WO2015020214A1 - Train control system - Google Patents

Train control system Download PDF

Info

Publication number
WO2015020214A1
WO2015020214A1 PCT/JP2014/071100 JP2014071100W WO2015020214A1 WO 2015020214 A1 WO2015020214 A1 WO 2015020214A1 JP 2014071100 W JP2014071100 W JP 2014071100W WO 2015020214 A1 WO2015020214 A1 WO 2015020214A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
phase
train control
modulated wave
waveform
Prior art date
Application number
PCT/JP2014/071100
Other languages
French (fr)
Japanese (ja)
Inventor
顕夫 岩上
Original Assignee
日本信号株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本信号株式会社 filed Critical 日本信号株式会社
Priority to KR1020167006077A priority Critical patent/KR102039565B1/en
Publication of WO2015020214A1 publication Critical patent/WO2015020214A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/40Adaptation of control equipment on vehicle for remote actuation from a stationary place
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L23/00Control, warning, or like safety means along the route or between vehicles or vehicle trains
    • B61L23/08Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only
    • B61L23/14Control, warning, or like safety means along the route or between vehicles or vehicle trains for controlling traffic in one direction only automatically operated
    • B61L23/16Track circuits specially adapted for section blocking
    • B61L23/168Track circuits specially adapted for section blocking using coded current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L3/00Devices along the route for controlling devices on the vehicle or vehicle train, e.g. to release brake, to operate a warning signal
    • B61L3/16Continuous control along the route
    • B61L3/22Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation
    • B61L3/221Continuous control along the route using magnetic or electrostatic induction; using electromagnetic radiation using track circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2331Demodulator circuits; Receiver circuits using non-coherent demodulation wherein the received signal is demodulated using one or more delayed versions of itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed

Definitions

  • the present invention relates to a train control system, and more particularly to a train control system that can correctly detect the phase difference of an amplitude-modulated wave without increasing the sampling frequency.
  • a train control system is composed of a ground device provided on the ground side and an onboard device mounted on the train side, and predetermined train control from the ground device toward the train.
  • a signal is transmitted, the transmitted train control signal is received by the on-board device, and predetermined train control such as speed control is performed.
  • an ATC system called e-ATC has been developed in which phase modulation is applied to an analog ATC signal (amplitude modulated wave) to increase the amount of information while maintaining compatibility with a conventional ATC signal.
  • e-ATC since the phase difference between each signal part of the amplitude-modulated wave is sent as information, it is necessary to correctly discriminate between the signal part and the non-signal part when demodulating the signal phase difference in the ATC receiver part. There is.
  • Patent Document 1 discloses a technique for suppressing undesired signals in a received signal. This technology does not distinguish between signal and no-signal parts, but corrects undesired signals contained in frequency domain signals using measured amplitude fluctuations or phase errors, and uses the corrected undesired signals. Thus, the undesired signal included in the received signal is suppressed, and the received signal with the undesired signal is amplified.
  • the sampling frequency in order to increase the accuracy of the phase detection result, the sampling frequency must be increased.
  • the phase detection error of the amplitude-modulated wave increases. is there. Therefore, there is a possibility that the phase difference of the amplitude-modulated wave in the e-ATC cannot be detected correctly only by applying the technique for suppressing undesired signals as described above, particularly when the sampling frequency is low.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a train control system that can correctly detect the phase difference of an amplitude-modulated wave without increasing the sampling frequency.
  • a train control system controls a train by receiving a ground device that transmits a predetermined train control signal and a train control signal transmitted from the ground device.
  • An on-vehicle device wherein the ground device phase-modulates an amplitude-modulated wave constituting the train control signal at a predetermined time interval and transmits the modulated signal to the on-vehicle device.
  • the delay circuit according to the first aspect, wherein the on-board device delays the amplitude-modulated wave transmitted by phase modulation from the ground device by a predetermined phase, and the phase modulation from the ground device.
  • a multiplication circuit that multiplies the amplitude-modulated wave sent by the delay circuit and the signal delayed by the delay circuit, and obtaining a phase change amount of the amplitude-modulated wave based on a multiplication result of the multiplication circuit Features.
  • the on-board device further includes a filter circuit that removes a modulated wave frequency component from the output waveform of the multiplication circuit and extracts a direct current component, and the filter circuit extracts the direct current component.
  • the phase change amount of the amplitude-modulated wave is obtained based on the direct current component.
  • the on-board device further includes another delay circuit that delays the amplitude-modulated wave transmitted by phase modulation from the ground device by one sample. And a phase change amount of the amplitude-modulated wave is obtained based on a waveform by the delay circuit and a waveform by the other delay circuit.
  • the waveform according to the second or third aspect wherein the on-board device performs a Hilbert transform on the amplitude-modulated wave that is phase-modulated from the ground device and delays the phase. And generating a phase change amount of the amplitude-modulated wave based on the waveform of the original amplitude-modulated wave and the delayed waveform.
  • the ground device phase-modulates the amplitude-modulated wave constituting the train control signal at a predetermined time interval and transmits it to the on-vehicle device. Without increasing the sampling frequency, the phase difference of the amplitude-modulated wave can be accurately detected, and the train control information can be obtained based on the phase difference of the amplitude-modulated wave.
  • the on-board device is sent from the ground device after being phase-modulated, and a delay circuit that delays an amplitude-modulated wave that has been phase-modulated from the ground device by a predetermined phase.
  • a multiplication circuit that multiplies the amplitude-modulated wave and the signal delayed by the delay circuit, and obtains a phase change amount of the amplitude-modulated wave based on a multiplication result of the multiplication circuit.
  • the multiplication circuit multiplies the amplitude modulation wave and the amplitude modulation wave delayed by the delay circuit to obtain a waveform having a DC component corresponding to the phase change amount (phase difference) of the amplitude modulation wave.
  • phase change amount (phase difference) of the amplitude-modulated wave can be determined from the obtained waveform. Therefore, it is possible to accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and to obtain train control information based on the phase difference of the amplitude-modulated wave.
  • the on-board device has a filter circuit that removes a modulated wave frequency component from the output waveform of the multiplication circuit and extracts a DC component, and the filter circuit extracts the DC component.
  • a phase change amount (phase difference) of the amplitude-modulated wave is obtained based on the direct current component. Therefore, it is possible to accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and to obtain train control information based on the phase difference of the amplitude-modulated wave.
  • the on-board device further includes another delay circuit that delays the amplitude-modulated wave transmitted by phase modulation from the ground device by one sample, and the waveform by the delay circuit;
  • the phase change amount of the amplitude-modulated wave is obtained based on the waveform by another delay circuit. Therefore, two types of phase components can be extracted from the waveform by the delay circuit and the waveform by the other delay circuit, and the cos component and sin component of the phase change amount are obtained from these values, and the inverse tan function is obtained. It is possible to obtain the amount of phase change (phase difference) of the amplitude-modulated wave.
  • the on-board device generates a waveform having a phase delayed by Hilbert transform of the amplitude-modulated wave sent from the ground device after phase modulation, and the original amplitude modulation
  • the phase change amount of the amplitude-modulated wave is obtained based on the wave waveform and the delayed waveform.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a train control system according to the present invention.
  • the train control system of the present embodiment includes a ground device 1 provided on the ground side and an on-vehicle device 3 mounted on a train 2. Then, the ground device 1 transmits the train control signal corresponding to the train control information such as the allowable speed information of the train 2 to the right end in the figure of the rail of the track circuit T where the train 2 traveling in the right direction in the figure exists.
  • the on-board device 3 extracts the train control information from the received train control signal and controls the traveling of the train 2 based on the extracted train control information.
  • the track circuit T is formed of rails, and is electrically insulated from the rails forming the front and rear track circuits T ′ and T ′′ with respect to AC signals.
  • the ground device 1 is configured to generate a modulated wave by performing amplitude modulation processing on a basic carrier wave having a predetermined frequency to form a train control signal indicating predetermined train control information. Then, such a train control signal (a train control signal subjected to amplitude modulation processing) is amplified and supplied to a rail forming the track circuit T.
  • a ground device 1 is also provided in each adjacent track circuit T ′, T ′′, but is omitted in FIG.
  • the train control signal transmitted from the ground device 1 to the rail is received by the power receiver 4 provided facing the rail at the front of the train, and the train control signal received by the power receiver 4 is the on-board device 3. Sent to.
  • the on-board device 3 includes various devices such as a receiving unit that receives a signal sent from the power receiver 4, a logic unit, and a monitoring unit (none of which are shown), and the receiving unit includes a phase detection unit.
  • a processing unit is provided.
  • FIG. 2 shows details of the phase detection processing unit. As shown in FIG. 2, in the present embodiment, the phase detection processing unit includes a bandpass filter 5, a multiplier circuit 6, a delay circuit 7, a low-pass filter 8 as a filter circuit, and a phase change amount calculation circuit 9. Each is equipped.
  • the train control signal is an amplitude-modulated wave having periodicity in amplitude, and is composed of a signal part and a non-signal part as shown in FIG.
  • the train control signal is transmitted by shifting the phase of the signal portion of the amplitude-modulated wave and the next signal portion, for example, by 90 °, so that the phase difference between the signal portions (hereinafter referred to as the amplitude-modulated wave) is transmitted.
  • the phase difference or the phase change amount may be sent as information.
  • the ground apparatus 1 phase-modulates the amplitude-modulated wave at regular intervals regardless of the modulation-wave frequency, and transmits the phase-modulated amplitude-modulated wave to the on-board apparatus 3. It is configured.
  • the fixed time for the phase modulation can be arbitrarily set.
  • the band pass filter 5 removes noise outside the frequency band of the amplitude modulation wave of the train control signal.
  • the delay circuit 7 delays the amplitude-modulated wave output from the bandpass filter 5 by a predetermined time (for example, the predetermined time during which the ground device 1 phase-modulates the amplitude-modulated wave). It is configured.
  • the multiplier circuit 6 multiplies the amplitude modulation wave output from the bandpass filter 5 and the amplitude modulation wave output from the delay circuit 7, thereby the phase change amount of the amplitude modulation wave constituting the train control signal. In other words, a sine wave having a DC component corresponding to the phase difference of the amplitude-modulated wave is obtained (see FIG. 5).
  • the low-pass filter 8 is configured to remove a carrier wave and a modulated wave frequency component from the output waveform (multiplied amplitude modulated wave) of the multiplier circuit 6 and extract a DC component (see FIG. 6). Since the extracted direct current component is proportional to the phase change amount (phase difference) of the amplitude modulated wave, the phase change amount calculation circuit 9 calculates the amplitude modulated wave based on the extracted direct current component. The phase difference can be determined, and train control information is obtained from this phase difference. Depending on the timing of phase modulation (the fixed time), all sections may be no-signal parts, but train control information can be obtained without problems by performing the above-described processing.
  • the received train control signal is sent to the on-board device 3.
  • the bandpass filter 5 removes noise outside the frequency band of the train control signal, and sends the train control signal after noise removal to the multiplication circuit 6 and the delay circuit 7.
  • the delay circuit 7 delays the train control signal (amplitude modulated wave) output from the bandpass filter 5 by the predetermined time.
  • the multiplier circuit 6 multiplies the amplitude modulated wave output from the bandpass filter 5 and the amplitude modulated wave output from the delay circuit 7 to thereby generate a direct current corresponding to the phase change amount (phase difference) of the amplitude modulated wave.
  • a waveform having a component (sine wave) is obtained.
  • the low-pass filter 8 removes a carrier wave and a modulated wave frequency component from the waveform output from the multiplication circuit 6 (amplitude modulated wave after multiplication by the multiplication circuit 6), and extracts a DC component. Then, the phase change amount calculation circuit 9 determines the phase difference of the amplitude modulation wave constituting the train control signal based on the extracted DC component, and obtains train control information from this phase difference.
  • the ground device 1 phase-modulates the amplitude-modulated wave at a fixed time interval and transmits it to the on-vehicle device 3 regardless of the modulation wave frequency.
  • the multiplication circuit 6 multiplies the amplitude modulation wave transmitted from the ground device 1 and the amplitude modulation wave delayed by the delay circuit 7.
  • the low pass filter 8 extracts a DC component from the waveform (amplitude modulated wave after multiplication) multiplied by the multiplication circuit 6, and the phase change amount calculation circuit 9 calculates the phase difference of the amplitude modulated wave based on the extracted DC component. Determine.
  • the on-board device 3 can accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and the phase difference of the amplitude-modulated wave can be detected. Based on this, the control information of the train 2 can be obtained.
  • phase change amount (phase difference) of the amplitude-modulated wave another delay circuit (not shown) for delaying the amplitude-modulated wave transmitted by phase modulation from the ground device 1 by one sample.
  • the phase change amount (phase difference) of the amplitude modulation wave may be obtained based on the waveform of the amplitude modulation wave by the delay circuit 7 and the waveform of the amplitude modulation wave by another delay circuit. For example, when the delay amount by the delay circuit 7 is d, the delay amount d ⁇ 1 delayed by one sample by another delay circuit together with the multiplication process by the delay amount d and the processing result of the low-pass filter 8.
  • the multiplication process in FIG. 5 and the processing result of the low-pass filter 8 two types of phase components can be extracted. From these values, the cos component and sin component of the phase change amount are obtained, and the inverse tan function is used. Thus, the phase change amount can be obtained.
  • the phase detection processing unit divides the amplitude-modulated wave into a waveform passing through an FIR (finite impulse response) filter and a delayed waveform by Hilbert transform.
  • the phase change amount may be obtained by an inverse tan function with the waveform passing through the filter as the sin component and the delayed waveform as the cos component. That is, by using the Hilbert transform process, it is possible to generate a signal obtained by delaying the phase of the input signal by ⁇ / 2, thereby obtaining the phase change amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Provided is a train control system capable of correctly detecting a phase difference in an amplitude-modulated wave without increasing sampling frequency. A train control system is provided with: a ground device (1) that transmits a predetermined train control signal; and an on-board device (3) that receives the train control signal transmitted from the ground device (1) and controls a train (2). The ground device (1) phase-modulates an amplitude-modulated wave constituting the train control signal at predetermined time intervals and transmits the modulated wave to the on-board device (3).

Description

列車制御システムTrain control system
 本発明は、列車制御システムに関し、特に、サンプリング周波数を高めることなく、振幅変調波の位相差を正しく検出することを可能とした列車制御システムに関する。 The present invention relates to a train control system, and more particularly to a train control system that can correctly detect the phase difference of an amplitude-modulated wave without increasing the sampling frequency.
 従来から、ATC(Automatic Train Control)に係る列車制御システムは、地上側に設けられる地上装置と、列車側に搭載される車上装置とから構成され、地上装置から列車に向けて所定の列車制御信号を送信し、送信された列車制御信号を車上装置で受信して速度制御等の所定の列車制御を行うように構成されている。 Conventionally, a train control system according to ATC (Automatic Train Control) is composed of a ground device provided on the ground side and an onboard device mounted on the train side, and predetermined train control from the ground device toward the train. A signal is transmitted, the transmitted train control signal is received by the on-board device, and predetermined train control such as speed control is performed.
 そして、近年、アナログATC信号(振幅変調波)に位相変調を加え、従来のATC信号との互換性を保ちながら情報量を増やすようにしたe-ATCと呼ばれるATCシステムが開発されている。このe-ATCでは、振幅変調波の各信号部間の位相差が情報として送られるため、ATC受信部において信号の位相差を復調する際に、信号部と無信号部とを正しく判別する必要がある。 In recent years, an ATC system called e-ATC has been developed in which phase modulation is applied to an analog ATC signal (amplitude modulated wave) to increase the amount of information while maintaining compatibility with a conventional ATC signal. In this e-ATC, since the phase difference between each signal part of the amplitude-modulated wave is sent as information, it is necessary to correctly discriminate between the signal part and the non-signal part when demodulating the signal phase difference in the ATC receiver part. There is.
 特許文献1には、受信信号における非希望信号を抑制する技術が開示されている。この技術は、信号部と無信号部とを判別するものではないが、計測した振幅変動または位相誤差を用いて周波数領域の信号に含まれる非希望信号を補正し、補正した非希望信号を用いて受信信号に含まれる非希望信号を抑制し、非希望信号がされた受信信号を増幅するようにしている。 Patent Document 1 discloses a technique for suppressing undesired signals in a received signal. This technology does not distinguish between signal and no-signal parts, but corrects undesired signals contained in frequency domain signals using measured amplitude fluctuations or phase errors, and uses the corrected undesired signals. Thus, the undesired signal included in the received signal is suppressed, and the received signal with the undesired signal is amplified.
特開2011-205411号公報JP 2011-205411 A
 ところで、前記e-ATCにおいて、位相検出結果の精度を高めるためには、サンプリング周波数を高くしなければならず、サンプリング周波数が低くなると振幅変調波の位相検出の誤差が大きくなってしまうという問題がある。そのため、前述のような非希望信号を抑制する技術を適用するだけでは、特にサンプリング周波数が低い場合に、前記e-ATCにおける振幅変調波の位相差を正しく検出できないおそれがある。 Incidentally, in the e-ATC, in order to increase the accuracy of the phase detection result, the sampling frequency must be increased. When the sampling frequency is decreased, the phase detection error of the amplitude-modulated wave increases. is there. Therefore, there is a possibility that the phase difference of the amplitude-modulated wave in the e-ATC cannot be detected correctly only by applying the technique for suppressing undesired signals as described above, particularly when the sampling frequency is low.
 本発明は前記した点に鑑みてなされたものであり、サンプリング周波数を高めることなく、振幅変調波の位相差を正しく検出することのできる列車制御システムを提供することを目的とするものである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a train control system that can correctly detect the phase difference of an amplitude-modulated wave without increasing the sampling frequency.
 前記目的を達成するため、請求項1の発明に係る列車制御システムは、所定の列車制御信号を送信する地上装置と、前記地上装置から送信された列車制御信号を受信して列車の制御を行う車上装置と、を備え、前記地上装置は、前記列車制御信号を構成する振幅変調波を所定時間間隔で位相変調して前記車上装置に送信することを特徴とする。 In order to achieve the above object, a train control system according to the invention of claim 1 controls a train by receiving a ground device that transmits a predetermined train control signal and a train control signal transmitted from the ground device. An on-vehicle device, wherein the ground device phase-modulates an amplitude-modulated wave constituting the train control signal at a predetermined time interval and transmits the modulated signal to the on-vehicle device.
 請求項2に係る発明は、請求項1において、前記車上装置が、前記地上装置から位相変調して送られた前記振幅変調波を所定位相分遅延させる遅延回路と、前記地上装置から位相変調して送られた前記振幅変調波と前記遅延回路により遅延された信号とを乗算する乗算回路と、を備え、前記乗算回路の乗算結果に基づいて前記振幅変調波の位相変化量を求めることを特徴とする。 According to a second aspect of the present invention, there is provided the delay circuit according to the first aspect, wherein the on-board device delays the amplitude-modulated wave transmitted by phase modulation from the ground device by a predetermined phase, and the phase modulation from the ground device. A multiplication circuit that multiplies the amplitude-modulated wave sent by the delay circuit and the signal delayed by the delay circuit, and obtaining a phase change amount of the amplitude-modulated wave based on a multiplication result of the multiplication circuit Features.
 請求項3に係る発明は、請求項2において、前記車上装置が、前記乗算回路の出力波形から変調波周波数成分を除去して直流成分を抽出するフィルタ回路をさらに備え、前記フィルタ回路により抽出された直流成分に基づいて前記振幅変調波の位相変化量を求めることを特徴とする。 According to a third aspect of the present invention, in the second aspect, the on-board device further includes a filter circuit that removes a modulated wave frequency component from the output waveform of the multiplication circuit and extracts a direct current component, and the filter circuit extracts the direct current component. The phase change amount of the amplitude-modulated wave is obtained based on the direct current component.
 請求項4に係る発明は、請求項2または請求項3において、前記車上装置が、前記地上装置から位相変調して送られた前記振幅変調波を1サンプル分遅延させる他の遅延回路をさらに備え、前記遅延回路による波形と、前記他の遅延回路による波形とに基づいて振幅変調波の位相変化量を求めることを特徴とする。 According to a fourth aspect of the present invention, in the second or third aspect, the on-board device further includes another delay circuit that delays the amplitude-modulated wave transmitted by phase modulation from the ground device by one sample. And a phase change amount of the amplitude-modulated wave is obtained based on a waveform by the delay circuit and a waveform by the other delay circuit.
 請求項5に係る発明は、請求項2または請求項3において、前記車上装置が、前記地上装置から位相変調して送られた前記振幅変調波をヒルベルト変換して位相を遅延させた波形を生成し、元の振幅変調波の波形と前記遅延させた波形とに基づいて振幅変調波の位相変化量を求めることを特徴とする。 According to a fifth aspect of the present invention, there is provided the waveform according to the second or third aspect, wherein the on-board device performs a Hilbert transform on the amplitude-modulated wave that is phase-modulated from the ground device and delays the phase. And generating a phase change amount of the amplitude-modulated wave based on the waveform of the original amplitude-modulated wave and the delayed waveform.
 請求項1に係る発明によれば、地上装置は、列車制御信号を構成する振幅変調波を所定時間間隔で位相変調して車上装置に送信するので、前記車上装置は、振幅変調波のサンプリング周波数を高めることなく、振幅変調波の位相差を正確に検出することができ、この振幅変調波の位相差に基づいて列車の制御情報を得ることができる。 According to the first aspect of the present invention, the ground device phase-modulates the amplitude-modulated wave constituting the train control signal at a predetermined time interval and transmits it to the on-vehicle device. Without increasing the sampling frequency, the phase difference of the amplitude-modulated wave can be accurately detected, and the train control information can be obtained based on the phase difference of the amplitude-modulated wave.
 請求項2に係る発明によれば、前記車上装置は、前記地上装置から位相変調して送られた振幅変調波を所定位相分遅延させる遅延回路と、前記地上装置から位相変調して送られた振幅変調波と前記遅延回路により遅延された信号とを乗算する乗算回路とを有し、前記乗算回路の乗算結果に基づいて前記振幅変調波の位相変化量を求める。前記乗算回路が、前記振幅変調波と前記遅延回路により遅延された振幅変調波とを乗算することにより、前記振幅変調波の位相変化量(位相差)に応じた直流成分を有する波形を得ることができ、この得られた波形から前記振幅変調波の位相変化量(位相差)を判定することができる。このため、振幅変調波のサンプリング周波数を高めることなく、振幅変調波の位相差を正確に検出することができ、この振幅変調波の位相差に基づいて列車の制御情報を得ることができる。 According to the second aspect of the present invention, the on-board device is sent from the ground device after being phase-modulated, and a delay circuit that delays an amplitude-modulated wave that has been phase-modulated from the ground device by a predetermined phase. A multiplication circuit that multiplies the amplitude-modulated wave and the signal delayed by the delay circuit, and obtains a phase change amount of the amplitude-modulated wave based on a multiplication result of the multiplication circuit. The multiplication circuit multiplies the amplitude modulation wave and the amplitude modulation wave delayed by the delay circuit to obtain a waveform having a DC component corresponding to the phase change amount (phase difference) of the amplitude modulation wave. The phase change amount (phase difference) of the amplitude-modulated wave can be determined from the obtained waveform. Therefore, it is possible to accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and to obtain train control information based on the phase difference of the amplitude-modulated wave.
 請求項3に係る発明によれば、車上装置は、前記乗算回路の出力波形から変調波周波数成分を除去して直流成分を抽出するフィルタ回路を有しており、このフィルタ回路によって抽出された直流成分に基づいて前記振幅変調波の位相変化量(位相差)を求める。このため、振幅変調波のサンプリング周波数を高めることなく、振幅変調波の位相差を正確に検出することができ、この振幅変調波の位相差に基づいて列車の制御情報を得ることができる。 According to the invention of claim 3, the on-board device has a filter circuit that removes a modulated wave frequency component from the output waveform of the multiplication circuit and extracts a DC component, and the filter circuit extracts the DC component. A phase change amount (phase difference) of the amplitude-modulated wave is obtained based on the direct current component. Therefore, it is possible to accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and to obtain train control information based on the phase difference of the amplitude-modulated wave.
 請求項4に係る発明によれば、車上装置は、地上装置から位相変調して送られた振幅変調波を1サンプル分遅延させる他の遅延回路をさらに有し、前記遅延回路による波形と、他の遅延回路による波形とに基づいて振幅変調波の位相変化量を求めるようにしている。このため、前記遅延回路による波形と、前記他の遅延回路による波形とから2種類の位相成分を抽出することができ、これらの値から位相変化量のcos成分、sin成分を求め、逆tan関数を用いることにより振幅変調波の位相変化量(位相差)を求めることが可能となる。 According to the invention of claim 4, the on-board device further includes another delay circuit that delays the amplitude-modulated wave transmitted by phase modulation from the ground device by one sample, and the waveform by the delay circuit; The phase change amount of the amplitude-modulated wave is obtained based on the waveform by another delay circuit. Therefore, two types of phase components can be extracted from the waveform by the delay circuit and the waveform by the other delay circuit, and the cos component and sin component of the phase change amount are obtained from these values, and the inverse tan function is obtained. It is possible to obtain the amount of phase change (phase difference) of the amplitude-modulated wave.
 請求項5に係る発明によれば、前記車上装置は、前記地上装置から位相変調して送られた前記振幅変調波をヒルベルト変換して位相を遅延させた波形を生成し、元の振幅変調波の波形と前記遅延させた波形とに基づいて振幅変調波の位相変化量を求める。ヒルベルト変換処理を用いることにより、入力信号の位相をπ/2遅らせた信号を生成することができる。このため、振幅変調波をcos成分、ヒルベルト変換処理により生成された信号をsin成分として、逆tan関数を用いることで振幅変調波の位相変化量(位相差)を求めることが可能となる。 According to the invention of claim 5, the on-board device generates a waveform having a phase delayed by Hilbert transform of the amplitude-modulated wave sent from the ground device after phase modulation, and the original amplitude modulation The phase change amount of the amplitude-modulated wave is obtained based on the wave waveform and the delayed waveform. By using the Hilbert transform process, a signal in which the phase of the input signal is delayed by π / 2 can be generated. For this reason, it is possible to obtain the phase change amount (phase difference) of the amplitude-modulated wave by using the inverse tan function with the amplitude-modulated wave as the cos component and the signal generated by the Hilbert transform process as the sin component.
本発明に係る列車制御システムの実施形態を示す概略構成図である。It is a schematic structure figure showing an embodiment of a train control system concerning the present invention. 本発明に係る列車制御システムの実施形態における車上装置の位相検出処理部を示す概略構成図である。It is a schematic block diagram which shows the phase detection process part of the on-board apparatus in embodiment of the train control system which concerns on this invention. 本発明に係る列車制御システムの実施形態における振幅変調波の例を示す説明図である。It is explanatory drawing which shows the example of the amplitude modulation wave in embodiment of the train control system which concerns on this invention. 本発明に係る列車制御システムの実施形態における振幅変調波と遅延した振幅変調波の例を示す説明図である。It is explanatory drawing which shows the example of the amplitude modulation wave and delayed amplitude modulation wave in embodiment of the train control system which concerns on this invention. 本発明に係る列車制御システムの実施形態における乗算回路により乗算した結果の例を示す説明図である。It is explanatory drawing which shows the example of the result multiplied by the multiplication circuit in embodiment of the train control system which concerns on this invention. 本発明に係る列車制御システムの実施形態におけるローパスフィルタにより処理した結果の例を示す説明図である。It is explanatory drawing which shows the example of the result processed by the low-pass filter in embodiment of the train control system which concerns on this invention.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明に係る列車制御システムの実施形態を示す概略構成図である。図1において、本実施形態の列車制御システムは、地上側に設けられた地上装置1と、列車2に搭載された車上装置3と、を含む。そして、地上装置1は、列車2の許容速度情報などの列車制御情報に対応させた列車制御信号を、図中右方向に進行している列車2が在線する軌道回路Tのレールの図中右端側から送信し、車上装置3は、この送信された列車制御信号を受信すると、受信した列車制御信号から列車制御情報を抽出し、抽出した列車制御情報に基づいて列車2の走行を制御する。軌道回路Tは、レールにより形成されていて、前後の軌道回路T′,T″を形成するレールとは、交流信号に対してそれぞれ電気的絶縁が図られている。 FIG. 1 is a schematic configuration diagram showing an embodiment of a train control system according to the present invention. In FIG. 1, the train control system of the present embodiment includes a ground device 1 provided on the ground side and an on-vehicle device 3 mounted on a train 2. Then, the ground device 1 transmits the train control signal corresponding to the train control information such as the allowable speed information of the train 2 to the right end in the figure of the rail of the track circuit T where the train 2 traveling in the right direction in the figure exists. When the train control signal is received, the on-board device 3 extracts the train control information from the received train control signal and controls the traveling of the train 2 based on the extracted train control information. . The track circuit T is formed of rails, and is electrically insulated from the rails forming the front and rear track circuits T ′ and T ″ with respect to AC signals.
 また、地上装置1は、所定の周波数を有する基本搬送波を振幅変調処理して変調波を生成して、所定の列車制御情報を示す列車制御信号を形成するように構成されている。そして、このような列車制御信号(振幅変調処理された列車制御信号)は、増幅処理されて軌道回路Tを形成するレールに供給される。なお、このような地上装置1は、隣接する軌道回路T′,T″にもそれぞれ設けられているが、図1においては省略されている。 Also, the ground device 1 is configured to generate a modulated wave by performing amplitude modulation processing on a basic carrier wave having a predetermined frequency to form a train control signal indicating predetermined train control information. Then, such a train control signal (a train control signal subjected to amplitude modulation processing) is amplified and supplied to a rail forming the track circuit T. Such a ground device 1 is also provided in each adjacent track circuit T ′, T ″, but is omitted in FIG.
 次に、車上装置3について説明する。 Next, the on-board device 3 will be described.
 地上装置1からレールに送信された列車制御信号は、列車の前部においてレールに対向して設けられた受電器4によって受信され、この受電器4によって受信された列車制御信号は車上装置3に送られる。車上装置3は、受電器4から送られた信号を受信する受信部、論理部やモニタ部(いずれも図示せず)などの各種装置を備えており、また、前記受信部は、位相検出処理部を備えている。図2は、この位相検出処理部の詳細を示している。図2に示すように、本実施形態において、位相検出処理部は、バンドパスフィルタ5と、乗算回路6と、遅延回路7と、フィルタ回路としてのローパスフィルタ8と、位相変化量算出回路9とをそれぞれ備えている。 The train control signal transmitted from the ground device 1 to the rail is received by the power receiver 4 provided facing the rail at the front of the train, and the train control signal received by the power receiver 4 is the on-board device 3. Sent to. The on-board device 3 includes various devices such as a receiving unit that receives a signal sent from the power receiver 4, a logic unit, and a monitoring unit (none of which are shown), and the receiving unit includes a phase detection unit. A processing unit is provided. FIG. 2 shows details of the phase detection processing unit. As shown in FIG. 2, in the present embodiment, the phase detection processing unit includes a bandpass filter 5, a multiplier circuit 6, a delay circuit 7, a low-pass filter 8 as a filter circuit, and a phase change amount calculation circuit 9. Each is equipped.
 ここで、列車制御信号は、振幅に周期性を持たせた振幅変調波であり、図3に示すように、信号部と無信号部とから構成されている。そして、列車制御信号は、振幅変調波の信号部と次の信号部との位相を、例えば90°ずつずらして送信されることにより、この信号部間の位相差(以下、振幅変調波の位相差又は位相変化量という場合もある)を情報として送ることができるようになっている。本実施形態において、地上装置1は、振幅変調波を、その変調波周波数にかかわらず、一定時間ごとに位相変調して、この位相変調された振幅変調波を車上装置3に送信するように構成されている。なお、前記位相変調する前記一定時間は、任意に設定することができるものである。 Here, the train control signal is an amplitude-modulated wave having periodicity in amplitude, and is composed of a signal part and a non-signal part as shown in FIG. The train control signal is transmitted by shifting the phase of the signal portion of the amplitude-modulated wave and the next signal portion, for example, by 90 °, so that the phase difference between the signal portions (hereinafter referred to as the amplitude-modulated wave) is transmitted. The phase difference or the phase change amount may be sent as information. In the present embodiment, the ground apparatus 1 phase-modulates the amplitude-modulated wave at regular intervals regardless of the modulation-wave frequency, and transmits the phase-modulated amplitude-modulated wave to the on-board apparatus 3. It is configured. The fixed time for the phase modulation can be arbitrarily set.
 バンドパスフィルタ5は、列車制御信号の振幅変調波の周波数帯域外のノイズを除去するものである。遅延回路7は、図4に示すように、バンドパスフィルタ5から出力された振幅変調波を、所定時間(例えば、地上装置1が振幅変調波を位相変調する前記一定時間)だけ遅延させるように構成されている。乗算回路6は、バンドパスフィルタ5から出力された振幅変調波と、遅延回路7から出力された振幅変調波とを乗算し、これにより、前記列車制御信号を構成する振幅変調波の位相変化量、すなわち、振幅変調波の位相差に応じた直流成分をもった正弦波を得るように構成されている(図5参照)。 The band pass filter 5 removes noise outside the frequency band of the amplitude modulation wave of the train control signal. As shown in FIG. 4, the delay circuit 7 delays the amplitude-modulated wave output from the bandpass filter 5 by a predetermined time (for example, the predetermined time during which the ground device 1 phase-modulates the amplitude-modulated wave). It is configured. The multiplier circuit 6 multiplies the amplitude modulation wave output from the bandpass filter 5 and the amplitude modulation wave output from the delay circuit 7, thereby the phase change amount of the amplitude modulation wave constituting the train control signal. In other words, a sine wave having a DC component corresponding to the phase difference of the amplitude-modulated wave is obtained (see FIG. 5).
 ローパスフィルタ8は、乗算回路6の出力波形(乗算後の振幅変調波)から、搬送波、変調波周波数成分を除去して直流成分を抽出するように構成されている(図6参照)。そして、抽出された直流成分は、振幅変調波の位相変化量(位相差)に比例するものであるから、位相変化量算出回路9は、この抽出された直流成分に基づいて、振幅変調波の位相差を判定することができ、この位相差から列車制御情報を得るようになっている。なお、位相変調を行うタイミング(前記一定時間)によっては、すべての区間が無信号部となる場合もあり得るが、前述の処理を行うことにより、問題なく列車制御情報を得ることができる。 The low-pass filter 8 is configured to remove a carrier wave and a modulated wave frequency component from the output waveform (multiplied amplitude modulated wave) of the multiplier circuit 6 and extract a DC component (see FIG. 6). Since the extracted direct current component is proportional to the phase change amount (phase difference) of the amplitude modulated wave, the phase change amount calculation circuit 9 calculates the amplitude modulated wave based on the extracted direct current component. The phase difference can be determined, and train control information is obtained from this phase difference. Depending on the timing of phase modulation (the fixed time), all sections may be no-signal parts, but train control information can be obtained without problems by performing the above-described processing.
 次に、本実施形態の動作について説明する。 Next, the operation of this embodiment will be described.
 地上装置1からレールに送信された列車制御信号が受電器4により受信されると、受信された列車制御信号は車上装置3へと送られる。すると、車上装置3において、バンドパスフィルタ5は、前記列車制御信号の周波数帯域外のノイズを除去し、ノイズ除去後の列車制御信号を乗算回路6および遅延回路7に送る。 When the train control signal transmitted from the ground device 1 to the rail is received by the power receiver 4, the received train control signal is sent to the on-board device 3. Then, in the on-board device 3, the bandpass filter 5 removes noise outside the frequency band of the train control signal, and sends the train control signal after noise removal to the multiplication circuit 6 and the delay circuit 7.
 遅延回路7は、バンドパスフィルタ5から出力された列車制御信号(振幅変調波)を、前記所定時間だけ遅延させる。乗算回路6は、バンドパスフィルタ5から出力された振幅変調波と、遅延回路7から出力された振幅変調波とを乗算することにより、振幅変調波の位相変化量(位相差)に応じた直流成分を有する波形(正弦波)を得る。 The delay circuit 7 delays the train control signal (amplitude modulated wave) output from the bandpass filter 5 by the predetermined time. The multiplier circuit 6 multiplies the amplitude modulated wave output from the bandpass filter 5 and the amplitude modulated wave output from the delay circuit 7 to thereby generate a direct current corresponding to the phase change amount (phase difference) of the amplitude modulated wave. A waveform having a component (sine wave) is obtained.
 ローパスフィルタ8は、乗算回路6から出力された波形(乗算回路6による乗算後の振幅変調波)から、搬送波、変調波周波数成分を除去して直流成分を抽出する。そして、位相変化量算出回路9は、この抽出された直流成分に基づいて、前記列車制御信号を構成する振幅変調波の位相差を判定し、この位相差から列車制御情報を得る。 The low-pass filter 8 removes a carrier wave and a modulated wave frequency component from the waveform output from the multiplication circuit 6 (amplitude modulated wave after multiplication by the multiplication circuit 6), and extracts a DC component. Then, the phase change amount calculation circuit 9 determines the phase difference of the amplitude modulation wave constituting the train control signal based on the extracted DC component, and obtains train control information from this phase difference.
 以上述べたように、本実施形態において、地上装置1は、振幅変調波を、その変調波周波数にかかわらず、一定時間ごとのタイミングで位相変調して車上装置3に送信する。車上装置3において、乗算回路6は、地上装置1から送信された振幅変調波と遅延回路7によって遅延された振幅変調波とを乗算する。ローパスフィルタ8は、乗算回路6による乗算後の波形(乗算後の振幅変調波)から直流成分を抽出し、位相変化量算出回路9は、抽出された直流成分に基づき前記振幅変調波の位相差を判定する。このため、本実施形態によれば、車上装置3は、振幅変調波のサンプリング周波数を高めることなく、振幅変調波の位相差を正確に検出することができ、この振幅変調波の位相差に基づいて列車2の制御情報を得ることができる。 As described above, in the present embodiment, the ground device 1 phase-modulates the amplitude-modulated wave at a fixed time interval and transmits it to the on-vehicle device 3 regardless of the modulation wave frequency. In the on-board device 3, the multiplication circuit 6 multiplies the amplitude modulation wave transmitted from the ground device 1 and the amplitude modulation wave delayed by the delay circuit 7. The low pass filter 8 extracts a DC component from the waveform (amplitude modulated wave after multiplication) multiplied by the multiplication circuit 6, and the phase change amount calculation circuit 9 calculates the phase difference of the amplitude modulated wave based on the extracted DC component. Determine. Therefore, according to the present embodiment, the on-board device 3 can accurately detect the phase difference of the amplitude-modulated wave without increasing the sampling frequency of the amplitude-modulated wave, and the phase difference of the amplitude-modulated wave can be detected. Based on this, the control information of the train 2 can be obtained.
 なお、前記振幅変調波の位相変化量(位相差)を求める他の手段として、地上装置1から位相変調して送られた振幅変調波を1サンプル分遅延させる他の遅延回路(図示せず)を設け、遅延回路7による振幅変調波の波形と、他の遅延回路による振幅変調波の波形とに基づいて振幅変調波の位相変化量(位相差)を求めるようにしてもよい。例えば、遅延回路7による遅延量をdとした場合に、遅延量dでの乗算処理及びそのローパスフィルタ8の処理結果と合わせて、他の遅延回路によって1サンプル分遅延された遅延量d-1での乗算処理及びそのローパスフィルタ8の処理結果を用いることで、2種類の位相成分を抽出することができ、これらの値から位相変化量のcos成分、sin成分を求め、逆tan関数を用いることによりで位相変化量を求めることが可能となる。 As another means for obtaining the phase change amount (phase difference) of the amplitude-modulated wave, another delay circuit (not shown) for delaying the amplitude-modulated wave transmitted by phase modulation from the ground device 1 by one sample. The phase change amount (phase difference) of the amplitude modulation wave may be obtained based on the waveform of the amplitude modulation wave by the delay circuit 7 and the waveform of the amplitude modulation wave by another delay circuit. For example, when the delay amount by the delay circuit 7 is d, the delay amount d−1 delayed by one sample by another delay circuit together with the multiplication process by the delay amount d and the processing result of the low-pass filter 8. By using the multiplication process in FIG. 5 and the processing result of the low-pass filter 8, two types of phase components can be extracted. From these values, the cos component and sin component of the phase change amount are obtained, and the inverse tan function is used. Thus, the phase change amount can be obtained.
 また、位相変化量を求めるさらに他の手段として、例えば、前記位相検出処理部が、ヒルベルト変換によって、振幅変調波をFIR(有限インパルス応答)フィルタを通る波形と、遅延させる波形とに分け、FIRフィルタを通過した波形をsin成分、遅延させた波形をcos成分として逆tan関数により位相変化量を求めるようにしてもよい。すなわち、ヒルベルト変換処理を用いることにより、入力信号の位相をπ/2遅らせた信号を生成することができ、これにより、位相変化量を求めることが可能となる。 As still another means for obtaining the phase change amount, for example, the phase detection processing unit divides the amplitude-modulated wave into a waveform passing through an FIR (finite impulse response) filter and a delayed waveform by Hilbert transform. The phase change amount may be obtained by an inverse tan function with the waveform passing through the filter as the sin component and the delayed waveform as the cos component. That is, by using the Hilbert transform process, it is possible to generate a signal obtained by delaying the phase of the input signal by π / 2, thereby obtaining the phase change amount.
 なお、本発明は前記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能である。 The present invention is not limited to the above-described embodiment, and various modifications can be made based on the spirit of the present invention.
 1 地上装置
 2 列車
 3 車上装置
 4 受電器
 5 バンドパスフィルタ
 6 乗算回路
 7 遅延回路
 8 ローパスフィルタ
 9 位相変化量算出回路
 
DESCRIPTION OF SYMBOLS 1 Ground apparatus 2 Train 3 On-board apparatus 4 Power receiver 5 Band pass filter 6 Multiplication circuit 7 Delay circuit 8 Low pass filter 9 Phase variation calculation circuit

Claims (5)

  1.  所定の列車制御信号を送信する地上装置と、
     前記地上装置から送信された列車制御信号を受信して列車の制御を行う車上装置と、を備え、
     前記地上装置は、前記列車制御信号を構成する振幅変調波を所定時間間隔で位相変調して前記車上装置に送信することを特徴とする列車制御システム。
    A ground device for transmitting a predetermined train control signal;
    An on-board device that receives the train control signal transmitted from the ground device and controls the train, and
    The above-mentioned ground device phase-modulates an amplitude modulation wave which constitutes the above-mentioned train control signal at predetermined time intervals, and transmits it to the on-board device.
  2.  前記車上装置は、前記地上装置から位相変調して送られた前記振幅変調波を所定位相分遅延させる遅延回路と、前記地上装置から位相変調して送られた前記振幅変調波と前記遅延回路により遅延された信号とを乗算する乗算回路と、を備え、
     前記乗算回路の乗算結果に基づいて前記振幅変調波の位相変化量を求めることを特徴とする請求項1に記載の列車制御システム。
    The on-board device includes a delay circuit that delays the amplitude-modulated wave that is phase-modulated and transmitted from the ground device by a predetermined phase, and the amplitude-modulated wave and the delay circuit that are phase-modulated and transmitted from the ground device. A multiplication circuit that multiplies the signal delayed by
    The train control system according to claim 1, wherein a phase change amount of the amplitude modulated wave is obtained based on a multiplication result of the multiplication circuit.
  3.  前記車上装置は、前記乗算回路の出力波形から変調波周波数成分を除去して直流成分を抽出するフィルタ回路をさらに備え、前記フィルタ回路により抽出された直流成分に基づいて前記振幅変調波の位相変化量を求めることを特徴とする請求項2に記載の列車制御システム。 The on-board device further includes a filter circuit that extracts a DC component by removing a modulation wave frequency component from the output waveform of the multiplication circuit, and the phase of the amplitude modulation wave is based on the DC component extracted by the filter circuit. The train control system according to claim 2, wherein a change amount is obtained.
  4.  前記車上装置は、前記地上装置から位相変調して送られた前記振幅変調波を1サンプル分遅延させる他の遅延回路をさらに備え、前記遅延回路による波形と、前記他の遅延回路による波形とに基づいて前記振幅変調波の位相変化量を求めることを特徴とする請求項2または請求項3に記載の列車制御システム。 The on-board device further includes another delay circuit that delays the amplitude-modulated wave transmitted by phase modulation from the ground device by one sample, and includes a waveform by the delay circuit, a waveform by the other delay circuit, 4. The train control system according to claim 2, wherein a phase change amount of the amplitude-modulated wave is obtained based on the equation (4).
  5.  前記車上装置は、前記地上装置から位相変調して送られた前記振幅変調波をヒルベルト変換して位相を遅延させた波形を生成し、元の振幅変調波の波形と前記遅延させた波形とに基づいて前記振幅変調波の位相変化量を求めることを特徴とする請求項2または請求項3に記載の列車制御システム。 The on-board device generates a waveform having a phase delayed by Hilbert transform of the amplitude-modulated wave transmitted by phase-modulating from the ground device, and the waveform of the original amplitude-modulated wave and the delayed waveform, 4. The train control system according to claim 2, wherein a phase change amount of the amplitude-modulated wave is obtained based on the equation (4).
PCT/JP2014/071100 2013-08-09 2014-08-08 Train control system WO2015020214A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020167006077A KR102039565B1 (en) 2013-08-09 2014-08-08 Train control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167162 2013-08-09
JP2013167162A JP6157984B2 (en) 2013-08-09 2013-08-09 Train control system

Publications (1)

Publication Number Publication Date
WO2015020214A1 true WO2015020214A1 (en) 2015-02-12

Family

ID=52461538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071100 WO2015020214A1 (en) 2013-08-09 2014-08-08 Train control system

Country Status (3)

Country Link
JP (1) JP6157984B2 (en)
KR (1) KR102039565B1 (en)
WO (1) WO2015020214A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208321A (en) * 2022-07-12 2022-10-18 固安信通信号技术股份有限公司 Phase modulation method, demodulation algorithm and application of track circuit characteristic signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877914B2 (en) * 2016-08-08 2021-05-26 日本信号株式会社 Train control
JP6967820B2 (en) * 2017-01-31 2021-11-17 日本信号株式会社 Control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291908A (en) * 1998-04-10 1999-10-26 Nippon Signal Co Ltd:The Communication device for train control
JPH11298373A (en) * 1998-04-10 1999-10-29 Nippon Signal Co Ltd:The Information transmitter for train control
JP2007223447A (en) * 2006-02-23 2007-09-06 Kyosan Electric Mfg Co Ltd Train selecting device
JP2008013043A (en) * 2006-07-06 2008-01-24 Nippon Signal Co Ltd:The Train controller
JP2013102618A (en) * 2011-11-08 2013-05-23 Nippon Signal Co Ltd:The Train control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3246947B2 (en) * 1992-04-23 2002-01-15 日本信号株式会社 Communication device for train control
JP2001114105A (en) * 1999-10-18 2001-04-24 Nippon Signal Co Ltd:The Automatic train control and on-ground train detector
US7770847B1 (en) * 2005-08-17 2010-08-10 Qs Industries, Inc. Signaling and remote control train operation
JP5360662B2 (en) 2010-03-25 2013-12-04 株式会社国際電気通信基礎技術研究所 Wireless device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11291908A (en) * 1998-04-10 1999-10-26 Nippon Signal Co Ltd:The Communication device for train control
JPH11298373A (en) * 1998-04-10 1999-10-29 Nippon Signal Co Ltd:The Information transmitter for train control
JP2007223447A (en) * 2006-02-23 2007-09-06 Kyosan Electric Mfg Co Ltd Train selecting device
JP2008013043A (en) * 2006-07-06 2008-01-24 Nippon Signal Co Ltd:The Train controller
JP2013102618A (en) * 2011-11-08 2013-05-23 Nippon Signal Co Ltd:The Train control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208321A (en) * 2022-07-12 2022-10-18 固安信通信号技术股份有限公司 Phase modulation method, demodulation algorithm and application of track circuit characteristic signal

Also Published As

Publication number Publication date
JP6157984B2 (en) 2017-07-05
KR102039565B1 (en) 2019-11-01
JP2015036249A (en) 2015-02-23
KR20160042956A (en) 2016-04-20

Similar Documents

Publication Publication Date Title
EP2681854B1 (en) Quadrature time skew detection for coherent optical signals
JP6509190B2 (en) Transposition modulation system, method and apparatus
JP6206487B2 (en) Signal processing apparatus and signal processing method
WO2015020214A1 (en) Train control system
US10027517B2 (en) Measuring device and method
US10284399B2 (en) Transpositional modulation systems, methods and devices
EP2317672A1 (en) Adjusting device of delay time and method thereof
JP5823825B2 (en) Train control device
WO2019162406A3 (en) Receiver and method for receiving a combination signal using a separate in-phase- and quadrature component
JP6001254B2 (en) Train control device
JP2014057498A (en) Train control apparatus
JP2012147276A (en) Receiving apparatus and impulse noise removal method
JP6110185B2 (en) Train control device
JP6429229B2 (en) Train control device
RU2485671C1 (en) METHOD FOR COHERENT DETECTION OF SIGNALS WITH ABSOLUTE PHASE-SHIFT KEYING BY 180º AND DEVICE FOR ITS REALISATION
JP2007161229A (en) Ats-s type on-vehicle device and ats pick up coil
JP6448233B2 (en) Sensor
JP2020196376A (en) Electric power source synchronous transceiver
JP6298729B2 (en) Train control device
JP6610009B2 (en) Frequency measurement system, frequency measurement method, and frequency measurement program
JP2011246088A (en) Digital-analog signal track circuit device
WO2015020213A1 (en) Train control device
FR2967541B1 (en) METHOD AND DEVICE FOR DEMODULATING CARRIER RESIDUAL SIGNALS
JP6157893B2 (en) Train control device
JP2013207995A (en) Train control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167006077

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14833719

Country of ref document: EP

Kind code of ref document: A1