WO2015019803A1 - Flywheel regeneration system, and method of controlling same - Google Patents

Flywheel regeneration system, and method of controlling same Download PDF

Info

Publication number
WO2015019803A1
WO2015019803A1 PCT/JP2014/068792 JP2014068792W WO2015019803A1 WO 2015019803 A1 WO2015019803 A1 WO 2015019803A1 JP 2014068792 W JP2014068792 W JP 2014068792W WO 2015019803 A1 WO2015019803 A1 WO 2015019803A1
Authority
WO
WIPO (PCT)
Prior art keywords
flywheel
clutch
regeneration system
rotational speed
transmission
Prior art date
Application number
PCT/JP2014/068792
Other languages
French (fr)
Japanese (ja)
Inventor
嘉裕 倉橋
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2015019803A1 publication Critical patent/WO2015019803A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • B60K6/105Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel the accumulator being a flywheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/08Prime-movers comprising combustion engines and mechanical or fluid energy storing means
    • B60K6/10Prime-movers comprising combustion engines and mechanical or fluid energy storing means by means of a chargeable mechanical accumulator, e.g. flywheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a flywheel regeneration system and a control method thereof.
  • JP2012-516417A has a flywheel that can be connected / disconnected by a flywheel clutch on the input shaft of the transmission, and when the vehicle decelerates, the flywheel clutch is engaged and the flywheel is rotated by the rotation input from the drive wheels,
  • a flywheel regenerative system for converting vehicle kinetic energy into flywheel kinetic energy is disclosed.
  • flywheel regeneration system if the flywheel clutch is released, the regenerated kinetic energy can be stored in the flywheel, and if the flywheel clutch is engaged during start-up or acceleration, it is stored in the flywheel.
  • the released kinetic energy can be released and used for starting and accelerating the vehicle.
  • the flywheel may release kinetic energy even in a scene where regeneration is performed by the flywheel. For example, the vehicle may accelerate even though the driver has depressed the brake pedal to request deceleration. As described above, when the engagement and release of the flywheel clutch are not properly performed, there is a problem that the driver feels uncomfortable.
  • the present invention solves such problems, and aims to prevent the driver from feeling uncomfortable when regenerating with a flywheel.
  • a flywheel regeneration system is provided between a flywheel that can be engaged with an input shaft side of a transmission, the flywheel and the transmission, and power between the flywheel and the transmission.
  • a flywheel clutch that connects and disconnects transmission, and that engages the flywheel clutch when the vehicle decelerates and regenerates the flywheel by rotating the flywheel with the kinetic energy during deceleration.
  • Clutch control means for releasing the flywheel clutch by determining the timing for releasing the flywheel clutch based on the amount of change in the rotation speed of the flywheel per unit time when the rotation speed of the flywheel is increased. Is provided.
  • a control method of a flywheel regeneration system is provided between a flywheel that can be engaged with an input shaft side of a transmission, the flywheel and the transmission, and the flywheel and the transmission And a flywheel clutch that connects and disconnects the power transmission between the vehicle and the flywheel clutch that engages the flywheel clutch when the vehicle decelerates and controls the flywheel regeneration system that regenerates by rotating the flywheel with the kinetic energy during deceleration
  • a method for controlling a wheel regeneration system in which a flywheel clutch is engaged, and when the rotational speed of the flywheel increases, the flywheel clutch is released based on the amount of change in the rotational speed of the flywheel per unit time. Determine the timing and release the flywheel clutch based on the determined timing .
  • the flywheel clutch when regeneration is performed by the flywheel, the flywheel clutch can be appropriately released based on the amount of change in the rotational speed of the flywheel, and the driver can be prevented from feeling uncomfortable. it can.
  • FIG. 1 is a schematic configuration diagram of a vehicle in the first embodiment.
  • FIG. 2 is a diagram showing changes in the angular velocity and angular acceleration of the flywheel during regeneration.
  • FIG. 3 is a flowchart for explaining the release control of the flywheel clutch in the first embodiment.
  • FIG. 4 is a map showing the relationship between the required deceleration and the first predetermined angular acceleration.
  • FIG. 5 is a flowchart for explaining the release control of the flywheel clutch in the second embodiment.
  • FIG. 6 is a flowchart for explaining the release control of the flywheel clutch in the third embodiment.
  • FIG. 7 is a map showing the relationship between the angular acceleration and angular velocity of the flywheel and the output power of the vehicle in the third embodiment.
  • FIG. 8 is a map showing the relationship between the required deceleration and the second predetermined angular acceleration in the third embodiment.
  • FIG. 1 shows an overall configuration of a vehicle 100 including a flywheel regeneration system according to a first embodiment of the present invention.
  • the vehicle 100 decelerates the output rotation of the engine 1 as a power source, a flywheel 2 for regeneration, a continuously variable transmission (hereinafter referred to as CVT) 3 that continuously changes the output rotation of the engine 1, and the CVT 3.
  • CVT continuously variable transmission
  • a final reduction gear 4, a differential 5, left and right drive wheels 6, a hydraulic circuit 7, and a controller 8 are provided.
  • the engine clutch CL1 is provided between the engine 1 and the input shaft 3in of the CVT 3.
  • the engine clutch CL1 is a hydraulic clutch capable of controlling the fastening torque capacity with supplied hydraulic pressure.
  • a start clutch CL2 is provided between the CVT 3 and the final speed reducer 4 to transmit the rotation from the engine 1 or the flywheel 2 input through the CVT 3 to the final speed reducer 4 when starting.
  • the starting clutch CL2 is a hydraulic clutch capable of controlling the fastening torque capacity by the supplied hydraulic pressure.
  • the oil pump 10 is connected to the input shaft 3in of the CVT 3 via a belt, gear, etc. (not shown).
  • the oil pump 10 is a gear pump type or vane pump type oil pump that generates hydraulic pressure when the input shaft 3in of the CVT 3 rotates.
  • the hydraulic pressure generated by the oil pump 10 is sent to the hydraulic circuit 7 and supplied from the hydraulic circuit 7 to the pulley of the CVT 3, the engine clutch CL1, and the starting clutch CL2.
  • flywheel 2 can be engaged with the input shaft 3 in of the CVT 3 via a pair of reduction gear trains 11 and 12 and a flywheel clutch CLfw.
  • the flywheel 2 is a metal cylinder or disk, and is housed in a container that is vacuumed or decompressed to reduce windage loss during rotation.
  • a flywheel clutch CLfw is provided between the reduction gear train 11 and the reduction gear train 12.
  • the flywheel clutch CLfw is an electric clutch that can be switched between engagement and disengagement by the clutch actuator 13, and connects and disconnects power transmission between the flywheel 2 and the input shaft 3in of the CVT 3.
  • An electric oil pump may be provided instead of the clutch actuator 13, and the flywheel clutch CLfw may be a hydraulic clutch capable of controlling the fastening torque capacity by the hydraulic pressure generated by the electric oil pump.
  • the hydraulic circuit 7 is configured by a solenoid valve or the like that operates in response to a signal from a controller 8 described later, and is connected to the CVT 3, the engine clutch CL1, the start clutch CL2, and the oil pump 10 through an oil passage.
  • the hydraulic circuit 7 generates the hydraulic pressure required by the pulley of the CVT 3, the engine clutch CL 1, and the start clutch CL 2 using the hydraulic pressure generated by the oil pump 10 as a source pressure, and the generated hydraulic pressure is generated by the pulley of the CVT 3, the engine clutch CL 1, and Supply to start clutch CL2.
  • the brake 14 is an electronically controlled brake in which the brake pedal 15 and the master cylinder 16 are mechanically independent.
  • the brake actuator 17 displaces the piston of the master cylinder 16, and hydraulic pressure corresponding to the required deceleration (deceleration requested by the driver, the same applies hereinafter) is supplied to the brake 14. Power is generated.
  • the brake 14 is also provided on the driven wheel.
  • the controller 8 includes a CPU, a RAM, an input / output interface, and the like.
  • the controller 8 includes a rotation speed sensor 21 that detects the rotation speed of the engine 1, and a rotation speed sensor 22 that detects the rotation speed Nin of the input shaft 3in of the CVT 3. , A rotational speed sensor 23 for detecting the rotational speed Nfw of the flywheel 2, a vehicle speed sensor 24 for detecting the vehicle speed VSP, an accelerator opening sensor 26 for detecting the opening APO of the accelerator pedal 25, and the depression amount of the brake pedal 15 by the driver And the signal from the brake sensor 27 etc. which detects depression acceleration is input.
  • the controller 8 performs various calculations based on the input signal, and controls the shift of the CVT 3, the engagement / release of the clutches CL1, CL2, and CLfw, and the brake actuator 17. In particular, when the driver depresses the brake pedal 15 and the vehicle 100 decelerates, the controller 8 fastens the flywheel clutch CLfw, rotates the flywheel 2 by the rotation input from the drive wheels 6, and the vehicle 100 The kinetic energy of the vehicle 100 is regenerated by converting the kinetic energy it has into the kinetic energy of the flywheel 2.
  • the controller 8 controls the engagement torque capacity of the flywheel clutch CLfw so that a braking force (regenerative braking) corresponding to the required deceleration is obtained.
  • the controller 8 operates the brake actuator 17 to increase the braking force of the brake 14 to reduce the request. Let speed be realized.
  • the regenerated kinetic energy can be stored in the flywheel 2 by releasing the flywheel clutch CLfw. If the flywheel clutch CLfw is engaged in a state where kinetic energy is stored in the flywheel 2, the kinetic energy stored in the flywheel 2 can be used for starting and acceleration of the vehicle 100.
  • FIG. 2 is a diagram showing changes in angular velocity (rotational speed) and angular acceleration (amount of change in rotational speed per unit time of the flywheel 2) of the flywheel 2 since the start of deceleration.
  • FIG. 2 shows, as an example, changes in the angular velocity and angular acceleration of the flywheel 2 with respect to three required decelerations.
  • the angular velocity of the flywheel 2 gradually increases when regeneration is started, and reaches the maximum angular velocity when the time t1 has elapsed.
  • the timing at which the maximum angular velocity is reached is, for example, when the gear ratio of CVT 3 is at the lowest level. Since the vehicle 100 is decelerating, the rotational speed of the input shaft 3in of the CVT 3 may be made higher than the rotational speed when the speed becomes the lowest after the gear ratio becomes the lowest after the regeneration is started. Can not. Therefore, the angular speed of the flywheel 2 cannot be made higher than the angular speed when the gear ratio is at the lowest level. As described above, during regeneration, the angular velocity of the flywheel 2 becomes maximum at a certain timing and cannot be further increased. The angular acceleration gradually decreases when regeneration is started, and thereafter becomes negative when the angular velocity reaches the maximum angular velocity.
  • release control of the flywheel clutch CLfw described below is performed.
  • release control of the flywheel clutch CLfw before the angular acceleration of the flywheel 2 becomes negative, the fastening torque capacity of the flywheel clutch CLfw is made zero, and at the timing when the angular acceleration of the flywheel 2 becomes zero, the flywheel 2 The wheel clutch CLfw is completely released.
  • release control of the flywheel clutch CLfw will be described using the flowchart of FIG.
  • the process described below is repeatedly executed every predetermined short time (for example, 100 ms).
  • step S100 the controller 8 detects the angular speed of the flywheel 2 based on the signal from the rotational speed sensor 23.
  • step S101 the controller 8 calculates the angular acceleration of the flywheel 2 based on the detected angular velocity.
  • step S102 the controller 8 calculates a first predetermined angular acceleration (predetermined amount) based on the requested deceleration. Specifically, the controller 8 calculates the first predetermined angular acceleration based on the requested deceleration from the map shown in FIG. The first predetermined angular acceleration increases as the required deceleration increases. The required deceleration is calculated based on the depression amount of the brake pedal 15 based on the signal from the brake sensor 27, and it is determined that the required deceleration is large when the depression amount of the brake pedal 15 increases. A plurality of maps shown in FIG. 4 are provided according to the vehicle speed VSP. The first predetermined angular acceleration may be calculated based on the depression speed of the brake pedal 15.
  • the time required for releasing the flywheel clutch CLfw (hereinafter referred to as the clutch) than the time during which the angular acceleration of the flywheel 2 becomes zero during regeneration (for example, the time t1 in FIG. 2, hereinafter referred to as the clutch release completion time).
  • the release time is referred to as “release time.”
  • a timing that takes into account the measurement accuracy of the rotational speed sensor 23 and variations in the flywheel clutch CLfw for example, a time earlier than a time t0 in FIG. 2 by a predetermined time (hereinafter referred to as margin time)).
  • the kinetic energy is further prevented from being released from the flywheel 2 by adding a predetermined angular acceleration. Can do.
  • the angular acceleration is set in consideration of the clutch release time and the margin time, and the first predetermined angular acceleration is set by adding a predetermined angular acceleration to the set angular acceleration.
  • step S103 the controller 8 determines whether or not the angular acceleration is equal to or lower than the first predetermined angular acceleration. If the angular acceleration is equal to or lower than the first predetermined angular acceleration, the process proceeds to step S104. If the angular acceleration is greater than the first predetermined angular acceleration, the current process ends.
  • step S104 the controller 8 starts releasing the flywheel clutch CLfw. Thereby, before the angular acceleration of the flywheel 2 becomes negative, the engagement torque capacity of the flywheel clutch CLfw is made zero, the flywheel clutch CLfw is completely released, and kinetic energy is released from the flywheel 2 during deceleration. Can be suppressed.
  • the vehicle 100 By releasing the flywheel clutch CLfw before the angular acceleration of the flywheel 2 becomes negative, the vehicle 100 is prevented from accelerating despite a request for deceleration, and the driver feels uncomfortable. Can be suppressed.
  • the release of the flywheel clutch CLfw is started, so that the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes zero, and the deceleration Despite being requested, the vehicle 100 can be prevented from accelerating, and the driver can be prevented from feeling uncomfortable.
  • the flywheel clutch CLfw can be released at an appropriate timing according to the required deceleration, and the vehicle 100 is prevented from accelerating when requested to decelerate. And it can suppress giving a driver a sense of incongruity.
  • the release control of the flywheel clutch CLfw at the time of regeneration is different from the first embodiment.
  • the release control of the flywheel clutch CLfw during regeneration will be described with reference to the flowchart of FIG. The process described below is repeatedly executed every predetermined time.
  • step S200 the controller 8 acquires parameter values necessary for predicting a change in the angular acceleration of the flywheel 2 in accordance with the current driving state of the vehicle 100.
  • the parameters are, for example, the vehicle speed VSP, the flywheel 2 angular velocity, the required deceleration, the travel resistance estimation value (gradient resistance, air resistance, etc.), the flywheel 2 rotational resistance (windage loss, etc.), and the flywheel 2 inertia.
  • step S201 the controller 8 calculates an estimation function for predicting a change in angular acceleration of the flywheel 2 in the current driving state of the vehicle 100 based on the acquired parameter value.
  • the estimation function for predicting the change in the angular acceleration of the flywheel 2 is set in advance.
  • the change in the angular acceleration of the flywheel 2 in the current driving state of the vehicle 100 is predicted using the acquired parameter value.
  • An estimation function is calculated.
  • step S202 the controller 8 calculates a first time (predetermined time) tFWmax when the angular acceleration of the flywheel 2 becomes zero based on the calculated estimation function.
  • step S203 the controller 8 calculates the second time tLow when the speed ratio becomes the lowest based on the current speed ratio.
  • step S204 the controller 8 compares the first time tFWmax and the second time tLow, and sets the shorter time as the clutch release completion time.
  • step S205 the controller 8 calculates the clutch release start time by subtracting the clutch release time and the margin time from the clutch release completion time.
  • step S206 the controller 8 acquires the limit change amount of each parameter from a preset table or map.
  • the limit change amount of each parameter is a change amount that can be determined to be an operation state in which the estimation function set in step S201 cannot be used. For example, when the vehicle is decelerating, the vehicle 100 is traveling. This is the amount of change that determines that the slope of the road surface has suddenly increased.
  • step S207 the controller 8 compares the limit change amount of each parameter with the change amount of each parameter. If there is a change amount exceeding the limit change amount among the change amounts of each parameter, the process proceeds to step S209, and if the change amount does not exceed the limit change amount for all parameters, the process proceeds to step S208. move on.
  • step S208 the controller 8 determines whether or not the time from the start of regeneration has reached the clutch release start time. If the time since the start of regeneration is the clutch release time, the process proceeds to step S209. If the time since the start of regeneration is not the clutch release time, the current process is terminated. Note that the time from the start of regeneration is measured by the controller 8.
  • step S209 the controller 8 starts releasing the flywheel clutch CLfw.
  • a first time tFWmax at which the angular acceleration of the flywheel 2 becomes zero is calculated based on a parameter value corresponding to the current driving state of the vehicle 100 such as required deceleration, and a clutch release start time based on the first time tFWmax. Then, release of the flywheel clutch CLfw is started. Thereby, compared with the first embodiment, a map for calculating the first angular acceleration becomes unnecessary, and the storage capacity in the controller 8 can be reduced.
  • the angular acceleration of the flywheel 2 may become negative and kinetic energy may be released from the flywheel 2 before the gear ratio of the CVT 3 becomes the lowest.
  • the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative, and the vehicle 100 is accelerated even though a deceleration request is made. Can be suppressed, and the driver can be prevented from feeling uncomfortable.
  • the predetermined angular acceleration when calculating the first predetermined angular acceleration, the predetermined angular acceleration is added in consideration of a mechanical delay or the like when the required deceleration increases during deceleration. , Taking a big safety bill. For this reason, even if the flywheel 2 actually has room for storing kinetic energy, regeneration may end.
  • a first time tFWmax for releasing the flywheel clutch CLfw is calculated using an estimation function that predicts a change in angular acceleration of the flywheel 2 in the current driving state of the vehicle 100, and based on the first time tFWmax. The flywheel clutch CLfw is released.
  • the safety allowance is reduced compared to the first embodiment without considering the mechanical delay when the required deceleration increases during deceleration, and the kinetic energy that can be stored in the flywheel 2 is the first.
  • the size can be increased as compared with the embodiment.
  • the second time tLow when the gear ratio of the CVT 3 is the lowest is calculated, and the release of the flywheel clutch CLfw is started when the clutch release start time based on the second time tLow is reached.
  • the gear ratio becomes the lowest
  • the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative, and the vehicle 100 accelerates despite the request for deceleration. Can be suppressed, and the driver can be prevented from feeling uncomfortable.
  • the second time tLow when the gear ratio of the CVT 3 becomes the lowest is calculated.
  • the actual gear ratio is detected, and the flyback speed before the gear ratio becomes the lowest is calculated based on the detected gear ratio. Release of the wheel clutch CLfw may be started. Also by this, the same effect as this embodiment can be acquired.
  • the release control of the flywheel clutch CLfw at the time of regeneration is different from the first embodiment.
  • the release control of the flywheel clutch CLfw during regeneration will be described using the flowchart of FIG. The process described below is repeatedly executed every predetermined time.
  • step S300 the controller 8 calculates an estimation function of the angular acceleration of the flywheel 2.
  • the estimation function of the angular acceleration of the flywheel 2 is calculated based on the equation of kinetic energy stored in the flywheel 2.
  • the kinetic energy K FW stored in the flywheel 2 can be expressed by Equation (1).
  • K FW (I FW ⁇ ⁇ FW 2 ) / 2 (1)
  • I FW is the moment of inertia of the flywheel 2 and is preset.
  • ⁇ FW is the angular velocity of the flywheel 2.
  • Equation (2) is transformed into Equation (3).
  • the controller 8 calculates an estimation function of the angular acceleration ⁇ FW of the flywheel 2.
  • the angular acceleration ⁇ FW of the flywheel 2 decreases as the angular velocity ⁇ FW of the flywheel 2 increases, and increases as the output power P car of the vehicle 100 increases.
  • the output power P car of the vehicle 100 is calculated based on the weight of the vehicle 100, the vehicle speed VSP, and the deceleration of the vehicle 100.
  • step S301 the controller 8 calculates a second predetermined angular acceleration based on the required deceleration. Specifically, the controller 8 calculates the second predetermined angular acceleration based on the requested deceleration from the map shown in FIG.
  • the second predetermined angular acceleration is a clutch release time and a margin time without considering a mechanical delay or the like when the required deceleration increases during deceleration with respect to the first predetermined angular acceleration of the first embodiment. Is set based on This is because in the present embodiment, an estimation function of the angular acceleration of the flywheel 2 corresponding to the current driving state of the vehicle 100 is calculated. For example, when the required deceleration increases during deceleration, This is because an estimation function corresponding to the increased deceleration is calculated.
  • step S302 the controller 8 calculates a clutch release start time when the angular acceleration becomes the second predetermined angular acceleration from the equation (3) and the second predetermined angular acceleration.
  • step S303 the controller 8 acquires the limit change amount of each parameter from a preset table or map.
  • the limit change amount of each parameter is a change amount that can be determined as an operation state in which the estimation function cannot be used.
  • step S304 the controller 8 compares the limit change amount of each parameter in the angular acceleration estimation function with the change amount of each parameter. If there is a change amount exceeding the limit change amount among the change amounts of each parameter, the process proceeds to step S306, and if the change amount does not exceed the limit change amount for all parameters, the process proceeds to step S305.
  • step S305 the controller 8 determines whether the time from the start of regeneration is the clutch release start time. When the time since the start of regeneration is the clutch release start time, the process proceeds to step S306, and when the time since the start of regeneration is not the clutch release start time, the current process ends.
  • step S306 the controller 8 starts releasing the flywheel clutch CLfw.
  • the clutch release start time is calculated based on the estimation function of the angular acceleration of the flywheel 2 based on the input power P FW of the flywheel 2 and the second predetermined angular acceleration based on the requested deceleration.
  • the clutch release start time is reached.
  • Release of the flywheel clutch CLfw is started.
  • the release of the flywheel clutch CLfw can be started using an easy calculation formula, and the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative. Nevertheless, the acceleration of the vehicle 100 can be suppressed, and the driver can be prevented from feeling uncomfortable.
  • the processing speed of the controller 8 can be increased.
  • the second predetermined angular acceleration can be set without considering the mechanical delay or the like when the required deceleration increases during deceleration. Compared with the embodiment, the kinetic energy that can be stored in the flywheel 2 can be increased.
  • the second predetermined angular acceleration is calculated in consideration of the clutch release time and the margin time.
  • the second predetermined angular acceleration is calculated without taking these into account, and the calculated first equation (3) is calculated.
  • the clutch release start time may be calculated by subtracting the clutch release time and the margin time from the time calculated based on the predetermined angular acceleration. Also by this, the same effect as this embodiment can be acquired.
  • the controller 8 determines the lower limit kinetic energy that can be recovered from the vehicle 100 based on the kinetic energy that the vehicle 100 has, specifically, the CVT 3 by the oil pump 10. Even if the time until the kinetic energy corresponding to the vehicle speed that is the lower limit rotational speed of the input shaft 3in that can discharge the necessary hydraulic pressure with a pulley or the like is calculated and the clutch release start time is calculated based on the calculated time Good. Even if regeneration is possible by the flywheel 2, if the rotational speed of the input shaft 3in is low and the discharge pressure of the oil pump 10 is too low, it may not be possible to supply the necessary hydraulic pressure to the pulley of the CVT 3. Here, in such a case, by releasing the flywheel clutch CLfw, in addition to the effects in the above-described embodiment, it is possible to suppress the supply hydraulic pressure shortage to the pulley of the CVT 3 and the like.
  • the flywheel clutch CLfw may be released during regeneration by combining the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A flywheel regeneration system is provided with a flywheel engageable with the input shaft side of a transmission, and a clutch that connects or disconnects power transmission between the flywheel and the transmission. When the vehicle decelerates, the flywheel clutch is engaged to perform regeneration. The system is provided with a clutch control means that, when the flywheel clutch is engaged and the rotation speed of the flywheel is increased, determines the timing for disengaging the flywheel clutch on the basis of the amount of change in the rotation speed of the flywheel per unit time, and that then disengages the flywheel clutch.

Description

フライホイール回生システム及びその制御方法Flywheel regeneration system and control method thereof
 本発明はフライホイール回生システム及びその制御方法に関するものである。 The present invention relates to a flywheel regeneration system and a control method thereof.
 車両の燃費・電費を向上させるには、車両が減速する時に車両の運動エネルギーを電気的又は機械的に回生し、回生したエネルギーを発進時や加速時に利用するのが有効である。 In order to improve the fuel consumption and electricity consumption of the vehicle, it is effective to regenerate the kinetic energy of the vehicle electrically or mechanically when the vehicle decelerates and use the regenerated energy at the start or acceleration.
 JP2012-516417Aは、変速機の入力軸にフライホイールクラッチによって断接可能なフライホイールを設け、車両が減速する時にフライホイールクラッチを締結して駆動輪から入力される回転でフライホイールを回転させ、車両の運動エネルギーをフライホイールの運動エネルギーに変換するフライホイール回生システムを開示している。 JP2012-516417A has a flywheel that can be connected / disconnected by a flywheel clutch on the input shaft of the transmission, and when the vehicle decelerates, the flywheel clutch is engaged and the flywheel is rotated by the rotation input from the drive wheels, A flywheel regenerative system for converting vehicle kinetic energy into flywheel kinetic energy is disclosed.
 このようなフライホイール回生システムにおいては、フライホイールクラッチを解放すれば回生した運動エネルギーをフライホイールに保存することができ、また、発進時や加速時にフライホイールクラッチを締結すれば、フライホイールに保存された運動エネルギーを放出させ、車両の発進や加速に利用することができる。 In such a flywheel regeneration system, if the flywheel clutch is released, the regenerated kinetic energy can be stored in the flywheel, and if the flywheel clutch is engaged during start-up or acceleration, it is stored in the flywheel. The released kinetic energy can be released and used for starting and accelerating the vehicle.
 しかし、上記するフライホイール回生システムでは、フライホイールクラッチの締結や解放が適切に行われないと、フライホイールによって回生を行うシーンであっても、フライホイールが運動エネルギーを放出するおそれがある。例えば運転者がブレーキペダルを踏み込んで減速要求がされているにもかかわらず、車両が加速するおそれがある。このようにフライホイールクラッチの締結や解放が適切に行われない場合には、運転者に違和感を与える、といった問題点がある。 However, in the above flywheel regeneration system, if the flywheel clutch is not properly engaged and released, the flywheel may release kinetic energy even in a scene where regeneration is performed by the flywheel. For example, the vehicle may accelerate even though the driver has depressed the brake pedal to request deceleration. As described above, when the engagement and release of the flywheel clutch are not properly performed, there is a problem that the driver feels uncomfortable.
 本発明はこのような問題点を解決するものであり、フライホイールによって回生する場合に、運転者に違和感を与えないことを目的とする。 The present invention solves such problems, and aims to prevent the driver from feeling uncomfortable when regenerating with a flywheel.
 本発明のある態様に係るフライホイール回生システムは、変速機の入力軸側に係合可能なフライホイールと、フライホイールと変速機との間に設けられ、フライホイールと変速機との間の動力伝達を断接するフライホイールクラッチとを備え、車両が減速する時にフライホイールクラッチを締結し、減速時の運動エネルギーでフライホイールを回転させて回生を行うフライホイール回生システムであって、フライホイールクラッチを締結し、フライホイールの回転速度が増加する場合に、フライホイールの単位時間あたりの回転速度の変化量に基づいて、フライホイールクラッチを解放するタイミングを決定し、フライホイールクラッチを解放するクラッチ制御手段を備える。 A flywheel regeneration system according to an aspect of the present invention is provided between a flywheel that can be engaged with an input shaft side of a transmission, the flywheel and the transmission, and power between the flywheel and the transmission. A flywheel clutch that connects and disconnects transmission, and that engages the flywheel clutch when the vehicle decelerates and regenerates the flywheel by rotating the flywheel with the kinetic energy during deceleration. Clutch control means for releasing the flywheel clutch by determining the timing for releasing the flywheel clutch based on the amount of change in the rotation speed of the flywheel per unit time when the rotation speed of the flywheel is increased. Is provided.
 本発明の別の態様に係るフライホイール回生システムの制御方法は、変速機の入力軸側に係合可能なフライホイールと、フライホイールと変速機との間に設けられ、フライホイールと変速機との間の動力伝達を断接するフライホイールクラッチとを備え、車両が減速する時にフライホイールクラッチを締結し、減速時の運動エネルギーでフライホイールを回転させて回生を行うフライホイール回生システムを制御するフライホイール回生システムの制御方法であって、フライホイールクラッチを締結し、フライホイールの回転速度が増加する場合に、フライホイールの単位時間あたりの回転速度の変化量に基づいて、フライホイールクラッチを解放するタイミングを決定し、決定したタイミングに基づいてフライホイールクラッチを解放する。 A control method of a flywheel regeneration system according to another aspect of the present invention is provided between a flywheel that can be engaged with an input shaft side of a transmission, the flywheel and the transmission, and the flywheel and the transmission And a flywheel clutch that connects and disconnects the power transmission between the vehicle and the flywheel clutch that engages the flywheel clutch when the vehicle decelerates and controls the flywheel regeneration system that regenerates by rotating the flywheel with the kinetic energy during deceleration A method for controlling a wheel regeneration system, in which a flywheel clutch is engaged, and when the rotational speed of the flywheel increases, the flywheel clutch is released based on the amount of change in the rotational speed of the flywheel per unit time. Determine the timing and release the flywheel clutch based on the determined timing .
 これらの態様によると、フライホイールによって回生を行う場合に、フライホイールの回転速度の変化量に基づいてフライホイールクラッチを適切に解放することができ、運転者に違和感を与えることを抑制することができる。 According to these aspects, when regeneration is performed by the flywheel, the flywheel clutch can be appropriately released based on the amount of change in the rotational speed of the flywheel, and the driver can be prevented from feeling uncomfortable. it can.
図1は第1実施形態における車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle in the first embodiment. 図2は回生時におけるフライホイールの角速度と角加速度との変化を示す図である。FIG. 2 is a diagram showing changes in the angular velocity and angular acceleration of the flywheel during regeneration. 図3は第1実施形態におけるフライホイールクラッチの解放制御を説明するフローチャートである。FIG. 3 is a flowchart for explaining the release control of the flywheel clutch in the first embodiment. 図4は要求減速度と第1所定角加速度との関係を示すマップである。FIG. 4 is a map showing the relationship between the required deceleration and the first predetermined angular acceleration. 図5は第2実施形態におけるフライホイールクラッチの解放制御を説明するフローチャートである。FIG. 5 is a flowchart for explaining the release control of the flywheel clutch in the second embodiment. 図6は第3実施形態におけるフライホイールクラッチの解放制御を説明するフローチャートである。FIG. 6 is a flowchart for explaining the release control of the flywheel clutch in the third embodiment. 図7は第3実施形態におけるフライホイールの角加速度と角速度と車両の出力パワーとの関係を示すマップである。FIG. 7 is a map showing the relationship between the angular acceleration and angular velocity of the flywheel and the output power of the vehicle in the third embodiment. 図8は第3実施形態における要求減速度と第2所定角加速度との関係を示すマップである。FIG. 8 is a map showing the relationship between the required deceleration and the second predetermined angular acceleration in the third embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本発明の第1実施形態に係るフライホイール回生システムを備えた車両100の全体構成を示している。 FIG. 1 shows an overall configuration of a vehicle 100 including a flywheel regeneration system according to a first embodiment of the present invention.
 車両100は、動力源としてのエンジン1と、回生用のフライホイール2と、エンジン1の出力回転を無段階に変速する無段変速機(以下、CVT)3と、CVT3の出力回転を減速する終減速装置4と、差動装置5と、左右の駆動輪6と、油圧回路7と、コントローラ8とを備えている。 The vehicle 100 decelerates the output rotation of the engine 1 as a power source, a flywheel 2 for regeneration, a continuously variable transmission (hereinafter referred to as CVT) 3 that continuously changes the output rotation of the engine 1, and the CVT 3. A final reduction gear 4, a differential 5, left and right drive wheels 6, a hydraulic circuit 7, and a controller 8 are provided.
 エンジン1とCVT3の入力軸3inとの間には、エンジンクラッチCL1が設けられている。エンジンクラッチCL1は、供給される油圧によって締結トルク容量を制御可能な油圧式クラッチである。 The engine clutch CL1 is provided between the engine 1 and the input shaft 3in of the CVT 3. The engine clutch CL1 is a hydraulic clutch capable of controlling the fastening torque capacity with supplied hydraulic pressure.
 CVT3と終減速装置4の間には、発進時に締結され、CVT3を介して入力されるエンジン1又はフライホイール2からの回転を終減速装置4に伝達する発進クラッチCL2が設けられている。発進クラッチCL2は、供給される油圧によって締結トルク容量を制御可能な油圧式クラッチである。 A start clutch CL2 is provided between the CVT 3 and the final speed reducer 4 to transmit the rotation from the engine 1 or the flywheel 2 input through the CVT 3 to the final speed reducer 4 when starting. The starting clutch CL2 is a hydraulic clutch capable of controlling the fastening torque capacity by the supplied hydraulic pressure.
 CVT3の入力軸3inには図示しないベルト、ギヤ等を介してオイルポンプ10が接続されている。オイルポンプ10は、CVT3の入力軸3inが回転すると油圧を発生させるギヤポンプ式又はベーンポンプ式のオイルポンプである。オイルポンプ10で発生した油圧は油圧回路7へ送られ、油圧回路7からCVT3のプーリ、エンジンクラッチCL1、発進クラッチCL2に供給される。 The oil pump 10 is connected to the input shaft 3in of the CVT 3 via a belt, gear, etc. (not shown). The oil pump 10 is a gear pump type or vane pump type oil pump that generates hydraulic pressure when the input shaft 3in of the CVT 3 rotates. The hydraulic pressure generated by the oil pump 10 is sent to the hydraulic circuit 7 and supplied from the hydraulic circuit 7 to the pulley of the CVT 3, the engine clutch CL1, and the starting clutch CL2.
 CVT3の入力軸3inには、さらに、一対の減速ギヤ列11、12及びフライホイールクラッチCLfwを介してフライホイール2が係合可能となっている。フライホイール2は、金属製の円筒体又は円盤であり、回転時の風損を低減するために真空又は減圧された容器内に収容されている。 Further, the flywheel 2 can be engaged with the input shaft 3 in of the CVT 3 via a pair of reduction gear trains 11 and 12 and a flywheel clutch CLfw. The flywheel 2 is a metal cylinder or disk, and is housed in a container that is vacuumed or decompressed to reduce windage loss during rotation.
 減速ギヤ列11と減速ギヤ列12との間にはフライホイールクラッチCLfwが設けられている。フライホイールクラッチCLfwは、クラッチアクチュエータ13によって締結・解放を切り換えることのできる電動クラッチであり、フライホイール2とCVT3の入力軸3inとの間の動力伝達を断接する。クラッチアクチュエータ13に代えて電動オイルポンプを設け、フライホイールクラッチCLfwを、電動オイルポンプで発生した油圧によって締結トルク容量を制御可能な油圧式クラッチとしてもよい。 A flywheel clutch CLfw is provided between the reduction gear train 11 and the reduction gear train 12. The flywheel clutch CLfw is an electric clutch that can be switched between engagement and disengagement by the clutch actuator 13, and connects and disconnects power transmission between the flywheel 2 and the input shaft 3in of the CVT 3. An electric oil pump may be provided instead of the clutch actuator 13, and the flywheel clutch CLfw may be a hydraulic clutch capable of controlling the fastening torque capacity by the hydraulic pressure generated by the electric oil pump.
 油圧回路7は、後述するコントローラ8からの信号を受けて動作するソレノイド弁等で構成され、CVT3、エンジンクラッチCL1、発進クラッチCL2及びオイルポンプ10と油路を介して接続される。油圧回路7は、オイルポンプ10で発生した油圧を元圧として、CVT3のプーリ、エンジンクラッチCL1及び発進クラッチCL2で必要とされる油圧を生成し、生成した油圧をCVT3のプーリ、エンジンクラッチCL1及び発進クラッチCL2に供給する。 The hydraulic circuit 7 is configured by a solenoid valve or the like that operates in response to a signal from a controller 8 described later, and is connected to the CVT 3, the engine clutch CL1, the start clutch CL2, and the oil pump 10 through an oil passage. The hydraulic circuit 7 generates the hydraulic pressure required by the pulley of the CVT 3, the engine clutch CL 1, and the start clutch CL 2 using the hydraulic pressure generated by the oil pump 10 as a source pressure, and the generated hydraulic pressure is generated by the pulley of the CVT 3, the engine clutch CL 1, and Supply to start clutch CL2.
 ブレーキ14は、ブレーキペダル15とマスターシリンダ16とが機構的に独立している電子制御式ブレーキである。運転者がブレーキペダル15を踏み込むと、ブレーキアクチュエータ17がマスターシリンダ16のピストンを変位させ、要求減速度(運転者が要求する減速度、以下同じ)に応じた油圧がブレーキ14に供給され、制動力が発生する。なお、図示は省略するが、ブレーキ14は従動輪にも設けられている。 The brake 14 is an electronically controlled brake in which the brake pedal 15 and the master cylinder 16 are mechanically independent. When the driver depresses the brake pedal 15, the brake actuator 17 displaces the piston of the master cylinder 16, and hydraulic pressure corresponding to the required deceleration (deceleration requested by the driver, the same applies hereinafter) is supplied to the brake 14. Power is generated. Although not shown, the brake 14 is also provided on the driven wheel.
 コントローラ8は、CPU、RAM、入出力インターフェース等で構成され、コントローラ8には、エンジン1の回転速度を検出する回転速度センサ21、CVT3の入力軸3inの回転速度Ninを検出する回転速度センサ22、フライホイール2の回転速度Nfwを検出する回転速度センサ23、車速VSPを検出する車速センサ24、アクセルペダル25の開度APOを検出するアクセル開度センサ26、運転者によるブレーキペダル15の踏み込み量及び踏み込み加速度を検出するブレーキセンサ27等からの信号が入力される。 The controller 8 includes a CPU, a RAM, an input / output interface, and the like. The controller 8 includes a rotation speed sensor 21 that detects the rotation speed of the engine 1, and a rotation speed sensor 22 that detects the rotation speed Nin of the input shaft 3in of the CVT 3. , A rotational speed sensor 23 for detecting the rotational speed Nfw of the flywheel 2, a vehicle speed sensor 24 for detecting the vehicle speed VSP, an accelerator opening sensor 26 for detecting the opening APO of the accelerator pedal 25, and the depression amount of the brake pedal 15 by the driver And the signal from the brake sensor 27 etc. which detects depression acceleration is input.
 コントローラ8は、入力される信号に基づき各種演算を行い、CVT3の変速、クラッチCL1、CL2、CLfwの締結・解放、ブレーキアクチュエータ17を制御する。特に、運転者がブレーキペダル15を踏み込み、車両100が減速する時は、コントローラ8は、フライホイールクラッチCLfwを締結し、駆動輪6から入力される回転でフライホイール2を回転させ、車両100が持つ運動エネルギーをフライホイール2の運動エネルギーに変換することで、車両100の運動エネルギーを回生する。 The controller 8 performs various calculations based on the input signal, and controls the shift of the CVT 3, the engagement / release of the clutches CL1, CL2, and CLfw, and the brake actuator 17. In particular, when the driver depresses the brake pedal 15 and the vehicle 100 decelerates, the controller 8 fastens the flywheel clutch CLfw, rotates the flywheel 2 by the rotation input from the drive wheels 6, and the vehicle 100 The kinetic energy of the vehicle 100 is regenerated by converting the kinetic energy it has into the kinetic energy of the flywheel 2.
 回生中、コントローラ8は、要求減速度に応じた制動力(回生ブレーキ)が得られるようフライホイールクラッチCLfwの締結トルク容量を制御する。フライホイールクラッチCLfwを締結する前で回生ブレーキを発生できない場合や回生ブレーキのみでは要求減速度を実現できない場合は、コントローラ8はブレーキアクチュエータ17を動作させてブレーキ14の制動力を増大させて要求減速度が実現されるようにする。 During regeneration, the controller 8 controls the engagement torque capacity of the flywheel clutch CLfw so that a braking force (regenerative braking) corresponding to the required deceleration is obtained. When the regenerative brake cannot be generated before the flywheel clutch CLfw is engaged, or when the required deceleration cannot be realized only with the regenerative brake, the controller 8 operates the brake actuator 17 to increase the braking force of the brake 14 to reduce the request. Let speed be realized.
 回生された運動エネルギーは、フライホイールクラッチCLfwを解放することによってフライホイール2に保存することができる。そして、フライホイール2に運動エネルギーが保存されている状態でフライホイールクラッチCLfwを締結すれば、フライホイール2に保存されている運動エネルギーを車両100の発進や加速に利用することができる。 The regenerated kinetic energy can be stored in the flywheel 2 by releasing the flywheel clutch CLfw. If the flywheel clutch CLfw is engaged in a state where kinetic energy is stored in the flywheel 2, the kinetic energy stored in the flywheel 2 can be used for starting and acceleration of the vehicle 100.
 車両100が減速し、フライホイール2による回生を行う場合には、CVT3の変速比をLow側に変更することで、CVT3の入力軸3inの回転速度を高くし、図2に示すようにフライホイール2の回転速度を高くし、フライホイール2に保存される運動エネルギーを大きくする。図2は、減速を開始してからのフライホイール2の角速度(回転速度)及び角加速度(フライホイール2の単位時間あたりの回転速度の変化量)の変化を示す図である。図2においては例として3つの要求減速度に対するフライホイール2の角速度及び角加速度の変化を示している。 When the vehicle 100 decelerates and regeneration by the flywheel 2 is performed, the rotational speed of the input shaft 3in of the CVT 3 is increased by changing the gear ratio of the CVT 3 to the low side, and the flywheel as shown in FIG. 2 is increased, and the kinetic energy stored in the flywheel 2 is increased. FIG. 2 is a diagram showing changes in angular velocity (rotational speed) and angular acceleration (amount of change in rotational speed per unit time of the flywheel 2) of the flywheel 2 since the start of deceleration. FIG. 2 shows, as an example, changes in the angular velocity and angular acceleration of the flywheel 2 with respect to three required decelerations.
 フライホイール2の角速度は、回生を開始すると徐々に高くなり、時間t1が経過した時に最大角速度となる。最大角速度となるタイミングは、例えばCVT3の変速比が最Lowとなった時である。車両100は減速しているので、回生を開始してから変速比が最Lowとなった後は、CVT3の入力軸3inの回転速度を最Lowとなった時の回転速度よりも高くすることができない。従って、フライホイール2の角速度も、変速比が最Lowとなった時の角速度よりも高くすることができない。このように、回生中は、あるタイミングでフライホイール2の角速度は最大となり、それ以上高くすることができない。また、角加速度は、回生を開始すると徐々に小さくなり、角速度が最大角速度となるとその後は負になる。 The angular velocity of the flywheel 2 gradually increases when regeneration is started, and reaches the maximum angular velocity when the time t1 has elapsed. The timing at which the maximum angular velocity is reached is, for example, when the gear ratio of CVT 3 is at the lowest level. Since the vehicle 100 is decelerating, the rotational speed of the input shaft 3in of the CVT 3 may be made higher than the rotational speed when the speed becomes the lowest after the gear ratio becomes the lowest after the regeneration is started. Can not. Therefore, the angular speed of the flywheel 2 cannot be made higher than the angular speed when the gear ratio is at the lowest level. As described above, during regeneration, the angular velocity of the flywheel 2 becomes maximum at a certain timing and cannot be further increased. The angular acceleration gradually decreases when regeneration is started, and thereafter becomes negative when the angular velocity reaches the maximum angular velocity.
 フライホイール2の角速度が最大角速度となった後(時間t1以降)に、さらに車両100が減速すると、CVT3の入力軸3inの回転速度が低下するため、フライホイールクラッチCLfwが締結している場合には、フライホイール2によってCVT3の入力軸3inを回転させることになり、フライホイール2が運動エネルギーを放出することになる。そのため、車両100に減速要求がされているにもかかわらず、フライホイール2の回転がCVT3を介して駆動輪6に伝達され、車両100が加速するおそれがあり、運転者に違和感を与えるおそれがある。 When the angular velocity of the flywheel 2 reaches the maximum angular velocity (after time t1), when the vehicle 100 further decelerates, the rotational speed of the input shaft 3in of the CVT 3 decreases, and thus the flywheel clutch CLfw is engaged. Will cause the flywheel 2 to rotate the input shaft 3in of the CVT 3, and the flywheel 2 will release kinetic energy. Therefore, although the vehicle 100 is requested to decelerate, the rotation of the flywheel 2 is transmitted to the drive wheels 6 via the CVT 3 and the vehicle 100 may be accelerated, which may cause the driver to feel uncomfortable. is there.
 そこで、本実施形態では、このような状況が生じることを抑制するために、以下において説明するフライホイールクラッチCLfwの解放制御を行っている。フライホイールクラッチCLfwの解放制御を行うことで、フライホイール2の角加速度が負となる前にフライホイールクラッチCLfwの締結トルク容量をゼロにし、フライホイール2の角加速度がゼロになるタイミングでは、フライホイールクラッチCLfwを完全に解放している。 Therefore, in this embodiment, in order to suppress the occurrence of such a situation, release control of the flywheel clutch CLfw described below is performed. By performing release control of the flywheel clutch CLfw, before the angular acceleration of the flywheel 2 becomes negative, the fastening torque capacity of the flywheel clutch CLfw is made zero, and at the timing when the angular acceleration of the flywheel 2 becomes zero, the flywheel 2 The wheel clutch CLfw is completely released.
 次に、フライホイールクラッチCLfwの解放制御について図3のフローチャートを用いて説明する。以下で説明する処理は、決められた短時間(例えば100ms)毎に繰り返し実行される。 Next, release control of the flywheel clutch CLfw will be described using the flowchart of FIG. The process described below is repeatedly executed every predetermined short time (for example, 100 ms).
 ステップS100では、コントローラ8は、回転速度センサ23からの信号に基づいてフライホイール2の角速度を検出する。 In step S100, the controller 8 detects the angular speed of the flywheel 2 based on the signal from the rotational speed sensor 23.
 ステップS101では、コントローラ8は、検出した角速度に基づいて、フライホイール2の角加速度を算出する。 In step S101, the controller 8 calculates the angular acceleration of the flywheel 2 based on the detected angular velocity.
 ステップS102では、コントローラ8は、要求減速度に基づいて第1所定角加速度(所定量)を算出する。具体的には、コントローラ8は、図4に示すマップから要求減速度に基づいて第1所定角加速度を算出する。第1所定角加速度は要求減速度が大きくなるにつれて大きくなる。要求減速度は、ブレーキセンサ27からの信号に基づくブレーキペダル15の踏み込み量に基づいて算出され、ブレーキペダル15の踏み込み量が大きくなると要求減速度が大きいと判断される。図4に示すマップは、車速VSPに応じて複数設けられている。なお、ブレーキペダル15の踏み込み速度に基づいて第1所定角加速度を算出してもよい。 In step S102, the controller 8 calculates a first predetermined angular acceleration (predetermined amount) based on the requested deceleration. Specifically, the controller 8 calculates the first predetermined angular acceleration based on the requested deceleration from the map shown in FIG. The first predetermined angular acceleration increases as the required deceleration increases. The required deceleration is calculated based on the depression amount of the brake pedal 15 based on the signal from the brake sensor 27, and it is determined that the required deceleration is large when the depression amount of the brake pedal 15 increases. A plurality of maps shown in FIG. 4 are provided according to the vehicle speed VSP. The first predetermined angular acceleration may be calculated based on the depression speed of the brake pedal 15.
 ここで、第1所定角加速度について詳しく説明する。 Here, the first predetermined angular acceleration will be described in detail.
 回生中にフライホイール2の角加速度がゼロとなる時間(例えば、図2における時間t1、以下、クラッチ解放完了時間という。)よりもフライホイールクラッチCLfwを解放するために必要な時間(以下、クラッチ解放時間という。)早いタイミング(例えば図2における時間t0)でフライホイールクラッチCLfwの解放を開始することで、フライホイール2の角加速度が負となることを抑制し、フライホイール2から運動エネルギーが放出されることを抑制することができる。そのため、クラッチ解放時間を考慮してフライホイールクラッチCLfwの解放を開始することで、フライホイール2から運動エネルギーが放出されることを抑制することができる。 The time required for releasing the flywheel clutch CLfw (hereinafter referred to as the clutch) than the time during which the angular acceleration of the flywheel 2 becomes zero during regeneration (for example, the time t1 in FIG. 2, hereinafter referred to as the clutch release completion time). The release time is referred to as “release time.” By starting the release of the flywheel clutch CLfw at an early timing (for example, time t0 in FIG. 2), the angular acceleration of the flywheel 2 is suppressed from becoming negative, and the kinetic energy from the flywheel 2 is reduced. Release can be suppressed. Therefore, it is possible to suppress the release of kinetic energy from the flywheel 2 by starting the release of the flywheel clutch CLfw in consideration of the clutch release time.
 また、クラッチ解放時間に加えて、回転速度センサ23の計測精度、フライホイールクラッチCLfwにおけるばらつきなどを考慮したタイミング(例えば、図2における時間t0よりも所定時間(以下、マージン時間という。)早い時間t0’)でフライホイールクラッチCLfwの解放を開始することで、フライホイール2から運動エネルギーが放出されることをさらに抑制することができる。 Further, in addition to the clutch release time, a timing that takes into account the measurement accuracy of the rotational speed sensor 23 and variations in the flywheel clutch CLfw (for example, a time earlier than a time t0 in FIG. 2 by a predetermined time (hereinafter referred to as margin time)). By starting the release of the flywheel clutch CLfw at t0 ′), it is possible to further suppress the release of kinetic energy from the flywheel 2.
 このように、角加速度が、クラッチ解放時間及びマージン時間を考慮した角加速度となった時にフライホイールクラッチCLfwの解放を開始することでフライホイール2から運動エネルギーが放出されることを抑制することができる。 In this way, it is possible to suppress the release of kinetic energy from the flywheel 2 by starting the release of the flywheel clutch CLfw when the angular acceleration becomes an angular acceleration considering the clutch release time and the margin time. it can.
 さらに、要求減速度が減速中に大きくなった場合の機械的な遅れなどを考慮して、所定の角加速度を上乗せすることで、フライホイール2から運動エネルギーが放出されることをさらに抑制することができる。 Furthermore, in consideration of a mechanical delay when the required deceleration increases during deceleration, the kinetic energy is further prevented from being released from the flywheel 2 by adding a predetermined angular acceleration. Can do.
 本実施形態では、クラッチ解放時間及びマージン時間を考慮して角加速度を設定し、設定した角加速度に、さらに所定の角加速度を上乗せすることで第1所定角加速度を設定している。 In the present embodiment, the angular acceleration is set in consideration of the clutch release time and the margin time, and the first predetermined angular acceleration is set by adding a predetermined angular acceleration to the set angular acceleration.
 ステップS103では、コントローラ8は、角加速度が第1所定角加速度以下であるかどうか判定する。角加速度が第1所定角加速度以下の場合には処理はステップS104に進み、角加速度が第1所定角加速度よりも大きい場合には今回の処理を終了する。 In step S103, the controller 8 determines whether or not the angular acceleration is equal to or lower than the first predetermined angular acceleration. If the angular acceleration is equal to or lower than the first predetermined angular acceleration, the process proceeds to step S104. If the angular acceleration is greater than the first predetermined angular acceleration, the current process ends.
 ステップS104では、コントローラ8は、フライホイールクラッチCLfwの解放を開始する。これにより、フライホイール2の角加速度が負となる前に、フライホイールクラッチCLfwの締結トルク容量をゼロにし、フライホイールクラッチCLfwを完全に解放し、減速中にフライホイール2から運動エネルギーが放出されることを抑制することができる。 In step S104, the controller 8 starts releasing the flywheel clutch CLfw. Thereby, before the angular acceleration of the flywheel 2 becomes negative, the engagement torque capacity of the flywheel clutch CLfw is made zero, the flywheel clutch CLfw is completely released, and kinetic energy is released from the flywheel 2 during deceleration. Can be suppressed.
 本発明の第1実施形態の効果について説明する。 The effect of the first embodiment of the present invention will be described.
 フライホイール2の角加速度に基づいてフライホイールクラッチCLfwを解放するタイミングを決定することで、回生を行って減速する場合に運転者に違和感を与えることを抑制することができる。 決定 By determining the timing for releasing the flywheel clutch CLfw based on the angular acceleration of the flywheel 2, it is possible to prevent the driver from feeling uncomfortable when performing regeneration and decelerating.
 フライホイール2の角加速度が負となる前にフライホイールクラッチCLfwを解放することで、減速要求がされているにもかかわらず、車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。 By releasing the flywheel clutch CLfw before the angular acceleration of the flywheel 2 becomes negative, the vehicle 100 is prevented from accelerating despite a request for deceleration, and the driver feels uncomfortable. Can be suppressed.
 フライホイール2の角加速度が第1所定角加速度となるとフライホイールクラッチCLfwの解放を開始することで、フライホイール2の角加速度がゼロとなる前にフライホイールクラッチCLfwを解放することができ、減速要求がされているにもかかわらず、車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。 When the angular acceleration of the flywheel 2 reaches the first predetermined angular acceleration, the release of the flywheel clutch CLfw is started, so that the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes zero, and the deceleration Despite being requested, the vehicle 100 can be prevented from accelerating, and the driver can be prevented from feeling uncomfortable.
 第1所定角加速度を、要求減速度が大きくなるほど大きくすることで、要求減速度に応じてフライホイールクラッチCLfwを適切なタイミングで解放することができ、減速要求時に車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。 By increasing the first predetermined angular acceleration as the required deceleration increases, the flywheel clutch CLfw can be released at an appropriate timing according to the required deceleration, and the vehicle 100 is prevented from accelerating when requested to decelerate. And it can suppress giving a driver a sense of incongruity.
 次に本発明の第2実施形態について説明する。 Next, a second embodiment of the present invention will be described.
 第2実施形態については、回生時におけるフライホイールクラッチCLfwの解放制御が第1実施形態と異なっている。ここでは、回生時におけるフライホイールクラッチCLfwの解放制御について図5のフローチャートを用いて説明する。以下で説明する処理は、所定時間毎に繰り返し実行される。 In the second embodiment, the release control of the flywheel clutch CLfw at the time of regeneration is different from the first embodiment. Here, the release control of the flywheel clutch CLfw during regeneration will be described with reference to the flowchart of FIG. The process described below is repeatedly executed every predetermined time.
 ステップS200では、コントローラ8は、現在の車両100の運転状態に応じて、フライホイール2の角加速度の変化を予測するために必要なパラメータの値を取得する。パラメータは、例えば車速VSP、フライホイール2の角速度、要求減速度、走行抵抗推定値(勾配抵抗、空気抵抗など)、フライホイール2の回転抵抗(風損など)、フライホイール2のイナーシャである。 In step S200, the controller 8 acquires parameter values necessary for predicting a change in the angular acceleration of the flywheel 2 in accordance with the current driving state of the vehicle 100. The parameters are, for example, the vehicle speed VSP, the flywheel 2 angular velocity, the required deceleration, the travel resistance estimation value (gradient resistance, air resistance, etc.), the flywheel 2 rotational resistance (windage loss, etc.), and the flywheel 2 inertia.
 ステップS201では、コントローラ8は、取得したパラメータの値に基づいて、現在の車両100の運転状態におけるフライホイール2の角加速度の変化を予測する推定関数を算出する。フライホイール2の角加速度の変化を予測する推定関数は予め設定されており、ここでは、取得したパラメータの値を用いて、現在の車両100の運転状態におけるフライホイール2の角加速度の変化を予測する推定関数を算出する。 In step S201, the controller 8 calculates an estimation function for predicting a change in angular acceleration of the flywheel 2 in the current driving state of the vehicle 100 based on the acquired parameter value. The estimation function for predicting the change in the angular acceleration of the flywheel 2 is set in advance. Here, the change in the angular acceleration of the flywheel 2 in the current driving state of the vehicle 100 is predicted using the acquired parameter value. An estimation function is calculated.
 ステップS202では、コントローラ8は、算出した推定関数に基づいてフライホイール2の角加速度がゼロとなる第1時間(所定時間)tFWmaxを算出する。 In step S202, the controller 8 calculates a first time (predetermined time) tFWmax when the angular acceleration of the flywheel 2 becomes zero based on the calculated estimation function.
 ステップS203では、コントローラ8は、現在の変速比に基づいて変速比が最Lowとなる第2時間tLowを算出する。 In step S203, the controller 8 calculates the second time tLow when the speed ratio becomes the lowest based on the current speed ratio.
 ステップS204では、コントローラ8は、第1時間tFWmaxと第2時間tLowとを比較し、短い方の時間をクラッチ解放完了時間として設定する。 In step S204, the controller 8 compares the first time tFWmax and the second time tLow, and sets the shorter time as the clutch release completion time.
 ステップS205では、コントローラ8は、クラッチ解放完了時間からクラッチ解放時間とマージン時間とを減算してクラッチ解放開始時間を算出する。 In step S205, the controller 8 calculates the clutch release start time by subtracting the clutch release time and the margin time from the clutch release completion time.
 ステップS206では、コントローラ8は、各パラメータの限界変化量を予め設定したテーブルやマップから取得する。各パラメータの限界変化量は、ステップS201において設定された推定関数が使用できなくなる運転状態になっていると判定可能な変化量であり、例えば減速している場合に、車両100が走行している路面の勾配が急激に大きくなったと判定する変化量である。 In step S206, the controller 8 acquires the limit change amount of each parameter from a preset table or map. The limit change amount of each parameter is a change amount that can be determined to be an operation state in which the estimation function set in step S201 cannot be used. For example, when the vehicle is decelerating, the vehicle 100 is traveling. This is the amount of change that determines that the slope of the road surface has suddenly increased.
 ステップS207では、コントローラ8は、各パラメータの限界変化量と、各パラメータの変化量とを比較する。各パラメータの変化量のうち、限界変化量を超えた変化量がある場合には処理はステップS209に進み、全てのパラメータで変化量が限界変化量を超えていない場合には処理はステップS208に進む。 In step S207, the controller 8 compares the limit change amount of each parameter with the change amount of each parameter. If there is a change amount exceeding the limit change amount among the change amounts of each parameter, the process proceeds to step S209, and if the change amount does not exceed the limit change amount for all parameters, the process proceeds to step S208. move on.
 ステップS208では、コントローラ8は、回生を開始してからの時間がクラッチ解放開始時間となったかどうか判定する。回生を開始してからの時間がクラッチ解放時間となると処理はステップS209に進み、回生を開始してからの時間がクラッチ解放時間となっていない場合には今回の処理を終了する。なお、回生を開始してからの時間はコントローラ8によって計測されている。 In step S208, the controller 8 determines whether or not the time from the start of regeneration has reached the clutch release start time. If the time since the start of regeneration is the clutch release time, the process proceeds to step S209. If the time since the start of regeneration is not the clutch release time, the current process is terminated. Note that the time from the start of regeneration is measured by the controller 8.
 ステップS209では、コントローラ8は、フライホイールクラッチCLfwの解放を開始する。 In step S209, the controller 8 starts releasing the flywheel clutch CLfw.
 本発明の第2実施形態の効果について説明する。 The effect of the second embodiment of the present invention will be described.
 要求減速度などの現在の車両100の運転状態に応じたパラメータの値に基づいてフライホイール2の角加速度がゼロとなる第1時間tFWmaxを算出し、第1時間tFWmaxに基づいたクラッチ解放開始時間となるとフライホイールクラッチCLfwの解放を開始する。これにより、第1実施形態と比較して第1角加速度を算出するためのマップなどが不要となり、コントローラ8における記憶容量を少なくすることができる。 A first time tFWmax at which the angular acceleration of the flywheel 2 becomes zero is calculated based on a parameter value corresponding to the current driving state of the vehicle 100 such as required deceleration, and a clutch release start time based on the first time tFWmax. Then, release of the flywheel clutch CLfw is started. Thereby, compared with the first embodiment, a map for calculating the first angular acceleration becomes unnecessary, and the storage capacity in the controller 8 can be reduced.
 また、車両100の運転状態によってはCVT3の変速比が最Lowとなる前に、フライホイール2の角加速度が負となり、フライホイール2から運動エネルギーが放出されることがある。本実施形態では、このような場合でもフライホイール2の角加速度が負となる前にフライホイールクラッチCLfwを解放することができ、減速要求がされているにもかかわらず、車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。 Also, depending on the driving state of the vehicle 100, the angular acceleration of the flywheel 2 may become negative and kinetic energy may be released from the flywheel 2 before the gear ratio of the CVT 3 becomes the lowest. In this embodiment, even in such a case, the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative, and the vehicle 100 is accelerated even though a deceleration request is made. Can be suppressed, and the driver can be prevented from feeling uncomfortable.
 また、第1実施形態では、第1所定角加速度を算出する場合に、要求減速度が減速中に大きくなった場合の機械的な遅れなどを考慮して、所定の角加速度を上乗せしており、安全代を大きく取っている。そのため、実際にはフライホイール2に運動エネルギーを保存する余裕がある場合でも、回生を終了する場合がある。本実施形態では、現在の車両100の運転状態におけるフライホイール2の角加速度の変化を予測する推定関数を用いてフライホイールクラッチCLfwを解放する第1時間tFWmaxを算出し、第1時間tFWmaxに基づいてフライホイールクラッチCLfwを解放している。そのため、要求減速度が減速中に大きくなった場合の機械的な遅れなどを考慮せずに安全代を第1実施形態と比較して小さくし、フライホイール2に保存可能な運動エネルギーを第1実施形態と比較して大きくすることができる。 In the first embodiment, when calculating the first predetermined angular acceleration, the predetermined angular acceleration is added in consideration of a mechanical delay or the like when the required deceleration increases during deceleration. , Taking a big safety bill. For this reason, even if the flywheel 2 actually has room for storing kinetic energy, regeneration may end. In the present embodiment, a first time tFWmax for releasing the flywheel clutch CLfw is calculated using an estimation function that predicts a change in angular acceleration of the flywheel 2 in the current driving state of the vehicle 100, and based on the first time tFWmax. The flywheel clutch CLfw is released. For this reason, the safety allowance is reduced compared to the first embodiment without considering the mechanical delay when the required deceleration increases during deceleration, and the kinetic energy that can be stored in the flywheel 2 is the first. The size can be increased as compared with the embodiment.
 CVT3の変速比が最Lowとなる第2時間tLowを算出し、第2時間tLowに基づいたクラッチ解放開始時間となるとフライホイールクラッチCLfwの解放を開始する。これにより、変速比が最Lowとなり、フライホイール2の角加速度が負となる前にフライホイールクラッチCLfwを解放することができ、減速要求がされているにもかかわらず、車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。 The second time tLow when the gear ratio of the CVT 3 is the lowest is calculated, and the release of the flywheel clutch CLfw is started when the clutch release start time based on the second time tLow is reached. As a result, the gear ratio becomes the lowest, the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative, and the vehicle 100 accelerates despite the request for deceleration. Can be suppressed, and the driver can be prevented from feeling uncomfortable.
 なお、本実施形態では、CVT3の変速比が最Lowとなる第2時間tLowを算出したが、実際の変速比を検出し、検出した変速比に基づいて変速比が最Lowとなる前にフライホイールクラッチCLfwの解放を開始してもよい。これによっても、本実施形態と同様の効果を得ることができる。 In the present embodiment, the second time tLow when the gear ratio of the CVT 3 becomes the lowest is calculated. However, the actual gear ratio is detected, and the flyback speed before the gear ratio becomes the lowest is calculated based on the detected gear ratio. Release of the wheel clutch CLfw may be started. Also by this, the same effect as this embodiment can be acquired.
 次に本発明の第3実施形態について説明する。 Next, a third embodiment of the present invention will be described.
 第3実施形態については、回生時におけるフライホイールクラッチCLfwの解放制御が第1実施形態と異なっている。ここでは、回生時におけるフライホイールクラッチCLfwの解放制御について図6のフローチャートを用いて説明する。以下で説明する処理は、所定時間毎に繰り返し実行される。 In the third embodiment, the release control of the flywheel clutch CLfw at the time of regeneration is different from the first embodiment. Here, the release control of the flywheel clutch CLfw during regeneration will be described using the flowchart of FIG. The process described below is repeatedly executed every predetermined time.
 ステップS300では、コントローラ8は、フライホイール2の角加速度の推定関数を算出する。フライホイール2の角加速度の推定関数は、フライホイール2に保存される運動エネルギーの式に基づいて算出される。フライホイール2に保存される運動エネルギーKFWは、式(1)で示すことができる。 In step S300, the controller 8 calculates an estimation function of the angular acceleration of the flywheel 2. The estimation function of the angular acceleration of the flywheel 2 is calculated based on the equation of kinetic energy stored in the flywheel 2. The kinetic energy K FW stored in the flywheel 2 can be expressed by Equation (1).
 KFW=(IFW×ωFW 2)/2・・・式(1) K FW = (I FW × ω FW 2 ) / 2 (1)
 IFWはフライホイール2の慣性モーメントであり、予め設定される。ωFWはフライホイール2の角速度である。 I FW is the moment of inertia of the flywheel 2 and is preset. ω FW is the angular velocity of the flywheel 2.
 式(1)を時間微分すると、フライホイール2の入力パワーPFWになり、式(2)で示すことができる。 When the expression (1) is differentiated with respect to time, it becomes the input power P FW of the flywheel 2 and can be expressed by the expression (2).
 PFW=IFW×ωFW×ΔωFW・・・式(2) P FW = I FW × ω FW × Δω FW Equation (2)
 ここで、回生時のフライホイール2の入力パワーPFWは、損失がないと仮定すると車両100の出力パワーPcarに等しくなる。そのため、フライホイール2の入力パワーPFWが車両100の出力パワーPcarに等しいと仮定し、式(2)を変形すると式(3)となる。 Here, the input power P FW of the flywheel 2 during regeneration is equal to the output power P car of the vehicle 100 assuming that there is no loss. Therefore, assuming that the input power P FW of the flywheel 2 is equal to the output power P car of the vehicle 100, Equation (2) is transformed into Equation (3).
 ΔωFW=Pcar/(IFW×ωFW)・・・式(3) Δω FW = P car / (I FW × ω FW ) (3)
 このようにして、コントローラ8は、フライホイール2の角加速度ΔωFWの推定関数を算出する。フライホイール2の角加速度ΔωFWは、図7に示すようにフライホイール2の角速度ωFWが高くなると小さくなり、車両100の出力パワーPcarが大きくなると大きくなる。車両100の出力パワーPcarは、車両100の重量と、車速VSPと、車両100の減速度とに基づいて算出される。 In this way, the controller 8 calculates an estimation function of the angular acceleration Δω FW of the flywheel 2. As shown in FIG. 7, the angular acceleration Δω FW of the flywheel 2 decreases as the angular velocity ω FW of the flywheel 2 increases, and increases as the output power P car of the vehicle 100 increases. The output power P car of the vehicle 100 is calculated based on the weight of the vehicle 100, the vehicle speed VSP, and the deceleration of the vehicle 100.
 ステップS301では、コントローラ8は、要求減速度に基づいて第2所定角加速度を算出する。具体的には、コントローラ8は、図8に示すマップから要求減速度に基づいて第2所定角加速度を算出する。第2所定角加速度は、第1実施形態の第1所定角加速度に対して、要求減速度が減速中に大きくなった場合の機械的な遅れなどを考慮せずに、クラッチ解放時間及びマージン時間に基づいて設定される。これは、本実施形態では、現在の車両100の運転状態に応じたフライホイール2の角加速度の推定関数が算出されるためであり、例えば要求減速度が減速中に大きくなった場合には、大きくなった減速度に応じた推定関数が算出されるためである。 In step S301, the controller 8 calculates a second predetermined angular acceleration based on the required deceleration. Specifically, the controller 8 calculates the second predetermined angular acceleration based on the requested deceleration from the map shown in FIG. The second predetermined angular acceleration is a clutch release time and a margin time without considering a mechanical delay or the like when the required deceleration increases during deceleration with respect to the first predetermined angular acceleration of the first embodiment. Is set based on This is because in the present embodiment, an estimation function of the angular acceleration of the flywheel 2 corresponding to the current driving state of the vehicle 100 is calculated. For example, when the required deceleration increases during deceleration, This is because an estimation function corresponding to the increased deceleration is calculated.
 ステップS302では、コントローラ8は、式(3)と第2所定角加速度とから角加速度が第2所定角加速度となるクラッチ解放開始時間を算出する。 In step S302, the controller 8 calculates a clutch release start time when the angular acceleration becomes the second predetermined angular acceleration from the equation (3) and the second predetermined angular acceleration.
 ステップS303では、コントローラ8は、各パラメータの限界変化量を予め設定したテーブルやマップから取得する。各パラメータの限界変化量は、推定関数が使用できなくなる運転状態になっていると判定可能な変化量である。 In step S303, the controller 8 acquires the limit change amount of each parameter from a preset table or map. The limit change amount of each parameter is a change amount that can be determined as an operation state in which the estimation function cannot be used.
 ステップS304では、コントローラ8は、角加速度の推定関数における各パラメータの限界変化量と、各パラメータの変化量とを比較する。各パラメータの変化量のうち、限界変化量を超える変化量がある場合には処理はステップS306に進み、全てのパラメータで変化量が限界変化量を超えない場合には処理はステップS305に進む。 In step S304, the controller 8 compares the limit change amount of each parameter in the angular acceleration estimation function with the change amount of each parameter. If there is a change amount exceeding the limit change amount among the change amounts of each parameter, the process proceeds to step S306, and if the change amount does not exceed the limit change amount for all parameters, the process proceeds to step S305.
 ステップS305では、コントローラ8は、回生を開始してからの時間がクラッチ解放開始時間となったかどうか判定する。回生を開始してからの時間がクラッチ解放開始時間となると処理はステップS306に進み、回生を開始してからの時間がクラッチ解放開始時間となっていない場合には今回の処理を終了する。 In step S305, the controller 8 determines whether the time from the start of regeneration is the clutch release start time. When the time since the start of regeneration is the clutch release start time, the process proceeds to step S306, and when the time since the start of regeneration is not the clutch release start time, the current process ends.
 ステップS306では、コントローラ8は、フライホイールクラッチCLfwの解放を開始する。 In step S306, the controller 8 starts releasing the flywheel clutch CLfw.
 本発明の第3実施形態の効果について説明する。 The effect of the third embodiment of the present invention will be described.
 フライホイール2の入力パワーPFWに基づくフライホイール2の角加速度の推定関数と、要求減速度に基づいた第2所定角加速度とに基づいてクラッチ解放開始時間を算出し、クラッチ解放開始時間となるとフライホイールクラッチCLfwの解放を開始する。これによって、容易な計算式を用いてフライホイールクラッチCLfwの解放を開始し、フライホイール2の角加速度が負となる前にフライホイールクラッチCLfwを解放することができ、減速要求がされているにもかかわらず、車両100が加速することを抑制し、運転者に違和感を与えることを抑制することができる。また、コントローラ8の処理速度を速くすることができる。 When the clutch release start time is calculated based on the estimation function of the angular acceleration of the flywheel 2 based on the input power P FW of the flywheel 2 and the second predetermined angular acceleration based on the requested deceleration, the clutch release start time is reached. Release of the flywheel clutch CLfw is started. As a result, the release of the flywheel clutch CLfw can be started using an easy calculation formula, and the flywheel clutch CLfw can be released before the angular acceleration of the flywheel 2 becomes negative. Nevertheless, the acceleration of the vehicle 100 can be suppressed, and the driver can be prevented from feeling uncomfortable. In addition, the processing speed of the controller 8 can be increased.
 フライホイール2の角加速度の推定関数を用いることで、要求減速度が減速中に大きくなった場合の機械的な遅れなどを考慮せずに第2所定角加速度を設定することができ、第1実施形態と比較してフライホイール2に保存可能な運動エネルギーを大きくすることができる。 By using the estimation function of the angular acceleration of the flywheel 2, the second predetermined angular acceleration can be set without considering the mechanical delay or the like when the required deceleration increases during deceleration. Compared with the embodiment, the kinetic energy that can be stored in the flywheel 2 can be increased.
 なお、本実施形態では、クラッチ解放時間及びマージン時間を考慮して第2所定角加速度を算出したが、これらを考慮せずに第2所定角加速度を算出し、式(3)と算出した第2所定角加速度に基づいて算出される時間から、クラッチ解放時間、及びマージン時間を減算してクラッチ解放開始時間を算出してもよい。これによっても、本実施形態と同様の効果を得ることができる。 In the present embodiment, the second predetermined angular acceleration is calculated in consideration of the clutch release time and the margin time. However, the second predetermined angular acceleration is calculated without taking these into account, and the calculated first equation (3) is calculated. (2) The clutch release start time may be calculated by subtracting the clutch release time and the margin time from the time calculated based on the predetermined angular acceleration. Also by this, the same effect as this embodiment can be acquired.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 なお、車両100の減速度が一定であると仮定した場合には、コントローラ8は車両100が有する運動エネルギーに基づいて、車両100から回収可能な下限運動エネルギー、具体的にはオイルポンプ10によってCVT3のプーリなどで必要な油圧を吐出可能な入力軸3inの下限回転速度となる車速に対応する運動エネルギーとなるまでの時間を算出し、算出した時間に基づいてクラッチ解放開始時間を算出してもよい。フライホイール2によって回生が可能であっても、入力軸3inの回転速度が低くなりオイルポンプ10の吐出圧が低くなり過ぎると、CVT3のプーリなどに必要な油圧を供給できなくなるおそれがある。ここでは、そのような場合には、フライホイールクラッチCLfwを解放することで、上記実施形態における効果に加えて、CVT3のプーリなどへの供給油圧不足を抑制することができる。 When the deceleration of the vehicle 100 is assumed to be constant, the controller 8 determines the lower limit kinetic energy that can be recovered from the vehicle 100 based on the kinetic energy that the vehicle 100 has, specifically, the CVT 3 by the oil pump 10. Even if the time until the kinetic energy corresponding to the vehicle speed that is the lower limit rotational speed of the input shaft 3in that can discharge the necessary hydraulic pressure with a pulley or the like is calculated and the clutch release start time is calculated based on the calculated time Good. Even if regeneration is possible by the flywheel 2, if the rotational speed of the input shaft 3in is low and the discharge pressure of the oil pump 10 is too low, it may not be possible to supply the necessary hydraulic pressure to the pulley of the CVT 3. Here, in such a case, by releasing the flywheel clutch CLfw, in addition to the effects in the above-described embodiment, it is possible to suppress the supply hydraulic pressure shortage to the pulley of the CVT 3 and the like.
 上記実施形態を組み合わせて、回生時にフライホイールクラッチCLfwを解放してもよい。 The flywheel clutch CLfw may be released during regeneration by combining the above embodiments.
 本願は2013年8月8日に日本国特許庁に出願された特願2013-165216に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-165216 filed with the Japan Patent Office on August 8, 2013, the entire contents of which are incorporated herein by reference.

Claims (9)

  1.  変速機の入力軸側に係合可能なフライホイールと、
     前記フライホイールと前記変速機との間に設けられ、前記フライホイールと前記変速機との間の動力伝達を断接するフライホイールクラッチとを備え、車両が減速する時に前記フライホイールクラッチを締結し、減速時の運動エネルギーで前記フライホイールを回転させて回生を行うフライホイール回生システムであって、
     前記フライホイールクラッチを締結し、前記フライホイールの回転速度が増加する場合に、前記フライホイールの単位時間あたりの回転速度の変化量に基づいて、前記フライホイールクラッチを解放するタイミングを決定し、前記フライホイールクラッチを解放するクラッチ制御手段を備えるフライホイール回生システム。
    A flywheel engageable with the input shaft side of the transmission;
    A flywheel clutch provided between the flywheel and the transmission, for connecting and disconnecting power transmission between the flywheel and the transmission, and fastening the flywheel clutch when the vehicle decelerates; A flywheel regeneration system that performs regeneration by rotating the flywheel with kinetic energy during deceleration,
    When the flywheel clutch is engaged and the rotational speed of the flywheel increases, the timing for releasing the flywheel clutch is determined based on the amount of change in rotational speed per unit time of the flywheel, A flywheel regeneration system comprising clutch control means for releasing a flywheel clutch.
  2.  請求項1に記載のフライホイール回生システムであって、
     前記クラッチ制御手段は、前記フライホイールの単位時間あたりの回転速度の変化量が負となる前に前記フライホイールクラッチを解放するフライホイール回生システム。
    The flywheel regeneration system according to claim 1,
    The said clutch control means is a flywheel regeneration system which releases the said flywheel clutch, before the variation | change_quantity of the rotational speed per unit time of the said flywheel becomes negative.
  3.  請求項1または2に記載のフライホイール回生システムであって、
     前記クラッチ制御手段は、前記フライホイールの単位時間あたりの回転速度の変化量が所定量となると前記フライホイールクラッチの解放を開始するフライホイール回生システム。
    The flywheel regeneration system according to claim 1 or 2,
    The flywheel regeneration system, wherein the clutch control means starts releasing the flywheel clutch when the amount of change in rotational speed per unit time of the flywheel reaches a predetermined amount.
  4.  請求項3に記載のフライホイール回生システムであって、
     前記所定量は、要求減速度が大きくなるほど大きくなるフライホイール回生システム。
    The flywheel regeneration system according to claim 3,
    The flywheel regeneration system, wherein the predetermined amount increases as the required deceleration increases.
  5.  請求項1から4のいずれか一つに記載のフライホイール回生システムであって、
     少なくとも要求減速度に基づいて、前記フライホイールの単位時間あたりの回転速度の変化量がゼロとなる所定時間を算出する時間算出手段を備え、
     前記クラッチ制御手段は、前記所定時間に基づいて前記フライホイールクラッチを解放するタイミングを決定し、前記フライホイールクラッチを解放するフライホイール回生システム。
    The flywheel regeneration system according to any one of claims 1 to 4,
    Based on at least the required deceleration, comprising a time calculation means for calculating a predetermined time when the amount of change in rotational speed per unit time of the flywheel becomes zero,
    The said clutch control means determines the timing which releases the said flywheel clutch based on the said predetermined time, The flywheel regeneration system which releases the said flywheel clutch.
  6.  請求項1から5のいずれか一つに記載のフライホイール回生システムであって、
     前記変速機の変速比が最Lowとなることを検出または予測する変速比検知手段を備え、
     前記クラッチ制御手段は、前記変速比が前記最Lowになることが検出または予測されると、前記フライホイールクラッチの解放を開始するフライホイール回生システム。
    The flywheel regeneration system according to any one of claims 1 to 5,
    A gear ratio detecting means for detecting or predicting that the gear ratio of the transmission is at the lowest level;
    The clutch control means is a flywheel regeneration system that starts releasing the flywheel clutch when the gear ratio is detected or predicted to be the lowest.
  7.  請求項1から6のいずれか一つに記載のフライホイール回生システムであって、
     前記フライホイールの回転速度を検出する回転速度検出手段と、
     前記フライホイールに入力される入力パワーを算出する入力パワー算出手段と、
     前記フライホイールの回転速度と前記入力パワーとに基づいて、前記フライホイールの単位時間あたりの回転速度の変化量を算出する回転速度変化量算出手段とを備え、
     前記クラッチ制御手段は、前記変化量に基づいて前記フライホイールクラッチを解放するタイミングを決定し、前記フライホイールクラッチを解放するフライホイール回生システム。
    The flywheel regeneration system according to any one of claims 1 to 6,
    Rotation speed detection means for detecting the rotation speed of the flywheel;
    Input power calculation means for calculating input power input to the flywheel;
    Based on the rotational speed of the flywheel and the input power, the rotational speed change amount calculating means for calculating the amount of change in the rotational speed per unit time of the flywheel,
    The said clutch control means determines the timing which releases the said flywheel clutch based on the said variation | change_quantity, The flywheel regeneration system which releases the said flywheel clutch.
  8.  請求項1から7のいずれか一つに記載のフライホイール回生システムであって、
     前記車両が有する前記運動エネルギーを算出する運動エネルギー算出手段を備え、
     前記クラッチ制御手段は、前記運動エネルギーと前記車両から回収可能な下限エネルギーとに基づいて前記フライホイールクラッチを解放するタイミングを決定し、前記フライホイールクラッチを解放するフライホイール回生システム。
    The flywheel regeneration system according to any one of claims 1 to 7,
    Kinetic energy calculating means for calculating the kinetic energy of the vehicle,
    The said clutch control means determines the timing which releases the said flywheel clutch based on the said kinetic energy and the minimum energy recoverable from the said vehicle, The flywheel regeneration system which releases the said flywheel clutch.
  9.  変速機の入力軸側に係合可能なフライホイールと、
     前記フライホイールと前記変速機との間に設けられ、前記フライホイールと前記変速機との間の動力伝達を断接するフライホイールクラッチとを備え、車両が減速する時に前記フライホイールクラッチを締結し、減速時の運動エネルギーで前記フライホイールを回転させて回生を行うフライホイール回生システムを制御するフライホイール回生システムの制御方法であって、
     前記フライホイールクラッチを締結し、前記フライホイールの回転速度が増加する場合に、前記フライホイールの単位時間あたりの回転速度の変化量に基づいて、前記フライホイールクラッチを解放するタイミングを決定し、
     決定した前記タイミングに基づいて前記フライホイールクラッチを解放するフライホイール回生システムの制御方法。
    A flywheel engageable with the input shaft side of the transmission;
    A flywheel clutch provided between the flywheel and the transmission, for connecting and disconnecting power transmission between the flywheel and the transmission, and fastening the flywheel clutch when the vehicle decelerates; A flywheel regeneration system control method for controlling a flywheel regeneration system that performs regeneration by rotating the flywheel with kinetic energy during deceleration,
    When the flywheel clutch is engaged and the rotational speed of the flywheel increases, the timing for releasing the flywheel clutch is determined based on the amount of change in the rotational speed per unit time of the flywheel,
    A control method of a flywheel regeneration system that releases the flywheel clutch based on the determined timing.
PCT/JP2014/068792 2013-08-08 2014-07-15 Flywheel regeneration system, and method of controlling same WO2015019803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013165216A JP5960657B2 (en) 2013-08-08 2013-08-08 Flywheel regeneration system and control method thereof
JP2013-165216 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015019803A1 true WO2015019803A1 (en) 2015-02-12

Family

ID=52461142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068792 WO2015019803A1 (en) 2013-08-08 2014-07-15 Flywheel regeneration system, and method of controlling same

Country Status (2)

Country Link
JP (1) JP5960657B2 (en)
WO (1) WO2015019803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226873A (en) * 2019-01-07 2021-08-06 因瓦克迪恩有限责任公司 Vehicle wheel assembly
US11919332B2 (en) 2019-01-07 2024-03-05 Invaction S.R.L. Vehicle wheel assembly and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105882377A (en) * 2016-06-21 2016-08-24 中国科学院自动化研究所 Flywheel energy storing device and transportation vehicle adopting same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192966A (en) * 1985-02-19 1986-08-27 Mazda Motor Corp Recovery device of decelerative energy in vehicle
JP2010208417A (en) * 2009-03-09 2010-09-24 Equos Research Co Ltd Continuously variable transmission
JP2010270796A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Power transmission device with flywheel
JP2011038621A (en) * 2009-08-18 2011-02-24 Denso Corp Energy recovery device for veicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011104856A1 (en) * 2010-02-26 2011-09-01 トヨタ自動車株式会社 Vehicle deceleration energy recovery device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192966A (en) * 1985-02-19 1986-08-27 Mazda Motor Corp Recovery device of decelerative energy in vehicle
JP2010208417A (en) * 2009-03-09 2010-09-24 Equos Research Co Ltd Continuously variable transmission
JP2010270796A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Power transmission device with flywheel
JP2011038621A (en) * 2009-08-18 2011-02-24 Denso Corp Energy recovery device for veicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226873A (en) * 2019-01-07 2021-08-06 因瓦克迪恩有限责任公司 Vehicle wheel assembly
US20220097659A1 (en) * 2019-01-07 2022-03-31 Invaction S.R.L. Vehicle wheel assembly
US11919332B2 (en) 2019-01-07 2024-03-05 Invaction S.R.L. Vehicle wheel assembly and method

Also Published As

Publication number Publication date
JP2015033885A (en) 2015-02-19
JP5960657B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
KR101485286B1 (en) Control device for hybrid vehicle
JP5454698B2 (en) Control device for hybrid vehicle
US9637108B2 (en) Vehicle driving-torque control device
JP5176421B2 (en) Control device for hybrid vehicle
JP2007168565A (en) Coast deceleration controller for vehicle
JP6350751B2 (en) Vehicle control method and vehicle control apparatus
JP2010155590A (en) Start control device for hybrid car
WO2014034319A1 (en) Neutral determination device and vehicle control apparatus
JP2012046182A (en) Device for controlling idling stop of vehicle
JP2012157213A (en) Vehicle controller
JP2010149712A (en) Drive controller and drive control method of hybrid vehicle
JP5239841B2 (en) Control device for hybrid vehicle
JP4877121B2 (en) Idle stop control device for vehicle
WO2013150966A1 (en) Hybrid vehicle control device and hybrid vehicle control method
JP5772921B2 (en) Vehicle shift control device and shift control method
JP5239819B2 (en) Control device for hybrid vehicle
WO2015019803A1 (en) Flywheel regeneration system, and method of controlling same
JP2010190266A (en) Shift control device and shift control method for vehicle
JP2015034584A (en) Fly wheel regeneration system and its control method
JP5874165B2 (en) Control device for hybrid vehicle
JP2007313959A (en) Control device and method for hybrid vehicle
WO2015019789A1 (en) Flywheel regeneration system, and method of controlling same
JP5950038B2 (en) Control device for hybrid vehicle
JP2016060254A (en) Flywheel regeneration system and its control method
JP5741015B2 (en) Vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834763

Country of ref document: EP

Kind code of ref document: A1