WO2015021577A1 - 基于双谐振腔耦合马赫—曾德尔光开关结构 - Google Patents

基于双谐振腔耦合马赫—曾德尔光开关结构 Download PDF

Info

Publication number
WO2015021577A1
WO2015021577A1 PCT/CN2013/001399 CN2013001399W WO2015021577A1 WO 2015021577 A1 WO2015021577 A1 WO 2015021577A1 CN 2013001399 W CN2013001399 W CN 2013001399W WO 2015021577 A1 WO2015021577 A1 WO 2015021577A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
mach
pair
light
optical
Prior art date
Application number
PCT/CN2013/001399
Other languages
English (en)
French (fr)
Inventor
陆梁军
周林杰
李新碗
陈建平
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2015021577A1 publication Critical patent/WO2015021577A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3576Temperature or heat actuation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3596With planar waveguide arrangement, i.e. in a substrate, regardless if actuating mechanism is outside the substrate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors

Definitions

  • the present invention relates to a Mach-delta optical-coupled structure based on a dual cavity coupling, and belongs to the field of integrated optoelectronics.
  • Integrated optoelectronic technology has become a research hotspot in recent years due to its small size and low power consumption.
  • Discrete components such as modulators, filters, and lasers are rapidly evolving; monolithic integration of multiple functional devices has also been evolving, and monolithic integration and data traffic are also growing rapidly.
  • Integrated optoelectronic devices are the foundation and driving force for the future development of all-optical networks and on-chip optical interconnects.
  • optical switches are widely used in optical network in optical branching multiplex systems and optical cross-nodes; in-chip optical: ⁇ is used for data communication between multi-core processors.
  • the function of the optical switch is that the optical signal enters from one input port, and can be output from one output port by any combination of switches, that is, the chopper switch.
  • ⁇ ⁇ greater than 2 there are 1x2 or 2x2 optical switching units formed by different topologies.
  • the performance of the 1x2 or 2x2 optical switch unit affects the performance of the Xenon switch, so the development of 1x2 and 2x2 optical switch units is critical.
  • 2X2 silicon electro-optic switch with 110 - nm bandwidth for broadband reconfigurable optical networks proposed to implement 2 X 2 optical switch with Mach-Zehnder interference structure.
  • the coupler By designing the coupler, the spectral width of the optical switch covers 110 nm, and the switching crosstalk is lower than -17 dB, but the device size is only 50X400 ⁇ 2.
  • the optical switch based on the Mach-Zehnder interference structure has the widest spectral bandwidth, but the device size is large, and the phase difference of ⁇ needs to be adjusted during switching operation, and the power consumption is large.
  • the device size is small, but the spectral bandwidth of a single resonant structure is relatively narrow, the spectral response is not flat, and increasing the bandwidth makes the power consumption larger.
  • the optical switch based on the double-ring structure can realize the flat-top switch response of a large bandwidth, but the precision of the process is relatively small, so that the coupling coefficient between the two rings needs to be accurately controlled.
  • the object of the present invention is to address the above-mentioned shortcomings of the prior art, and combine the advantages of the Mach-Zehnder interferometer and the resonant cavity to propose a dual cavity-based coupling Mach with small size, large operating bandwidth and low power consumption adjustment.
  • - Zander's optical switch structure
  • a Mach-Zehnder optical switch structure based on a dual cavity coupling comprising:
  • the input end of the pre-coupler is connected to a pair of input waveguides for splitting one path of light into two paths and entering into the thousands of arms and the lower interference arm respectively;
  • a post-coupler that combines two paths of light into one path of light and is coupled to a pair of optical waveguides of a pair of output waveguides
  • the two ends of the lower interference arm are respectively connected with the front coupler and the rear coupler to provide a structure of Mach-Zehnder
  • a pair of optical resonators coupled to the upper interference arm and the lower arm, respectively.
  • the pre-coupler and the post-coupler are multi-mode interference couplers, Y-branch beam splitters or directional couplers, which realize the input of any input port and both light output.
  • the upper and lower interference arms are completely equal, the length does not affect the shutoff characteristics, and the arm length is minimized to reduce arm asymmetry caused by device size and process error.
  • the pair of optical resonant cavities are micro-ring resonators, micro-disk resonators, racetrack-type resonators or photon-body resonators, and the resonant cavity and the interference arm are in an over-coupled state, and the coupling of the enhanced interference arms can increase the off-switch Spectral bandwidth.
  • the optical signal enters the optical switch from any input waveguide.
  • the optical signal can be output from different output waveguides.
  • the 1 x2 optical switch is realized by one input waveguide, and 2x2 is realized by using two input waveguides. light switch.
  • Photonics is a silicon-based integrated photonic device whose refractive index change can be achieved by thermo-optic effects, carrier dispersion effects, and nonlinear effects.
  • the optical switch is a quartz-based or silicon nitride-based integrated photonic device whose refractive index change can be achieved by a thermo-optic effect.
  • multi-port, multi-port optical switch routers can be realized in various fields such as optical communication and on-chip optical networks through different switching topologies.
  • beneficial effects of the present invention are:
  • the two resonant cavities are respectively coupled to the interference arm and are in an overcoupled state (the amplitude through coefficient ⁇ is smaller than the loss coefficient a), and the optical signal changes phase sharply around the resonant wavelength.
  • the IT phase can be changed with a small difference in refractive index, thereby achieving the light-off function.
  • the optical power consumption of the present invention is low, the device size is small, and the spectral response is wide and flat.
  • FIG. 1 is a schematic diagram of a Mach-Zehnder light-off structure based on a dual cavity coupling according to the present invention.
  • 2 is a schematic view showing the structure of the Mach-Zehnder optical switch based on the double microring resonator coupling in Embodiment 1.
  • FIG. 3 is a schematic diagram showing the structure of the Mach-Zehnder optical switch based on the dual microdisk resonator coupling.
  • Embodiment 4 is a schematic diagram of Embodiment 3 based on a dual-track type resonant coupling Mach-Zehnder light-off structure.
  • FIG. 5 is a schematic diagram showing the structure of a Mach-Zehnder optical switch based on a two-photon body cavity.
  • Figure 6 is a (a) phase response and (b) spectral response of the cavity under different refractive index changes.
  • Figure 7 shows the spectral response of the Mach-Zehnder light-coupled (a) straight-through and (b) cross-ends at different refractive indices based on the dual-runway coupling.
  • FIG. 1 is a schematic structural view of a Mach-Zehnder optical switch based on a dual cavity coupling according to the present invention.
  • a Mach-Zehnder optical switch structure based on a dual cavity coupling includes:
  • a pre-coupler 3 the input end of the pre-coupler is connected to a pair of input waveguides for splitting one path of light into two paths and respectively entering the upper interference arm and the lower interference arm;
  • a post-coupler 6 combining the two paths of light into one path of light and coupling into one of the optical waveguides of the pair of output waveguides;
  • An upper interference arm 4 the two ends of which are respectively connected with a front coupler and a rear coupler to provide an optical path required for forming a Mach-Zehnder interferometer;
  • the lower interference arm 5 the two ends of the lower interference arm are respectively connected with the 'coupling coupler and the rear coupler to provide a Mach-Zehnder
  • the pre-coupler 3 is a multi-mode interference coupler, a Y-branch beam splitter or a directional coupler, and realizes input of any input port and evenly splits the light output -
  • the lengths of the upper interference arm 4 and the lower interference arm 5 are the same, the length does not affect the switching characteristics, and the arm length is minimized to reduce the device size and process error, and generally 10 ⁇ ⁇ !
  • FIG. 2 is a schematic diagram of a Mach-Zehnder light-off structure based on a dual micro-ring resonator coupling according to Embodiment 1
  • FIG. 3 is a small intention of Embodiment 2 based on a dual-microdisk resonator coupling Mach-Zehnder light-off structure
  • FIG. 4 is an implementation.
  • Example 3 is based on the dual-track type resonant coupling Mach-Zehnder optical switch structure.
  • FIG. 5 is a schematic diagram of the structure of the Mach-Zehnder optical switch based on the two-photon crystal resonator.
  • the optical aperture of the present invention can be realized by a silicon-based, quartz-based or silicon nitride-based material, and the refractive index of one of the resonant cavities can be adjusted by a thermo-optic effect or a carrier dispersion effect in a silicon base, a nonlinear effect, or both Adjust the refractive indices of the two resonators in different directions.
  • the phase difference between the upper and lower interference arms is 0, and the optical signal enters the optical switch and is output from the crossover end, and the light intensity at the through end is zero.
  • the refractive index of a resonant cavity is changed, the phase response of the spectrum shifts. As shown in Fig.
  • the phase changes sharply around the wavelength of 1551. 34 nm, and the phase can be realized by a small refractive index change.
  • the difference of the difference I, the interference of the two arms is subtracted, and the reverse rotation is realized, and the optical signal is output from the through-end.
  • Figure 6 (b) shows the spectral response of the cavity under different refractive index changes. When the switch is reversed, the amplitude of the optical signal in the upper and lower resonators is equal.
  • Figure 7 (a) and (b) show the spectral response of the straight-through and crossed ends of the diaphragm at different refractive indices. The signal is applied to 1551. : M nm wave!
  • the optical switch of the present invention is in a closed state, the refractive index change is 0, the response of the through end is 0, the response of the cross end is close to 1; when the switch is turned on, the output of the through end is close to 1, and the response of the cross end is 0.
  • the silicon base is the device material
  • the front coupler 3 and the rear coupler 6 are multi-mode thousand couplers.
  • the radius of the microring resonators 41 and 51 in Fig. 2 is 10 u rn, and a metal thermal resistance is fabricated on 41, and the refractive index of the ring is changed by the thermo-optic effect to realize the switching action. 9978 ⁇
  • the loss factor a of the micro-rings 41, 51 is 0. 9978, considering the loss of the actual process, the total loss is assumed to be 3 dB / cm.
  • FIG. 41 The microring 41 is heated and heated to change the refractive index.
  • Figure 5 (a) and (b) show the microring 41 phase response plots and spectral response plots for different refractive index changes. Assuming that the signal is loaded at 1551. 34 nm, when the refractive index changes to 4.85x 10 — ', the phase changes by ⁇ , and the amplitude is the same as the initial state. For the Mach-Zehnder interference structure, that is, interference subtraction, switching inversion is achieved.
  • the 7(a) and (b) are the spectral responses of the present invention based on the double-microring-coupled Mach-Zehnder light-transfer straight-through and cross-ends at different refractive index changes of the micro-ring 41, respectively.
  • the initial state optical signal is output from the crossover end, the output of the through terminal is 0, and the output of the through terminal is not 1 due to the microring loss.
  • the refractive index of the microring 41 By changing the refractive index of the microring 41, the output light intensity at the through end is gradually increased, and the output light intensity at the intersection is reduced.
  • the refractive index changes to 4. 85x 10—' the output of the cross-end is 0, and the optical signals are all output from the through-end, realizing the reverse rotation.
  • the 3 dB bandwidth of the gate is 3 GHz (0. 425 nm), and the spectral response is also flat. To achieve a larger 3-dB bandwidth, it is only necessary to increase the coupling strength of the resonant cavities 41 and 51 with the interference arm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种基于双谐振腔耦合马赫—曾德尔光开关结构,包括:一对输入波导(1,2)、前置耦合器(3)、上干涉臂(4)、下干涉臂(5)、后置耦合器(6)、一对输出波导(7,8)、一对光谐振腔(41,51)。其中,前置耦合器(3)的输入端与一对输入波导(1,2)相连接,用以将一路光分为两路光,并分别进入到上干涉臂(4)和下干涉臂(5)中。后置耦合器(6)将两路光合并为一路光,并耦合到一对输出波导(7,8)的某一条光波导中。一对输出波导(7,8)的一端与后置耦合器(6)的输出端连接。上干涉臂(4)和下干涉臂(5)的两端分别与前置耦合器(3)和后置耦合器(6)连接。一对光谐振腔(41,51)分别与上干涉臂(4)和下干涉臂(5)耦合。该光开关利用波长在谐振点附近相位变化剧烈的优点,结合马赫—曾德尔干涉结构两臂干涉特性,只需要较少改变一个谐振腔的折射率,则实现光信号从不同的端口输出。

Description

基于双谐振腔耦合马赫 -曾德尔光开关结构 技术领域 本发明涉及一种基于双谐振腔耦合马赫 ^德尔光丌关结构, 属于集成光电子 学领域。 背景技术 集成光电子技术 ώ于其体积小、功耗低的优势, 近几年成为研究热点。调制器、 滤波器、激光器等分立元件发展迅速;将多个功能器件单片集成也得到了不断发展, 单片集成度和数据通信量也在快速增长。 集成光电子器件成为未来全光网络和片上 光互联不断发展的基础与动力。 光开关作为其中一个重要的器件, 在光网络中广泛 用于光分叉复用系统和光交叉结点中; 在片上光 :联中被用于多核处理器之间的数 据通信。 光丌关的功能是光信号从 Ν个输入口进, 可以以任意的路 ώ组合从 Ν个输 出口输出, 即 ΝχΝ光开关。 对于 Ν大于 2的光丌关, 都是有 1x2或者 2x2光开关单 元通过不同的拓扑结构形成。 1x2或者 2x2 的光开关单元的丌关性能, 影响了 ΝχΝ 光开关的性能, 所以发展 1x2和 2x2的光开关单元至关重要。
近几年研究国内外研究光开关的团队很多, 他们也用了不同的结构作为其中的 光开关单元, 其中比较典型有以下几种。 中科院半导体研究所的 Ruiqiang Ji等人 在 OPTICS EXPRESS (Vol. 19, No. 21) 上发表的论文 "Five-port optical router for photonic networks-on-chip" 中利用微环谐振腔与两条平行波导或者两条垂直 波导耦合形成 1x2开关单元, 拓扑来实现 5端口的光开关, 器件一共有 16个微环, 总尺寸只有 50X400 m1, 3-dB 的光谱带宽为 38 GHz 0 IBM 公司的 Joris Van
Campenhout等人在 OPTICS EXPRESS (Vol. 17, No. 26)上发表的论文 "Low power,
2X2 silicon electro-optic switch with 110 - nm bandwidth for broadband reconfigurable optical networks" 中提出用马赫 曾德尔干涉结构实现 2 X 2光开 关, 通过设计耦合器使得光开关的谱宽覆盖 110 nm, 开关串扰低于 -17 dB, 但是器 件尺寸只有 50X400 μπι2。美国康奈尔大学的 Hugo L. R. Lira等人在 OPTICS EXPRESS
(Vol. 17, No. 25) 上发表的论文 "Broadband hit less silicon electro-optic switch for on-chip optical networks" 中利用相互耦合的双环来实现开关单元, 实验证明光谱带宽为 60 GHz, 单元尺寸为 20 X 40 μ ηι。 美国麻省理工的 Mi chael R. Watts等人在 OPTICS EXPRESS ( Vol. 19, No. 22 )上发表的论文 " Vert i cal junction s i l icon mi crodi sk modu l ators and sw i tches " 中提出用微盘谐振腔来实现丌关单 元, 微盘的直径只有 3. 5 μ ηι。 综合比较已报道的方法, 基于马赫 曾德尔干涉结构的光开关光谱带宽最宽, 但 是器件尺寸较大, 而且在开关操作时需要调节 π的相位差, 功耗较大。 基于单个微 环或者微盘结构的光丌关, 器件尺寸小, 但 ώ于单个谐振结构的光谱带宽比较窄, 光谱响应不平坦, 增大带宽就会使得功耗变大。 基于双环结构的光开关, 可以实现 较大带宽的平顶开关响应, 但 ώ于需要精确控制两个环之间的耦合系数, 工艺容差 比较小。 因此, 提出一种器件尺寸较小, 光谱响应宽而平坦, 功耗较低, 工艺容差 较大的光开关十分重要。 发明内容 本发明的目的在于针对上述现有技术的不足, 结合马赫-曾德尔干涉器和谐振腔 各自的优点, 提出一种尺寸小、 工作带宽大、 调节功耗低的基于双谐振腔耦合马赫- 曾德尔光开关结构。
为达到上述目的, 本发明的技术解决方案如下:
一种基于双谐振腔耦合马赫-曾德尔光开关结构, 包括:
一对输入波导, 用以将光波引导入马赫-曾德尔干涉仪中;
一前置耦合器, 该前置耦合器的输入端与一对输入波导相连接, 用以将一路光 分为两路光, 并分别进入到上千涉臂和下干涉臂中;
一后置耦合器, 将两路光合并为一路光, 并耦合到一对输出波导的某一条光波 导中;
一对输出波导, 该一对输出波导的一端与后置耦合器的输出端连接, 用以将光 从马赫-曾德尔干涉仪输出;
上干涉臂, 该上干涉臂的两端分别与前置耦合器和后霄:耦合器连接, 提供构成 马赫-曾德尔干涉仪所需要的一条光路 ·'
下干涉臂, 该下干涉臂的两端分别与前置耦合器和后置耦合器连接, 提供构成 马赫-曾德尔千
涉仪所需要的另一条光路; 其特点在于,
一对光谐振腔, 该一对光谐振腔分别与上干涉臂和下千涉臂耦合。
所述的前置耦合器和后置耦合器是多模干涉耦合器、 Y 分支分束器或定向耦合 器, 实现任意输入口进入, 均勾分光输出。 所述的上、 下干涉臂完全相等, 长度不影响丌关特性, 尽量减少臂长以减少器 件尺寸和工艺误差带来的臂不对称。
所述的一对光谐振腔, 是微环谐振腔、 微盘谐振腔、 跑道型谐振腔或者光子品 体谐振腔, 谐振腔与干涉臂处于过耦合状态, 增强 干涉臂的耦合可以增加关开关 的光谱带宽。
光信号从任意输入波导进入光开关中, 通过改变其中一个光谐振腔的折射率, 可以实现光信号从不同的输出波导输出; 利用一个输入波导实现 1 x2光开关, 利用 两个输入波导实现 2x2光开关。
光丌关是硅基集成光子器件, 其折射率的改变可以通过热光效应、 载流子色散 效应和非线性效应实现。
光开关是石英基或者氮化硅基集成光子器件, 其折射率的改变可以通过热光效 应实现。
作为开关单元, 通过不同的丌关拓扑结构, 可以实现多端口进, 多端口出的光 开关路由器, 用于光通信、 片上光网络等领域中。 与现有技术相比, 本发明的有益效果是:
改变上、 下两个干涉臂的相位相位差从 0 到 π , 从而实现光信号从不同输出端 口输出。
两个谐振腔分别与干涉臂耦合, 并且处于过耦合状态 (幅度直通系数 τ小于损耗 系数 a), 光信号在谐振波长附近相位变化剧烈。
通过改变其中一个谐振腔的折射率, 可以用较小的折射率差实现 IT相位的改变, 从而实现光丌关功能。
相对于传统的 1 x2或者 2x2光开关单元, 本发明光丌关功耗较低、 器件尺寸较 小、 光谱响应较宽而平坦。 附图说明
图 1为本发明基于双谐振腔耦合马赫-曾德尔光丌关结构示意图。 图 2为实施例 1基于双微环谐振腔耦合马赫-曾德尔光开关结构示意图。
图 3为实施例 2基于双微盘谐振腔耦合马赫-曾德尔光开关结构示意图。
图 4为实施例 3基于双跑道型谐振耦合马赫-曾德尔光丌关结构示意图。
图 5为实施例 4基于双光子品体谐振腔耦合马赫-曾德尔光开关结构示意图。 图 6为谐振腔在不同折射率变化下的(a)相位响应和(b)光谱响应图。
图 7 为基于双跑道耦合马赫 曾德尔光丌关 (a)直通端和(b)交叉端在不同折射 率变化下的光谱响应图。 具体实施方式
下面结合附图和实施例对本发明做进一歩阐述, 但不应以此限制本发明的保护 范围。
请先参阅图 1, 图 1为本发明基于双谐振腔耦合马赫 -曾德尔光开关的结构示意 图, 如图 1所示, 一种基于双谐振腔耦合马赫-曾德尔光开关结构, 包括:
一对输入波导 1, 2 , 用以将光波引导入马赫-曾德尔干涉仪中;
一前置耦合器 3, 该前置耦合器的输入端与一对输入波导相连接, 用以将一路 光分为两路光, 并分别进入到上干涉臂和下干涉臂中;
一后置耦合器 6, 将两路光合并为一路光, 并耦合到一对输出波导的某一条光 波导中;
一对输出波导 7, 8, 该一对输出波导的一端与后置耦合器的输出端连接, 用以 将光从马赫 曾德尔干涉仪输出;
上干涉臂 4, 该上干涉臂的两端分别与前置耦合器和后置耦合器连接, 提供构 成马赫 曾德尔干涉仪所需要的一条光路;
下干涉臂 5, 该下干涉臂的两端分别与 '置瑀合器和后置耦合器连接, 提供构 成马赫-曾德尔干
涉仪所需要的另一条光路:
一对光谐振腔 41, 51, 该一对光谐振腔分别与上干涉臂和下干涉臂耦合。 前置耦合器 3是多模干涉耦合器、 Y分支分束器或定向耦合器, 实现任意输入口 进入, 均匀分光输出-, 上干涉臂 4和下干涉臂 5的长度一样, 长度不影响丌关特性, 尽量减少臂长以减少 器件尺寸和工艺误差, 一般可以设计 10 μ π! 量级;
一对光谐振腔 41, 51, 该上光谐振腔 41与上干涉臂 4耦合, 下光谐振腔 51与 下干涉臂耦合, 光谐振腔 41和 51是微环谐振腔、 微盘谐振腔、 跑道型谐振腔或光 子晶体谐振腔, 两个谐振腔的尺寸完全一致;
图 2为实施例 1基于双微环谐振腔耦合马赫-曾德尔光幵关结构示意图, 图 3为 实施例 2基于双微盘谐振腔耦合马赫-曾德尔光丌关结构小意图, 图 4为实施例 3基 于双跑道型谐振耦合马赫-曾德尔光开关结构不意图, 图 5为实施例 4基于双光子晶 体谐振腔耦合马赫-曾德尔光开关结构示意图。 本发明光丌关可以通过硅基、石英基 或者氮化硅基材料实现, 通过热光效应或者硅基中的载流子色散效应、 非线性效应 来调节其中一个谐振腔的折射率, 或者同时朝不同方向调节两个谐振腔的折射率。 在丌关关闭状态, 上、 下两干涉臂的相位差为 0, 光信号进入光丌关后从交叉端输 出, 直通端的光强为 0。 当改变一个谐振腔的折射率, 其光谱的相位响应发生移动, 如图 6 (a)所示, 光在 1551. 34 nm波长附近相位变化剧烈, 通过较小的折射率改变, 则可以实现相位差 I的变化, 两个臂干涉相减, 实现了丌关反转, 光信号就从直通 端输出。 图 6 (b)为谐振腔在不同折射率变化下的光谱响应, 当发生开关反转时, 光 信号在上、 下两个谐振腔的幅度相等。 图 7 (a)和(b)为光丌关直通端和交叉端在改 变不同折射率下的光谱响应, 信号加载到 1551. :M nm波!^上, 本发明光丌关处于 关闭状态, 折射率变化为 0, 直通端的响应为 0, 交叉端的响应接近 1 ; 当开关开启 后, 直通端的输出接近 1, 而交叉端的响应为 0 实施例
以图 2基于双微环耦合马赫 曾德尔光丌关为实施例, 硅基为器件材料, 前置耦 合器 3和后置耦合器 6为多模千涉耦合器。 图 2中微环谐振腔 41和 51的半径都为 10 u rn, 在 41上制作金属热电阻, 利用热光效应改变该环的折射率实现开关作用。 考虑到实际工艺会带来损耗, 假定总损耗为 3 dB/cm, 转化为微环 41、 51的损耗因 子 a为 0. 9978。 微环 41、 51与干涉臂的幅度直通系数 τ都为 0. 94 , 对应幅度耦合系 数 为 0. 3412。 对微环 41 进行加热升温, 改变折射率。 图 5 (a)和(b)所示为微环 41在不同折射率改变下的相位响应图和光谱响应图。 假定信号加载在 1551. 34 nm, 当折射率变化为 4. 85x 10— '时, 相位改变 π, 幅度则和初始状态一样。 对于马赫-曾 德尔干涉结构, 即为干涉相减, 就实现了开关反转。 图 7 (a)和(b)分别为本发明基 于双微环耦合马赫-曾德尔光丌关直通端和交叉端在微环 41 不同折射率改变下的光 谱响应。 初始状态光信号从交叉端输出, 直通端的输出为 0, 直通端输出不为 1 是 由于微环损耗造成。 改变微环 41的折射率, 直通端的输出光强逐渐增加, 交叉端的 输出光强则减少。 折射率变化为 4. 85x 10—'时, 交叉端的输出为 0, 光信号全部从 直通端输出,实现了丌关反转。从图中 以看到, 丌关的 3 dB带宽为 3 GHz (0. 425 nm) ,光谱响应也较为平坦。 实现更大的 3-dB带宽, 只需要增加谐振腔 41和 51与干 涉臂的耦合强度。
以上所述, 仅为本发明中的具体实施方式和实施例, 但本发明的保护范围并不 局限于此, 任何熟悉该技术的人在本发明所揭露的技术范 1 内, 可轻易想到的变换 或替换, 都应涵盖在本发明的包含范围之内。 因此, 本发明的保护范围应该以权力 要求书的保护范围为准。

Claims

权 利 要 求 书
1 . 一种基于双谐振腔耦合马赫-曾德尔光开关结构, 包括:
一对输入波导 U, 2 ), 用以将光波引导入马赫-曾德尔干涉仪中;
一前置耦合器 (3 ), 该前置耦合器的输入端与 对输入波导相连接, 用以将一 路光分为两路光, 并分别进入到上干涉臂和下干涉臂中;
一后置耦合器 (6 ), 将两路光合并为一路光, 并耦合到 对输出波导的某一条 光波导中;
一对输出波导 (7, 8 ), 该一对输出波导的一端与后置耦合器的输出端连接, 用 以将光从马赫-曾德尔干涉仪输出;
上干涉臂 (4 ), 该上干涉臂的两端分别与 置耦合器和后置瑀合器连接, 提供 构成马赫-曾德尔干涉仪所需要的 ·条光路;
下干涉臂 (5 ), 该下干涉臂的两端分别与前置耦合器和后置耦合器连接, 提供 构成马赫 曾德尔干涉仪所需要的另一条光路;
其特征在于, 还包括:
一对光谐振腔 (41, 51 ) , 该一对光谐振腔分别与上千涉臂和下干涉臂耦合。
2. 根据权利要求 1 所述的基于双谐振腔耦合马赫-曾德尔光开关结构, 其特征 在于, 所述的一对光谐振腔是微环谐振腔、 微盘谐振腔、 跑道型谐振腔或者光子晶 体谐振腔, 谐振腔与干涉臂处于过耦合状态。
3. 根据权利要求 1 所述的基于双谐振腔耦合马赫 曾德尔光开关结构, 其特征 在于, 所述的 置耦合器和后置耦合器是多模十涉耦合器、 Y 分支分束器或定向耦 合
4. 根据权利要求 1 所述的基于双谐振腔耦合马赫 曾德尔光丌关结构, 其特征 在于, 所述的上干涉臂和下千涉臂的结构相同。
PCT/CN2013/001399 2013-08-12 2013-11-18 基于双谐振腔耦合马赫—曾德尔光开关结构 WO2015021577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310347974.2A CN103487889A (zh) 2013-08-12 2013-08-12 基于双谐振腔耦合马赫-曾德尔光开关结构
CN201310347974.2 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015021577A1 true WO2015021577A1 (zh) 2015-02-19

Family

ID=49828246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001399 WO2015021577A1 (zh) 2013-08-12 2013-11-18 基于双谐振腔耦合马赫—曾德尔光开关结构

Country Status (2)

Country Link
CN (1) CN103487889A (zh)
WO (1) WO2015021577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147479A1 (en) * 2020-12-31 2022-07-07 Alpine Optoelectronics, Inc. Differential thermo-optic phase shifter

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016008144A1 (zh) * 2014-07-18 2016-01-21 华为技术有限公司 波长选择开关和选择波长的方法
CN104360445A (zh) * 2014-10-23 2015-02-18 大连民族学院 一种基于光纤环谐振结构的高灵敏度干涉仪
CN106324866B (zh) * 2015-06-19 2020-01-07 中兴通讯股份有限公司 一种硅基调制器偏置点控制装置
US9645469B2 (en) * 2015-08-26 2017-05-09 Stmicroelectronics (Crolles 2) Sas Electro-optic (E/O) device with an E/O amplitude modulator and associated methods
CN105241844B (zh) * 2015-10-22 2017-12-15 浙江大学 基于多环辅助的马赫‐曾德尔干涉仪光学生物传感器
CN105242479A (zh) * 2015-11-11 2016-01-13 北方工业大学 基于受激拉曼散射损耗效应的全光比较器
CN108627919B (zh) * 2018-05-11 2020-02-07 浙江大学 一种偏振不敏感的硅基光开关
CN109324373B (zh) * 2018-11-14 2019-10-08 东北林业大学 基于环形谐振腔的全光双控可调光开关
CN109976064B (zh) * 2019-04-04 2022-06-14 湖南理工学院 一种基于超材料谐振腔的太赫兹马赫-曾德干涉仪
CN112415663B (zh) * 2020-11-16 2022-05-24 北京理工大学 一种基于多级微盘耦合的马赫曾德尔宽带低功耗光开关
CN112327517B (zh) * 2020-11-20 2021-09-24 南京航空航天大学 窄带宽马赫曾德尔干涉仪及光谱整形装置、方法
CN112817091A (zh) * 2021-01-05 2021-05-18 中国科学院半导体研究所 一种马赫曾德尔干涉仪及多通道粗波分复用器
CN114815325A (zh) * 2022-06-29 2022-07-29 浙江大学 一种基于热光调制的微环辅助mzi光开关

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078605A (en) * 1998-02-20 2000-06-20 Massachusetts Institute Of Technology Track-changing utilizing phase response of resonators
WO2001018598A1 (en) * 1999-09-10 2001-03-15 Nanovation Technologies, Inc. Mach-zehnder interferometer with a ring resonator
CN1727978A (zh) * 2005-07-28 2006-02-01 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
CN100345016C (zh) * 2005-11-14 2007-10-24 浙江大学 一种基于电光聚合物材料的偏振无关光开关
CN101620298A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种光开关
CN101887202A (zh) * 2010-06-22 2010-11-17 浙江大学 光纤传感用m-z型光谱整形器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067031A1 (en) * 2004-01-12 2005-07-21 Eidgenössische Technische Hochschule Zürich Ferroelectric thin films and devices comprising thin ferroelectric films
CN1292273C (zh) * 2005-02-05 2006-12-27 中国科学院上海光学精密机械研究所 具有波长选择性的2×2波导光开关
JP2009258527A (ja) * 2008-04-21 2009-11-05 Hitachi Ltd 光学素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078605A (en) * 1998-02-20 2000-06-20 Massachusetts Institute Of Technology Track-changing utilizing phase response of resonators
WO2001018598A1 (en) * 1999-09-10 2001-03-15 Nanovation Technologies, Inc. Mach-zehnder interferometer with a ring resonator
CN1727978A (zh) * 2005-07-28 2006-02-01 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
CN100345016C (zh) * 2005-11-14 2007-10-24 浙江大学 一种基于电光聚合物材料的偏振无关光开关
CN101620298A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 一种光开关
CN101887202A (zh) * 2010-06-22 2010-11-17 浙江大学 光纤传感用m-z型光谱整形器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147479A1 (en) * 2020-12-31 2022-07-07 Alpine Optoelectronics, Inc. Differential thermo-optic phase shifter
US11815780B2 (en) 2020-12-31 2023-11-14 Alpine Optoelectronics, Inc. Differential thermo-optic phase shifter

Also Published As

Publication number Publication date
CN103487889A (zh) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2015021577A1 (zh) 基于双谐振腔耦合马赫—曾德尔光开关结构
WO2015096070A1 (zh) 波导偏振分离和偏振转换器
WO2010000170A1 (zh) 一种光开关
KR102064860B1 (ko) 비대칭 1x2 소자들을 사용하는 대용량 광 스위치
WO2018054075A1 (zh) 波长选择性光开关
JP6017380B2 (ja) 1×n光スイッチ素子及びn×n光スイッチ素子
US20020159684A1 (en) Novel optical waveguide switch using cascaded mach-zehnder interferometers
Xiao et al. Silicon photonic Flex-LIONS for bandwidth-reconfigurable optical interconnects
Wu et al. Non-blocking 2× 2 switching unit based on nested silicon microring resonators with high extinction ratios and low crosstalks
CN114326164A (zh) 一种基于相变材料的2×2光波导开关及其制备方法
Zheng et al. Integrated multi-functional optical filter based on a self-coupled microring resonator assisted MZI structure
Zhixun et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip
CN111290191A (zh) 定向耦合器及基于氮化硅平台的光开关
Lu et al. Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities
Jiang et al. Compact and power efficient 2× 2 thermo-optical switch based on dual-nanobeam MZI
Govdeli et al. On-chip switch and add/drop multiplexer design with left-handed behavior in photonic crystals
Lu et al. Reconfigurable silicon photonic processor based on scow resonant structures
CN112904479B (zh) 一种基于反向Fano耦合微环的光开关
CN112415663B (zh) 一种基于多级微盘耦合的马赫曾德尔宽带低功耗光开关
WO2014155642A1 (ja) 光マトリックススイッチ及びその制御システム
Lee et al. Multi-wavelength message routing in a non-blocking four-port bidirectional switch fabric for silicon photonic networks-on-chip
Zhou et al. Broadband 4× 4 non-blocking optical switch fabric based on Mach-Zehnder interferometers
Miura et al. Silicon waveguide wavelength-selective switch for on-chip WDM communications
Hu et al. A novel MZ modulator based on photonic crystal and nanowire waveguide
Zhou et al. Large-scale silicon photonic switches using electro-optic MZIs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1250 DATED 19.04.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13891507

Country of ref document: EP

Kind code of ref document: A1