WO2015020005A1 - 活性酸素種発生具 - Google Patents
活性酸素種発生具 Download PDFInfo
- Publication number
- WO2015020005A1 WO2015020005A1 PCT/JP2014/070497 JP2014070497W WO2015020005A1 WO 2015020005 A1 WO2015020005 A1 WO 2015020005A1 JP 2014070497 W JP2014070497 W JP 2014070497W WO 2015020005 A1 WO2015020005 A1 WO 2015020005A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- charcoal
- oxygen species
- particles
- water
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/722—Oxidation by peroxides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
Definitions
- the present invention relates to a reactive oxygen species generator. More specifically, the present invention relates to an active oxygen species generator that is optimal for oxidizing and decomposing harmful substances contained in waste water.
- the Fenton method is known as a simple method for generating reactive oxygen species.
- a wastewater treatment device that utilizes the Fenton method, “treatment that oxidizes and decomposes organophosphorus pesticides contained in treated water based on the Fenton method.
- the organophosphorus pesticide comprises an organic compound containing nitrogen and phosphorus
- the treatment apparatus includes a treatment tank, a treated water supply means attached to the treatment tank, a hydrogen peroxide addition means, and an iron ion addition means. , PH adjusting means,
- the treated water supply means supplies the treated water containing the organophosphorus pesticide to the treatment tank, and the hydrogen peroxide addition means adds hydrogen peroxide to the treated water in the treatment tank.
- the iron ion addition means adds divalent iron ions to the water to be treated in the treatment tank
- the pH adjusting means adds a pH adjusting agent to the treated water supplied to the treated tank from the treated water supply means and the treated water supplied to the treated tank, and the treated water
- An apparatus for treating water containing organophosphorus pesticides, characterized in that is maintained at a predetermined weak acidity. (Patent Document 1) is known.
- An object of the present invention is to provide an active oxygen species generator that does not generate a large amount of iron sludge or the like.
- the active oxygen species generator of the present invention is characterized by containing a metal (M) and charcoal (C), and a charcoal / metal composite (MC) formed by contacting the metal (M) and charcoal (C).
- M metal
- C charcoal
- MC charcoal / metal composite
- the gist is that water is an essential component.
- the feature of the method for producing reactive oxygen species of the present invention is that it contains a metal (M) and charcoal (C), and a charcoal / metal composite (MC) formed by contacting the metal (M) and charcoal (C). ) And at least one selected from the group consisting of hydrogen peroxide, hypohalous acid, and oxygen in the presence of water to generate active oxygen species.
- the feature of the method for producing an oxidized compound of the present invention is summarized in that it includes a step of obtaining an oxidized compound by bringing the active oxygen species generator and an organic substance into contact with each other.
- the feature of the wastewater treatment method of the present invention is that it includes a contact step of bringing the active oxygen species generator and wastewater into contact with each other.
- the active oxygen species generator of the present invention does not use the Fenton reaction using iron ions, so there is no generation of iron sludge.
- the method for producing reactive oxygen species according to the present invention does not use the Fenton reaction using iron ions, and therefore iron sludge is not generated. Moreover, since a charcoal / metal composite (MC) is used, active oxygen species can be produced efficiently.
- MC charcoal / metal composite
- an oxidized compound of the present invention uses the active oxygen species generator described above, an oxidized compound can be obtained by efficiently oxidizing an organic substance without generating iron sludge.
- wastewater treatment method of the present invention uses the active oxygen species generator described above, wastewater can be efficiently purified by oxidation treatment without generating iron sludge.
- reactive oxygen species hydroperoxy radicals ( ⁇ OOH), hydroxy radical ( ⁇ OH), superoxide anion (O 2 ⁇ -) - means (OOH) or the like, hydroperoxides anion.
- the metal (M) is not a metal that reacts violently with water, but is not limited as long as it is a metal that can be eluted as ions in water by contacting with charcoal (C) in water.
- charcoal (C) charcoal
- Aluminum, zinc, iron, nickel, tin, lead or copper is preferable, magnesium, aluminum, zinc, nickel or tin is more preferable, and aluminum is particularly preferable.
- Charcoal (C) can be used without limitation as long as it is a carbide obtained by steaming an organic substance ⁇ bamboo, wood, coconut husk, rattan, chicken dung, etc. ⁇ .
- bamboo and wood are preferred from the viewpoint of quality and the like.
- waste materials construction waste materials, furniture waste materials, used crackers, waste pallets
- planted pruning materials planted pruning materials
- compression molded bodies obtained by compression molding these crushed materials can be used. .
- Charcoal (C) is preferably produced in a vertical carbonization furnace.
- the carbonization temperature (° C.) is preferably about 500 to 1000, and more preferably about 700 to 800.
- Charcoal (C) itself does not necessarily need to be porous, but it is preferable to be porous because the reaction site increases due to being porous.
- the refining degree of charcoal (C) is preferably about 0 to 6, more preferably 0 to 5, particularly preferably 0 to 4, and most preferably 0 to 3.
- the degree of refining is a number representing the degree of carbonization.
- the refining meter for example, a charcoal refining meter manufactured by Sanyo Electric Co., Ltd.
- the number of exponents of this electrical resistance value was measured and used as the degree of refinement. It can be said that the smaller the value of the refining degree, the smaller the electric resistance and the more the graphite structure.
- the metal (M) and the charcoal (C) need to be in contact with each other. It is considered that the contact between the metal (M) and the charcoal (C) is sufficient as long as they are in contact with each other so that electrons can be exchanged. Increasing the contact area between the metal (M) and the charcoal (C) is considered to be able to efficiently transfer electrons. Therefore, the shape of the metal (M) and the charcoal (C) is preferably a plate shape, a corrugated plate shape, a rod shape, or a particle shape rather than a large lump, and more preferably the metal (M) is a metal particle. (MP) and charcoal (C) is charcoal particles (CP).
- the weight average particle diameter (mm) of the metal particles (MP) is preferably about 0.1 to 20, more preferably about 0.2 to 10, particularly preferably about 0.5 to 5.
- the weight average particle size is measured by measuring the particle size distribution of the measurement sample, and plotting the relationship between the cumulative content and the particle size on logarithmic probability paper ⁇ horizontal axis: particle size, vertical axis: cumulative content (wt%) ⁇ .
- the particle size corresponding to a cumulative content of 50% by weight is obtained.
- the particle size distribution is measured in accordance with JIS Z8815-1994, and the sieve is placed with the narrowest sieve on the bottom, the measurement sample is placed on the top sieve with the widest mesh, and the sieve vibrator And the weight of the measurement sample remaining on each sieve is measured, and the weight percentage of the measurement sample remaining on each sieve is determined based on the weight of the first measurement sample.
- size of a metal particle MP
- an amorphous metal particle and / or a fibrous metal particle are included, More preferably, it is a fibrous metal particle.
- the contact between the fibrous metal particles and the contact between the fibrous metal particles and the carbon particles (CP) increase, and the fibrous metal particles and the carbon particles (CP) It is considered preferable because contact is ensured.
- the length (mm) of the fibrous metal particles is preferably about 0.1 to 20, more preferably about 0.2 to 10, particularly preferably 0.5 to 5. Degree.
- the thickness (diameter) of the fibrous metal particles is preferably about 1 ⁇ m to 5 mm, more preferably about 2 ⁇ m to 4 mm, and particularly preferably about 10 ⁇ m to 1 mm.
- the metal particles (MP) as described above can be obtained industrially, and can be prepared by mixing industrial products as necessary, but in order to obtain them at a lower cost, metal products and metal parts are manufactured.
- cutting powder generated at the time of recovery recovered metal ⁇ recovered aluminum can, recovered steel can, other recovered metal scraps, etc .;
- water-insoluble cutting fluid or oil it is necessary to wash the water-insoluble cutting fluid or oil if it is attached. If water-soluble cutting fluid is attached, it may be used as it is. You may wash
- the size of the organic material used as the raw material for the carbon particles (CP) is carbonized as it is originally small, such as coconut shells, and the large one, such as bamboo or wood, is crushed to a size within 2-10 cm before carbonization. It is preferable to make it.
- Charcoal particles (CP) may be made smaller by crushing or the like, and further sieved by a screen (such as a wire mesh).
- the contents of metal (M) and charcoal (C) are not particularly limited, but the following ranges are preferable from the viewpoint of the generation efficiency of active oxygen species.
- the content (% by weight) of the metal (M) is preferably 10 to 90, more preferably 20 to 80, and particularly preferably 24 to 70, based on the weight of the metal (M) and charcoal (C).
- the content (% by weight) of the charcoal (C) is preferably 10 to 90, more preferably 20 to 80, and particularly preferably 30 to 76, based on the weight of the metal (M) and the charcoal (C).
- the charcoal / metal composite may be configured in any manner as long as the metal (M) and the charcoal (C) are not in contact with each other.
- M metal
- C charcoal
- the form (1) in which the metal particles (MP) and the carbon particles (CP) are integrally molded can be obtained, for example, by a method described in JP2011-25160A.
- the metal particles (MP) and the charcoal particles (CP) are held in the net container, the metal particles (MP) and the charcoal particles (CP) are mixed and put in the net container, MP) and carbon particles (CP) can be obtained by preventing them from coming out of the net container.
- net container in addition to a net-like container (for example, a container or bag prepared with a stainless steel wire mesh), a container having a large number of holes (a container prepared with stainless steel punching metal) or a bag (for example, having a large number of holes opened) Polyethylene bags), and cloth bags (for example, bags made of nonwoven fabric, bags made of cotton).
- a net-like container for example, a container or bag prepared with a stainless steel wire mesh
- a container having a large number of holes a container prepared with stainless steel punching metal
- bag for example, having a large number of holes opened
- Polyethylene bags for example, having a large number of holes opened
- cloth bags for example, bags made of nonwoven fabric, bags made of cotton
- the metal particles (MP) and the charcoal particles (CP) are mixed to form a liquid. It can be obtained by sealing in a cartridge having an inlet and an outlet.
- the liquid include a mixture of a water-soluble organic solvent (such as methanol, ethanol, acetone, THF, and ether) and water, and water and wastewater (hereinafter the same).
- a known cartridge can be used as the cartridge having the liquid inlet and outlet.
- MP metal particle
- CP charcoal particle
- the plate-like metal (M) and the carbon particles (CP) are held in a container having a liquid inlet and outlet
- the plate-like metal (M) and charcoal particles (CP) are placed in a plate-like form in a container having a liquid inlet and outlet. It can be obtained by putting the metal (M) and the carbon particles (CP) in a mixed state.
- a container having a liquid inlet and outlet is not limited as long as it can hold plate-like metal (M) and carbon particles (CP).
- M plate-like metal
- CP carbon particles
- the plate-like metal (M) is provided with a pattern on the surface, a hole is formed in the plate, the plate itself is made into a mesh shape, the plate itself is made into a corrugated plate, They may be rounded into a spiral shape or a combination thereof.
- the size (including thickness) of the plate is not limited as long as it can be stored in the container.
- the metal particles (MP) and the carbon particles (CP) are held in a container having a liquid inlet and outlet, the metal particles (MP) and the carbon particles (CP) are mixed to form a liquid It can be obtained by placing it in a container having an inlet and an outlet.
- a container having a liquid inlet and outlet is not limited as long as it can hold metal particles (MP) and carbon particles (CP).
- MP metal particles
- CP carbon particles
- the form (6) in which the carbon particles (CP) are held in the metal (M) net container can be obtained by putting the carbon particles (CP) in the metal (M) net container.
- the shape and size of the metal (M) net container are not limited as long as the carbon particles (CP) can be retained. However, as will be described later, as the active oxygen species are generated, the metal (M) gradually decreases, so it is preferable that the thickness (thickness) is sufficient so that the contents do not fall off from the net container.
- the type of metal (M) in the net container and the type of metal particles (MP) may be the same or different, but the ionization tendency of the metal (M) in the net container is more than the ionization tendency of the metal particles (MP). Is preferably smaller ⁇ the metal (M) in the mesh container is more difficult to elute into the liquid than the metal particles (MP). ⁇ .
- the form (8) in which the metal particles (MP) are held in the charcoal (C) net container can be obtained by putting the metal particles (MP) in the charcoal (C) net container.
- the shape and size of the net container made of charcoal (C) are not limited as long as the metal particles (MP) can be held.
- the net container made of charcoal (C) may draw up the charcoal in a mesh shape, or may carbonize after processing the organic material which is the raw material of charcoal into a net shape.
- the carbon particles (CP) and the metal particles (MP) are held in the net container made of carbon (C)
- the carbon particles (CP) and the metal particles (MP) are mixed, and the carbon (C) It can be obtained by placing it in a net container.
- the charcoal / metal composite is preferably provided with a gap through which liquid can freely enter and exit. That is, the charcoal / metal composite is preferably porous.
- the charcoal / metal composite it can be immersed in the liquid or the liquid can be introduced into the charcoal / metal composite.
- Form (1) in which metal particles (MP) and charcoal particles (CP) are integrally molded;
- Form (2) in which metal particles (MP) and charcoal particles (CP) are held in a net container; Net made of metal (M)
- Form (6) in which carbon particles (CP) are held in a container;
- Form (7) in which carbon particles (CP) and metal particles (MP) are held in a metal (M) net container;
- Form (3) in which metal particles (MP) and charcoal particles (CP) are held in a cartridge having a liquid inlet and outlet; plate-like metal (M) and charcoal particles (CP) are supplied to a liquid inlet and
- a form (4) held in a container having a discharge port; and a form (5) in which metal particles (MP) and charcoal particles (CP) are held in a container having a liquid inlet and a discharge port, the inlet It is preferable to treat the liquid by allowing the liquid to flow in.
- At least one selected from the group consisting of hydrogen peroxide, hypohalous acid, and oxygen (oxygen molecules) is one that generates an active oxygen species by receiving electrons from the carbon / metal composite (MC).
- a supply source oxygen atom supply source.
- hydrogen peroxide water may be used, or hydrogen peroxide water obtained by applying a high voltage to air or oxygen in the presence of an acidic aqueous solution may be used.
- the latter is considered to be that hydrogen peroxide is generated by a chemical reaction represented by the following formula, and can also be generated, for example, by an apparatus described in Japanese Patent Application Laid-Open No. 2010-223569.
- Hypohalous acid includes hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypoiodous acid (HOI).
- Hypohalous acid may be prepared by dissolving hypohalite (sodium hypochlorite, potassium hypobromite, etc.) in acidic aqueous solution, alkali metal halides (sodium chloride, potassium bromide, etc.) Strong acidic electrolyzed water obtained by electrolyzing an aqueous solution of) may be used.
- strong acidic electrolyzed water obtained by electrolyzing an aqueous solution of
- hypochlorous acid when using an aqueous sodium chloride solution, it is considered that hypochlorous acid is generated by the chemical reaction formula represented by the following formula (the same applies to other alkali metal halides).
- it can be generated by a strongly acidic hypochlorous acid water generator such as Hoshizaki Electric Co., Ltd. or Aqua System Co., Ltd.
- oxygen (O 2 ) oxygen gas or air may be used.
- a preferred embodiment of the active oxygen species generator of the present invention is a form in which both are present in a liquid.
- a charcoal / metal composite (MC) at least one selected from the group consisting of hydrogen peroxide, hypohalous acid, and oxygen, and a liquid, a container (a cartridge having a liquid inlet and outlet, etc.) Included)).
- the liquid includes a mixture of a water-soluble organic solvent (such as methanol, ethanol, acetone, THF, and ether) and water, water and waste water, and water is an essential constituent.
- At least one selected from the group consisting of hydrogen peroxide, hypohalous acid, and oxygen is consumed with the generation of active oxygen species, and therefore needs to be supplied as necessary.
- This supply may be continuous supply or intermittent supply, or may be supplied only at the beginning.
- hydrogen peroxide or the like is consumed, and the active oxygen species generator of the present invention is not configured.
- the active oxygen species generator of the present invention is To be resurrected.
- the reactive oxygen species generator of the present invention generates to generate reactive oxygen species.
- the reactive oxygen species generator of the present invention has a reactive oxygen species as follows. It is thought that it has occurred.
- this battery is formed between Then, this battery and at least one selected from the group consisting of hydrogen peroxide, hypohalous acid and oxygen act in water and undergo an oxidation-reduction reaction (electron transfer) as follows. It is thought that oxygen species are generated.
- the Fenton reaction is an oxidation-reduction reaction of iron ions (Fe 2+ and Fe 3+ ) and copper ions (Cu + and Cu 2+ ) with hydrogen peroxide. Therefore, in the present invention, when iron or copper is used as the metal (M), the metal ions generated by the battery reaction may cause the conventional Fenton reaction. On the other hand, when two or more stable ions such as magnesium, aluminum, and zinc are not present as the metal (M), the conventional Fenton reaction is considered not to proceed. Fe 2+ + H 2 O 2 ⁇ Fe 3+ + .OH + OH ⁇ Fe 3+ + H 2 O 2 ⁇ Fe 2+ + ⁇ OOH + H +
- the method for producing reactive oxygen species of the present invention is a method using the active oxygen generator described above, that is, comprising metal (M) and charcoal (C), and the metal (M) and charcoal (C) are in contact with each other. And a carbon / metal composite (MC) formed in contact with at least one selected from the group consisting of hydrogen peroxide, hypohalous acid and oxygen in the presence of water to generate active oxygen species. If there is, there are no restrictions on the generation conditions.
- water is contained in the liquid ⁇ a mixture of water-soluble organic solvent (methanol, ethanol, acetone, THF, ether, etc.) and water, water and waste water ⁇ .
- the method for producing an oxidized compound of the present invention is a reaction condition as long as it is a method using the above active oxygen generator, that is, a method including a step of obtaining an oxidized compound by contacting the above active oxygen species generator with an organic substance.
- a method using the above active oxygen generator that is, a method including a step of obtaining an oxidized compound by contacting the above active oxygen species generator with an organic substance.
- an organic substance There is no restriction on the etc.
- benzene is used as the organic substance
- phenol is obtained as the oxidizing compound
- barbituric acid (2,4,6-trioxypyrimidine) is used as the organic substance
- alloxan (2,4,4) is used as the oxidizing compound. 5,6-tetraoxypyrimidine) is obtained.
- the wastewater treatment method of the present invention is not limited to the treatment conditions and the like as long as it is a method using the above-mentioned active oxygen generator, that is, a method including a contact step of bringing the above-mentioned active oxygen species generator and wastewater into contact with each other. . It is preferable that the waste water treated in this contact step is separated into solid and liquid (via a precipitation tank or the like) and then discharged or transferred to the next step.
- the pH of the liquid is considered to have an appropriate range depending on the type of metal (M).
- M metal
- the metal (M) is aluminum, 6 to 8 is preferable, and 6.5 to 7.5 is more preferable. That is, the pH of water is preferably neutral.
- the metal (M) is iron, it is preferably 9 to 11, more preferably 9.5 to 10.5.
- Chips (longest length 2-10cm) obtained by crushing wood waste pallet (southern wood) were carbonized in a vertical carbonization furnace (grass / wood chip continuous charcoal machine, TYPE 180kg / Hr, Murai Iron Works). Thereafter (700 to 800 ° C., 30 to 40 minutes), it was passed through a wire mesh having a mesh opening of 2.8 mm to obtain carbon particles (CP1) having a maximum length of 0.1 to 2.8 cm. The scouring degree of the carbon particles (CP1) was 3.
- the aluminum cutting waste (which contains a lot of fibrous cutting waste) discharged from the aluminum processing factory was passed through a metal mesh having an opening of 2.8 mm to obtain metal particles (MP1).
- the weight average particle diameter of the metal particles (MP1) was 100 ⁇ m.
- Water-soluble coating agent (AC1) ⁇ Corn Starch, Fuchi Glue, Non-Gai Kogyo Co., Ltd., "Fueki” is a registered trademark of the company ⁇ Uniformly distribute 150 parts of metal particles (MP1) in an aqueous solution consisting of 300 parts and 1000 parts of water. After mixing, the mixture was filtered through a wire mesh having an opening of 63 ⁇ m to obtain coated metal particles. Subsequently, the coated metal particles and 400 parts of carbon particles (CP1) were uniformly mixed and then air-dried at about 25 ° C. for about 12 hours to obtain granular coating mixed particles (CM1).
- AC1 Water-soluble coating agent
- CP1 carbon particles
- a mixed particle slurry (MPS1) was obtained by uniformly mixing 20 parts of an aqueous solution (2 parts of magnesium, 2 parts of ammonium chloride, and 2500 parts of water) and 700 parts of water.
- the mixed particle slurry (MPS1) is poured into a mold having an inner diameter of 50 mm and a depth of 30 mm, and after applying a pressure of about 1 kg / cm 2 , the mixture is allowed to stand for 24 hours to form a charcoal / metal composite molded body (1).
- the obtained ⁇ molded body for charcoal-metal composite is eluted with water-soluble coating agent in water to form a charcoal / metal composite. The same applies hereinafter. ⁇ .
- 1,4-dioxane is not oxidatively decomposed by hydrogen peroxide or peroxide, but oxidatively decomposed by hydroxy radical (.OH) ("A study on the relationship between biodegradability enhancement and oxidation").
- 1,4-dioxane (Wako Pure Chemical Industries, Ltd.) 0.1 g was dissolved in 1000 ml of distilled water, and this was further doubled to prepare a 50 ppm 1,4-dioxane aqueous solution.
- 1,4-dioxane aqueous solution 500 ml of 1,4-dioxane aqueous solution, four molded bodies for charcoal / metal composite (1), and 100 ml of hydrogen peroxide (35% by weight, ADEKA Corporation) were placed in a glass beaker. While constituting the active oxygen species generator (1) and leaving the water temperature at 20 ° C. for 15 hours, 1,4-dioxane oxidative decomposition treated water was obtained.
- 1,4-dioxane aqueous solution and 1,4-dioxane oxidative decomposition treated water 1 based on Circular No. 59 Appendix 7 (activated carbon extraction-gas chromatograph mass spectrometry; GC conditions are as follows). When the concentration of 1,4-dioxane was measured, the 1,4-dioxane aqueous solution was 45 ppm (theoretical value was 50 ppm), and 1,4-dioxane oxidative decomposition treated water was 24 ppm.
- 1,4-dioxane aqueous solution and four molded bodies for charcoal / metal composite (1) are placed in a glass beaker and left for 15 hours while maintaining the water temperature at 20 ° C.
- 1,4 When 500 ml of dioxane aqueous solution and 100 ml of hydrogen peroxide solution were placed in a glass beaker and left for 15 hours while maintaining the water temperature at 20 ° C., the concentration of 1,4-dioxane was 45 ppm (ie, 1, 4-Dioxane did not proceed oxidatively.)
- a hydroxy radical (.OH) is generated from the active oxygen species generator of the present invention, and this hydroxy radical is an oxidative decomposition of 1,4-dioxane.
- Example 2 Water-soluble coating agent (AC1) ⁇ Corn Starch, Fuchi Glue, Non-Gai Gin Kogyo Co., Ltd., "Fueki” is a registered trademark of the same company ⁇ 1540 parts of metal particles (MP1) uniformly in an aqueous solution consisting of 300 parts and 1000 parts of water After mixing, the mixture was filtered through a wire mesh having an opening of 63 ⁇ m to obtain coated metal particles. Subsequently, the coated metal particles and 660 parts of carbon particles (CP1) were uniformly mixed, and then air-dried at about 25 ° C. for about 12 hours to obtain granular coating mixed particles (CM2).
- AC1 Water-soluble coating agent
- MP1 metal particles uniformly in an aqueous solution consisting of 300 parts and 1000 parts of water
- CP1 coated metal particles
- CP1 carbon particles
- Coated mixed particles 2200 parts, ordinary Portland cement 1100 parts, inorganic compound aqueous solution ⁇ calcium chloride 2 parts, potassium chloride 2 parts, ferric chloride 2 parts, magnesium oxide 2 parts, magnesium chloride 2 parts, ammonium chloride 2 parts 20 parts of water and an aqueous solution in which 2500 parts of water were uniformly mixed) and 700 parts of water were uniformly mixed to obtain a mixed particle slurry (MPS2).
- the mixed particle slurry (MPS2) is poured into a mold having an inner diameter of 50 mm and a depth of 30 mm, and after applying a pressure of about 1 kg / cm 2 , the mixture is allowed to stand for 24 hours to form a charcoal / metal composite molded body (2). Obtained.
- the reactive oxygen species of the present invention was placed in a glass beaker with 1000 ml of dyeing factory waste water, two molded bodies for charcoal / metal composite (2), and 200 ml of hydrogen peroxide (35% by weight, ADEKA Corporation). While forming the generator (2), stirring was performed (10 to 20 ml / min) while blowing air for 13 hours while maintaining the water temperature at 20 ° C. to obtain treated water.
- the active oxygen species ⁇ hydroxy radical (.OH) ⁇ is generated from the active oxygen species generator of the present invention, and this hydroxy radical oxidizes and decomposes the waste water from the dyeing factory.
- Bincho charcoal (refining degree 2) was crushed and then passed through a wire mesh with a mesh opening of 2.8 mm to obtain charcoal particles (CP2) having a maximum length of 0.1 to 2.8 cm.
- Aluminum foil (foil) was cut to prepare metal particles (MP2) ⁇ 1 cm ⁇ 1 cm ⁇ 0.4 mm thickness ⁇ .
- 30 g of charcoal particles (CP2) and 70 g of metal particles were uniformly mixed and filled into a 300 ml glass bottle to obtain a charcoal / metal composite (3).
- phenol was quantified according to “28.1.2 4-aminoantipyrine spectrophotometric method” of “28. Phenols” of JIS K0102: 2008. Water was 340 ppm.
- active oxygen species ⁇ hydroxy radical (.OH) ⁇ is generated from the active oxygen species generator of the present invention, and this hydroxy radical oxidizes and decomposes phenol.
- Example 4 After the lid and bottom of the recovered aluminum can were cut off, the side surfaces were cut and stretched to a flat surface, and cut with a shredder to obtain 2.5 mm ⁇ 30 mm metal particles (MP3).
- Water-soluble coating agent (AC1) ⁇ Corn Starch, Fue Glue, Non-Gai Gin Kogyo Co., Ltd., "Fueki” is a registered trademark of the same company ⁇ 1540 parts of metal particles (MP3) uniformly in an aqueous solution consisting of 300 parts and 1000 parts of water
- the mixture was filtered through a wire mesh having an opening of 63 ⁇ m to obtain coated metal particles.
- the coating metal particles and 660 parts of carbon particles (CP2) were uniformly mixed, and then air-dried at about 25 ° C. for about 12 hours to obtain granular coating mixed particles (CM3).
- CM3 Coated mixed particles 2200 parts, ordinary Portland cement 1100 parts, inorganic compound aqueous solution ⁇ calcium chloride 2 parts, potassium chloride 2 parts, ferric chloride 2 parts, magnesium oxide 2 parts, magnesium chloride 2 parts, ammonium chloride 2 parts 20 parts of an aqueous solution in which 2500 parts of water were uniformly mixed) and 700 parts of water were uniformly mixed to obtain a mixed particle slurry (MPS3).
- the mixed particle slurry (MPS3) is poured into a mold having an inner diameter of 50 mm and a depth of 30 mm, and after applying a pressure of about 1 kg / cm 2 , the mixture is allowed to stand for 24 hours to form a charcoal / metal composite molded body (4). Obtained.
- the active oxygen species ⁇ hydroxy radical (.OH) ⁇ was generated from the active oxygen species generator of the present invention, and this hydroxy radical was oxidatively decomposed coloring components such as polyphenol contained in oolong tea. .
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Water Treatment By Sorption (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
本発明の目的は、大量の鉄汚泥等が発生しない活性酸素種発生具を提供することである。 本発明は、金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と;過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と;水とを必須構成体として構成されることを特徴とする活性酸素種発生具である。金属(M)はマグネシウム、アルミニウム、亜鉛、鉄、ニッケル、錫、鉛又は銅が好ましい。金属(M)は金属粒子、炭(C)は炭粒子(CP)であることが好ましい。
Description
本発明は、活性酸素種発生具に関する。さらに詳しくは排水等に含まれる有害物質を酸化分解するために最適な活性酸素種発生具に関する。
活性酸素種の簡易な発生方法として、フェントン法が知られ、フェントン法を活用した排水の処理装置として、「被処理水に含有された有機リン系農薬を、フェントン法に基づき酸化,分解する処理装置であって、
該有機リン系農薬は、窒素およびリンを含有した有機化合物よりなり、該処理装置は、処理槽と、該処理槽に付設された被処理水供給手段,過酸化水素添加手段,鉄イオン添加手段,pH調整手段とを、備えており、
該被処理水供給手段は、該処理槽に該有機リン系農薬を含有した該被処理水を供給し、該過酸化水素添加手段は、該処理槽の該被処理水に過酸化水素を添加し、該鉄イオン添加手段は、該処理槽の該被処理水に2価の鉄イオンを添加し、
該pH調整手段は、該被処理水供給手段から該処理槽に供給される該被処理水、および該処理槽に供給された該被処理水にpH調整剤を添加して、該被処理水を所定の弱酸性に維持すること、を特徴とする、有機リン系農薬含有水の処理装置。」(特許文献1)が知られている。
該有機リン系農薬は、窒素およびリンを含有した有機化合物よりなり、該処理装置は、処理槽と、該処理槽に付設された被処理水供給手段,過酸化水素添加手段,鉄イオン添加手段,pH調整手段とを、備えており、
該被処理水供給手段は、該処理槽に該有機リン系農薬を含有した該被処理水を供給し、該過酸化水素添加手段は、該処理槽の該被処理水に過酸化水素を添加し、該鉄イオン添加手段は、該処理槽の該被処理水に2価の鉄イオンを添加し、
該pH調整手段は、該被処理水供給手段から該処理槽に供給される該被処理水、および該処理槽に供給された該被処理水にpH調整剤を添加して、該被処理水を所定の弱酸性に維持すること、を特徴とする、有機リン系農薬含有水の処理装置。」(特許文献1)が知られている。
フェントン法によると、処理水が酸性(pH2~4が好ましい)である場合を除いて、生成する鉄水酸化物がフロックを形成し、大量の鉄汚泥が発生するという問題がある。
本発明の目的は、大量の鉄汚泥等が発生しない活性酸素種発生具を提供することである。
本発明の目的は、大量の鉄汚泥等が発生しない活性酸素種発生具を提供することである。
本発明の活性酸素種発生具の特徴は、金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と;
過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と;
水とを必須構成体として構成される点を要旨とする。
過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と;
水とを必須構成体として構成される点を要旨とする。
本発明の活性酸素種の製造方法の特徴は、金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種とを水の存在下で接触させて活性酸素種を発生させる点を要旨とする。
本発明の酸化化合物の製造方法の特徴は、上記の活性酸素種発生具と有機物質とを接触させて酸化化合物を得る工程を含む点を要旨とする。
本発明の排水の処理方法の特徴は、上記の活性酸素種発生具と排水とを接触させる接触工程を含む点を要旨とする。
本発明の活性酸素種発生具は、鉄イオンを用いたフェントン反応を利用しないので、鉄汚泥の発生がない。
本発明の活性酸素種の製造方法は、鉄イオンを用いたフェントン反応を利用しないので、鉄汚泥の発生がない。また、炭/金属複合体(MC)を用いるため、効率よく活性酸素種を製造できる。
本発明の酸化化合物の製造方法は、上記の活性酸素種発生具を用いるので、鉄汚泥を発生させることなく、効率よく有機物質を酸化させて、酸化化合物を得ることができる。
本発明の排水の処理方法は、上記の活性酸素種発生具を用いるので、鉄汚泥を発させることなく、効率よく排水を酸化処理により浄化することができる。
本発明において、「活性酸素種」とは、ヒドロペルオキシラジカル(・OOH)、ヒドロキシラジカル(・OH)、スーパーオキシドアニオン(O2・-)、ヒドロペルオキシドアニオン(-OOH)等を意味する。
金属(M)としては、水と激しく反応する金属でなく、水中で炭(C)と接触することにより水中にイオンとして溶出できる金属であれば制限はないが、イオン化傾向等の観点から、マグネシウム、アルミニウム、亜鉛、鉄、ニッケル、錫、鉛又は銅が好ましく、さらに好ましくはマグネシウム、アルミニウム、亜鉛、ニッケル又は錫、特に好ましくはアルミニウムである。
炭(C)としては、有機物{竹、木、ヤシガラ、籐及び鶏糞等}を蒸し焼きにして得られる炭化物であれば制限なく使用できる。
炭(C)の原料となる有機物としては、炭化できる物であれば制限がないが、品質等の観点から、竹及び木が好ましい。竹及び木のうち、環境保護等の観点から、廃材(建築廃材、家具廃材、使用済み割りばし、廃パレット)、植木剪定材及びこれらの破砕物を圧縮成形した圧縮成型体等を用いることができる。
炭(C)は、縦型炭化炉で製造されることが好ましい。炭化温度(℃)としては、500~1000程度が好ましく、さらに好ましくは700~800程度である。
炭(C)自身は、必ずしも多孔質である必要はないが、多孔質であることにより、反応部位が増大するため、多孔質であることが好ましい。
炭(C)の精練度は、0~6程度が好ましく、さらに好ましくは0~5、特に好ましくは0~4、最も好ましくは0~3である。
精錬度とは、炭化の度合いを表した数字であり、精錬計{たとえば、株式会社三陽電機製作所製の木炭精錬計}で測定試料表面の2点間の電気抵抗値(Ω/cm)を測定し、この電気抵抗値の指数部分の数字を精錬度としたものである。この精錬度の値が小さい程、電気抵抗が小さく、グラファイト構造を多く含むということができる。
炭/金属複合体(CM)は、金属(M)と炭(C)とは接触している必要がある。金属(M)と炭(C)との接触は、電子の授受ができる程度に接触していれば足りると考えられる。金属(M)及び炭(C)の接触面積を大きくすることが、効率よく電子の授受が達成できるものと考えられる。
したがって、金属(M)及び炭(C)の形状は、大きな塊であるよりも、板状、波板状、棒状又は粒子状等であることが好ましく、さらに好ましくは金属(M)が金属粒子(MP)であり、炭(C)が炭粒子(CP)であることである。
したがって、金属(M)及び炭(C)の形状は、大きな塊であるよりも、板状、波板状、棒状又は粒子状等であることが好ましく、さらに好ましくは金属(M)が金属粒子(MP)であり、炭(C)が炭粒子(CP)であることである。
金属粒子(MP)の重量平均粒子径(mm)は、0.1~20程度が好ましく、さらに好ましくは0.2~10程度、特に好ましくは0.5~5程度である。
重量平均粒子径は、測定試料の粒度分布を測定し、対数確率紙{横軸:粒径、縦軸:累積含有量(重量%)}に、累積含有量と粒子径との関係をプロットし、累積含有量が50重量%に対応する粒子径を求めることにより得られる。粒度分布は、JIS Z8815-1994に準拠して測定され、ふるいを目開きの狭いふるいを下にして重ね、一番上の最も目開きの広いふるいの上に、測定試料を入れ、ふるい振動機にて篩い分けし、各ふるいの上に残った測定試料の重量を測定し、最初の測定試料の重量に基づく各ふるいの上に残った測定試料の重量%を求めることによって測定される。
なお、金属粒子(MP)の大きさに関して、大きな金属粒子と小さな金属粒子との両方を含むことが好ましく、金属粒子の大きさを均一にしないことが好ましい。
金属粒子(MP)の形状に特に制限はないが、不定形状の金属粒子及び/又は繊維状の金属粒子を含むことが好ましく、さらに好ましくは繊維状の金属粒子を含むことである。繊維状の金属粒子を含有すると、繊維状の金属粒子同士の接触や、繊維状の金属粒子と炭粒子(CP)との接触が増大し、繊維状の金属粒子と炭粒子(CP)との接触が確実になるため好ましいと考えられる。
繊維状の金属粒子を含有する場合、繊維状の金属粒子の長さ(mm)は、0.1~20程度が好ましく、さらに好ましくは0.2~10程度、特に好ましくは0.5~5程度である。この場合、繊維状の金属粒子の太さ(直径)は、1μm~5mm程度が好ましく、さらに好ましくは2μm~4mm程度、特に好ましくは10μm~1mm程度である。
以上のような金属粒子(MP)は、工業的に得ることができ、また、工業製品を必要により混合することにより調製できるが、より安価に入手するために、金属製品や金属部品等を製造する際に発生する切削粉や、回収金属{回収アルミニウム缶、回収スチール缶、その他の回収金属屑等;必要によりシュレッターで破砕してもよい}を用いることができる。切削粉や回収金属を用いる場合、水不溶性の切削油剤や油等が付着しているときこれを洗浄する必要があり、水溶性の切削油剤等が付着しているときはそのまま用いてもよいし洗浄して用いてもよい。
炭粒子(CP)の原料となる有機物の大きさは、ヤシガラ等のように元々小さなものそのまま炭化させ、竹や木等のように大きなものは2~10cm程度以内の大きさ破砕してから炭化させることが好ましい。
炭粒子(CP)は、破砕等により粒子を小さくしてもよく、さらに、スクリーン(金網等)により篩い分けしてもよい。
金属(M)及び炭(C)の含有量は特に制限はないが、活性酸素種の生成効率等の観点から次の範囲が好ましい。
金属(M)の含有量(重量%)は、金属(M)及び炭(C)の重量に基づいて、10~90が好ましく、さらに好ましくは20~80、特に好ましくは24~70である。
炭(C)の含有量(重量%)は、金属(M)及び炭(C)の重量に基づいて、10~90が好ましく、さらに好ましくは20~80、特に好ましくは30~76である。
金属(M)の含有量(重量%)は、金属(M)及び炭(C)の重量に基づいて、10~90が好ましく、さらに好ましくは20~80、特に好ましくは24~70である。
炭(C)の含有量(重量%)は、金属(M)及び炭(C)の重量に基づいて、10~90が好ましく、さらに好ましくは20~80、特に好ましくは30~76である。
炭/金属複合体は、金属(M)及び炭(C)が常に非接触とならなければ、どのよう荷構成されていてもよく、たとえば、以下のような形態が含まれる。
(1)金属粒子(MP)及び炭粒子(CP)を一体成型した形態(1)。
(2)金属粒子(MP)及び炭粒子(CP)を網容器(多数の孔を持つ容器又は袋、及び布袋等を含む。以下同じである。)内に保持した形態(2)。
(3)金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつカートリッジ内に保持した形態(3)。
(4)板状の金属(M)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(4)。
(5)金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(5)。
(6)金属(M)製の網容器内に炭粒子(CP)を保持した形態(6)。
(7)金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(7)。
(8)炭(C)製の網容器内に金属粒子(MP)を保持した形態(8)。
(9)炭(C)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(9)。
(2)金属粒子(MP)及び炭粒子(CP)を網容器(多数の孔を持つ容器又は袋、及び布袋等を含む。以下同じである。)内に保持した形態(2)。
(3)金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつカートリッジ内に保持した形態(3)。
(4)板状の金属(M)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(4)。
(5)金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(5)。
(6)金属(M)製の網容器内に炭粒子(CP)を保持した形態(6)。
(7)金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(7)。
(8)炭(C)製の網容器内に金属粒子(MP)を保持した形態(8)。
(9)炭(C)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(9)。
金属粒子(MP)及び炭粒子(CP)を一体成型した形態(1)は、たとえば、特開2011-25160号公報に記載された方法により得ることができる。
金属粒子(MP)及び炭粒子(CP)を網容器内に保持した形態(2)は、金属粒子(MP)及び炭粒子(CP)を混合して、網容器内に入れて、金属粒子(MP)及び炭粒子(CP)が網容器外に出てこないようにすることにより得ることができる。
網容器としては、網状の容器(たとえば、ステンレス製金網で調製した容器や袋)の他、多数の孔を持つ容器(ステンレス製パンチングメタルで調製した容器)又は袋(たとえば、多数の穴を開けたポリエチレン製の袋)、及び布袋(たとえば、不織布で調製した袋、木綿で調製した袋)等を含む。
金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつカートリッジ内に保持した形態(3)は、金属粒子(MP)及び炭粒子(CP)を混合して、液体の流入口及び排出口をもつカートリッジ内に入れて、密閉することにより得ることができる。液体としては、水溶性有機溶媒(メタノール、エタノール、アセトン、THF及びエーテル等)と水との混合物、水及び排水が含まれる(以下、同じ。)。
液体の流入口及び排出口をもつカートリッジは、公知のものが適用できる。なお、液体の流入口及び排出口には、金属粒子(MP)及び炭粒子(CP)が流出しないように、フィルター又は網を設けることが好ましい。
板状の金属(M)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(4)は、液体の流入口及び排出口をもつ容器内に、板状の金属(M)及び炭粒子(CP)を混合状態で入れることにより得ることができる。
液体の流入口及び排出口をもつ容器は、板状の金属(M)及び炭粒子(CP)を保持できれば制限がない。なお、液体の流入口及び排出口には、炭粒子(CP)が流出しないように、フィルター又は網を設けることが好ましい。
板状の金属(M)は、表面積を増大させるために、表面に模様を設けたり、板に孔を空けたり、板自体を網目状にしたり、板自体を波板状にしたり、板自体を螺旋状に丸めたり、これらを組合わせたりしてもよい。
板の大きさ(厚みも含む)は、容器内に収納できれば制限ない。
板の大きさ(厚みも含む)は、容器内に収納できれば制限ない。
金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(5)は、金属粒子(MP)及び炭粒子(CP)を混合して、液体の流入口及び排出口をもつ容器内に入れることにより得ることができる。
液体の流入口及び排出口をもつ容器は、金属粒子(MP)及び炭粒子(CP)を保持できれば制限がない。なお、液体の流入口及び排出口には、金属粒子(MP)及び炭粒子(CP)が流出しないように、フィルター又は網を設けることが好ましい。
金属(M)製の網容器内に炭粒子(CP)を保持した形態(6)は、金属(M)製の網容器内に炭粒子(CP)を入れることにより得ることができる。
金属(M)製の網容器の形状や大きさは、炭粒子(CP)を保持することができれば制限がない。しかし、後述するように、活性酸素種の発生と共に、金属(M)が徐々に目減りするため、網容器から内容物が脱落しないように十分な太さ(厚さ)にすることが好ましい。
金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(7)は、金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を入れることにより得ることができる。
網容器の金属(M)の種類と、金属粒子(MP)の種類とは、同じでも異なってもよいが、網容器の金属(M)のイオン化傾向が、金属粒子(MP)のイオン化傾向よりも小さいことが好ましい{網容器の金属(M)が、金属粒子(MP)よりも液体に溶出しにくいことが好ましい。}。
炭(C)製の網容器内に金属粒子(MP)を保持した形態(8)は、炭(C)製の網容器内に金属粒子(MP)を入れることにより得ることができる。
炭(C)製の網容器の形状や大きさは、金属粒子(MP)を保持することができれば制限がない。炭(C)製の網容器は、炭を網目状にくみ上げてもよく、炭の原料である有機物を網目状に加工してから炭化してもよい。
炭(C)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(9)は、炭粒子(CP)及び金属粒子(MP)を混合して、炭(C)製の網容器内に入れることにより得ることができる。
炭/金属複合体は、この複合体内に液体が自由に出入りできる隙間を設けることが好ましい。すなわち、炭/金属複合体は多孔質であることが好ましい。
炭/金属複合体の形態によって、液体に浸漬したり、炭/金属複合体の内部に液体を導いたりすることができる。
金属粒子(MP)及び炭粒子(CP)を一体成型した形態(1);金属粒子(MP)及び炭粒子(CP)を網容器内に保持した形態(2);金属(M)製の網容器内に炭粒子(CP)を保持した形態(6);金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(7);炭(C)製の網容器内に金属粒子(MP)を保持した形態(8);並びに炭(C)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(9)の場合、液体に浸漬することが好ましい。なお、これらを容器に保持して、液体をこの容器に導いてもよい。
金属粒子(MP)及び炭粒子(CP)を一体成型した形態(1);金属粒子(MP)及び炭粒子(CP)を網容器内に保持した形態(2);金属(M)製の網容器内に炭粒子(CP)を保持した形態(6);金属(M)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(7);炭(C)製の網容器内に金属粒子(MP)を保持した形態(8);並びに炭(C)製の網容器内に炭粒子(CP)及び金属粒子(MP)を保持した形態(9)の場合、液体に浸漬することが好ましい。なお、これらを容器に保持して、液体をこの容器に導いてもよい。
金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつカートリッジ内に保持した形態(3);板状の金属(M)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(4);並びに金属粒子(MP)及び炭粒子(CP)を液体の流入口及び排出口をもつ容器内に保持した形態(5)の場合、流入口から液体を流入させることにより、液体を処理することが好ましい。
過酸化水素、次亜ハロゲン酸及び酸素(酸素分子)からなる群より選ばれる少なくとも1種は、炭/金属複合体(MC)から電子を受け取って活性酸素種を発生するものであり、いわゆる酸素供給源(酸素原子供給源)である。
過酸化水素(H2O2)としては、過酸化水素水を用いてもよく、酸性水溶液の存在下、空気又は酸素に高電圧を印加することによって得られる過酸化水素水を用いてもよい。後者は次式で表される化学反応により過酸化水素が生成しているものと考えられ、たとえば、特開2010-223569号公報に記載された装置によっても生成できる。
(陽極側) O2 + e- + H+ → ・OOH
(陰極側) ・OOH + e- + H+ → H 2 O 2
(陰極側) ・OOH + e- + H+ → H 2 O 2
次亜ハロゲン酸としては、次亜塩素酸(HOCl)、次亜臭素酸(HOBr)及び次亜ヨウ素酸(HOI)が含まれる。次亜ハロゲン酸は、次亜ハロゲン酸塩(次亜塩素酸ナトリウム及び次亜臭素酸カリウム等)を酸性水溶液に溶解して調整してもよく、アルカリ金属ハロゲン化物(塩化ナトリウム、臭化カリウム等)の水溶液を電解して得られる強酸性電解水を用いてもよい。後者の強酸性電解水について、塩化ナトリウム水溶液を用いる場合、次式で表される化学反応式により次亜塩素酸が生成しているものと考えられ(他のアルカリ金属ハロゲン化物についても同様と考えられる。)、たとえば、ホシザキ電機株式会社やアクアシステム株式会社等の強酸性次亜塩素酸水生成装置によって生成できる。
(陽極側) 2Cl- + H2O → HOCl + HCl + 2e-
(陰極側) 2Na+ + 2H2O +2e- → 2NaOH + H2
(陰極側) 2Na+ + 2H2O +2e- → 2NaOH + H2
酸素(O2)は、酸素ガスを用いてもよいし、空気を用いてもよい。
炭/金属複合体(MC)と過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種とは、それぞれが電子を授受して化学反応できるように近接していれば、これらはどのように構成されていてもよい。本発明の活性酸素種発生具の好ましい態様としては、液体中に両者を併存させる形態である。たとえば、炭/金属複合体(MC)と、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と、液体とを、容器(液体の流入口及び排出口をもつカートリッジ等を含む。)内に併存させる形態が含まれる。
なお、上記の通り、液体には、水溶性有機溶媒(メタノール、エタノール、アセトン、THF及びエーテル等)と水との混合物、水及び排水が含まれ、水が必須構成体となる。
なお、上記の通り、液体には、水溶性有機溶媒(メタノール、エタノール、アセトン、THF及びエーテル等)と水との混合物、水及び排水が含まれ、水が必須構成体となる。
後述するとおり、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種は、活性酸素種の発生と共に消費されるから、必要に応じて供給する必要がある。この供給は、連続供給でも断続供給でもよく、最初にだけ供給してもよい。最初にだけ供給した場合、過酸化水素等が消費され、本発明の活性酸素種発生具を構成しなくなるが、再び、過酸化水素等の供給を始めれば、本発明の活性酸素種発生具が復活する。
本発明の活性酸素種発生具がどのような化学反応を経て活性酸素種を生成しているかについては必ずしも明らかではないが、本発明の活性酸素種発生具は、以下の様に活性酸素種を発生しているものと考えられる。
すなわち、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と、水と、金属(M)とで構成した場合{炭(C)を使用しなかった場合}、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と、水と、炭(C)とで構成した場合{金属(M)を使用しなかった場合}、又は金属(M)と炭(C)とが非接触の場合、活性酸素種が発生しないこと;活性酸素種の発生にともない金属(M)が目減りしていること;精錬度の大きな炭(C)を用いると活性酸素種が発生しがたいこと等から、金属(M)と炭(C)とが電気的に接触することにより、金属(M)がイオンとして水に溶出し、金属(M)と炭(C)との間に電池が形成されていると考えられる。そして、この電池と、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種とが、水中で作用し、つぎのように、酸化還元反応(電子の授受)を経て、活性酸素種が発生しているものと考えられる。
<過酸化水素を用いる場合(不均化反応)>
(還元反応) H2O2 + e- → ・OH + OH-
(酸化反応) H2O2 → ・OOH + H+ + e-
なお、「e-」は、金属(M)及び炭(C)から形成される電池に対して授受される電子を意味する(以下、同じである。)。
(還元反応) H2O2 + e- → ・OH + OH-
(酸化反応) H2O2 → ・OOH + H+ + e-
なお、「e-」は、金属(M)及び炭(C)から形成される電池に対して授受される電子を意味する(以下、同じである。)。
<次亜塩素酸を用いる場合(不均化反応;他の次亜ハロゲン酸を用いる場合も同様と考えられる。)>
(還元反応) HOCl + e- → ・OH + Cl-
(酸化反応) HOCl → ・OCl + H+ + e-
(還元反応) HOCl + e- → ・OH + Cl-
(酸化反応) HOCl → ・OCl + H+ + e-
<酸素を用いる場合>
(還元反応) O2 + e- → O2・-
酸素を用いる場合において、対応する酸化反応は、活性酸素種により酸化される基質(有機物質や排水中の汚染物質等)が酸化され、電子が放出されるものと考えられる。過酸化水素や次亜ハロゲン酸を用いる場合においても、上記の様な酸化反応に代えて、活性酸素種により酸化される基質(有機物質や排水中の汚染物質等)が酸化され、電子が放出される場合も競合的に生じ得ると考えられる。
(還元反応) O2 + e- → O2・-
酸素を用いる場合において、対応する酸化反応は、活性酸素種により酸化される基質(有機物質や排水中の汚染物質等)が酸化され、電子が放出されるものと考えられる。過酸化水素や次亜ハロゲン酸を用いる場合においても、上記の様な酸化反応に代えて、活性酸素種により酸化される基質(有機物質や排水中の汚染物質等)が酸化され、電子が放出される場合も競合的に生じ得ると考えられる。
<付随して生じ得る酸化還元反応>
上記の様な化学反応の他に、つぎのような化学反応も競合的に生じ得ると考えられる。
O2・- → O2 + e-
O2・- + H2O2 → ・OH + OH- + O2
・OH + ・OH → H2O2
・OH + ・O2 - → OH- + O2
・OH + H2O2 → H2O + ・OOH
上記の様な化学反応の他に、つぎのような化学反応も競合的に生じ得ると考えられる。
O2・- → O2 + e-
O2・- + H2O2 → ・OH + OH- + O2
・OH + ・OH → H2O2
・OH + ・O2 - → OH- + O2
・OH + H2O2 → H2O + ・OOH
なお、フェントン反応は、過酸化水素による鉄イオン(Fe2+とFe3+)や銅イオン(Cu+とCu2+)の酸化還元反応であり、たとえば鉄イオンについて以下の通りである。
したがって、本発明において、金属(M)として鉄や銅を用いる場合、電池反応により生成する金属イオンが、従来のフェントン反応も引き起こしてもよい。一方、金属(M)としてマグネシウム、アルミニウム、亜鉛等のように安定なイオンが2種以上存在しない場合、従来のフェントン反応は進行しないと考えられる。
Fe2+ + H2O2 → Fe3+ + ・OH + OH-
Fe3+ + H2O2 → Fe2+ + ・OOH + H+
したがって、本発明において、金属(M)として鉄や銅を用いる場合、電池反応により生成する金属イオンが、従来のフェントン反応も引き起こしてもよい。一方、金属(M)としてマグネシウム、アルミニウム、亜鉛等のように安定なイオンが2種以上存在しない場合、従来のフェントン反応は進行しないと考えられる。
Fe2+ + H2O2 → Fe3+ + ・OH + OH-
Fe3+ + H2O2 → Fe2+ + ・OOH + H+
本発明の活性酸素種の製造方法は、上記の活性酸素発生具を用いる方法、すなわち、金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種とを水の存在下で接触させて活性酸素種を発生させる方法であれば、発生条件等に制限はない。
なお、水は、上記の通り、液体{水溶性有機溶媒(メタノール、エタノール、アセトン、THF及びエーテル等)と水との混合物、水及び排水}に含まれている。
なお、水は、上記の通り、液体{水溶性有機溶媒(メタノール、エタノール、アセトン、THF及びエーテル等)と水との混合物、水及び排水}に含まれている。
本発明の酸化化合物の製造方法は、上記の活性酸素発生具を用いる方法、すなわち、上記の活性酸素種発生具と有機物質とを接触させて酸化化合物を得る工程を含む方法であれば反応条件等に制限はない。たとえば、有機物質としてベンゼンを用いると、酸化化合物としてフェノールが得られ、また、有機物質としてバルビツール酸(2,4,6-トリオキシピリミジン)を用いると、酸化化合物としてアロキサン(2,4,5,6-テトラオキシピリミジン)が得られる。
本発明の排水の処理方法は、上記の活性酸素発生具を用いる方法、すなわち、上記の活性酸素種発生具と排水とを接触させる接触工程を含む方法であれば、処理条件等に制限はない。この接触工程で処理した排水は、固液分離して(沈殿槽等を経て)から排出又は次工程へ移行することが好ましい。
液体のpHは、金属(M)の種類等によって適正な範囲があると考えられる。たとえば、金属(M)がアルミニウムの場合、6~8が好ましく、さらに好ましくは6.5~7.5である。すなわち、水のpHは中性であることが好ましい。一方、金属(M)が鉄の場合、9~11が好ましく、さらに好ましくは9.5~10.5である。
以下、特記しない限り、部は重量部と意味し、%は重量%を意味する。
<実施例1>
木質廃パレット(南洋材)を破砕して得たチップ(最長長さ2~10cm)を、縦型炭化炉(草・木チップ連続製炭機、TYPE180kg/Hr、村井鉄工所)で炭化させた後(700~800℃、30~40分間)、目開き2.8mmの金網を通過させて、最長長さ0.1~2.8cmの炭粒子(CP1)を得た。炭粒子(CP1)の精練度は3であった。
アルミニウム加工工場から排出されたアルミニウム切削屑(繊維状の切削屑を多く含む)を目開き2.8mmの金網を通過させて、金属粒子(MP1)を得た。金属粒子(MP1)の重量平均粒子径は100μmであった。
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP1)150部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP1)400部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM1)を得た。
<実施例1>
木質廃パレット(南洋材)を破砕して得たチップ(最長長さ2~10cm)を、縦型炭化炉(草・木チップ連続製炭機、TYPE180kg/Hr、村井鉄工所)で炭化させた後(700~800℃、30~40分間)、目開き2.8mmの金網を通過させて、最長長さ0.1~2.8cmの炭粒子(CP1)を得た。炭粒子(CP1)の精練度は3であった。
アルミニウム加工工場から排出されたアルミニウム切削屑(繊維状の切削屑を多く含む)を目開き2.8mmの金網を通過させて、金属粒子(MP1)を得た。金属粒子(MP1)の重量平均粒子径は100μmであった。
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP1)150部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP1)400部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM1)を得た。
コーティング混合粒子(CM1)2200部、炭粒子(CP1)300部、普通ポルトランドセメント1500部、無機化合物水溶液{塩化カルシウム2部、塩化カリウム2部、塩化第二鉄2部、酸化マグネシウム2部、塩化マグネシウム2部、塩化アンモニウム2部、水2500部を均一混合した水溶液)20部及び水700部とを均一混合して、混合粒子スラリー(MPS1)を得た。この混合粒子スラリー(MPS1)を内径50mm深さ30mmの型に注いで、およそ1kg/cm2の圧力を加えた後、24時間静置して、炭/金属複合体用成型体(1)を得た{この炭-金属複合体用成型体は水中で水溶性コーティング剤が溶出し、炭/金属複合体が形成される。以下同じである。}。
1,4-ジオキサンは、過酸化水素や過酸化物によって酸化分解されず、ヒドロキシラジカル(・OH)によって酸化分解されることが知られているため("A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide", WATER RESEARCH, 38, 2004, p2596-2604; "Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron", WATER RESEARCH, 37,2003,p2372-2376;"Ozonation combined with electrolysis of 1,4-dioxane using a two-compartment electrolytic flow cell with solid electrolyte", WATER RESEARCH, 42,2008,p379-385)、つぎのように、本発明の活性酸素種発生具を構成すると共に、1,4-ジオキサン分解試験を行った。
1,4-ジオキサン(和光純薬工業株式会社)0.1gを蒸留水1000mlに溶解し、さらにこれを2倍に希釈して、50ppmの1,4-ジオキサン水溶液を調製した。
1,4-ジオキサン水溶液500mlと、4個の炭/金属複合体用成型体(1)と、過酸化水素水(35重量%、株式会社ADEKA)100mlとをガラスビーカーに入れて、本発明の活性酸素種発生具(1)を構成すると共に、水温を20℃に保ちながら、15時間放置して、1,4-ジオキサン酸化分解処理水を得た。
1,4-ジオキサン水溶液及び1,4-ジオキサン酸化分解処理水について、環告第59号付表7(活性炭抽出-ガスクロマトグラフ質量分析法;GC条件は以下の通りである。)に基づいて、1,4-ジオキサンの濃度を測定したところ、1,4-ジオキサン水溶液は45ppm(理論値は50ppm)、1,4-ジオキサン酸化分解処理水は24ppmであった。
機種:Agilent7890A(アジレント・テクノロジー株式会社)
検出器:JEOL jms-Q1000GC K9
カラム:CP-WAX52CB(0.32mm×25m,1.2μm)
庫内温度:40℃(3min)-20℃/min-230℃(5min)
流量:1.5ml/min
インジェクション温度:220℃
GCITF温度:250℃
検出器:JEOL jms-Q1000GC K9
カラム:CP-WAX52CB(0.32mm×25m,1.2μm)
庫内温度:40℃(3min)-20℃/min-230℃(5min)
流量:1.5ml/min
インジェクション温度:220℃
GCITF温度:250℃
なお、1,4-ジオキサン酸化分解処理水について、ガスクロマトグラフィーで定性分析したところ(標準物質によるリテンションタイム)、1,4-ジオキサン水溶液では検出されなかった酸化分解物(エタノール、酢酸、ギ酸、エチレングリコールモノホルメート、1,4-ジオキサン-2-オール、ソルビン酸、ホルムアルデヒド等)を検出した。
一方、1,4-ジオキサン水溶液500mlと、4個の炭/金属複合体用成型体(1)とをガラスビーカーに入れて、水温を20℃に保ちながら、15時間放置した場合、1,4-ジオキサン水溶液500mlと、過酸化水素水100mlとをガラスビーカーに入れて、水温を20℃に保ちながら、15時間放置した場合、1,4-ジオキサンの濃度は45ppmであった(すなわち、1,4-ジオキサンの酸化分解が進行しなかった。)。
以上の結果から、本発明の活性酸素種発生具からヒドロキシラジカル(・OH)を発生し、このヒドロキシラジカルが1,4-ジオキサンを酸化分解したものと考えられる。
<実施例2>
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP1)1540部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP1)660部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM2)を得た。
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP1)1540部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP1)660部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM2)を得た。
コーティング混合粒子(CM2)2200部、普通ポルトランドセメント1100部、無機化合物水溶液{塩化カルシウム2部、塩化カリウム2部、塩化第二鉄2部、酸化マグネシウム2部、塩化マグネシウム2部、塩化アンモニウム2部、水2500部を均一混合した水溶液)20部及び水700部とを均一混合して、混合粒子スラリー(MPS2)を得た。この混合粒子スラリー(MPS2)を内径50mm深さ30mmの型に注いで、およそ1kg/cm2の圧力を加えた後、24時間静置して、炭/金属複合体用成型体(2)を得た。
染色工場排水1000mlと、2個の炭/金属複合体用成型体(2)と、過酸化水素水(35重量%、株式会社ADEKA)200mlとをガラスビーカーに入れて、本発明の活性酸素種発生具(2)を構成すると共に、水温を20℃に保ちながら、13時間、空気を吹き込みながら撹拌(10~20ml/分)して、処理水を得た。
染色工場排水及び処理水について、JIS K0102:2008の「20.二クロム酸カリウムによる酸素消費量(CODCr)」に準拠して、CODを測定したところ、染色工場排水は3300ppm、処理水は330ppmであった。
一方、染色工場排水1000mlと、2個の炭/金属複合体用成型体(2)とをガラスビーカーに入れて、水温を20℃に保ちながら、13時間、空気を吹き込みながら撹拌(10~20ml/分)した場合、染色工場排水1000mlと、過酸化水素水200mlとをガラスビーカーに入れて、水温を20℃に保ちながら、13時間、空気を吹き込みながら撹拌(10~20ml/分)した場合、処理水のCODに変化がなかった(すなわち、3300ppmのままであった。)。
以上の結果から、本発明の活性酸素種発生具から活性酸素種{ヒドロキシラジカル(・OH)}を発生し、このヒドロキシラジカルが染色工場排水を酸化分解したものと考えられる。
<実施例3>
備長炭(精錬度2)を破砕してから、目開き2.8mmの金網を通過させて、最長長さ0.1~2.8cmの炭粒子(CP2)を得た。
アルミニウム箔(箔地)を裁断して、金属粒子(MP2){1cm×1cm×0.4mm厚}を調製した。
炭粒子(CP2)30g及び金属粒子70gを均一混合して、300mlガラス瓶に充填して、炭/金属複合体(3)を得た。
備長炭(精錬度2)を破砕してから、目開き2.8mmの金網を通過させて、最長長さ0.1~2.8cmの炭粒子(CP2)を得た。
アルミニウム箔(箔地)を裁断して、金属粒子(MP2){1cm×1cm×0.4mm厚}を調製した。
炭粒子(CP2)30g及び金属粒子70gを均一混合して、300mlガラス瓶に充填して、炭/金属複合体(3)を得た。
フェノール(和光純薬工業株式会社)1gを蒸留水1000mlに溶解して、1000ppmのフェノール水溶液を調製した。
フェノール水溶液1000mlと、5個の炭/金属複合体用成型体(3)と、過酸化水素水(35重量%、株式会社ADEKA)100mlとをガラスビーカーに入れて、本発明の活性酸素種発生具(3)を構成すると共に、水温を20℃に保ちながら、6時間、空気を吹き込みながら撹拌(10~20ml/分)した後、さらに、過酸化水素水100mlを追加で添加してから、同様に18時間、撹拌して処理水を得た。
フェノール水溶液及び処理水について、JIS K0102:2008の「28.フェノール類」の「28.1.2 4-アミノアンチピリン吸光光度法」に準拠して、フェノールを定量したところ、フェノール水溶液は1000ppm、処理水は340ppmであった。
一方、フェノール水溶液1000mlと、5個の炭/金属複合体用成型体(3)とをガラスビーカーに入れて、上記と同様に処理した場合、フェノール水溶液1000mlと、過酸化水素水100mlと(6時間後に100ml追加)をガラスビーカーに入れて、上記と同様に処理した場合、処理水中のフェノールに変化がなかった(すなわち、1000ppmのままであった。)。
以上の結果から、本発明の活性酸素種発生具から活性酸素種{ヒドロキシラジカル(・OH)}を発生し、このヒドロキシラジカルがフェノールを酸化分解したものと考えられる。
<実施例4>
回収アルミニウム缶の蓋及び底の部分を切り落とした後、側面を切断して平面に伸ばして、シュレッターで裁断して、2.5mm×30mmの金属粒子(MP3)を得た。
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP3)1540部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP2)660部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM3)を得た。
回収アルミニウム缶の蓋及び底の部分を切り落とした後、側面を切断して平面に伸ばして、シュレッターで裁断して、2.5mm×30mmの金属粒子(MP3)を得た。
水溶性コーティング剤(AC1){コーンスターチ、フエキ糊、不易糊工業株式会社、「フエキ」は同社の登録商標である}300部及び水1000部からなる水溶液に、金属粒子(MP3)1540部を均一混合した後、目開き63μmの金網で濾過して、コーティング金属粒子を得た。引き続いて、このコーティング金属粒子と、炭粒子(CP2)660部とを均一混合した後、約25℃で約12時間風乾して、顆粒状のコーティング混合粒子(CM3)を得た。
コーティング混合粒子(CM3)2200部、普通ポルトランドセメント1100部、無機化合物水溶液{塩化カルシウム2部、塩化カリウム2部、塩化第二鉄2部、酸化マグネシウム2部、塩化マグネシウム2部、塩化アンモニウム2部、水2500部を均一混合した水溶液)20部及び水700部とを均一混合して、混合粒子スラリー(MPS3)を得た。この混合粒子スラリー(MPS3)を内径50mm深さ30mmの型に注いで、およそ1kg/cm2の圧力を加えた後、24時間静置して、炭/金属複合体用成型体(4)を得た。
市販のウーロン茶85mlと蒸留水250mlとを混合して、ウーロン茶希釈水を調製した。
ウーロン茶希釈水335mlと、2個の炭/金属複合体用成型体(4)と、過酸化水素水(35重量%、株式会社ADEKA)85mlとをガラスビーカーに入れて、本発明の活性酸素種発生具(4)を構成すると共に、水温を20℃に保ちながら、4時間、空気を吹き込みながら撹拌(5~10ml/分)して処理水を得た。
ウーロン茶希釈水は濃い茶色(図1;左側の写真)を呈していたが、処理水は無色透明(図1;右側の写真)になった。
一方、ウーロン茶希釈水335mlと、2個の炭/金属複合体用成型体(4)とをガラスビーカーに入れて、上記と同様に処理した場合、ウーロン茶希釈水335mlと、過酸化水素水85mlとをガラスビーカーに入れて、上記と同様に処理した場合、処理水の色相に変化がなかった。
一方、ウーロン茶希釈水335mlと、2個の炭/金属複合体用成型体(4)とをガラスビーカーに入れて、上記と同様に処理した場合、ウーロン茶希釈水335mlと、過酸化水素水85mlとをガラスビーカーに入れて、上記と同様に処理した場合、処理水の色相に変化がなかった。
以上の結果から、本発明の活性酸素種発生具から活性酸素種{ヒドロキシラジカル(・OH)}を発生し、このヒドロキシラジカルがウーロン茶に含まれるポリフェノール等の着色成分を酸化分解したものと考えられる。
Claims (8)
- 金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と;
過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種と;
水とを必須構成体として構成されることを特徴とする活性酸素種発生具。 - 金属(M)が、マグネシウム、アルミニウム、亜鉛、鉄、ニッケル、錫、鉛又は銅である請求項1に記載の活性酸素種発生具。
- 金属(M)が金属粒子(MP)であり、炭(C)が炭粒子(CP)である請求項1又は2に記載の活性酸素種発生具。
- 金属粒子(MP)に繊維状の金属粒子が含有する請求項3に記載の活性酸素種発生具。
- 炭粒子(CP)が縦型炭化炉で製造される炭粒子である請求項3又は4に記載の活性酸素種発生具。
- 金属(M)及び炭(C)を含有してなり、金属(M)と炭(C)とが接触してなる炭/金属複合体(MC)と、過酸化水素、次亜ハロゲン酸及び酸素からなる群より選ばれる少なくとも1種とを水の存在下で接触させて活性酸素種を発生させることを特徴とする活性酸素種の製造方法。
- 請求項1~5のいずれかに記載された活性酸素種発生具と有機物質とを接触させて酸化化合物を得る工程を含むことを特徴とする酸化化合物の製造方法。
- 請求項1~5のいずれかに記載された活性酸素種発生具と排水とを接触させる接触工程を含むことを特徴とする排水の処理方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013163696A JP2015030656A (ja) | 2013-08-07 | 2013-08-07 | 活性酸素種発生具 |
JP2013-163696 | 2013-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015020005A1 true WO2015020005A1 (ja) | 2015-02-12 |
Family
ID=52461337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070497 WO2015020005A1 (ja) | 2013-08-07 | 2014-08-04 | 活性酸素種発生具 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2015030656A (ja) |
WO (1) | WO2015020005A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105084512A (zh) * | 2015-08-12 | 2015-11-25 | 华中师范大学 | 利用堆肥产物合成的生物炭促进Fe(III)/H2O2体系修复有机物污染水体的方法 |
WO2018035882A1 (zh) * | 2016-08-25 | 2018-03-01 | 万华化学集团股份有限公司 | 一种用于催化氧化处理有机废水的催化剂及其制备方法和用途 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101657171B1 (ko) * | 2015-10-13 | 2016-09-19 | 이돈복 | 친환경 녹조 및 적조 제거제 그리고 이를 이용한 오염수역의 수질개선방법 |
JP7344576B2 (ja) * | 2021-04-07 | 2023-09-14 | Wef技術開発株式会社 | 気泡/金属イオン複合体の製造装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH091162A (ja) * | 1995-06-19 | 1997-01-07 | Kankyo Eng Kk | 排水の高度処理方法及び排水の酸化処理用触媒 |
JP2003080275A (ja) * | 2001-09-13 | 2003-03-18 | Nippon Shokubai Co Ltd | 水中の有機ハロゲン化合物の処理方法 |
US20050261153A1 (en) * | 2000-12-15 | 2005-11-24 | Morou Boukari | Disinfecting peroxosilicated compound with scale preventive effect, preparation method and use thereof |
JP2007215552A (ja) * | 2005-10-26 | 2007-08-30 | Mitsubishi Gas Chem Co Inc | 有機ハロゲン化合物の処理方法 |
JP2007330914A (ja) * | 2006-06-16 | 2007-12-27 | Japan Organo Co Ltd | 酸化性雰囲気水製造方法および装置並びに水処理方法および装置 |
US7855015B1 (en) * | 2003-04-17 | 2010-12-21 | University Of South Florida | Aluminum and solid alkali peroxide galvanic cell |
JP2011025160A (ja) * | 2009-07-24 | 2011-02-10 | Aoyama Eco System:Kk | 水処理用炭−金属複合体及び炭−金属複合体用成型体 |
-
2013
- 2013-08-07 JP JP2013163696A patent/JP2015030656A/ja active Pending
-
2014
- 2014-08-04 WO PCT/JP2014/070497 patent/WO2015020005A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH091162A (ja) * | 1995-06-19 | 1997-01-07 | Kankyo Eng Kk | 排水の高度処理方法及び排水の酸化処理用触媒 |
US20050261153A1 (en) * | 2000-12-15 | 2005-11-24 | Morou Boukari | Disinfecting peroxosilicated compound with scale preventive effect, preparation method and use thereof |
JP2003080275A (ja) * | 2001-09-13 | 2003-03-18 | Nippon Shokubai Co Ltd | 水中の有機ハロゲン化合物の処理方法 |
US7855015B1 (en) * | 2003-04-17 | 2010-12-21 | University Of South Florida | Aluminum and solid alkali peroxide galvanic cell |
JP2007215552A (ja) * | 2005-10-26 | 2007-08-30 | Mitsubishi Gas Chem Co Inc | 有機ハロゲン化合物の処理方法 |
JP2007330914A (ja) * | 2006-06-16 | 2007-12-27 | Japan Organo Co Ltd | 酸化性雰囲気水製造方法および装置並びに水処理方法および装置 |
JP2011025160A (ja) * | 2009-07-24 | 2011-02-10 | Aoyama Eco System:Kk | 水処理用炭−金属複合体及び炭−金属複合体用成型体 |
Non-Patent Citations (4)
Title |
---|
"Shiga no Osui Shori Gijutsu Kaigai e", CHUNICHI SHINBUN CHOKAN SHIGA SOGO, 6 November 2013 (2013-11-06), pages 21 * |
"Taryo no Kassei Sanso (OH Radical) ga Yukibutsu o Shunji ni Bunkai TERRAST REACTION (Terrast Hanno Shori", SHIGA MIZU KANKYO BUSINESS SEMINAR, 6 August 2013 (2013-08-06) * |
RUIPEREZ, F. ET AL.: "Pro-oxidant activity of aluminum: Promoting the Fenton reaction by reducing Fe(III) to Fe(II", JOURNAL OF INORGANIC BIOCHEMISTRY, vol. 117, 12 September 2012 (2012-09-12), pages 118 - 123 * |
YOHEI TARUZAKI ET AL.: "Kinzoku Aluminum o Mochiita Aluminum Ion Renzoku Kyokyuho no Kaihatsu", DAI 46 KAI JAPAN SOCIETY ON WATER ENVIRONMENT NENKAI KOENSHU, 14 March 2012 (2012-03-14) * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105084512A (zh) * | 2015-08-12 | 2015-11-25 | 华中师范大学 | 利用堆肥产物合成的生物炭促进Fe(III)/H2O2体系修复有机物污染水体的方法 |
WO2018035882A1 (zh) * | 2016-08-25 | 2018-03-01 | 万华化学集团股份有限公司 | 一种用于催化氧化处理有机废水的催化剂及其制备方法和用途 |
US11059033B2 (en) | 2016-08-25 | 2021-07-13 | Wanhua Chemical Group Co., Ltd. | Catalyst for catalytic oxidation treatment of organic wastewater, preparation method thereof, and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2015030656A (ja) | 2015-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Klidi et al. | Applicability of electrochemical methods to paper mill wastewater for reuse. Anodic oxidation with BDD and TiRuSnO2 anodes | |
Asgari et al. | Diuron degradation using three-dimensional electro-peroxone (3D/E-peroxone) process in the presence of TiO2/GAC: Application for real wastewater and optimization using RSM-CCD and ANN-GA approaches | |
Isarain-Chávez et al. | Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes | |
Zhou et al. | Degradation of organics in reverse osmosis concentrate by electro-Fenton process | |
Vasudevan et al. | Removal of NO3–from drinking water by electrocoagulation–an alternate approach | |
Malpass et al. | Recent advances on the use of active anodes in environmental electrochemistry | |
Zhang et al. | Efficient electrochemical degradation of tetrabromobisphenol A using MnO2/MWCNT composites modified Ni foam as cathode: Kinetic analysis, mechanism and degradation pathway | |
Asgari et al. | Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: Optimization of process parameters, electrical energy consumption and degradation pathway | |
Vasudevan et al. | Studies relating to an electrochemically assisted coagulation for the removal of chromium from water using zinc anode | |
WO2015020005A1 (ja) | 活性酸素種発生具 | |
Mesones et al. | Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor | |
CN104628200B (zh) | 一种利用光电组合技术处理有机废水的方法 | |
Tian et al. | Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation | |
Vasudevan | Effects of alternating current (AC) and direct current (DC) in electrocoagulation process for the removal of iron from water | |
Pham et al. | Visible-light photocatalysis of Ag-doped graphitic carbon nitride for photodegradation of micropollutants in wastewater | |
Zhang et al. | Recovery of phosphorus from hypophosphite-laden wastewater: A single-compartment photoelectrocatalytic cell system integrating oxidation and precipitation | |
Chen et al. | Enhanced fenton-like catalytic activity and stability of g-c3n4 nanosheet-wrapped copper phosphide with strong anti-interference ability: Kinetics and mechanistic study | |
Souza et al. | Effects of coupling hybrid processes on the treatment of wastewater containing a commercial mixture of diuron and hexazinone herbicides | |
Ni et al. | A novel electrocatalytic system with high reactive chlorine species utilization capacity to degrade tetracycline in marine aquaculture wastewater | |
de Freitas et al. | Photoelectrocatalytic degradation of camphor on TiO 2/RuO 2 electrodes | |
Kornienko et al. | Use of aqueous hydrogen peroxide solutions prepared by cathodic reduction of oxygen for indirect oxidation of chemical substances in situ: achievements and prospects | |
Zhuang et al. | Advanced Treatment of Paper-Making Wastewater Using Catalytic Ozonation with Waste Rice Straw-Derived Activated Carbon-Supported Manganese Oxides as a Novel and Efficient Catalyst. | |
Adish Kumar et al. | Synergistic degradation of hospital wastewater by solar/TiO2/Fe2+/H2O2 process | |
Tran et al. | Hydrogen production from the tannery wastewater treatment by using agriculture supports membrane/adsorbents electrochemical system | |
Oriol et al. | Paired electrochemical removal of nitrate and terbuthylazine pesticide from groundwater using mesh electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14835009 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14835009 Country of ref document: EP Kind code of ref document: A1 |