellite signal down-conversion process in each frequency band is similar.
  • the L1 frequency band the signal 300 is first filtered by a bandpass filter 301 having an ldB bandwidth of 20 MHz, and the resulting signal 302 is further divided by the power splitter 303 into two signals 304 and 305 of the same amplitude and phase.
  • the signal 304 and the local oscillator I signal 308 are downconverted by the mixer 306 to obtain an I signal 400 of L1; the signal 305 and the local oscillator Q signal 309 are downconverted by the mixer 307 to obtain a Q signal 401 of L1.
  • the local oscillator I signal 308 and the Q signal 309 are obtained by the local oscillator signal 311 generated by the local oscillator circuit 312 via the phase shift network 310, and the local oscillator I signal 308 is advanced by 90 degrees than the Q signal 309. .
  • FIG. 3 is a schematic diagram showing the circuit structure of the analog-to-digital conversion module of the present invention.
  • the GNSS satellite signal processing process in each frequency band is similar.
  • the I signal 400 of L1 is filtered by a low pass filter 402 having an ldB bandwidth of 9 MHz, and the obtained signal 403 is amplified by a variable gain amplifier 405 to obtain a signal 407, and then the signal 407 is modulo by an A/D converter 409. Conversion, obtaining a digital signal 411.
  • the Q-channel signal 401 is filtered by a low-pass filter 402 having an ldB bandwidth of 9 MHz, and the obtained signal 404 is amplified by a variable gain amplifier 406 to obtain a signal 408, which is then subjected to A/D conversion.
  • the device 410 performs analog to digital conversion on the signal 408 to obtain a digital signal 412.
  • the above digital signals 411 and 412 will all be sent to the baseband processing circuit for further processing.
  • the GNSS multi-mode multi-frequency satellite signal is directly converted from the 1.15 ⁇ 1.65GHz frequency band to the vicinity of zero frequency using only one frequency conversion, which greatly reduces the complexity of the system and reduces the cost of the system. Power consumption and volume, and avoiding the DC offset problem of the zero-IF scheme.
  • the rejection of image interference is greater than 20dB, ensuring signal quality, using high-isolation mixers and power dividers, so that the local oscillator leaks signals to the antenna RF port.
  • the power level is below -102dBm.
  • the GNSS satellite signals in each frequency band are separately subjected to frequency conversion and subsequent signal processing, which reduces crosstalk between satellite signals, ensures signal quality, and provides sufficient signal-to-noise ratio for baseband processing circuits, and has wider application. range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本发明涉及一种实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构,其中包括分路功能模块、数个变频功能模块、数个本振信号模块和数个模数转换模块,所述的分路功能模块用以将所述的全球导航卫星系统的卫星信号经天线接收后分为数个信道的卫星信号,各个所述的变频功能模块用以将所对应的信道的卫星信号变频为近零频信号,各个所述的本振信号模块用以生成本振信号并输出至所述的变频功能模块。釆用该种结构的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构,可以实现每个频段的卫星信号均单独进行变频及后续的信号处理,保证了信号质量,为基带处理电路提供足够的信噪比,具有更广泛的应用范围。

Description

实现 GNSS卫星信号转换为基带信号功能的射频电路结构 技术领域
本发明涉及全球导航卫星系统领域,尤其涉及全球导航卫星系统接收机的射频电路领域, 具体是指一种实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构。
背景技术
北斗卫星导航系统 (特指北斗二代卫星导航系统)、 GPS ( Global Navigation Satellite System,全球定位系统)、 GLONASS (格洛纳斯,俄语中全球导航卫星系统的缩写)和 Galileo (伽利略, 欧洲卫星导航系统)是分别由中国、 美国、 俄罗斯和欧盟建立的全球卫星导航定 位系统。
目前主流的导航定位方法是指将导航数据提供给接收机, 以确定卫星在发射信号时的位 置, 而测距码使用户接收机能够确定信号的传输延时, 从而确定卫星到用户的距离。 因此, GNSS ( Global Navigation Satellite System, 全球卫星导航系统)接收机是至关重要的用户设 备。
目前实际应用的 GNSS接收机电路一般由天线单元、 射频单元、 基带数字信号处理单元 等部分组成。 其中射频单元的作用就是将 GNSS多模多频卫星信号从环境噪声中滤出, 并提 供适当的增益, 以满足后续基带数字信号处理单元的需求。 理论上我们可以直接在 L波段滤 出所需的 GNSS多模多频卫星信号,然后经过放大再进行数字釆样。但是这要求 A/D转换(模 数转换) 的釆样频率达到 1GHz以上, 并且对基带电路的处理速度有很高要求, 在目前的技 术条件下很难实现且成本极高。 因此, 通常的方法是使用混频器对 GNSS多模多频卫星信号 进行下变频。 这样可以大大降低对 A/D转换电路和基带处理电路的技术指标需求。
现有的一种设计方案类似常规超外差无线电结构, 釆用了两级变频, 通过混频将卫星信 号的载波频率逐级降低, 在低中频进行低通或带通釆样。 这种设计方案具有极为复杂的电路 结构, 处理现在高达 8个频段的 GNSS多模多频卫星信号时, 必须配以众多的本振电路以及 混频电路。 这给系统的调试带来很大困难, 并导致整个系统在成本、 功耗和体积上显著增加, 与 GNSS接收机便携应用的需求背道而驰。 还有一种零中频方案, 釆用一次变频将 GNSS多 模多频卫星信号从 1.15~1.65GHz频段直接下变频到零频率, 电路结构比前一种方案筒单, 但 是存在直流偏移信号的问题, 给后续的基带处理带来很大困难。 而本案的近零中频方案则很 好的解决了这些问题。 发明内容
本发明的目的是克服了上述现有技术的缺点, 提供了一种能够实现降低系统复杂程度、 低各卫星信号之间的串扰、 保证信号质量、 为基带处理电路提供足够的信噪比、 具有更广 泛应用范围的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构。
为了实现上述目的, 本发明的实现全球导航卫星系统的卫星信号转换为基带信号功能的 射频电路结构具有如下构成:
该实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构, 其主要特点 是, 所述的电路结构包括:
分路功能模块, 用以将所述的全球导航卫星系统的卫星信号按载波频率不同分为数个信 道的卫星信号;
数个变频功能模块, 所述的变频功能模块与所述的分路功能模块输出信号的信道一一对 应, 各个所述的变频功能模块用以将所对应的分路功能模块输出信道的信号变频为近零频信 号;
数个本振信号模块, 所述的本振信号模块与所述的变频功能模块一一对应, 各个所述的 本振信号模块用以生成本振信号并输出至所对应的变频功能模块;
数个模数转换模块, 所述的模数转换模块与所述的变频功能模块一一对应, 各个所述的 模数转换模块用以将所对应的变频功能模块的输出信号进行处理并输出相应的数字信号。
较佳地, 各个所述的变频功能模块包括带通滤波器和混频电路, 各个所述的变频功能模 块所对应的分路功能模块输出信道的信号经所述的带通滤波器后输出至所述的混频电路的一 输入端, 所述的混频电路的另一输入端与所对应的本振信号模块的输出端相连接, 所述的混 频电路输出近零频信号至所对应的模数转换模块。
更佳地, 所述的变频功能模块还包括单信道分路功能电路, 所述的混频电路包括两个混 频器, 所述的单信道分路功能模块将所述的带通滤波器的输出信号分成两路同信道信号, 所 述的两路同信道信号分别输出至所述的两个混频器, 所述的两个混频器分别输出第一近零频 信号和第二近零频信号至所述的模数转换模块。
更进一步地, 所述的本振信号模块包括本振信号电路和相移电路, 所述的本振信号电路 生成本振信号后经所述的相移电路输出第一本振信号和第二本振信号。
再进一步地, 所述的第一本振信号与第二本振信号的相位相差 90。 。 更进一步地, 所述的单信道分路电路为功率分配器。
更进一步地, 所述的混频器为镜像抑制混频器。
再进一步地, 所述的镜像抑制混频器对镜像干扰的抑制度大于 20dB。
更进一步地, 各个所述的模数转换模块包括低通滤波器、 自动增益控制环路和模数转换 电路, 所述的第一近零频信号和第二近零频信号经所述的低通滤波器、 自动增益控制环路后 由所述的模数转换电路转换为数字信号输出。
再进一步地, 所述的自动增益控制环路包括两个可变增益放大器, 所述的第一近零频信 号和第二近零频信号经所述的低通滤波器后分别输出至所述的两个可变增益放大器。
再进一步地, 所述的模数转换电路为两个与所述的可变增益放大器一一对应的模数转换 器,各个所述的可变增益放大器的输出信号分别经所对应的模数转换器转换成数字信号输出。
较佳地, 所述的分路功能模块将所述的全球导航卫星系统的卫星信号分为 GPS 的 L1/L2/L5信号、 北斗二代的 B1/B2/B3信号和格洛纳斯 L1/L2信号。
较佳地, 所述的分路功能模块为功率分配器。
釆用了该发明中的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结 构, 具有如下有益效果:
1、 釆用近零中频方案, 只使用一次变频将 GNSS多模多频卫星信号从 1.15~1.65GHz频 段直接变频到零频率附近, 极大的降低了系统的复杂程度, 减少了系统的成本、 功耗和体积, 并避免了零中频方案的直流偏移问题。
2、 釆用高性能的镜像抑制混频器, 对镜像干扰的抑制度大于 20dB, 保证了信号质量, 釆用高隔离度的混频器和功率分配器, 使得本振泄漏信号到天线射频口的功率电平低于 -102dBm。
3、每个频段的 GNSS卫星信号均单独进行变频及后续的信号处理, 低了各卫星信号之 间的串扰, 保证了信号质量, 为基带处理电路提供足够的信噪比, 具有更广泛的应用范围。 附图说明
图 1为本发明的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构 的整体结构示意图。
图 2为本发明的变频功能模块和本振信号模块的电路结构示意图。
图 3为本发明的模数转换模块的电路结构示意图。 具体实施方式
为了能够更清楚地描述本发明的技术内容, 下面结合具体实施例来进行进一步的描述。 如图 1所示为本发明的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电 路结构的整体结构示意图。
该实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构, 其中包括:
( 1 )分路功能模块, 用以将所述的全球导航卫星系统的卫星信号按载波频率不同分为数 个信道的卫星信号;
其中,所述的分路功能模块将所述的全球导航卫星系统的卫星信号分为 GPS的 L1/L2/L5 信号、北斗二代的 B1/B2/B3信号和格洛纳斯 L1/L2信号,所述的分路功能模块为功率分配器。
( 2 )数个变频功能模块, 所述的变频功能模块与所述的分路功能模块输出信号的信道一 一对应, 各个所述的变频功能模块用以将所对应的分路功能模块输出信道的信号变频为近零 频信号;
其中, 各个所述的变频功能模块包括带通滤波器和混频电路, 各个所述的变频功能模块 所对应的分路功能模块输出信道的信号经所述的带通滤波器后输出至所述的混频电路的一输 入端, 所述的混频电路的另一输入端与所对应的本振信号模块的输出端相连接, 所述的混频 电路输出近零频信号至所对应的模数转换模块。
不仅如此, 所述的变频功能模块还包括单信道分路功能电路, 所述的混频电路包括两个 混频器, 所述的单信道分路功能模块将所述的带通滤波器的输出信号分成两路同信道信号, 所述的两路同信道信号分别输出至所述的两个混频器, 所述的两个混频器分别输出第一近零 频信号和第二近零频信号至所述的模数转换模块; 其中, 所述的单信道分路电路可以为功率 分配器, 所述的混频器为镜像抑制混频器, 所述的镜像抑制混频器对镜像干扰的抑制度大于 20dB。
( 3 )数个本振信号模块, 所述的本振信号模块与所述的变频功能模块一一对应, 各个所 述的本振信号模块用以生成本振信号并输出至所对应的变频功能模块;
其中, 所述的本振信号模块包括本振信号电路和相移电路, 所述的本振信号电路生成本 振信号后经所述的相移电路输出第一本振信号和第二本振信号; 所述的第一本振信号与第二 本振信号的相位相差 90° 。
( 4 )数个模数转换模块, 所述的模数转换模块与所述的变频功能模块一一对应, 各个所 述的模数转换模块用以将所对应的变频功能模块的输出信号进行处理并输出相应的数字信 号。
其中, 各个所述的模数转换模块包括低通滤波器、 自动增益控制环路和模数转换电路, 所述的第一近零频信号和第二近零频信号经所述的低通滤波器、 自动增益控制环路后由所述 的模数转换电路转换为数字信号输出。
不仅如此, 所述的自动增益控制环路包括两个可变增益放大器, 所述的第一近零频信号 和第二近零频信号经所述的低通滤波器后分别输出至所述的两个可变增益放大器, 所述的模 数转换电路为两个与所述的可变增益放大器一一对应的模数转换器, 各个所述的可变增益放 大器的输出信号分别经所对应的模数转换器转换成数字信号输出。
釆用本发明的电路结构实现将 GNSS多模多频卫星信号转换为基带信号包括将 GNSS多 模多频卫星信号经天线接收后按载波频率不同分为 GPS 的 L1/L2/L5 信号、 北斗二代的 B1/B2/B3信号和 GLONASS的 L1/L2信号共八路信道的过程; 包括将 GNSS多模多频卫星信 号变频为近零频信号的处理过程; 包括近零频信号经过滤波、 VGA放大、 A/D转换得到 I路 和 Q路数字信号的过程。
如图 2所示为本发明的变频功能模块和本振信号模块的电路结构示意图。
变频功能模块和本振信号模块实现了将每个频段的 GNSS卫星信号下变频为两路正交近 零频信号的过程。 每个频段的 GNSS卫星信号下变频过程是类似的, 在此我们仅以 L1频段 为例作具体描述。 在 L1频段, 信号 300先经过 ldB带宽为 20MHz的带通滤波器 301滤波, 得到的信号 302再经过功率分配器 303分为两路相同幅度和相位的信号 304和 305。信号 304 与本振 I路信号 308经混频器 306进行下变频, 得到 L1的 I信号 400; 信号 305与本振 Q路 信号 309经混频器 307进行下变频,得到 L1的 Q信号 401。其中本振 I路信号 308和 Q路信 号 309是由本振电路 312产生的本振信号 311经过相移网络 310得到的, 本振 I路信号 308 相位比 Q路信号 309超前 90。 。
如图 3所示为本发明的模数转换模块的电路结构示意图。
两路正交近零频信号经过滤波、 自动增益控制环路、 A/D转换得到 I路和 Q路数字信号 的过程。 每个频段的 GNSS卫星信号处理过程是类似的, 在此我们同样仅以 L1频段为例作 具体描述。 L1的 I路信号 400经过 ldB带宽为 9MHz的低通滤波器 402滤波, 得到的信号 403经过可变增益放大器 405进行放大, 获得信号 407, 再通过 A/D转换器 409对信号 407 进行模数转换, 获得数字信号 411。 Q路信号 401经过 ldB带宽为 9MHz的低通滤波器 402 滤波, 得到的信号 404经过可变增益放大器 406进行放大, 获得信号 408, 再通过 A/D转换 器 410对信号 408进行模数转换, 获得数字信号 412。 上述的数字信号 411和 412都将送入 基带处理电路进行进一步处理。
釆用了该发明中的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结 构, 具有如下有益效果:
1、 釆用近零中频方案, 只使用一次变频将 GNSS多模多频卫星信号从 1.15~1.65GHz频 段直接变频到零频率附近, 极大的降低了系统的复杂程度, 减少了系统的成本、 功耗和体积, 并避免了零中频方案的直流偏移问题。
2、 釆用高性能的镜像抑制混频器, 对镜像干扰的抑制度大于 20dB, 保证了信号质量, 釆用高隔离度的混频器和功率分配器, 使得本振泄漏信号到天线射频口的功率电平低于 -102dBm。
3、每个频段的 GNSS卫星信号均单独进行变频及后续的信号处理, 低了各卫星信号之 间的串扰, 保证了信号质量, 为基带处理电路提供足够的信噪比, 具有更广泛的应用范围。
在此说明书中, 本发明已参照其特定的实施例作了描述。 但是, 很显然仍可以作出各种 修改和变换而不背离本发明的精神和范围。 因此, 说明书和附图应被认为是说明性的而非限 制性的。

Claims

权利要求
1、一种实现全球导航卫星系统的卫星信号转换为基带信号功能的射频电路结构, 其特征 在于, 所述的电路结构包括:
分路功能模块, 用以将所述的全球导航卫星系统的卫星信号按载波频率不同分为数个信 道的卫星信号;
数个变频功能模块, 所述的变频功能模块与所述的分路功能模块输出信号的信道一一对 应, 各个所述的变频功能模块用以将所对应的分路功能模块输出信道的信号变频为近零频信 号;
数个本振信号模块, 所述的本振信号模块与所述的变频功能模块一一对应, 各个所述的 本振信号模块用以生成本振信号并输出至所对应的变频功能模块;
数个模数转换模块, 所述的模数转换模块与所述的变频功能模块一一对应, 各个所述的 模数转换模块用以将所对应的变频功能模块的输出信号进行处理并输出相应的数字信号。
2、根据权利要求 1所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 各个所述的变频功能模块包括带通滤波器和混频电路, 各个所述的 变频功能模块所对应的分路功能模块输出信道的信号经所述的带通滤波器后输出至所述的混 频电路的一输入端,所述的混频电路的另一输入端与所对应的本振信号模块的输出端相连接, 所述的混频电路输出近零频信号至所对应的模数转换模块。
3、根据权利要求 2所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的变频功能模块还包括单信道分路功能电路, 所述的混频电路 包括两个混频器, 所述的单信道分路功能模块将所述的带通滤波器的输出信号分成两路同信 道信号, 所述的两路同信道信号分别输出至所述的两个混频器, 所述的两个混频器分别输出 第一近零频信号和第二近零频信号至所述的模数转换模块。
4、根据权利要求 3所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的本振信号模块包括本振信号电路和相移电路, 所述的本振信 号电路生成本振信号后经所述的相移电路输出第一本振信号和第二本振信号。
5、根据权利要求 4所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的第一本振信号与第二本振信号的相位相差 90° 。
6、根据权利要求 3所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的单信道分路电路为功率分配器。
7、根据权利要求 3所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的混频器为镜像抑制混频器。
8、根据权利要求 7所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 所述的镜像抑制混频器对镜像干扰的抑制度大于 20dB。
9、根据权利要求 3所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射频 电路结构, 其特征在于, 各个所述的模数转换模块包括低通滤波器、 自动增益控制环路和模 数转换电路, 所述的第一近零频信号和第二近零频信号经所述的低通滤波器、 自动增益控制 环路后由所述的模数转换电路转换为数字信号输出。
10、 根据权利要求 9所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射 频电路结构, 其特征在于, 所述的自动增益控制环路包括两个可变增益放大器, 所述的第一 近零频信号和第二近零频信号经所述的低通滤波器后分别输出至所述的两个可变增益放大 器。
11、根据权利要求 10所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射 频电路结构, 其特征在于, 所述的模数转换电路为两个与所述的可变增益放大器——对应的 模数转换器, 各个所述的可变增益放大器的输出信号分别经所对应的模数转换器转换成数字 信号输出。
12、 根据权利要求 1所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射 频电路结构, 其特征在于, 所述的分路功能模块将所述的全球导航卫星系统的卫星信号分为 GPS的 L1/L2/L5信号、 北斗二代的 B1/B2/B3信号和格洛纳斯 L1/L2信号。
13、 根据权利要求 1所述的实现全球导航卫星系统的卫星信号转换为基带信号功能的射 频电路结构, 其特征在于, 所述的分路功能模块为功率分配器。
PCT/CN2013/082599 2013-08-15 2013-08-29 实现gnss卫星信号转换为基带信号功能的射频电路结构 WO2015021673A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/912,040 US10101461B2 (en) 2013-08-15 2013-08-29 Radio frequency circuit structure for implementing function of converting GNSS satellite signal into baseband signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013103576193A CN103412317A (zh) 2013-08-15 2013-08-15 实现gnss卫星信号转换为基带信号功能的射频电路结构
CN201310357619.3 2013-08-15

Publications (1)

Publication Number Publication Date
WO2015021673A1 true WO2015021673A1 (zh) 2015-02-19

Family

ID=49605344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082599 WO2015021673A1 (zh) 2013-08-15 2013-08-29 实现gnss卫星信号转换为基带信号功能的射频电路结构

Country Status (3)

Country Link
US (1) US10101461B2 (zh)
CN (1) CN103412317A (zh)
WO (1) WO2015021673A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713295B (zh) * 2013-12-27 2017-06-30 苍穹数码技术股份有限公司 单板三天线高精度定位定向接收机
US9766347B2 (en) * 2014-10-09 2017-09-19 Stmicroelectronics S.R.L. Receiver for receiving a plurality of GNSS (Global Navigation Satellite System) signals
CN105277956A (zh) * 2014-12-26 2016-01-27 上海华测导航技术股份有限公司 一种将gps卫星信号转换为基带信号的方法
CN105319564A (zh) * 2014-12-26 2016-02-10 上海华测导航技术股份有限公司 一种将卫星信号分为八频点进行处理的方法
CN106330220B (zh) * 2015-06-29 2020-04-28 中兴通讯股份有限公司 一种信号接收方法及装置、通信设备
CN105137456B (zh) * 2015-07-25 2017-11-14 山东大学 一种采用二次混频实现同时接收gps l1 信号与北斗b1 信号的前端系统及其工作方法
CN105549044A (zh) * 2015-12-17 2016-05-04 中国电子科技集团公司第三十八研究所 基于数据融合的gnss系统联合定位装置及联合定位方法
CN107991697B (zh) * 2016-10-26 2021-08-03 杭州中科微电子有限公司 一种多频多模rtk定位系统
CN110196437B (zh) * 2018-02-26 2021-12-21 瑞昱半导体股份有限公司 卫星信号接收电路及卫星信号接收方法
CN108646278A (zh) * 2018-04-10 2018-10-12 北京七维航测科技股份有限公司 一种gnss差分定位定向装置
CN113347737A (zh) * 2020-02-18 2021-09-03 中移物联网有限公司 一种网络设备及无线通信系统
CN113031030A (zh) * 2021-02-23 2021-06-25 武汉芯行创智科技有限公司 基带信号处理系统及方法
CN113156464A (zh) * 2021-05-10 2021-07-23 深圳国人无线通信有限公司 一种同步授时转换装置及方法
CN114598382B (zh) * 2022-03-11 2023-10-20 中国科学院国家授时中心 一种导通一体化星基收发地面站基带系统
CN115189709A (zh) * 2022-07-05 2022-10-14 创远信科(上海)技术股份有限公司 实现多模多频的卫星导航并行收发功能的系统
CN116299589B (zh) * 2022-10-20 2024-01-26 极诺星空(北京)科技有限公司 一种星载超小型gnss掩星探测仪

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116586A1 (en) * 2007-11-01 2009-05-07 Intel Corporation Direct conversion receiver and method for correcting phase imbalance therein
CN101978285A (zh) * 2008-02-20 2011-02-16 天宝导航有限公司 Gnss接收器中的采样抽取

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923287A (en) * 1997-04-01 1999-07-13 Trimble Navigation Limited Combined GPS/GLONASS satellite positioning system receiver
US8812052B2 (en) * 2007-02-27 2014-08-19 Qualcomm Incorporated SPS receiver with adjustable linearity
WO2010096158A2 (en) * 2009-02-22 2010-08-26 Trimble Navigation Limited Gnss signal processing methods and apparatus with ionospheric filters
TWI408400B (zh) * 2009-06-01 2013-09-11 Mstar Semiconductor Inc 多重衛星定位系統之訊號處理裝置及方法
CN101710180A (zh) * 2009-11-09 2010-05-19 上海华测导航技术有限公司 实现双频gps卫星信号接收机的基带电路结构及其方法
DE102010001147B4 (de) * 2010-01-22 2016-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfrequenzbandempfänger auf Basis von Pfadüberlagerung mit Regelungsmöglichkeiten
CN102313892B (zh) * 2010-05-31 2014-07-02 北京联星科通微电子技术有限公司 Gps和glonass多信道并行信号追踪方法及追踪模块
US8427366B2 (en) * 2010-07-27 2013-04-23 Texas Instruments Incorporated Dual frequency receiver with single I/Q IF pair and mixer
US10107917B2 (en) * 2011-12-05 2018-10-23 Mediatek Inc. Method of inter-channel bias calibration in a GNSS receiver and related device
JP5974656B2 (ja) * 2012-06-14 2016-08-23 ソニー株式会社 受信装置
CN103117767B (zh) * 2013-01-15 2014-01-15 武汉大学 一种多模多频全球导航卫星系统接收机射频前端装置
JP2014179763A (ja) * 2013-03-14 2014-09-25 Sony Corp 受信回路、受信装置および受信方法
US9482760B2 (en) * 2013-06-12 2016-11-01 Samsung Electronics Co., Ltd Receiver for simultaneous reception of signals from multiple GNSS satellite systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116586A1 (en) * 2007-11-01 2009-05-07 Intel Corporation Direct conversion receiver and method for correcting phase imbalance therein
CN101978285A (zh) * 2008-02-20 2011-02-16 天宝导航有限公司 Gnss接收器中的采样抽取

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, LEI ET AL.: "yizhõng jiéjué jinlíngzongpín zhöng jingxiàngganräo de fangfade taolùn", POPULAR SCIENCE & TECHNOLOGY, no. 2, 28 February 2009 (2009-02-28), pages 13 *

Also Published As

Publication number Publication date
US10101461B2 (en) 2018-10-16
CN103412317A (zh) 2013-11-27
US20160195620A1 (en) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2015021673A1 (zh) 实现gnss卫星信号转换为基带信号功能的射频电路结构
TWI408400B (zh) 多重衛星定位系統之訊號處理裝置及方法
US8593330B2 (en) Multichannel, multimode, multifunction L-band radio transceiver
US8711993B2 (en) Wideband multi-channel receiver with fixed-frequency notch filter for interference rejection
US20100285769A1 (en) Radio Device Having Dynamic Intermediate Frequency Scaling
WO2011020399A1 (zh) 实现双频gps卫星信号转换为基带信号功能的射频电路结构
KR101620039B1 (ko) 산재된 주파수 할당을 갖는 동시 신호 수신기
Qi et al. A dual-channel GPS/Compass/Galileo/GLONASS reconfigurable GNSS receiver in 65nm CMOS
US11855664B2 (en) Signal receiver including digital image signal separation
CN104734640A (zh) 一种变频电路及接收机板卡
US9385760B2 (en) Wireless signal receiving device and method
US7702307B2 (en) Frequency modulation radio receiver including a noise estimation unit
CN203535230U (zh) 实现gnss卫星信号转换为基带信号的射频电路结构
CN111812686B (zh) 一种导航信号接收机及其时钟分配方法
US8280340B2 (en) Clock generation for integrated radio frequency receivers
WO2015125700A1 (ja) 受信装置
CN113037307B (zh) 卫星接收机芯片和卫星接收机系统
CN116155661A (zh) 一种采样数字前端信号处理方法及系统
CN106291624A (zh) 北斗二号卫星导航系统双通道结构的射频接收机
CN204465459U (zh) 一种变频电路及接收机板卡
CN110138464B (zh) 一种对讲机监测系统
RU2195685C1 (ru) Приемник аппаратуры потребителей сигналов глобальных спутниковых радионавигационных систем
CN117890937B (zh) 卫星导航系统的射频前端、接收机及电子设备
CN116359871B (zh) 一种信号处理方法和图像采集设备
RU2551901C2 (ru) Радиоприемное устройство аппаратуры потребителей сигналов глобальных спутниковых навигационных систем

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14912040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891374

Country of ref document: EP

Kind code of ref document: A1