JP2013102618A - Train control device - Google Patents

Train control device Download PDF

Info

Publication number
JP2013102618A
JP2013102618A JP2011244989A JP2011244989A JP2013102618A JP 2013102618 A JP2013102618 A JP 2013102618A JP 2011244989 A JP2011244989 A JP 2011244989A JP 2011244989 A JP2011244989 A JP 2011244989A JP 2013102618 A JP2013102618 A JP 2013102618A
Authority
JP
Japan
Prior art keywords
phase
signal
train control
information
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011244989A
Other languages
Japanese (ja)
Other versions
JP6001254B2 (en
Inventor
Atsushi Sugawara
淳 菅原
Takuya Wakutsu
拓也 和久津
Takafumi Nakano
貴文 中野
Akio Iwagami
顕夫 岩上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2011244989A priority Critical patent/JP6001254B2/en
Publication of JP2013102618A publication Critical patent/JP2013102618A/en
Application granted granted Critical
Publication of JP6001254B2 publication Critical patent/JP6001254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate detection of a phase change corresponding to train control information of an ATC signal transmitted from the ground side to an on train side.SOLUTION: A phase detection means that detects a phase of a carrier wave of an amplitude modulated signal transmitted from ground equipment and outputs phase information is composed by including: an A/D converter 31 that converts amplitude modulated signals into digital signals; a multiplier group 32 comprising N pieces of multipliers that multiply a digital amplitude modulated signal from an A/D converter 31 by internal carrier waves that are displaced the phase by 2π/N by same amplitude and frequency of the basic carrier wave; a low-pass filter group 33 comprising N pieces of low-pass filters that extracts DC components of output values of each multiplier; and a phase difference detection means 34 that detects the phase of the internal carrier wave where the low pass filter output value of intermittent each signal part of the amplitude modulated signals becomes the maximum, detects the relative phase difference of internal carrier waves between signal parts mutually adjoined, outputs the phase information based on the relative phase difference.

Description

本発明は、列車制御情報に関し、特に、ATC(Automatic Train Control)に好適な列車制御装置に関する。   The present invention relates to train control information, and more particularly, to a train control apparatus suitable for ATC (Automatic Train Control).

従来、この種の列車制御装置は、地上側に設けられる地上装置と、列車側に搭載される車上装置とから構成され、地上装置から列車に向けて所定の列車制御信号を送信し、送信された列車制御信号を車上装置で受信して速度制御等の所定の列車制御を行うように構成されている。   Conventionally, this type of train control device is composed of a ground device provided on the ground side and an on-board device mounted on the train side, and transmits and transmits a predetermined train control signal from the ground device to the train. The train control signal received is received by the on-board device, and predetermined train control such as speed control is performed.

この種の列車制御装置として、特許文献1に記載されているように、地上側から車上側へ送信する列車制御信号の搬送波の位相を列車制御情報と対応させ、地上側から搬送波の位相を所定の位相に変化させた列車制御信号を車上側に送信することにより、その位相に対応する列車制御情報を車上側に伝達するよう構成したものがある。   As described in Patent Document 1, as this type of train control device, the phase of the carrier wave of the train control signal transmitted from the ground side to the vehicle upper side is made to correspond to the train control information, and the phase of the carrier wave is predetermined from the ground side. There is one configured to transmit train control information corresponding to the phase to the vehicle upper side by transmitting the train control signal changed to the vehicle phase to the vehicle upper side.

特許文献1に記載された列車制御装置は、所定周波数の搬送波を所定の列車制御情報に対応させた所定の位相で位相変調処理し、その位相変調信号を振幅変調処理して地上装置から車上装置へ送信する。車上装置は、受信した振幅変調信号における搬送波の位相を、PLL回路を用いて検出し、検出した位相から列車制御情報を抽出し、抽出した列車制御情報に基づいて列車を制御する。   The train control device described in Patent Document 1 performs phase modulation processing on a carrier wave having a predetermined frequency with a predetermined phase corresponding to predetermined train control information, and performs amplitude modulation processing on the phase modulation signal from the ground device to the vehicle. Send to device. The on-board device detects the phase of the carrier wave in the received amplitude modulation signal using a PLL circuit, extracts train control information from the detected phase, and controls the train based on the extracted train control information.

特開2008−13043号公報JP 2008-13043 A

しかしながら、特許文献1に記載された従来の列車制御装置のように、振幅変調信号の搬送波の位相検出にPLL回路を用いる場合、入力信号に対して同期をとる必要がある。また、振幅変調信号の搬送波の位相変化を検出するためには、同期の捕捉、保持が必要である。更に、振幅変調信号のように搬送波のある部分が断続する信号の場合、同期の保持が難しい。このため、振幅変調信号の搬送波の位相を変化させて所定の列車制御情報を送信する機能を備えた列車制御装置において、搬送波の位相検出処理をより容易に行えるものが求められている。   However, when a PLL circuit is used for phase detection of a carrier wave of an amplitude modulation signal as in the conventional train control device described in Patent Document 1, it is necessary to synchronize with an input signal. Further, in order to detect a phase change of the carrier wave of the amplitude modulation signal, it is necessary to capture and hold synchronization. Furthermore, in the case of a signal in which a part of a carrier wave is intermittent, such as an amplitude modulation signal, it is difficult to maintain synchronization. For this reason, a train control apparatus having a function of transmitting predetermined train control information by changing the phase of the carrier wave of the amplitude modulation signal is required to be able to perform the carrier wave phase detection process more easily.

本発明は上記問題点に着目してなされたもので、位相を一定値ずつずらした内部搬送波を受信信号に乗算し、その乗算結果に基づいて受信信号の位相検出処理を行うことにより、位相検出処理を容易化した列車制御装置を提供することを目的とする。   The present invention has been made paying attention to the above-mentioned problems. The received signal is multiplied by an internal carrier wave whose phase is shifted by a constant value, and the phase detection process of the received signal is performed based on the multiplication result. An object of the present invention is to provide a train control device that facilitates processing.

このため、本発明は、基本搬送波の位相を列車制御情報に対応させて変化させた信号を送信する装置と、該装置から送信された前記信号を受信して当該信号の位相を検出し、検出した位相情報から前記列車制御情報を抽出して列車を制御する装置と、を備えた列車制御装置において、前記受信した信号に前記基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした内部搬送波をそれぞれ乗算し、当該乗算結果において前記受信した信号と略一致する内部搬送波の位相情報に基づき、前記受信した信号の位相情報を出力する構成としたことを特徴とする。   For this reason, the present invention detects a phase of an apparatus that transmits a signal in which the phase of a basic carrier wave is changed in accordance with train control information, receives the signal transmitted from the apparatus, and detects the phase of the signal. An apparatus for extracting the train control information from the phase information and controlling the train, wherein the received signal is an internal carrier whose phase is shifted by a constant value at the same amplitude and frequency as the basic carrier. And the phase information of the received signal is output based on the phase information of the internal carrier that substantially matches the received signal in the multiplication result.

かかる構成では、送信側装置では、基本搬送波を位相変調して列車制御情報に対応させた位相に変化させて送信する。受信側装置は、送信側装置から送信された信号を受信し、基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした内部搬送波を受信信号にそれぞれ乗算し、これらの乗算結果において受信信号と略一致する内部搬送波の位相情報に基づき受信信号の列車制御情報に対応する位相情報を得て、列車制御情報を抽出して列車の走行を制御する。   In such a configuration, the transmission side device performs phase modulation on the basic carrier wave and changes the phase to correspond to the train control information for transmission. The receiving side device receives the signal transmitted from the transmitting side device, multiplies the received signal by an internal carrier wave having the same amplitude and frequency as the basic carrier wave, and shifts the phase by a certain value, respectively. Based on the phase information of the substantially matching internal carrier wave, phase information corresponding to the train control information of the received signal is obtained, and the train control information is extracted to control the traveling of the train.

本発明の列車制御装置によれば、基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした内部搬送波を受信信号に乗算し、その乗算結果から受信信号の位相情報を検出するよう構成したので、従来のPLL回路を用いる場合に比べて入力信号に対する同期の捕捉や保持処理が不要となり、搬送波の位相変化検出処理が容易に行える。   According to the train control device of the present invention, the reception signal is multiplied by an internal carrier wave whose phase is shifted by a constant value at the same amplitude and frequency as the basic carrier wave, and the phase information of the reception signal is detected from the multiplication result. Compared to the case where a conventional PLL circuit is used, it is not necessary to acquire and hold synchronization with respect to the input signal, and the phase change detection process of the carrier wave can be easily performed.

本発明に係る列車制御装置の一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of a train control device concerning the present invention. 搬送波に副情報を付加した振幅変調波の波形例を示す図である。It is a figure which shows the example of a waveform of the amplitude modulation wave which added subinformation to the carrier wave. 同上実施形態の位相検出回路の構成を示すブロック図である。It is a block diagram which shows the structure of the phase detection circuit of embodiment same as the above. 乗算器群およびローパスフィルタ群の構成図である。It is a block diagram of a multiplier group and a low-pass filter group.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の列車制御装置の一実施形態の概略構成図を示す。
図1において、本実施形態の列車制御装置は、地上側に設けられている地上装置aと、列車イに搭載した車上装置bと、を備えて構成されている。そして、地上装置aから、先行列車との間隔及び進路の条件に応じた列車制御情報(例えば列車の許容速度情報等)に対応させたATC信号を、図中右方向に進行している列車イが在線する軌道回路Tのレールの図中右端側から送信し、このATC信号を車上装置bが受信すると、ATC信号から前記列車制御情報を抽出し、抽出した列車制御情報に基づいて列車イの走行を制御するよう構成されている。軌道回路Tは、レールにより形成されていて、前後の軌道回路T′,T″を形成するレールとは、交流信号に対してそれぞれ電気的絶縁が図られている。尚、軌道回路Tのレールに送信する列車検知用の信号電流周波数と前後の軌道回路T′,T″のレールに送信する列車検知用の信号電流周波数を異ならせることで、軌道回路Tと前後の軌道回路T′,T″との電気的絶縁を不要とした無絶縁軌道回路であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1: shows the schematic block diagram of one Embodiment of the train control apparatus of this invention.
In FIG. 1, the train control device of this embodiment includes a ground device a provided on the ground side and an on-board device b mounted on the train A. Then, an ATC signal corresponding to the train control information (for example, allowable speed information of the train) corresponding to the distance from the preceding train and the condition of the route from the ground device a is displayed in the right direction in the figure. Is transmitted from the right end side of the rail of the track circuit T in the figure, and when the onboard device b receives this ATC signal, the train control information is extracted from the ATC signal, and the train control information is extracted based on the extracted train control information. It is comprised so that driving | running | working may be controlled. The track circuit T is formed by rails, and is electrically insulated from the rails forming the front and rear track circuits T ′ and T ″ with respect to the AC signal. By differentiating the signal current frequency for train detection transmitted to the rail and the signal current frequency for train detection transmitted to the rails of the front and rear track circuits T ′, T ″, the track circuit T and the front and rear track circuits T ′, T It may be an uninsulated track circuit that does not require electrical insulation.

前記地上装置aは、所定の周波数を有する基本搬送波f0を発生させる搬送波発生回路1を有している。搬送波発生回路1から発生された基本搬送波f0は、後述する移相回路4を介して変調回路2に入力される。前記変調回路2は、主情報選択回路3から入力された列車制御情報に対応させた変調波f1又は変調波f2で基本搬送波f0を振幅変調処理するように構成されている。変調波f1に対応した第1主情報F1と変調波f2に対応した第2主情報F2は、例えば、列車イに対する許容速度情報を示すATC信号である。例えば、第1主情報F1を、列車イに対して許容速度45km/hを示すATC信号とし、第2主情報F2を列車イに対して許容速度15km/hを示すATC信号とするようにする。尚、ここでは、説明を簡単にするために、地上から車上に送信される主情報を2個としているが、主情報数は2個に限らないことは言うまでもない。   The ground device a includes a carrier wave generation circuit 1 that generates a basic carrier wave f0 having a predetermined frequency. The basic carrier wave f0 generated from the carrier wave generation circuit 1 is input to the modulation circuit 2 via the phase shift circuit 4 described later. The modulation circuit 2 is configured to amplitude-modulate the basic carrier wave f0 with the modulated wave f1 or the modulated wave f2 corresponding to the train control information input from the main information selection circuit 3. The first main information F1 corresponding to the modulated wave f1 and the second main information F2 corresponding to the modulated wave f2 are, for example, ATC signals indicating allowable speed information for the train A. For example, the first main information F1 is an ATC signal indicating an allowable speed of 45 km / h for the train A, and the second main information F2 is an ATC signal indicating an allowable speed of 15 km / h for the train A. . Here, in order to simplify the explanation, the main information transmitted from the ground to the vehicle is two, but it goes without saying that the number of main information is not limited to two.

前記移相回路4は、主情報選択回路3と同期をとりながら第1主情報F1及び第2主情報F2と異なる列車制御情報である副情報を選択する副情報選択回路5で選択された副情報に対応させた位相で搬送波発生回路1からの基本搬送波f0を位相変調処理するように構成されている。副情報として、本実施形態では、例えば、搬送波f0の位相を+π/2(+90°)進めた第1副情報(+π/2)と、搬送波f0の位相を無変形とした第2副情報(0)と、搬送波f0の位相を−π/2(−90°)進めた第3副情報(−π/2)の3つの副情報を例示している。これら第1副情報(+π/2)、第2副情報(0)及び第3副情報(−π/2)は、例えば、列車イに対する信号現示情報を示すATC信号である。例えば、第1副情報(+π/2)は列車イの複数個先の軌道回路(図1において右側の図外の軌道回路)が進行現示であることを示すATC信号とし、第2副情報(0)はその軌道回路が注意現示であることを示すATC信号とし、第3副情報(−π/2)はその軌道回路が停止現示であることを示すATC信号とするようにする。ここで、移相回路4が、所定の周波数からなる基本搬送波を所定の列車制御情報に対応させた所定の位相に変化させる位相変調手段に相当する。   The phase shift circuit 4 is synchronized with the main information selection circuit 3 and the sub information selected by the sub information selection circuit 5 that selects sub information that is train control information different from the first main information F1 and the second main information F2. The basic carrier wave f0 from the carrier wave generation circuit 1 is phase-modulated with a phase corresponding to the information. As the sub information, in the present embodiment, for example, the first sub information (+ π / 2) in which the phase of the carrier wave f0 is advanced by + π / 2 (+ 90 °) and the second sub information in which the phase of the carrier wave f0 is unchanged ( 0) and the third sub information (−π / 2) in which the phase of the carrier wave f0 is advanced by −π / 2 (−90 °). The first sub information (+ π / 2), the second sub information (0), and the third sub information (−π / 2) are, for example, ATC signals indicating signal display information for train A. For example, the first sub information (+ π / 2) is an ATC signal indicating that a plurality of track circuits ahead of train A (track circuit on the right side in FIG. 1) is in progress, and the second sub information (0) is an ATC signal indicating that the track circuit is a warning indication, and the third sub information (−π / 2) is an ATC signal indicating that the track circuit is a stop indication. . Here, the phase shift circuit 4 corresponds to a phase modulation means for changing a basic carrier wave having a predetermined frequency to a predetermined phase corresponding to predetermined train control information.

図2は、地上装置aから送信される主情報と副情報を付加したATC信号の波形例である。図2の波形は、第1主情報F1(変調波f1)と第1副情報(+π/2)を付加したATC信号の例である。即ち、基本搬送波f0に対して断続する信号部分毎に位相を+π/2(+90°)進めた位相変調信号を変調波f1で振幅変調したATC信号である。尚、図2において、A、B、Cは、ATC信号(振幅変調信号)の断続する信号部分を示す。   FIG. 2 is a waveform example of an ATC signal to which main information and sub information transmitted from the ground device a are added. The waveform in FIG. 2 is an example of an ATC signal to which first main information F1 (modulated wave f1) and first sub information (+ π / 2) are added. That is, it is an ATC signal obtained by amplitude-modulating a phase-modulated signal whose phase is advanced by + π / 2 (+ 90 °) for each intermittent signal portion with respect to the basic carrier wave f0 with the modulation wave f1. In FIG. 2, A, B, and C indicate signal portions where the ATC signal (amplitude modulation signal) is intermittent.

変調回路2で振幅変調処理されたATC信号は、パワーアンプ6で増幅処理され、接続トランス7を介して軌道回路Tを形成するレールに供給される。尚、このような地上装置aは、隣接する軌道回路T′,T″にもそれぞれ設けられているが、ここでは省略する。   The ATC signal subjected to the amplitude modulation processing by the modulation circuit 2 is amplified by the power amplifier 6 and supplied to the rail forming the track circuit T via the connection transformer 7. Such a ground device a is also provided in the adjacent track circuits T ′ and T ″, but is omitted here.

次に、車上装置bについて説明する。
車上装置bは、地上装置aからレールに送信されたATC信号を、列車イの前部でレールに対向して設けられている受電器10を介して受信し、受信したATC信号を増幅回路11で増幅処理できるように構成されている。
Next, the on-board device b will be described.
The on-board device b receives the ATC signal transmitted from the ground device a to the rail via the power receiver 10 provided in front of the train A and facing the rail, and amplifies the received ATC signal. 11 can be amplified.

車上装置aは、主情報受信部12と副情報受信部13とを備える。主情報受信部12は、受信した信号中に第1主情報F1に相当する信号がフィルタ回路14を介して受信できたときに、第1主情報受信リレー15を動作させ、受信した信号中に第2主情報F2に相当する信号がフィルタ回路16を介して受信できたときに、第2主情報受信リレー17を動作させることができるように構成されている。   The on-board device a includes a main information receiving unit 12 and a sub information receiving unit 13. The main information receiving unit 12 operates the first main information receiving relay 15 when a signal corresponding to the first main information F1 can be received through the filter circuit 14 in the received signal, When a signal corresponding to the second main information F2 can be received via the filter circuit 16, the second main information reception relay 17 can be operated.

前記副情報受信部13は、後述する本発明の特徴である位相検出手段である位相検出回路30から出力される位相情報に基づいて列車制御情報(副情報)を抽出し、抽出した列車制御情報(副情報)に対応する副情報受信リレーを動作させることができるように構成されている。具体的には、位相検出回路30から受信した位相情報が+π/2(第1副情報)のときには第1副情報受信リレー18を動作させ、位相検出回路30から受信した位相情報が0(第2副情報)のときには第2副情報受信リレー19を動作させ、位相検出回路30から受信した位相情報が−π/2(第3副情報)のときには第3副情報受信リレー20を動作させることができるように構成されている。ここで、前記主情報受信部12、副情報受信部13、第1及び第2主情報受信リレー15、17、第1〜第3副情報受信リレー18、19、20が列車制御手段を構成する。   The sub-information receiving unit 13 extracts train control information (sub-information) based on phase information output from the phase detection circuit 30 that is a phase detection unit that is a feature of the present invention described later, and extracts the train control information. The sub information reception relay corresponding to (sub information) can be operated. Specifically, when the phase information received from the phase detection circuit 30 is + π / 2 (first sub information), the first sub information reception relay 18 is operated, and the phase information received from the phase detection circuit 30 is 0 (first sub information). 2 sub-information), the second sub-information receiving relay 19 is operated. When the phase information received from the phase detection circuit 30 is −π / 2 (third sub-information), the third sub-information receiving relay 20 is operated. It is configured to be able to. Here, the main information receiving unit 12, the sub information receiving unit 13, the first and second main information receiving relays 15 and 17, and the first to third sub information receiving relays 18, 19, and 20 constitute a train control means. .

次に、本発明の特徴である上述の位相検出回路30について説明する。
図3は、本実施形態の位相検出回路30の構成を示すブロック図である。
図3において、本実施形態の位相検出回路30は、A/D変換器31と、乗算器群32と、ローパスフィルタ群33と、位相差検出回路34と、を備えて構成されている。
Next, the phase detection circuit 30 that is a feature of the present invention will be described.
FIG. 3 is a block diagram showing a configuration of the phase detection circuit 30 of the present embodiment.
In FIG. 3, the phase detection circuit 30 of this embodiment includes an A / D converter 31, a multiplier group 32, a low-pass filter group 33, and a phase difference detection circuit 34.

前記A/D変換器31は、増幅回路11で増幅された振幅変調信号であるアナログのATC信号を所定間隔でサンプリングしてディジタル信号に変換し、この変換したディジタルATC信号を、乗算器群33へ出力する。   The A / D converter 31 samples an analog ATC signal, which is an amplitude modulation signal amplified by the amplifier circuit 11, at a predetermined interval and converts it into a digital signal. The converted digital ATC signal is used as a multiplier group 33. Output to.

前記乗算器群33は、図4に示すように、N個(N:自然数)の乗算器32−1〜32−Nからなり、乗算器32−1〜32−Nは、A/D変換器31から入力するディジタルATC信号に、基本搬送波f0と同じ振幅及び周波数で位相を一定値、例えば2π/NずつずらしたN個の内部搬送波sin(ωt+φi)(φi=2πi/N:i=0〜(N−1))とを乗算する。即ち、ディジタルATC信号をsin(ωt+θ)とすると、各乗算器32−1〜32−Nで、sin(ωt+θ)・sin(ωt+φi)(i=0〜(N−1))がそれぞれ演算される。ここで、θが地上装置aから送信された副情報に対応させた位相情報を示し、φiが内部搬送波の位相のずれ量を示す。例えば、乗算器を36個とした場合(N=36)、内部搬送波の位相のずれ量φi=πi/18となり、0から10°(π/18)毎に35π/18まで、36個の内部搬送波を各乗算器32−1〜32−NでディジタルATC信号sin(ωt+θ)に乗算することになる。尚、前記内部搬送波sin(ωt+φi)は、例えばリングオシレータ等を用いて発生させる。そして、各乗算器32−1〜32−Nからは、下記の(1)式の出力が発生する。
sin(ωt+θ)・sin(ωt+φi)
=(1/2)・{cos(θ−φi)−cos(2ωt+(θ+φi))} ・・・(1)
As shown in FIG. 4, the multiplier group 33 is composed of N (N: natural number) multipliers 32-1 to 32-N, and the multipliers 32-1 to 32-N are A / D converters. The digital ATC signal input from 31 has N internal carriers sin (ωt + φi) (φi = 2πi / N: i = 0 to 0) with the phase and the same amplitude and frequency as the basic carrier f0 shifted by a constant value, for example, 2π / N. (N-1)). That is, assuming that the digital ATC signal is sin (ωt + θ), sin (ωt + θ) · sin (ωt + φi) (i = 0 to (N−1)) is respectively calculated by the multipliers 32-1 to 32-N. . Here, θ indicates the phase information corresponding to the sub information transmitted from the ground device a, and φi indicates the phase shift amount of the internal carrier wave. For example, when there are 36 multipliers (N = 36), the amount of phase shift of the internal carrier φi = πi / 18, and 36 internal components from 0 to 10 ° (π / 18) up to 35π / 18. The carrier wave is multiplied by the digital ATC signal sin (ωt + θ) by the multipliers 32-1 to 32-N. The internal carrier sin (ωt + φi) is generated using, for example, a ring oscillator. Each multiplier 32-1 to 32-N generates an output of the following equation (1).
sin (ωt + θ) · sin (ωt + φi)
= (1/2) · {cos (θ−φi) −cos (2ωt + (θ + φi))} (1)

前記ローパスフィルタ群33は、図4に示すように、乗算器群32の各乗算器32−1〜32−Nに対応して設けられたN個のローパスフィルタ33−1〜33−Nからなり、各ローパスフィルタ33−1〜33−Nは、それぞれ対応する乗算器32−1〜32−Nから発生する(1)式の出力から交流成分cos(2ωt+(θ+φi))を除去し、直流成分cos(θ−φi)を抽出してそれぞれ出力値1〜Nとして出力する。   As shown in FIG. 4, the low-pass filter group 33 includes N low-pass filters 33-1 to 33-N provided corresponding to the multipliers 32-1 to 32-N of the multiplier group 32. The low-pass filters 33-1 to 33-N remove the AC component cos (2ωt + (θ + φi)) from the output of the expression (1) generated from the corresponding multipliers 32-1 to 32-N, and the DC component. cos (θ−φi) is extracted and output as output values 1 to N, respectively.

前記位相差検出回路34は、最大出力値検出部34Aと、位相差算出部34Bと、を備える。前記最大出力値検出部34Aは、ローパスフィルタ群33の各ローパスフィルタ33−1〜33−Nからそれぞれ出力される出力値1〜Nのうち、どの出力値が最大であるかを、断続する各信号部分A、B、C(図2に示す)が入力する毎に検出する。ここで、φi=θのときにその出力iが最大となる事から、出力最大となる内部搬送波の位相φiが受信ATC信号の位相となる。そのため、前記位相差算出部34Bは、最大出力値検出部34Aが検出した各信号部分A、B、Cの最大値を示す出力値が入力する毎に、入力した最大出力値に対応する内部搬送波の位相が例えば図4のφi、φj、φkとしたとき、この内部搬送波の位相φi、φj、φkを、各信号部分A、B、Cそれぞれにおける受信ATC信号の位相であるとして記憶し、記憶した内部搬送波の各位相φi、φj、φkに基づいて、互いに隣合う信号部分AとB、BとC間のそれぞれの位相のずれ量(位相差)φi−φj、φj−φkから算出することにより隣合う信号部分AとB、BとC間の搬送波の相対的位相差を検出し、検出した位相差を位相情報として副情報受信部13へ出力する。ここで、位相差検出回路34が位相差検出手段に相当する。   The phase difference detection circuit 34 includes a maximum output value detection unit 34A and a phase difference calculation unit 34B. The maximum output value detection unit 34A intermittently determines which output value is the maximum among the output values 1 to N output from the low-pass filters 33-1 to 33-N of the low-pass filter group 33, respectively. Detected whenever signal portions A, B, and C (shown in FIG. 2) are input. Here, since the output i becomes maximum when φi = θ, the phase φi of the internal carrier wave that becomes the maximum output becomes the phase of the received ATC signal. Therefore, each time the output value indicating the maximum value of each signal portion A, B, C detected by the maximum output value detector 34A is input, the phase difference calculator 34B receives the internal carrier wave corresponding to the input maximum output value. For example, when φi, φj, and φk in FIG. 4 are used, the phases φi, φj, and φk of the internal carrier wave are stored as the phases of the received ATC signals in the signal portions A, B, and C, respectively. Based on the phases φi, φj, φk of the internal carrier, the phase shift amounts (phase differences) φi−φj, φj−φk between the adjacent signal portions A and B, B and C are calculated. Thus, the relative phase difference of the carrier waves between the adjacent signal portions A and B and B and C is detected, and the detected phase difference is output to the sub information receiving unit 13 as phase information. Here, the phase difference detection circuit 34 corresponds to a phase difference detection means.

次に、本実施形態の列車制御装置における位相検出回路30の動作を説明する。
受電器10で受信され、増幅回路11を介して図2に示すような振幅変調信号が位相検出回路30に入力すると、A/D変換器31により所定間隔でサンプリングされたディジタル信号が乗算器群32の各乗算器32−1〜32−Nに並列的に入力する。各乗算器32−1〜32−Nでは、入力したディジタル信号(振幅変調信号の搬送波波形データ)にそれぞれの内部搬送波sin(ωt+φi)(i=0〜(N−1))を乗算する。各乗算器32−1〜32−Nの乗算結果が、ローパスフィルタ群33の対応する各ローパスフィルタ33−1〜33−Nに入力し、各ローパスフィルタ33−1〜33−Nで直流成分を抽出し、抽出した直流成分は各出力値1〜Nとして位相差検出回路34の最大出力値検出部34Aに入力する。尚、乗算器群32とローパスフィルタ群33の乗算動作と抽出動作は、図2に示す振幅変調信号における信号部分の有無に関係なく連続して行われるが、実際に信号が無い部分であるので、スペース部分として認識して出力結果は採用しないように構成されている。
Next, operation | movement of the phase detection circuit 30 in the train control apparatus of this embodiment is demonstrated.
When an amplitude-modulated signal as shown in FIG. 2 is input to the phase detection circuit 30 via the amplifier circuit 11 and received by the power receiver 10, the digital signals sampled by the A / D converter 31 at a predetermined interval are used as a multiplier group. The data are input in parallel to the 32 multipliers 32-1 to 32-N. Each multiplier 32-1 to 32-N multiplies the input digital signal (carrier wave waveform data of the amplitude modulation signal) by each internal carrier sin (ωt + φi) (i = 0 to (N−1)). The multiplication results of the multipliers 32-1 to 32-N are input to the corresponding low-pass filters 33-1 to 33-N of the low-pass filter group 33, and a DC component is obtained from each of the low-pass filters 33-1 to 33-N. The extracted DC component is input to the maximum output value detection unit 34A of the phase difference detection circuit 34 as each output value 1 to N. Note that the multiplication operation and the extraction operation of the multiplier group 32 and the low-pass filter group 33 are performed continuously regardless of the presence or absence of the signal portion in the amplitude modulation signal shown in FIG. The output result is not adopted by recognizing it as a space portion.

図2に示す振幅変調信号の信号部分Aのディジタル信号が乗算器群32とローパスフィルタ群33を介して位相差検出回路34に入力されると、最大出力値検出部34は、検出した最大出力値を発生した内部搬送波の位相φiを、信号部分Aにおける受信ディジタル信号の位相として記憶する。即ち、(1)式から明らかなように、各ローパスフィルタ33−1〜33−Nからそれぞれ出力される出力1〜Nのうち最大となるのはφi=θの場合であり、最大出力値を示す出力に対応する内部搬送波の位相が受信したATC信号の位相と同期しており、この内部搬送波の位相が受信したATC信号の位相であり、この内部搬送波の位相φiを、信号部分Aにおける受信ディジタル信号の位相として記憶する。この動作を、信号部分Aにおいて搬送波の1周期毎に実行し、出力最大値となる内部搬送波の位相が同じであることを確認し、受信した地上装置aからの搬送波とその内部搬送波の位相が同期点であることを確認する。尚、この確認動作は必ずしも行わなくともよい。   When the digital signal of the signal portion A of the amplitude modulation signal shown in FIG. 2 is input to the phase difference detection circuit 34 via the multiplier group 32 and the low-pass filter group 33, the maximum output value detection unit 34 detects the detected maximum output. The phase φi of the internal carrier that generated the value is stored as the phase of the received digital signal in signal portion A. That is, as is clear from the equation (1), the maximum output among the outputs 1 to N output from the low-pass filters 33-1 to 33-N is when φi = θ, and the maximum output value is The phase of the internal carrier wave corresponding to the output shown is synchronized with the phase of the received ATC signal, and the phase of this internal carrier wave is the phase of the received ATC signal. Store as the phase of the digital signal. This operation is executed for each period of the carrier wave in the signal portion A, and it is confirmed that the phase of the internal carrier wave that is the maximum output value is the same. Confirm that it is a sync point. This confirmation operation is not necessarily performed.

信号部分Aが終わり次の信号部分Bの搬送波データが位相検出回路30に入力すると、前述の信号部分Aの場合と同様に、信号部分Bの最大出力値を検出し、この最大出力値に対応する内部搬送波の位相φjを、信号部分Bにおける受信ディジタル信号の位相として記憶する。そして、位相差算出部34Bで、信号部分Aについて記憶した位相φiと信号部分Bについて記憶した位相φjの位相差φij(φij=φi−φj)を算出する。ここで、信号部分Bの最大出力値となる内部搬送波の位相は、信号部分Aの搬送波に対して、付加された副情報に応じた位相差分だけずれる。   When the signal portion A ends and the carrier wave data of the next signal portion B is input to the phase detection circuit 30, the maximum output value of the signal portion B is detected and corresponding to this maximum output value, as in the case of the signal portion A described above. Is stored as the phase of the received digital signal in the signal portion B. Then, the phase difference calculation unit 34B calculates the phase difference φij (φij = φi−φj) between the phase φi stored for the signal portion A and the phase φj stored for the signal portion B. Here, the phase of the internal carrier wave that is the maximum output value of the signal portion B is shifted from the carrier wave of the signal portion A by a phase difference corresponding to the added sub-information.

信号部分Bが終わり次の信号部分Cの搬送波データが位相検出回路30に入力すると、信号部分Cについても、信号部分A、Bの場合と同様の動作を繰り返して信号部分Cにおける最大出力値を検出し、この最大出力値に対応する内部搬送波の位相φkを、信号部分Cにおける受信ディジタル信号の位相として記憶し、位相差算出部34Bで、信号部分Bについて記憶した位相φjと信号部分Cについて記憶した位相φkの位相差φjk(φjk=φj−φk)を算出する。そして、位相差算出部33Bは、確定した互いに隣合う信号部分間の相対的位相差が所定回数連続して一致したとき、例えば2回連続して一致したとき、本実施形態の場合、信号部分A、B間の相対的位相差φijと信号部分B、C間の相対的位相差φjkが一致したとき、その相対的位相差(図2では+(π/2))を位相情報として確定して副情報受信部13に出力する。尚、位相情報を確定する際の一致連続回数は2回に限るものではなく、列車制御の応答に支障を及ぼさない範囲で3回以上の適正な連続回数を設定してもよい。   When the signal portion B ends and the carrier wave data of the next signal portion C is input to the phase detection circuit 30, the same operation as in the signal portions A and B is repeated for the signal portion C to obtain the maximum output value in the signal portion C. The phase φk of the internal carrier wave corresponding to the maximum output value is detected and stored as the phase of the received digital signal in the signal portion C, and the phase φj and the signal portion C stored for the signal portion B are stored in the phase difference calculation unit 34B. The phase difference φjk (φjk = φj−φk) of the stored phase φk is calculated. When the relative phase difference between the adjacent signal parts that have been confirmed is matched continuously a predetermined number of times, for example, when they are matched twice consecutively, in the case of this embodiment, the phase difference calculation unit 33B When the relative phase difference φij between A and B matches the relative phase difference φjk between the signal parts B and C, the relative phase difference (+ (π / 2) in FIG. 2) is determined as phase information. To the sub information receiving unit 13. It should be noted that the number of consecutive matches when phase information is determined is not limited to two, and an appropriate number of consecutive three or more may be set within a range that does not affect the response of train control.

尚、前記位相情報の確定方法としては、隣合う信号部分間の搬送波の相対的位相差を、複数(例えば10)の互いに隣合う信号部分間で検出し、これら複数(例えば10)のうち、連続するしないに拘わらず予め定めた所定数(例えば5)以上一致したとき、この一致した相対的位相差を位相情報として確定するようにしてもよい。この場合も、搬送波の相対的位相差を検出する互いに隣合う信号部分の数は10に限らず、列車制御の応答に支障を及ぼさない範囲で適正な数を設定すればよい。   As a method for determining the phase information, a relative phase difference of a carrier wave between adjacent signal portions is detected between a plurality (for example, 10) of adjacent signal portions, and among these plurality (for example, 10), When not less than a predetermined number (for example, 5) is matched, the matched relative phase difference may be determined as phase information. Also in this case, the number of adjacent signal portions for detecting the relative phase difference of the carrier waves is not limited to 10, and an appropriate number may be set within a range that does not hinder the response of the train control.

かかる本実施形態の列車制御装置によれば、乗算器群32とローパスフィルタ群33を用いて振幅変調信号の断続する各信号部分の搬送波と基本搬送波の相対的位相差を検出し、検出した相対的位相差に基づいて位相情報を抽出するようにしたので、従来のPLL回路を用いる場合に比べて入力信号に対する同期の捕捉や保持処理が不要となり、搬送波の位相変化検出処理が容易に行える。また、乗算器群32とローパスフィルタ群33を用いて検出した最大出力値を用いて位相情報を取得するので、軌道回路Tに進入した列車イがATC信号の受信端から送信端側に向けて進行するにつれて、受電器10で受信する振幅変調信号レベルが増大しても、この振幅変調信号レベルの変化の影響を受け難いという利点がある。   According to the train control apparatus of the present embodiment, the relative phase difference between the carrier wave and the basic carrier wave of each signal portion where the amplitude modulation signal is intermittent is detected using the multiplier group 32 and the low-pass filter group 33, and the detected relative Since the phase information is extracted based on the target phase difference, it is not necessary to acquire or hold the synchronization with respect to the input signal as compared with the case of using the conventional PLL circuit, and the carrier phase change detection process can be easily performed. Further, since the phase information is acquired using the maximum output value detected using the multiplier group 32 and the low-pass filter group 33, the train A entering the track circuit T is directed from the receiving end of the ATC signal toward the transmitting end side. As it progresses, even if the amplitude modulation signal level received by the power receiver 10 increases, there is an advantage that it is hardly affected by the change in the amplitude modulation signal level.

上述した実施形態は、振幅変調の変調波周波数も列車制御情報に対応させる構成の列車制御装置であるが、変調波周波数は一定として位相変調による位相変化だけを列車制御情報に対応させる構成であってもよい。また、列車制御装置としてATC装置の例を示したが、地上側と車上側との間で列車制御に関連する情報を通信する、例えばATS装置等の列車制御装置にも適用することができることは言うまでもない。   The above-described embodiment is a train control device configured to also correspond to the train control information with the modulation wave frequency of amplitude modulation, but is configured to correspond only to the phase change due to phase modulation with the modulation wave frequency being constant. May be. Moreover, although the example of the ATC device was shown as the train control device, it can be applied to a train control device such as an ATS device that communicates information related to train control between the ground side and the vehicle upper side. Needless to say.

尚、上記実施形態では、基本搬送波を列車制御情報に対応させた位相に変化させる位相変調手段の位相変調信号を振幅変調処理して送信する地上装置と、受信した振幅変調信号における搬送波の位相を検出する位相検出手段の出力する位相情報から列車制御情報を抽出して列車を制御する列車制御手段を有する車上装置と、を備える構成としたが、この構成に限るものではなく、本発明は、基本搬送波の位相を列車制御情報に対応させて変化させた信号を送信する送信側の装置と、この送信側装置から送信された信号を受信してこの受信該信号の位相を検出し、検出した位相情報から列車制御情報を抽出して列車を制御する受信側の装置とを備えた列車制御装置において、受信信号に基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした内部搬送波をそれぞれ乗算し、当該乗算結果において受信信号と略一致する内部搬送波の位相情報に基づき、受信した信号の位相情報を出力する構成であればよい。   In the above embodiment, the ground device that performs amplitude modulation processing on the phase modulation signal of the phase modulation means for changing the basic carrier wave to the phase corresponding to the train control information, and transmits the phase of the carrier wave in the received amplitude modulation signal. The on-board device having the train control means for extracting the train control information from the phase information output from the phase detection means to detect and controlling the train, but is not limited to this configuration, the present invention is , A device on the transmitting side that transmits a signal in which the phase of the basic carrier wave is changed corresponding to the train control information, and a signal transmitted from the device on the transmitting side is received and the phase of the received signal is detected and detected. In a train control device comprising a receiving side device for controlling the train by extracting train control information from the phase information obtained, the received signal is shifted in phase by a constant value at the same amplitude and frequency as the basic carrier wave. The inside carrier multiplied respectively, based on the phase information of the internal carrier substantially coincides with the received signal in the multiplication result may be a configuration which outputs the phase information of the received signal.

1 搬送波発生回路
2 変調回路
4 移相回路
12 主情報受信部
13 副情報受信部
15 第1主情報受信リレー
17 第2主情報受信リレー
18 第1副情報受信リレー
19 第2副情報受信リレー
20 第3副情報受信リレー
30 位相検出回路
31 A/D変換器
32 乗算器群
33 ローパスフィルタ群
34 位相差検出回路
イ 列車
a 地上装置
b 車上装置
DESCRIPTION OF SYMBOLS 1 Carrier wave generation circuit 2 Modulation circuit 4 Phase shift circuit 12 Main information receiving part 13 Sub information receiving part 15 1st main information receiving relay 17 2nd main information receiving relay 18 1st sub information receiving relay 19 2nd sub information receiving relay 20 Third sub information reception relay 30 Phase detection circuit 31 A / D converter 32 Multiplier group 33 Low pass filter group 34 Phase difference detection circuit A Train a Ground device b On-vehicle device

Claims (7)

基本搬送波の位相を列車制御情報に対応させて変化させた信号を送信する装置と、該装置から送信された前記信号を受信して当該信号の位相を検出し、検出した位相情報から前記列車制御情報を抽出して列車を制御する装置と、を備えた列車制御装置において、
前記受信した信号に前記基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした内部搬送波をそれぞれ乗算し、当該乗算結果において前記受信した信号と略一致する内部搬送波の位相情報に基づき、前記受信した信号の位相情報を出力する構成としたことを特徴とする列車制御装置。
A device that transmits a signal in which the phase of the basic carrier wave is changed corresponding to the train control information, and the signal transmitted from the device is received to detect the phase of the signal, and the train control is detected from the detected phase information. In a train control device comprising a device for extracting information and controlling a train,
The received signal is multiplied by an internal carrier whose phase is shifted by a constant value at the same amplitude and frequency as the basic carrier, and the reception is performed based on the phase information of the internal carrier that substantially matches the received signal in the multiplication result. A train control device characterized in that it is configured to output phase information of the signal.
前記乗算結果に基づいて、前記内部搬送波の位相情報として、前記受信した信号の断続する各信号部分について当該受信信号の位相と略一致する内部搬送波の位相を検出し、検出した内部搬送波の各位相から互いに隣合う前記信号部分間の内部搬送波の相対的位相差を検出して前記受信した信号の位相情報を出力する構成とした請求項1に記載の列車制御装置。   Based on the multiplication result, as the phase information of the internal carrier, the phase of the internal carrier that substantially matches the phase of the received signal is detected for each intermittent signal portion of the received signal, and each phase of the detected internal carrier is detected. The train control device according to claim 1, wherein a relative phase difference of internal carrier waves between the signal portions adjacent to each other is detected and phase information of the received signal is output. 基本搬送波を列車制御情報に対応させた位相に変化させる位相変調手段の位相変調信号を振幅変調処理して送信する地上装置と、受信した振幅変調信号における搬送波の位相を検出する位相検出手段の出力する位相情報から前記列車制御情報を抽出して列車を制御する列車制御手段を有する車上装置と、を備えた列車制御装置において、
前記位相検出手段を、前記基本搬送波と同じ振幅及び周波数で位相を一定値ずつずらした複数の内部搬送波と前記振幅変調信号とをそれぞれ乗算し、これら乗算結果に基づいて、前記振幅変調信号の断続する各信号部分について振幅変調信号の搬送波の位相と略一致する内部搬送波の位相を検出し、互いに隣合う前記信号部分間の内部搬送波の相対的位相差を検出して前記位相情報を出力する構成としたことを特徴とする列車制御装置。
A ground device that performs amplitude modulation processing on the phase modulation signal of the phase modulation means for changing the basic carrier wave to a phase corresponding to the train control information and transmits it, and an output of the phase detection means that detects the phase of the carrier wave in the received amplitude modulation signal In a train control device comprising an on-board device having train control means for controlling the train by extracting the train control information from the phase information to be
The phase detection unit multiplies the amplitude modulation signal by a plurality of internal carriers each having a phase shifted by a constant value at the same amplitude and frequency as the basic carrier, and based on the multiplication result, the amplitude modulation signal is intermittently generated. Detecting a phase of an internal carrier that substantially matches a carrier phase of an amplitude-modulated signal for each signal portion to be detected, detecting a relative phase difference of the internal carrier between the adjacent signal portions, and outputting the phase information A train control device characterized by that.
前記位相検出手段は、
前記基本搬送波と同じ振幅及び周波数で位相を2π/NずつずらしたN個の各内部搬送波と前記振幅変調信号とを乗算するN個の乗算器と、
各乗算器の出力から直流成分を抽出するN個のローパスフィルタと、
前記振幅変調信号の断続する各信号部分についてローパスフィルタ出力値が最大となる内部搬送波の位相を振幅変調信号の搬送波の位相と略一致する位相として検出し、互いに隣合う前記信号部分間の内部搬送波の相対的位相差を検出して前記位相情報を出力する位相差検出手段と、
を備えて構成した請求項3に記載の列車制御装置。
The phase detection means includes
N multipliers for multiplying each of the N internal carriers whose phases and phases are shifted by 2π / N with the same amplitude and frequency as the basic carrier, and the amplitude-modulated signal;
N low-pass filters that extract a DC component from the output of each multiplier;
The internal carrier wave between the signal parts adjacent to each other is detected by detecting the phase of the internal carrier wave having the maximum low-pass filter output value for each intermittent signal part of the amplitude modulation signal as the phase substantially matching the carrier wave phase of the amplitude modulation signal. Phase difference detection means for detecting the relative phase difference of the output and outputting the phase information;
The train control device according to claim 3, comprising:
前記位相差検出手段は、検出した前記隣合う信号部分間の搬送波の相対的位相差が、所定回数連続して一致したとき、この一致した相対的位相差に基づいて前記位相情報を出力する構成である請求項4に記載の列車制御装置。   The phase difference detecting means is configured to output the phase information based on the matched relative phase difference when the detected relative phase difference of the carrier wave between the adjacent signal portions is continuously matched a predetermined number of times. The train control device according to claim 4 which is. 前記位相差検出手段は、検出した前記隣合う信号部分間の搬送波の相対的位相差を、複数回検出し、これら複数回のうちから予め定めた所定回数一致したとき、この一致した相対的位相差に基づいて前記位相情報を出力する構成である請求項4に記載の列車制御装置。   The phase difference detecting means detects the relative phase difference of the carrier wave between the detected adjacent signal portions a plurality of times, and when the predetermined relative number of times is matched from the plurality of times, the matched relative position is detected. The train control device according to claim 4, wherein the train control device is configured to output the phase information based on a phase difference. 前記振幅変調処理は、搬送波を変調する変調波の周波数の変化を、前記列車制御情報とは別の列車制御情報に対応させている請求項3〜6のいずれか1つに記載の列車制御装置。   The train control device according to any one of claims 3 to 6, wherein in the amplitude modulation processing, a change in frequency of a modulated wave that modulates a carrier wave is associated with train control information different from the train control information. .
JP2011244989A 2011-11-08 2011-11-08 Train control device Active JP6001254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011244989A JP6001254B2 (en) 2011-11-08 2011-11-08 Train control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011244989A JP6001254B2 (en) 2011-11-08 2011-11-08 Train control device

Publications (2)

Publication Number Publication Date
JP2013102618A true JP2013102618A (en) 2013-05-23
JP6001254B2 JP6001254B2 (en) 2016-10-05

Family

ID=48622697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011244989A Active JP6001254B2 (en) 2011-11-08 2011-11-08 Train control device

Country Status (1)

Country Link
JP (1) JP6001254B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200134A (en) * 2013-03-29 2014-10-23 日本信号株式会社 Train controller
WO2015020214A1 (en) * 2013-08-09 2015-02-12 日本信号株式会社 Train control system
JP2018125700A (en) * 2017-01-31 2018-08-09 日本信号株式会社 Control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203685A (en) * 1992-01-29 1993-08-10 Sharp Corp Input signal detection circuit
JPH0738502U (en) * 1993-12-24 1995-07-14 株式会社アルファ Operation control device
JPH07329782A (en) * 1994-06-03 1995-12-19 Nippon Signal Co Ltd:The Communication device for train control
JP2006203354A (en) * 2005-01-18 2006-08-03 Nippon Signal Co Ltd:The Spread spectrum communication equipment
JP2008013043A (en) * 2006-07-06 2008-01-24 Nippon Signal Co Ltd:The Train controller
WO2008126749A1 (en) * 2007-04-11 2008-10-23 Fujitsu Ten Limited Signal processing apparatus, antenna apparatus, and demodulation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203685A (en) * 1992-01-29 1993-08-10 Sharp Corp Input signal detection circuit
JPH0738502U (en) * 1993-12-24 1995-07-14 株式会社アルファ Operation control device
JPH07329782A (en) * 1994-06-03 1995-12-19 Nippon Signal Co Ltd:The Communication device for train control
JP2006203354A (en) * 2005-01-18 2006-08-03 Nippon Signal Co Ltd:The Spread spectrum communication equipment
JP2008013043A (en) * 2006-07-06 2008-01-24 Nippon Signal Co Ltd:The Train controller
WO2008126749A1 (en) * 2007-04-11 2008-10-23 Fujitsu Ten Limited Signal processing apparatus, antenna apparatus, and demodulation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200134A (en) * 2013-03-29 2014-10-23 日本信号株式会社 Train controller
WO2015020214A1 (en) * 2013-08-09 2015-02-12 日本信号株式会社 Train control system
JP2015036249A (en) * 2013-08-09 2015-02-23 日本信号株式会社 Train control system
JP2018125700A (en) * 2017-01-31 2018-08-09 日本信号株式会社 Control system

Also Published As

Publication number Publication date
JP6001254B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
JP4818836B2 (en) Train control device
US10027517B2 (en) Measuring device and method
JP5823825B2 (en) Train control device
KR101390600B1 (en) Delay detector circuit and receiver apparatus
JP6001254B2 (en) Train control device
KR102039565B1 (en) Train control system
JP2014057498A (en) Train control apparatus
JP6110185B2 (en) Train control device
JP6429229B2 (en) Train control device
RU139781U1 (en) CABLE INSULATION DAMAGE DETECTION DEVICE
JP2020196376A (en) Electric power source synchronous transceiver
US10031219B2 (en) Radar and object detection method
JP2013207995A (en) Train control device
JP5268993B2 (en) Digital signal track circuit
JP5654253B2 (en) Obstacle detection device
JP6881709B2 (en) Control system
JP2007045348A (en) Train detector
JP2014198510A (en) Train controller
JP2007196858A (en) Scanning type digital train detecting device
JP4785938B2 (en) Ground / vehicle information transmission apparatus and ground / vehicle information transmission method
KR102088471B1 (en) Train control device
JP6298729B2 (en) Train control device
EP2783235A1 (en) Active fmcw radar system and method for data transfer using the same
KR102064760B1 (en) IRIG analog/digital signal converter for time synchronous signal transmission
US8841899B2 (en) Electro-magnetic tomography using modulated signal

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140527

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160901

R150 Certificate of patent or registration of utility model

Ref document number: 6001254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150