WO2015019770A1 - Resin sheet for sealing electronic device, and method for manufacturing electronic device package - Google Patents

Resin sheet for sealing electronic device, and method for manufacturing electronic device package Download PDF

Info

Publication number
WO2015019770A1
WO2015019770A1 PCT/JP2014/067923 JP2014067923W WO2015019770A1 WO 2015019770 A1 WO2015019770 A1 WO 2015019770A1 JP 2014067923 W JP2014067923 W JP 2014067923W WO 2015019770 A1 WO2015019770 A1 WO 2015019770A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
layer
electronic device
heat
sheet
Prior art date
Application number
PCT/JP2014/067923
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 千歳
豊田 英志
祐作 清水
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020157036118A priority Critical patent/KR20160040465A/en
Publication of WO2015019770A1 publication Critical patent/WO2015019770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0019Protection against thermal alteration or destruction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00777Preserve existing structures from alteration, e.g. temporary protection during manufacturing
    • B81C1/00817Avoid thermal destruction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to an electronic device sealing resin sheet and an electronic device package manufacturing method.
  • a method of manufacturing an electronic device package a method of sealing one or a plurality of electronic devices fixed to a substrate or the like with a sealing resin is known.
  • a sealing resin for example, a thermosetting resin sheet is known (for example, see Patent Document 1).
  • an electronic device used for a smartphone or the like operates at a high speed, so that the temperature is likely to rise.
  • radiant heat from a high-temperature electronic device may increase the temperature of another electronic device (see FIG. 13).
  • An object of the present invention is to solve the above-mentioned problems and to provide an electronic device sealing resin sheet and an electronic device package manufacturing method capable of suppressing the temperature rise of the electronic device due to radiant heat.
  • This invention relates to the resin sheet for electronic device sealing provided with a heat
  • the resin sheet for sealing an electronic device includes a heat reflecting layer, the temperature rise of the electronic device due to radiant heat can be suppressed.
  • the resin sheet for encapsulating an electronic device includes a heat reflecting layer, heat can be diffused to the entire housing such as a smartphone. Therefore, generation
  • the infrared reflectance of the heat reflecting layer is preferably 50% or more. When it is 50% or more, radiant heat can be favorably reflected.
  • the heat reflection layer is a layer containing a metal.
  • the heat reflection layer, the resin layer, and the heat conduction layer are laminated in this order. Even if the temperature of the electronic device rises due to heat generation of the electronic device or radiant heat from another electronic device, the resin sheet for sealing an electronic device includes a heat conductive layer, so that heat can be released to the substrate and the housing. (The heat can be diffused throughout the housing.) Therefore, the resin sheet for sealing an electronic device can effectively reduce the occurrence of hot spots in a smartphone or the like.
  • the present invention also relates to a method for manufacturing an electronic device package including a step of sealing an electronic device with the resin sheet for sealing an electronic device.
  • FIG. 3 is a schematic cross-sectional view of a resin sheet according to Embodiment 1.
  • FIG. It is a cross-sectional schematic diagram of the board
  • FIG. It is a figure which shows typically a mode that the electronic device package was diced. It is a figure which shows typically a mode that the chip-shaped electronic device package was mounted in the board
  • FIG. It is a figure which shows typically a mode that the rewiring and bump were formed in the sealing body. It is a figure which shows typically a mode that the sealing body was diced. It is a cross-sectional schematic diagram of the resin sheet of Embodiment 2. It is a figure which shows typically a mode that the electronic device was sealed with the resin sheet of Embodiment 2. FIG. It is a cross-sectional schematic diagram of housing
  • FIG. 1 is a schematic cross-sectional view of a resin sheet 11 according to the first embodiment.
  • the resin sheet 11 has a structure in which the heat reflection layer 1 and the resin layer 2 are laminated.
  • the heat reflecting layer 1 has a property of reflecting radiant heat.
  • the heat reflecting layer 1 can also function as a support for the resin sheet 11.
  • a support such as a polyethylene terephthalate (PET) film may be provided on the surface of the resin layer 2 opposite to the surface on which the heat reflecting layer 1 is formed.
  • PET polyethylene terephthalate
  • a release treatment may be applied to the support.
  • the infrared reflectance of the heat reflection layer 1 is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. When it is 50% or more, radiant heat can be favorably reflected.
  • fever reflection layer 1 is not specifically limited, For example, it is 100% or less. The infrared reflectance can be measured by the method described in the examples.
  • Examples of the heat reflecting layer 1 include a layer containing a metal.
  • a layer containing a metal a metal layer and a resin layer containing a metal are preferable.
  • the metal examples include aluminum, titanium, titanium oxide, gold, silver, copper, tin, platinum, chromium, nickel, and alloys thereof. Of these, aluminum and copper are preferred because of their low cost and light weight. Further, metal oxides such as titanium oxide are preferable because of high infrared reflectance. In addition, when using titanium oxide, it is preferable to use with silicon oxide.
  • Metal foil can be suitably used as the metal layer.
  • the metal layer can also be formed by a method such as vacuum deposition, ion plating, or sputtering.
  • the resin constituting the metal-containing resin layer is not particularly limited, and examples thereof include an epoxy resin, a phenol resin, and a thermoplastic resin described later.
  • the resin layer containing a metal is prepared, for example, by dissolving or dispersing each of the above components in a solvent (for example, methyl ethyl ketone, ethyl acetate, etc.) to prepare a coating solution, and coating the coating solution on a substrate separator. Can be formed by drying.
  • a solvent for example, methyl ethyl ketone, ethyl acetate, etc.
  • the thickness of the heat reflection layer 1 is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and further preferably 10 ⁇ m or more. Moreover, the thickness of the heat
  • the resin layer 2 preferably has a small linear expansion coefficient and is thicker than the heat reflection layer, from the viewpoint that the warp of the electronic device package can be reduced. Moreover, it is preferable that hygroscopicity is low.
  • the resin layer 2 may be electrically insulating or not electrically insulating, but is preferably electrically insulating.
  • the resin layer 2 preferably contains an epoxy resin.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin is solid at room temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable from the viewpoint of reliability.
  • the resin layer 2 preferably contains a phenol resin.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • phenolic resin those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the total content of epoxy resin and phenol resin in the resin layer 2 is preferably 2% by weight or more. When it is 2% by weight or more, sufficient cured product strength can be obtained.
  • the total content of the epoxy resin and the phenol resin in the resin layer 2 is preferably 20% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product can be reduced and moisture absorption can be reduced.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the resin layer 2 preferably contains a thermoplastic resin.
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity.
  • MBS resin methyl And methacrylate-butadiene-styrene copolymer
  • the content of the thermoplastic resin in the resin layer 2 is preferably 1% by weight or more. When it is 1% by weight or more, good flexibility is obtained.
  • the content of the thermoplastic resin in the resin layer 2 is preferably 5% by weight or less, and more preferably 3.5% by weight or less. Good fluidity
  • Resin layer 2 preferably contains a filler.
  • an inorganic filler is preferable.
  • the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride.
  • silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.
  • Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
  • the average particle size of the filler is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more. When it is 1 ⁇ m or more, it is easy to obtain flexibility and flexibility of the resin sheet.
  • the average particle size of the filler is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less. When it is 40 ⁇ m or less, it is easy to increase the filling rate of the filler.
  • the average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the filler is preferably treated (pretreated) with a silane coupling agent. Thereby, wettability with resin can be improved and the dispersibility of a filler can be improved.
  • the silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
  • hydrolyzable group examples include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group.
  • a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
  • organic functional group examples include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group.
  • an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
  • silane coupling agent examples include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc.
  • vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane
  • 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyl
  • Styryl group-containing silane coupling agent 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-a
  • the method for treating the filler with the silane coupling agent is not particularly limited, and examples include a wet method in which the filler and the silane coupling agent are mixed in a solvent, and a dry method in which the filler and the silane coupling agent are treated in a gas phase. It is done.
  • the treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated filler.
  • the content of the filler in the resin layer 2 is preferably 70% by volume or more, and more preferably 74% by volume or more.
  • a linear expansion coefficient can be designed low as it is 70 volume% or more.
  • the filler content is preferably 90% by volume or less, more preferably 85% by volume or less.
  • liquidity, and adhesiveness are favorably obtained as it is 90 volume% or less.
  • the filler content can also be explained by using “% by weight” as a unit. Typically, the content of silica will be described in units of “% by weight”. Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows. That is, the content of silica in the resin layer 2 is preferably 81% by weight or more, and more preferably 84% by weight or more. The content of silica in the resin layer 2 is preferably 94% by weight or less, and more preferably 91% by weight or less.
  • the preferred range of the alumina content is, for example, as follows. That is, the content of alumina in the resin layer 2 is preferably 88% by weight or more, and more preferably 90% by weight or more. The alumina content in the resin layer 2 is preferably 97% by weight or less, and more preferably 95% by weight or less.
  • the resin layer 2 preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate
  • 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • the content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • Resin layer 2 may contain, in addition to the above components, compounding agents generally used in the production of sealing resins, for example, flame retardant components, pigments, silane coupling agents, and the like.
  • the flame retardant component for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxide, phosphazene compounds, and the like can be used. Of these, phosphazene compounds are preferred because they are excellent in flame retardancy and strength after curing.
  • the pigment is not particularly limited, and examples thereof include carbon black.
  • a method for producing the resin layer 2 is not particularly limited, but a method of plastically processing a kneaded material obtained by kneading the respective components (for example, an epoxy resin, a phenol resin, a thermoplastic resin, a filler, and a curing accelerator) into a sheet shape.
  • a filler can be filled highly and a linear expansion coefficient can be designed low.
  • a kneaded material is prepared by melting and kneading an epoxy resin, a phenol resin, a thermoplastic resin, a filler, and a curing accelerator with a known kneader such as a mixing roll, a pressure kneader, or an extruder.
  • the kneaded material is plastically processed into a sheet shape.
  • the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less.
  • the lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher.
  • the kneading time is preferably 1 to 30 minutes.
  • the kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 ⁇ 10 ⁇ 4 to 0.1 kg / cm 2 .
  • the kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling.
  • the plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method.
  • the plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
  • the thickness of the resin layer 2 is not particularly limited, but is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • the thickness of the resin layer 2 is preferably 2000 ⁇ m or less, and more preferably 1000 ⁇ m or less.
  • fever reflection layer 1 is a single layer is shown in FIG. 1, the heat
  • the resin layer 2 is a single layer is shown in FIG. 1, the resin layer 2 is not limited to this and may be a multilayer.
  • Resin sheet 11 is used for sealing electronic devices.
  • Electronic devices include sensors, MEMS (Micro Electro Mechanical Systems), SAW (Surface Acoustic Wave) filters and other electronic devices (hollow electronic devices); semiconductor chips, ICs (integrated circuits), semiconductors such as transistors Examples include an element, a capacitor, and a resistor.
  • the hollow structure refers to a hollow portion formed between the electronic device and the substrate when the electronic device is mounted on the substrate.
  • the sealing method is not particularly limited, and examples thereof include a method of covering an electronic device mounted on a substrate with a resin sheet 11 and a method of covering an electronic device mounted on an adhesive sheet with a resin sheet 11. It does not specifically limit as a board
  • substrate For example, a printed wiring board, a ceramic substrate, a silicon substrate, a metal substrate, a semiconductor wafer etc. are mentioned.
  • an electronic device package can be obtained by performing the following steps.
  • the following steps are commonly referred to as chip-on-wafer (COW) processes.
  • COW chip-on-wafer
  • a substrate 12 on which a plurality of electronic devices 13 are mounted is prepared (see FIG. 2).
  • a known apparatus such as a flip chip bonder or a die bonder can be used.
  • the electronic device 13 and the substrate 12 are electrically connected.
  • FIG. 2 shows an example in which the electronic device 13 and the substrate 12 are electrically connected via protruding electrodes 13a such as bumps.
  • the electronic device 13 is a hollow electronic device such as a SAW filter
  • a hollow portion (hollow structure) 14 is maintained between the electronic device 13 and the substrate 12.
  • the distance between the electronic device 13 and the substrate 12 is generally about 15 to 50 ⁇ m.
  • the sealing step the resin sheet 11 is laminated on the substrate 12 so that the resin layer 2 is in contact with the substrate 12 and the electronic device 13, and the electronic device 13 is sealed with the resin sheet 11 (see FIG. 3). Thereby, the electronic device package 15 in which the electronic device 13 is sealed with resin is obtained.
  • the method for laminating the resin sheet 11 on the substrate 12 is not particularly limited, and can be performed by a known method such as hot pressing or laminator.
  • the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C.
  • the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa
  • the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes.
  • it is preferable to press under reduced pressure conditions for example, 0.1 to 5 kPa).
  • thermosetting process If necessary, the resin sheet 11 of the electronic device package 15 is thermoset.
  • the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • you may pressurize as needed Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more.
  • the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
  • the resin sheet 11 of the electronic device package 15 is ground.
  • the grinding method include a grinding method using a grindstone that rotates at high speed.
  • the substrate 12 of the electronic device package 15 is ground.
  • the grinding method include a grinding method using a grindstone that rotates at high speed.
  • vias (Via) are formed in the electronic device package 15 as necessary.
  • rewiring is formed in the electronic device package 15 as necessary.
  • bumps are formed on the rewiring as necessary.
  • the electronic device package 15 is diced (see FIG. 4). Thereby, the chip-shaped electronic device package 16 can be obtained.
  • the electronic device package 15 or the electronic device package 16 is mounted on the substrate 18 or the like as necessary (see FIG. 5).
  • Laser marking can be performed on the electronic device package 15 or the electronic device package 16 at an arbitrary timing. For example, laser marking may be performed on the electronic device package 15 before thermosetting, laser marking may be performed on the electronic device package 15 after thermosetting, or laser marking may be performed on the electronic device package 16.
  • the electronic device package 15 and the electronic device package 16 include the heat reflecting layer 1, the temperature increase of the electronic device 13 due to radiant heat can be suppressed. Therefore, generation
  • an electronic device package can be obtained by performing the following steps. The following steps are suitable for manufacturing a fan-out type wafer level package (WLP).
  • WLP fan-out type wafer level package
  • Step of fixing the electronic device to the adhesive sheet First, the some electronic device 13 is fixed to the adhesive sheet 41 (refer FIG. 6). At this time, if necessary, the electronic device 13 is arranged and fixed so that the circuit forming surface of the electronic device 13 faces the adhesive sheet 41.
  • a known apparatus such as a flip chip bonder or a die bonder can be used.
  • the pressure-sensitive adhesive sheet 41 usually has a support 42 and a pressure-sensitive adhesive layer 43 laminated on the support 42.
  • the pressure-sensitive adhesive layer 43 is not particularly limited, but a heat-peelable pressure-sensitive adhesive layer, a radiation curable pressure-sensitive adhesive layer, or the like is usually used because it can be easily peeled off.
  • the material for the support 42 is not particularly limited. For example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyetheretherketone, and polyethersulfone.
  • the sealing step the resin sheet 11 is laminated on the adhesive sheet 41 so that the resin layer 2 is in contact with the adhesive sheet 41 and the electronic device 13, and the electronic device 13 is sealed with the resin sheet 11 (see FIG. 7). . Thereby, the sealing body 51 by which the electronic device 13 was resin-sealed is obtained.
  • the method for laminating the resin sheet 11 on the pressure-sensitive adhesive sheet 41 is not particularly limited, and can be performed by a known method such as hot pressing or laminator.
  • the sealing body 51 is thermoset (the resin sheet 11 of the sealing body 51 is thermoset).
  • the adhesive sheet 41 is peeled from the sealing body 51 (see FIG. 8).
  • the peeling method is not particularly limited, it is preferable to peel the adhesive layer 43 after reducing the adhesive strength.
  • the pressure-sensitive adhesive layer 43 is a heat-peelable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer 43 is heated and peeled after the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer 43 is reduced.
  • the resin sheet 11 of the sealing body 51 is ground as necessary.
  • the grinding method include a grinding method using a grindstone that rotates at high speed.
  • the rewiring 52 is formed in the sealing body 51 using a semi-additive method or the like (see FIG. 9).
  • an insulating layer such as polyimide or polybenzoxazole (PBO) is formed on the surface of the sealing body 51 where the rewiring 52 is formed.
  • the insulating layer can be formed, for example, by laminating a film such as a dry film resist.
  • the bumping process can be performed by a known method such as solder ball or solder plating.
  • Dicing process Dicing of the sealing body 51 including elements such as the electronic device 13, the resin layer 2, the heat reflection layer 1, and the rewiring 52 may be performed (see FIG. 10). As described above, the electronic device package 61 in which the wiring is drawn outside the chip region can be obtained. In addition, you may use the sealing body 51 as an electronic device package as it is, without dicing.
  • the electronic device package 61 is mounted on a substrate or the like as necessary.
  • Laser marking can be performed on the sealing body 51 or the electronic device package 61 at an arbitrary timing. For example, laser marking may be performed on the sealing body 51 before thermosetting, laser marking may be performed on the sealing body 51 after thermosetting, or laser marking may be performed on the electronic device package 61.
  • the sealing body 51 or the electronic device package 61 includes the heat reflecting layer 1, the temperature increase of the electronic device 13 due to radiant heat can be suppressed. Therefore, generation
  • fever reflection layer 1 was demonstrated.
  • the resin sheet includes a heat reflecting layer 1, a layer disposed on the heat reflecting layer 1, and a resin layer 2 disposed on the layer.
  • the layer for example, a layer containing a resin, a metal layer, and the like are suitable.
  • the layer may be a single layer or a multilayer.
  • the resin sheet includes the heat reflecting layer 1, the resin layer 2 disposed on the heat reflecting layer 1, and the layer disposed on the resin layer 2.
  • the layer for example, a layer including a resin, a metal layer, or the like is preferable, and a layer including a resin is more preferable.
  • the layer may be a single layer or a multilayer.
  • FIG. 11 is a schematic cross-sectional view of the resin sheet 31 of the second embodiment.
  • the resin sheet 31 is the same as the resin sheet 11 of Embodiment 1 except that the heat conductive layer 3 is provided.
  • the resin sheet 31 has a structure in which the heat reflecting layer 1, the resin layer 2, and the heat conductive layer 3 are laminated in this order.
  • the resin sheet 31 Even if the temperature of the electronic device rises due to heat generation of the electronic device or radiant heat from other electronic devices, the resin sheet 31 includes the heat conductive layer 3 having high thermal conductivity, so that heat can be released to the substrate and the housing. it can. Therefore, the resin sheet 31 can effectively reduce the occurrence of hot spots in a smartphone or the like.
  • the thermal conductivity of the heat conductive layer 3 is 1 W / mK or more. Since it is 1 W / mK or more, the heat of the electronic device can be released to the substrate through the heat conductive layer 3.
  • the thermal conductivity of the heat conductive layer 3 is preferably 3 W / mK or more, more preferably 3.5 W / mK or more.
  • the upper limit of the heat conductivity of the heat conductive layer 3 is not specifically limited, For example, it is 100 W / mK or less.
  • the heat conductivity of the heat conductive layer 3 may be, for example, 10 W / mK or less.
  • the heat conductive layer 3 is preferably electrically insulating.
  • the heat conductive layer 3 preferably contains heat conductive particles. Thereby, thermal conductivity can be designed to be 1 W / mK or more.
  • the heat conductive particles are not particularly limited, and examples thereof include electrically insulating particles such as alumina (aluminum oxide), zinc oxide, magnesium oxide, boron nitride, magnesium hydroxide, aluminum nitride, and silicon carbide. These can be used alone or in combination of two or more. Of these, alumina and boron nitride are preferred because of their high thermal conductivity and good fluidity.
  • electrically insulating particles such as alumina (aluminum oxide), zinc oxide, magnesium oxide, boron nitride, magnesium hydroxide, aluminum nitride, and silicon carbide.
  • the thermal conductivity of the thermal conductive particles is not particularly limited as long as thermal conductivity can be imparted to the thermal conductive layer 3, but is preferably 12 W / mK or more, more preferably 15 W / mK or more, and even more preferably 25 W. / MK or more. When it is 12 W / mK or more, thermal conductivity of 1 W / mK or more can be easily imparted to the heat conductive layer 3.
  • the heat conductivity of the heat conductive particles is, for example, 70 W / mK or less.
  • the particle shape of the heat conductive particles is not particularly limited, and examples thereof include a spherical shape, an elliptical sphere shape, a flat shape, a needle shape, a fiber shape, a flake shape, a spike shape, and a coil shape. Of these shapes, a spherical shape is preferable in that it has excellent dispersibility and can improve the filling rate.
  • the content of the heat conductive particles in the heat conductive layer 3 is preferably 60% by volume or more.
  • the heat conductivity of the heat conductive layer 3 can be improved as it is 60 volume% or more.
  • the content of the heat conductive particles is preferably 85% by volume or less. When the amount is 85% by volume or less, a relative decrease in the adhesive component in the heat conductive layer 3 can be prevented, and wettability and adhesiveness to an electronic device or a substrate can be secured.
  • the content of the heat conductive particles can be explained by using “wt%” as a unit. Typically, the content of alumina will be described with “wt%” as a unit. Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows. That is, the content of alumina in the heat conductive layer 3 is preferably 83% by weight or more, and more preferably 85% by weight or more. The content of alumina in the heat conductive layer 3 is preferably 95% by weight or less, and more preferably 93% by weight or less.
  • the particle size distribution measured by the laser diffraction scattering method of the heat conductive particles when the total amount of the heat conductive particles is 100% by volume satisfies the following relationship. Over 100 ⁇ m: 1 vol% or less 10 ⁇ m or less: 30 vol% or more and 70 vol% or less 1 ⁇ m or less: 10 vol% or more
  • the ratio of particles having a particle size of more than 100 ⁇ m is 1% by volume or less, preferably 0.5% by volume or less, and more preferably 0.3% by volume or less.
  • the lower limit of the ratio of particles having a particle size of more than 100 ⁇ m is preferably 0.01% by volume or more.
  • the ratio of particles having a particle size of 10 ⁇ m or less is 30% to 70% by volume, preferably 35% to 65% by volume, and more preferably 40% to 60% by volume.
  • the ratio of particles having a particle size of 1 ⁇ m or less is 10% by volume or more, preferably 13% by volume or more, and more preferably 15% by volume or more.
  • the upper limit of the ratio of particles having a particle size of 1 ⁇ m or less is preferably 40% by volume or less.
  • the particle size distribution can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the heat conductive layer 3 preferably contains an epoxy resin.
  • an epoxy resin what was demonstrated by the resin layer 2 can be used conveniently.
  • the heat conductive layer 3 preferably contains a phenol resin.
  • a phenol resin what was demonstrated by the resin layer 2 can be used conveniently.
  • the total content of epoxy resin and phenol resin in the heat conductive layer 3 is preferably 2% by weight or more. Adhesive strength with respect to an electronic device, a board
  • the total content of the epoxy resin and the phenol resin in the heat conductive layer 3 is preferably 20% by weight or less. If it is 20% by weight or less, the hygroscopicity can be kept low.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the heat conductive layer 3 preferably contains a thermoplastic resin.
  • a thermoplastic resin what was demonstrated by the resin layer 2 can be used conveniently.
  • the content of the thermoplastic resin in the heat conductive layer 3 is preferably 0.5% by weight or more.
  • flexibility and flexibility can be provided as it is 0.5 weight% or more.
  • the content of the thermoplastic resin in the heat conductive layer 3 is preferably 20% by weight or less. Adhesive strength with respect to an electronic device, a board
  • the heat conductive layer 3 preferably contains a curing accelerator. As a hardening accelerator, what was demonstrated by the resin layer 2 can be used conveniently.
  • the content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • the heat conductive layer 3 may appropriately contain a compounding agent generally used for manufacturing a sealing resin, such as silica.
  • the heat conductive layer 3 can be manufactured by a general manufacturing method. For example, each of the above components is dissolved or dispersed in a solvent (for example, methyl ethyl ketone, ethyl acetate, etc.) to prepare a coating solution. After the coating solution is applied onto a substrate separator, the coating film is dried. Thereby, the heat conductive layer 3 can be produced.
  • a solvent for example, methyl ethyl ketone, ethyl acetate, etc.
  • the thickness of the heat conductive layer 3 is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less. When it is 200 ⁇ m or less, wear of the dicing blade can be reduced. Further, the thickness of the heat conductive layer 3 is preferably 5 ⁇ m or more. Heat can be efficiently conducted as it is 5 ⁇ m or more.
  • the thermal conductivity of the resin layer 2 is preferably lower than the thermal conductivity of the thermal conductive layer 3. This makes it easier for the heat of the electronic device to escape to the substrate.
  • the thermal conductivity of the resin layer 2 is preferably 5 W / mK or less, more preferably 3 W / mK or less, and more preferably 2 W / mK or less.
  • the minimum of the heat conductivity of the resin layer 2 is not specifically limited, For example, it is 0.1 W / mK or more.
  • the thermal conductivity of the thermal conductive layer 3 / the thermal conductivity of the resin layer 2 is preferably 1 or more, more preferably 3 or more. It is. When it is 1 or more, the heat of the electronic device can be effectively released to the substrate.
  • the upper limit of the value of the heat conductivity of the heat conductive layer 3 / the heat conductivity of the resin layer 2 is not specifically limited, For example, it is 50 or less.
  • the thickness of the heat conductive layer 3 / the thickness of the resin layer 2 (ratio of the thickness of the heat conductive layer 3 to the thickness of the resin layer 2) is preferably 0.5 or less, and more preferably 0.2 or less. When it is 0.5 or less, it is possible to reduce the wear of the dicing blade while effectively releasing the heat of the electronic device to the substrate.
  • the thickness of the heat conductive layer 3 / the thickness of the resin layer 2 is preferably 0.1 or more. Warpage of an electronic device package can be reduced as it is 0.1 or more.
  • the heat conductive layer 3 is a single layer
  • the heat conductive layer 3 is not limited to this, A multilayer may be sufficient.
  • the resin sheet is disposed on the heat reflecting layer 1, the resin layer 2 disposed on the heat reflecting layer 1, the first layer disposed on the resin layer 2, and the first layer. And a heat conductive layer 3.
  • the resin sheet is disposed on the heat reflecting layer 1, the first layer disposed on the heat reflecting layer 1, the resin layer 2 disposed on the first layer, and the resin layer 2.
  • a second layer and a heat conductive layer 3 disposed on the second layer are provided.
  • the first layer for example, a layer containing a resin, a metal layer, and the like are suitable.
  • the first layer may be a single layer or multiple layers.
  • the second layer for example, a layer containing a resin, a metal layer, and the like are suitable.
  • the second layer may be a single layer or a multiple layer.
  • Heat reflection layer 1 Aluminum foil (aluminum, thickness 20 ⁇ m) manufactured by Nippon Foil Co., Ltd.
  • Heat reflection layer 2 Copper foil (copper, thickness 20 ⁇ m) manufactured by Nippon Foil Co., Ltd.
  • Epoxy resin YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
  • Phenolic resin MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
  • Thermoplastic resin Metablene C-132E manufactured by Mitsubishi Rayon Co., Ltd.
  • Silane coupling agent treated filler FB-9454FC (fused spherical silica, average primary particle size 20 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd. was treated with KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. Material (treated at a ratio of 0.5 part by weight of KBM-403 to 87.9 parts by weight of FB-9454FC) Carbon black: # 20 manufactured by Mitsubishi Chemical Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Epoxy resin YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
  • Phenolic resin MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
  • Thermoplastic resin Metablene C-132E manufactured by Mitsubishi Rayon Co., Ltd.
  • MFS resin average particle size 120 ⁇ m
  • Thermally conductive particles DAS-30 manufactured by Denki Kagaku Kogyo (alumina, average particle size 27.9 ⁇ m, maximum particle size 128 ⁇ m, thermal conductivity 36 W / mK)
  • Curing accelerator 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • Example 1 (Production of resin layer) Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer.
  • a resin layer was laminated on the heat reflecting layer 1 using a roll laminator. Thereby, a resin sheet having a resin layer laminated on the heat reflecting layer 1 was produced.
  • Example 2 (Production of resin layer) Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer. (Preparation of heat conduction layer) Each component was blended according to the blending ratio shown in Table 3, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a heat conductive layer.
  • Example 3 (Production of resin layer) Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer.
  • a resin layer was laminated on the heat reflecting layer 2 using a roll laminator. Thereby, a resin sheet having a resin layer laminated on the heat reflecting layer 2 was produced.
  • the sample (heat reflective layer or resin layer) was heat-cured by heat treatment at 175 ° C. for 1 hour in a dryer. Thereafter, the infrared reflectance (%) of the sample was measured by the ATR method (total reflection absorption spectroscopy, measuring apparatus; NICOLET 4700, manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the sample (thermal conductive layer or resin layer) was heat-cured by heat treatment at 175 ° C. for 1 hour in a dryer. Thereafter, the thermal diffusivity ⁇ (m 2 / s) of the sample was measured by a TWA method (temperature wave thermal analysis method, measuring device; Eye Phase Mobile, manufactured by Eye Phase Co., Ltd.). Next, the specific heat Cp (J / g ⁇ ° C.) of the sample was measured by the DSC method. Specific heat measurement was performed using DSC 6220 manufactured by SII Nano Technology Co., Ltd.
  • thermal conductivity was calculated by the following formula.
  • thermography T9100WR, NEC / Avio
  • thermography T9100WR, NEC / Avio

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Chemical & Material Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)

Abstract

Provided are a resin sheet for sealing an electronic device, in which the sheet is capable of suppressing temperature increases in an electronic device that are caused by radiant heat, and a method for manufacturing an electronic device package. The present invention relates to resin sheet for sealing an electronic device, in which the sheet is provided with a heat reflection layer and a resin layer.

Description

電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法Resin sheet for sealing electronic device and method for manufacturing electronic device package
 本発明は、電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法に関する。 The present invention relates to an electronic device sealing resin sheet and an electronic device package manufacturing method.
 従来、電子デバイスパッケージの製造方法として、基板などに固定された1又は複数の電子デバイスを封止樹脂で封止するという方法が知られている。このような封止樹脂として、例えば、熱硬化性樹脂シートが知られている(例えば、特許文献1参照)。 Conventionally, as a method of manufacturing an electronic device package, a method of sealing one or a plurality of electronic devices fixed to a substrate or the like with a sealing resin is known. As such a sealing resin, for example, a thermosetting resin sheet is known (for example, see Patent Document 1).
特開2006-19714号公報JP 2006-19714 A
 電子デバイスが高温になると、動作が不安定になったり、電子デバイスの特性が劣化することがある。しかしながら、スマートフォンなどに使用される電子デバイスは高速で動作するため、温度が上がり易い。しかも、スマートフォンなどの筐体内部では、高温の電子デバイスからの輻射熱が、他の電子デバイスの温度を上昇させることがある(図13参照)。 If the electronic device becomes hot, the operation may become unstable or the characteristics of the electronic device may deteriorate. However, an electronic device used for a smartphone or the like operates at a high speed, so that the temperature is likely to rise. Moreover, in a housing such as a smartphone, radiant heat from a high-temperature electronic device may increase the temperature of another electronic device (see FIG. 13).
 本発明は前記課題を解決し、輻射熱による電子デバイスの温度上昇を抑制できる電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide an electronic device sealing resin sheet and an electronic device package manufacturing method capable of suppressing the temperature rise of the electronic device due to radiant heat.
 本発明は、熱反射層及び樹脂層を備える電子デバイス封止用樹脂シートに関する。 This invention relates to the resin sheet for electronic device sealing provided with a heat | fever reflection layer and a resin layer.
 前記電子デバイス封止用樹脂シートは、熱反射層を備えるため輻射熱による電子デバイスの温度上昇を抑制できる。 Since the resin sheet for sealing an electronic device includes a heat reflecting layer, the temperature rise of the electronic device due to radiant heat can be suppressed.
 また、前記電子デバイス封止用樹脂シートは、熱反射層を備えるためスマートフォンなどの筐体全体に熱を拡散できる。よって、スマートフォンなどにおけるホットスポット(局所高温部)の発生を低減できる。 Moreover, since the resin sheet for encapsulating an electronic device includes a heat reflecting layer, heat can be diffused to the entire housing such as a smartphone. Therefore, generation | occurrence | production of the hot spot (local high temperature part) in a smart phone etc. can be reduced.
 前記熱反射層の赤外線反射率が50%以上であることが好ましい。50%以上であると、輻射熱を良好に反射できる。 The infrared reflectance of the heat reflecting layer is preferably 50% or more. When it is 50% or more, radiant heat can be favorably reflected.
 前記熱反射層が金属を含有する層であることが好ましい。 It is preferable that the heat reflection layer is a layer containing a metal.
 前記熱反射層、前記樹脂層及び熱伝導層がこの順に積層されていることが好ましい。電子デバイスの発熱や他の電子デバイスからの輻射熱により電子デバイスの温度が上昇したとしても、前記電子デバイス封止用樹脂シートは、熱伝導層を備えるため熱を基板及び筐体に逃がすことができる(熱を筐体全体に拡散できる)。よって、前記電子デバイス封止用樹脂シートは、スマートフォンなどにおけるホットスポットの発生を効果的に低減できる。 It is preferable that the heat reflection layer, the resin layer, and the heat conduction layer are laminated in this order. Even if the temperature of the electronic device rises due to heat generation of the electronic device or radiant heat from another electronic device, the resin sheet for sealing an electronic device includes a heat conductive layer, so that heat can be released to the substrate and the housing. (The heat can be diffused throughout the housing.) Therefore, the resin sheet for sealing an electronic device can effectively reduce the occurrence of hot spots in a smartphone or the like.
 本発明はまた、前記電子デバイス封止用樹脂シートで電子デバイスを封止する工程を含む電子デバイスパッケージの製造方法に関する。 The present invention also relates to a method for manufacturing an electronic device package including a step of sealing an electronic device with the resin sheet for sealing an electronic device.
実施形態1の樹脂シートの断面模式図である。3 is a schematic cross-sectional view of a resin sheet according to Embodiment 1. FIG. 電子デバイスが搭載された基板の断面模式図である。It is a cross-sectional schematic diagram of the board | substrate with which the electronic device was mounted. 実施形態1の樹脂シートで電子デバイスを封止した様子を模式的に示す図である。It is a figure which shows typically a mode that the electronic device was sealed with the resin sheet of Embodiment 1. FIG. 電子デバイスパッケージをダイシングした様子を模式的に示す図である。It is a figure which shows typically a mode that the electronic device package was diced. チップ状の電子デバイスパッケージを基板に実装した様子を模式的に示す図である。It is a figure which shows typically a mode that the chip-shaped electronic device package was mounted in the board | substrate. 粘着シートに電子デバイスを固定した様子を模式的に示す図である。It is a figure which shows typically a mode that the electronic device was fixed to the adhesive sheet. 樹脂シートで電子デバイスを封止した様子を模式的に示す図である。It is a figure which shows typically a mode that the electronic device was sealed with the resin sheet. 封止体から粘着シートを剥離した様子を模式的に示す図である。It is a figure which shows typically a mode that the adhesive sheet was peeled from the sealing body. 封止体に再配線とバンプを形成した様子を模式的に示す図である。It is a figure which shows typically a mode that the rewiring and bump were formed in the sealing body. 封止体をダイシングした様子を模式的に示す図である。It is a figure which shows typically a mode that the sealing body was diced. 実施形態2の樹脂シートの断面模式図である。It is a cross-sectional schematic diagram of the resin sheet of Embodiment 2. 実施形態2の樹脂シートで電子デバイスを封止した様子を模式的に示す図である。It is a figure which shows typically a mode that the electronic device was sealed with the resin sheet of Embodiment 2. FIG. スマートフォンなどの筐体の断面模式図である。It is a cross-sectional schematic diagram of housing | casings, such as a smart phone.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 [実施形態1]
 図1は、実施形態1の樹脂シート11の断面模式図である。樹脂シート11は、熱反射層1と樹脂層2とを積層した構造である。熱反射層1は輻射熱を反射する性質を有する。また、熱反射層1は樹脂シート11の支持体としても機能できる。なお、樹脂層2の熱反射層1が形成された面と反対の面には、ポリエチレンテレフタレート(PET)フィルムなどの支持体が設けられていてもよい。樹脂シート11からの剥離を容易に行うために、支持体には離型処理が施されていてもよい。
[Embodiment 1]
FIG. 1 is a schematic cross-sectional view of a resin sheet 11 according to the first embodiment. The resin sheet 11 has a structure in which the heat reflection layer 1 and the resin layer 2 are laminated. The heat reflecting layer 1 has a property of reflecting radiant heat. The heat reflecting layer 1 can also function as a support for the resin sheet 11. A support such as a polyethylene terephthalate (PET) film may be provided on the surface of the resin layer 2 opposite to the surface on which the heat reflecting layer 1 is formed. In order to perform peeling from the resin sheet 11 easily, a release treatment may be applied to the support.
 熱反射層1の赤外線反射率は、好ましくは50%以上、より好ましくは70%以上、さらに好ましくは80%以上である。50%以上であると、輻射熱を良好に反射できる。熱反射層1の赤外線反射率の上限は特に限定されず、例えば100%以下である。
 赤外線反射率は実施例に記載の方法で測定できる。
The infrared reflectance of the heat reflection layer 1 is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. When it is 50% or more, radiant heat can be favorably reflected. The upper limit of the infrared reflectance of the heat | fever reflection layer 1 is not specifically limited, For example, it is 100% or less.
The infrared reflectance can be measured by the method described in the examples.
 熱反射層1としては、例えば、金属を含有する層などが挙げられる。金属を含有する層としては、金属層、金属を含有する樹脂層が好ましい。 Examples of the heat reflecting layer 1 include a layer containing a metal. As a layer containing a metal, a metal layer and a resin layer containing a metal are preferable.
 金属としては、例えば、アルミニウム、チタン、酸化チタン、金、銀、銅、スズ、プラチナ、クロム、ニッケル、これらの合金などが挙げられる。なかでも、コストが低く、軽いという理由から、アルミニウム、銅が好ましい。また、赤外線反射率が高いという理由から、酸化チタンなどの酸化金属が好ましい。なお、酸化チタンを使用する場合、酸化ケイ素とともに使用することが好ましい。 Examples of the metal include aluminum, titanium, titanium oxide, gold, silver, copper, tin, platinum, chromium, nickel, and alloys thereof. Of these, aluminum and copper are preferred because of their low cost and light weight. Further, metal oxides such as titanium oxide are preferable because of high infrared reflectance. In addition, when using titanium oxide, it is preferable to use with silicon oxide.
 金属層として、金属箔を好適に使用できる。また、金属層は、例えば、真空蒸着、イオンプレーティング、スパッタリングなどの方法で形成することもできる。 Metal foil can be suitably used as the metal layer. The metal layer can also be formed by a method such as vacuum deposition, ion plating, or sputtering.
 金属を含有する樹脂層を構成する樹脂としては特に限定されず、例えば、後述のエポキシ樹脂、フェノール樹脂、熱可塑性樹脂などが挙げられる。金属を含有する樹脂層は、例えば、前記各成分を溶媒(例えば、メチルエチルケトン、酢酸エチルなど)に溶解ないし分散させて塗布液を調製し、塗布液を基材セパレータ上に塗布した後、塗布膜を乾燥させる方法で形成できる。 The resin constituting the metal-containing resin layer is not particularly limited, and examples thereof include an epoxy resin, a phenol resin, and a thermoplastic resin described later. The resin layer containing a metal is prepared, for example, by dissolving or dispersing each of the above components in a solvent (for example, methyl ethyl ketone, ethyl acetate, etc.) to prepare a coating solution, and coating the coating solution on a substrate separator. Can be formed by drying.
 熱反射層1の厚みは特に限定されないが、好ましくは0.1μm以上、より好ましくは0.5μm以上、さらに好ましくは10μm以上である。また、熱反射層1の厚みは、好ましくは100μm以下、より好ましくは50μm以下である。 The thickness of the heat reflection layer 1 is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.5 μm or more, and further preferably 10 μm or more. Moreover, the thickness of the heat | fever reflection layer 1 becomes like this. Preferably it is 100 micrometers or less, More preferably, it is 50 micrometers or less.
 樹脂層2は、電子デバイスパッケージの反りを低減できるという点から、線膨張係数が小さく、熱反射層より厚いことが好ましい。また、吸湿性が低いことが好ましい。 The resin layer 2 preferably has a small linear expansion coefficient and is thicker than the heat reflection layer, from the viewpoint that the warp of the electronic device package can be reduced. Moreover, it is preferable that hygroscopicity is low.
 なお、樹脂層2は、電気絶縁性であってもよいし、電気絶縁性でなくともよいが、電気絶縁性であることが好ましい。 The resin layer 2 may be electrically insulating or not electrically insulating, but is preferably electrically insulating.
 樹脂層2は、エポキシ樹脂を含むことが好ましい。 The resin layer 2 preferably contains an epoxy resin.
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましい。なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。 From the viewpoint of ensuring the reactivity of the epoxy resin, it is preferable that the epoxy resin is solid at room temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. Of these, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable from the viewpoint of reliability.
 樹脂層2は、フェノール樹脂を含むことが好ましい。 The resin layer 2 preferably contains a phenol resin.
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenolic resin, those having a hydroxyl equivalent weight of 70 to 250 and a softening point of 50 to 110 ° C. are preferably used from the viewpoint of reactivity with the epoxy resin, and in particular, phenol novolak from the viewpoint of high curing reactivity. Resin can be used suitably. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 樹脂層2中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2重量%以上が好ましい。2重量%以上であると、充分な硬化物強度が得られる。樹脂層2中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましい。20重量%以下であると、硬化物の線膨張係数を小さくでき、また低吸湿化できる。 The total content of epoxy resin and phenol resin in the resin layer 2 is preferably 2% by weight or more. When it is 2% by weight or more, sufficient cured product strength can be obtained. The total content of the epoxy resin and the phenol resin in the resin layer 2 is preferably 20% by weight or less. When it is 20% by weight or less, the linear expansion coefficient of the cured product can be reduced and moisture absorption can be reduced.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 樹脂層2は、熱可塑性樹脂を含むことが好ましい。 The resin layer 2 preferably contains a thermoplastic resin.
 熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン-イソブチレン-スチレンブロック共重合体、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。 Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluorine resin, styrene-isobutylene-styrene block copolymer, methyl And methacrylate-butadiene-styrene copolymer (MBS resin). These thermoplastic resins can be used alone or in combination of two or more.
 樹脂層2中の熱可塑性樹脂の含有量は、1重量%以上が好ましい。1重量%以上であると、良好な可とう性が得られる。樹脂層2中の熱可塑性樹脂の含有量は、5重量%以下が好ましく、3.5重量%以下がより好ましい。5重量%以下であると、良好な流動性が得られる。 The content of the thermoplastic resin in the resin layer 2 is preferably 1% by weight or more. When it is 1% by weight or more, good flexibility is obtained. The content of the thermoplastic resin in the resin layer 2 is preferably 5% by weight or less, and more preferably 3.5% by weight or less. Good fluidity | liquidity is acquired as it is 5 weight% or less.
 樹脂層2は、フィラーを含むことが好ましい。 Resin layer 2 preferably contains a filler.
 フィラーとしては特に限定されないが、無機充填材が好ましい。無機充填材としては、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素などが挙げられる。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。シリカとしては、流動性に優れるという理由から、溶融シリカが好ましく、球状溶融シリカがより好ましい。 Although it does not specifically limit as a filler, An inorganic filler is preferable. Examples of the inorganic filler include quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride, and boron nitride. Among these, silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced. Silica is preferably fused silica and more preferably spherical fused silica because it is excellent in fluidity.
 フィラーの平均粒径は、好ましくは1μm以上、より好ましくは5μm以上である。1μm以上であると、樹脂シートの可撓性、柔軟性を得易い。フィラーの平均粒径は、好ましくは40μm以下、より好ましくは30μm以下である。40μm以下であると、フィラーを高充填率化し易い。
 なお、平均粒径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
The average particle size of the filler is preferably 1 μm or more, more preferably 5 μm or more. When it is 1 μm or more, it is easy to obtain flexibility and flexibility of the resin sheet. The average particle size of the filler is preferably 40 μm or less, more preferably 30 μm or less. When it is 40 μm or less, it is easy to increase the filling rate of the filler.
The average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 フィラーは、シランカップリング剤により処理(前処理)されたものが好ましい。これにより、樹脂との濡れ性を向上でき、フィラーの分散性を高めることができる。 The filler is preferably treated (pretreated) with a silane coupling agent. Thereby, wettability with resin can be improved and the dispersibility of a filler can be improved.
 シランカップリング剤は、分子中に加水分解性基及び有機官能基を有する化合物である。 The silane coupling agent is a compound having a hydrolyzable group and an organic functional group in the molecule.
 加水分解性基としては、例えば、メトキシ基、エトキシ基などの炭素数1~6のアルコキシ基、アセトキシ基、2-メトキシエトキシ基等が挙げられる。なかでも、加水分解によって生じるアルコールなどの揮発成分を除去し易いという理由から、メトキシ基が好ましい。 Examples of the hydrolyzable group include an alkoxy group having 1 to 6 carbon atoms such as a methoxy group and an ethoxy group, an acetoxy group, and a 2-methoxyethoxy group. Among these, a methoxy group is preferable because it easily removes volatile components such as alcohol generated by hydrolysis.
 有機官能基としては、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基などが挙げられる。なかでも、エポキシ樹脂、フェノール樹脂と反応し易いという理由から、エポキシ基が好ましい。 Examples of the organic functional group include vinyl group, epoxy group, styryl group, methacryl group, acrylic group, amino group, ureido group, mercapto group, sulfide group, and isocyanate group. Among these, an epoxy group is preferable because it easily reacts with an epoxy resin or a phenol resin.
 シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシランなどのビニル基含有シランカップリング剤;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;p-スチリルトリメトキシシランなどのスチリル基含有シランカップリング剤;3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリル基含有シランカップリング剤;3-アクリロキシプロピルトリメトキシシランなどのアクリル基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランなどのアミノ基含有シランカップリング剤;3-ウレイドプロピルトリエトキシシランなどのウレイド基含有シランカップリング剤;3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシランなどのメルカプト基含有シランカップリング剤;ビス(トリエトキシシリルプロピル)テトラスルフィドなどのスルフィド基含有シランカップリング剤;3-イソシアネートプロピルトリエトキシシランなどのイソシアネート基含有シランカップリング剤などが挙げられる。 Examples of the silane coupling agent include vinyl group-containing silane coupling agents such as vinyltrimethoxysilane and vinyltriethoxysilane; 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyl Epoxy group-containing silane coupling agents such as dimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane; p-styryltrimethoxysilane, etc. Styryl group-containing silane coupling agent: 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltri Methacrylic group-containing silane coupling agents such as toxisilane; Acrylic group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N Amino group-containing silane coupling agents such as phenyl-3-aminopropyltrimethoxysilane and N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane; ureido such as 3-ureidopropyltriethoxysilane Group-containing silane cup A mercapto group-containing silane coupling agent such as 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane; a sulfide group-containing silane coupling agent such as bis (triethoxysilylpropyl) tetrasulfide; 3-isocyanate Examples include isocyanate group-containing silane coupling agents such as propyltriethoxysilane.
 シランカップリング剤によりフィラーを処理する方法としては特に限定されず、溶媒中でフィラーとシランカップリング剤を混合する湿式法、気相中でフィラーとシランカップリング剤を処理させる乾式法などが挙げられる。 The method for treating the filler with the silane coupling agent is not particularly limited, and examples include a wet method in which the filler and the silane coupling agent are mixed in a solvent, and a dry method in which the filler and the silane coupling agent are treated in a gas phase. It is done.
 シランカップリング剤の処理量は特に限定されないが、未処理のフィラー100重量部に対して、シランカップリング剤を0.1~1重量部処理することが好ましい。 The treatment amount of the silane coupling agent is not particularly limited, but it is preferable to treat 0.1 to 1 part by weight of the silane coupling agent with respect to 100 parts by weight of the untreated filler.
 樹脂層2中のフィラーの含有量は、好ましくは70体積%以上であり、より好ましくは74体積%以上である。70体積%以上であると、線膨張係数を低く設計できる。一方、フィラーの含有量は、好ましくは90体積%以下であり、より好ましくは85体積%以下である。90体積%以下であると、柔軟性、流動性、接着性が良好に得られる。 The content of the filler in the resin layer 2 is preferably 70% by volume or more, and more preferably 74% by volume or more. A linear expansion coefficient can be designed low as it is 70 volume% or more. On the other hand, the filler content is preferably 90% by volume or less, more preferably 85% by volume or less. A softness | flexibility, fluidity | liquidity, and adhesiveness are favorably obtained as it is 90 volume% or less.
 フィラーの含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量について、「重量%」を単位として説明する。
 シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、樹脂層2中のシリカの含有量は、81重量%以上が好ましく、84重量%以上がより好ましい。樹脂層2中のシリカの含有量は、94重量%以下が好ましく、91重量%以下がより好ましい。
The filler content can also be explained by using “% by weight” as a unit. Typically, the content of silica will be described in units of “% by weight”.
Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows.
That is, the content of silica in the resin layer 2 is preferably 81% by weight or more, and more preferably 84% by weight or more. The content of silica in the resin layer 2 is preferably 94% by weight or less, and more preferably 91% by weight or less.
 アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、樹脂層2中のアルミナの含有量は、88重量%以上が好ましく、90重量%以上がより好ましい。樹脂層2中のアルミナの含有量は、97重量%以下が好ましく、95重量%以下がより好ましい。
Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows.
That is, the content of alumina in the resin layer 2 is preferably 88% by weight or more, and more preferably 90% by weight or more. The alumina content in the resin layer 2 is preferably 97% by weight or less, and more preferably 95% by weight or less.
 樹脂層2は、硬化促進剤を含むことが好ましい。 The resin layer 2 preferably contains a curing accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin, and examples thereof include organophosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1~5重量部が好ましい。 The content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 樹脂層2は、前記成分以外にも、封止樹脂の製造に一般に使用される配合剤、例えば、難燃剤成分、顔料、シランカップリング剤などを適宜含有してよい。 Resin layer 2 may contain, in addition to the above components, compounding agents generally used in the production of sealing resins, for example, flame retardant components, pigments, silane coupling agents, and the like.
 難燃剤成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン化合物などを用いることができる。なかでも、難燃性、硬化後の強度に優れるという理由から、ホスファゼン化合物が好ましい。 As the flame retardant component, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxide, phosphazene compounds, and the like can be used. Of these, phosphazene compounds are preferred because they are excellent in flame retardancy and strength after curing.
 顔料としては特に限定されず、カーボンブラックなどが挙げられる。 The pigment is not particularly limited, and examples thereof include carbon black.
 樹脂層2の製造方法は特に限定されないが、前記各成分(例えば、エポキシ樹脂、フェノール樹脂、熱可塑性樹脂、フィラー及び硬化促進剤)を混練して得られる混練物をシート状に塑性加工する方法が好ましい。これにより、フィラーを高充填でき、線膨張係数を低く設計できる。 A method for producing the resin layer 2 is not particularly limited, but a method of plastically processing a kneaded material obtained by kneading the respective components (for example, an epoxy resin, a phenol resin, a thermoplastic resin, a filler, and a curing accelerator) into a sheet shape. Is preferred. Thereby, a filler can be filled highly and a linear expansion coefficient can be designed low.
 具体的には、エポキシ樹脂、フェノール樹脂、熱可塑性樹脂、フィラー及び硬化促進剤をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に塑性加工する。混練条件として、温度の上限は、140℃以下が好ましく、130℃以下がより好ましい。温度の下限は、上述の各成分の軟化点以上であることが好ましく、例えば30℃以上、好ましくは50℃以上である。混練の時間は、好ましくは1~30分である。また、混練は、減圧条件下(減圧雰囲気下)で行うことが好ましく、減圧条件下の圧力は、例えば、1×10-4~0.1kg/cmである。 Specifically, a kneaded material is prepared by melting and kneading an epoxy resin, a phenol resin, a thermoplastic resin, a filler, and a curing accelerator with a known kneader such as a mixing roll, a pressure kneader, or an extruder. The kneaded material is plastically processed into a sheet shape. As kneading conditions, the upper limit of the temperature is preferably 140 ° C. or less, and more preferably 130 ° C. or less. The lower limit of the temperature is preferably equal to or higher than the softening point of each component described above, for example, 30 ° C or higher, and preferably 50 ° C or higher. The kneading time is preferably 1 to 30 minutes. The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere), and the pressure under reduced pressure conditions is, for example, 1 × 10 −4 to 0.1 kg / cm 2 .
 溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40~150℃、好ましくは50~140℃、さらに好ましくは70~120℃である。 The kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method. The plastic working temperature is preferably not less than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C. in consideration of the thermosetting property and moldability of the epoxy resin. is there.
 樹脂層2の厚みは特に限定されないが、好ましくは50μm以上、より好ましくは100μm以上である。また、樹脂層2の厚みは、好ましくは2000μm以下、より好ましくは1000μm以下である。 The thickness of the resin layer 2 is not particularly limited, but is preferably 50 μm or more, more preferably 100 μm or more. The thickness of the resin layer 2 is preferably 2000 μm or less, and more preferably 1000 μm or less.
 なお、図1では、熱反射層1が単層である場合を示しているが、熱反射層1はこれに限定されず、複層であってもよい。また、図1では、樹脂層2が単層である場合を示しているが、樹脂層2はこれに限定されず、複層であってもよい。 In addition, although the case where the heat | fever reflection layer 1 is a single layer is shown in FIG. 1, the heat | fever reflection layer 1 is not limited to this, A multilayer may be sufficient. Moreover, although the case where the resin layer 2 is a single layer is shown in FIG. 1, the resin layer 2 is not limited to this and may be a multilayer.
 樹脂シート11は電子デバイスの封止に使用される。電子デバイスとしては、センサー、MEMS(Micro Electro Mechanical Systems)、SAW(Surface Acoustic Wave)フィルタなどの中空構造を有する電子デバイス(中空型電子デバイス);半導体チップ、IC(集積回路)、トランジスタなどの半導体素子;コンデンサ;抵抗などが挙げられる。なお、中空構造とは、電子デバイスを基板に搭載した際に、電子デバイスと基板との間に形成される中空部をいう。 Resin sheet 11 is used for sealing electronic devices. Electronic devices include sensors, MEMS (Micro Electro Mechanical Systems), SAW (Surface Acoustic Wave) filters and other electronic devices (hollow electronic devices); semiconductor chips, ICs (integrated circuits), semiconductors such as transistors Examples include an element, a capacitor, and a resistor. The hollow structure refers to a hollow portion formed between the electronic device and the substrate when the electronic device is mounted on the substrate.
 封止方法としては特に限定されず、例えば、基板に搭載された電子デバイスを樹脂シート11で覆う方法、粘着シートに搭載された電子デバイスを樹脂シート11で覆う方法などが挙げられる。基板としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板、半導体ウェハなどが挙げられる。 The sealing method is not particularly limited, and examples thereof include a method of covering an electronic device mounted on a substrate with a resin sheet 11 and a method of covering an electronic device mounted on an adhesive sheet with a resin sheet 11. It does not specifically limit as a board | substrate, For example, a printed wiring board, a ceramic substrate, a silicon substrate, a metal substrate, a semiconductor wafer etc. are mentioned.
 なお、熱反射層1に輻射熱を反射させるために、樹脂シート11の樹脂層2で電子デバイスを封止することが重要である。 It is important to seal the electronic device with the resin layer 2 of the resin sheet 11 in order to reflect the radiant heat to the heat reflecting layer 1.
 [電子デバイスパッケージの製造方法]
 例えば、以下の工程を行うことで電子デバイスパッケージを得ることができる。以下の工程は、一般にチップ・オン・ウェハ(COW)プロセスと呼ばれる。
[Method of manufacturing electronic device package]
For example, an electronic device package can be obtained by performing the following steps. The following steps are commonly referred to as chip-on-wafer (COW) processes.
 (電子デバイス搭載基板準備工程)
 電子デバイス搭載基板準備工程では、複数の電子デバイス13が搭載された基板12を準備する(図2参照)。電子デバイス13の基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。通常、電子デバイス13と基板12とは電気的に接続されている。図2では、電子デバイス13と基板12とはバンプなどの突起電極13aを介して電気的に接続されている例を示している。
(Electronic device mounting board preparation process)
In the electronic device mounting substrate preparing step, a substrate 12 on which a plurality of electronic devices 13 are mounted is prepared (see FIG. 2). For mounting the electronic device 13 on the substrate 12, a known apparatus such as a flip chip bonder or a die bonder can be used. Usually, the electronic device 13 and the substrate 12 are electrically connected. FIG. 2 shows an example in which the electronic device 13 and the substrate 12 are electrically connected via protruding electrodes 13a such as bumps.
 なお、電子デバイス13がSAWフィルタなどの中空型電子デバイスである場合、電子デバイス13と基板12との間に、中空部(中空構造)14が維持されている。このとき、電子デバイス13と基板12との間の距離は、一般的には15~50μm程度である。 When the electronic device 13 is a hollow electronic device such as a SAW filter, a hollow portion (hollow structure) 14 is maintained between the electronic device 13 and the substrate 12. At this time, the distance between the electronic device 13 and the substrate 12 is generally about 15 to 50 μm.
 (封止工程)
 封止工程では、樹脂層2が基板12及び電子デバイス13と接触するように、基板12上に樹脂シート11を積層し、電子デバイス13を樹脂シート11で封止する(図3参照)。これにより、電子デバイス13が樹脂封止された電子デバイスパッケージ15を得る。
(Sealing process)
In the sealing step, the resin sheet 11 is laminated on the substrate 12 so that the resin layer 2 is in contact with the substrate 12 and the electronic device 13, and the electronic device 13 is sealed with the resin sheet 11 (see FIG. 3). Thereby, the electronic device package 15 in which the electronic device 13 is sealed with resin is obtained.
 樹脂シート11を基板12上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40~100℃、好ましくは50~90℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaであり、時間が、例えば0.3~10分間、好ましくは0.5~5分間である。また、樹脂シート11の電子デバイス13及び基板12への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.1~5kPa)においてプレスすることが好ましい。 The method for laminating the resin sheet 11 on the substrate 12 is not particularly limited, and can be performed by a known method such as hot pressing or laminator. As hot press conditions, the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes. Further, in consideration of improvement in adhesion and followability of the resin sheet 11 to the electronic device 13 and the substrate 12, it is preferable to press under reduced pressure conditions (for example, 0.1 to 5 kPa).
 (熱硬化工程)
 必要に応じて、電子デバイスパッケージ15の樹脂シート11を熱硬化する。
(Thermosetting process)
If necessary, the resin sheet 11 of the electronic device package 15 is thermoset.
 熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。 As the conditions for the thermosetting treatment, the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
 (研削工程)
 必要に応じて、電子デバイスパッケージ15の樹脂シート11を研削する。研削方法としては、例えば、高速回転する砥石を用いるグラインディング法などが挙げられる。
(Grinding process)
If necessary, the resin sheet 11 of the electronic device package 15 is ground. Examples of the grinding method include a grinding method using a grindstone that rotates at high speed.
 (配線層形成工程)
 必要に応じて、電子デバイスパッケージ15の基板12を研削する。研削方法としては、例えば、高速回転する砥石を用いるグラインディング法などが挙げられる。次いで、必要に応じて、電子デバイスパッケージ15にビア(Via)を形成する。次いで、必要に応じて、電子デバイスパッケージ15に再配線を形成する。次いで、必要に応じて、再配線上にバンプを形成する。
(Wiring layer formation process)
If necessary, the substrate 12 of the electronic device package 15 is ground. Examples of the grinding method include a grinding method using a grindstone that rotates at high speed. Next, vias (Via) are formed in the electronic device package 15 as necessary. Next, rewiring is formed in the electronic device package 15 as necessary. Next, bumps are formed on the rewiring as necessary.
 (ダイシング工程)
 必要に応じて、電子デバイスパッケージ15のダイシングを行う(図4参照)。これにより、チップ状の電子デバイスパッケージ16を得ることができる。
(Dicing process)
If necessary, the electronic device package 15 is diced (see FIG. 4). Thereby, the chip-shaped electronic device package 16 can be obtained.
 (基板実装工程)
 必要に応じて、電子デバイスパッケージ15又は電子デバイスパッケージ16を基板18などに実装する(図5参照)。
(Board mounting process)
The electronic device package 15 or the electronic device package 16 is mounted on the substrate 18 or the like as necessary (see FIG. 5).
 (レーザーマーキング工程)
 レーザーマーキングは、電子デバイスパッケージ15又は電子デバイスパッケージ16に任意のタイミングで行うことができる。例えば、熱硬化前の電子デバイスパッケージ15にレーザーマーキングを行ってもよく、熱硬化後の電子デバイスパッケージ15にレーザーマーキングを行ってもよく、電子デバイスパッケージ16にレーザーマーキングを行ってもよい。
(Laser marking process)
Laser marking can be performed on the electronic device package 15 or the electronic device package 16 at an arbitrary timing. For example, laser marking may be performed on the electronic device package 15 before thermosetting, laser marking may be performed on the electronic device package 15 after thermosetting, or laser marking may be performed on the electronic device package 16.
 電子デバイスパッケージ15及び電子デバイスパッケージ16は熱反射層1を備えるため、輻射熱による電子デバイス13の温度上昇を抑制できる。よって、ホットスポット(局所高温部)の発生を低減できる。 Since the electronic device package 15 and the electronic device package 16 include the heat reflecting layer 1, the temperature increase of the electronic device 13 due to radiant heat can be suppressed. Therefore, generation | occurrence | production of a hot spot (local high temperature part) can be reduced.
 [電子デバイスパッケージの製造方法]
 例えば、以下の工程を行うことでも電子デバイスパッケージを得ることができる。以下の工程は、Fan-out(ファンアウト)型ウェハレベルパッケージ(WLP)の製造に好適である。
[Method of manufacturing electronic device package]
For example, an electronic device package can be obtained by performing the following steps. The following steps are suitable for manufacturing a fan-out type wafer level package (WLP).
 (電子デバイスを粘着シートに固定する工程)
 まず、粘着シート41に複数の電子デバイス13を固定する(図6参照)。このとき、必要に応じて、電子デバイス13の回路形成面が粘着シート41と対向するように配置固定する。電子デバイス13の固定には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Step of fixing the electronic device to the adhesive sheet)
First, the some electronic device 13 is fixed to the adhesive sheet 41 (refer FIG. 6). At this time, if necessary, the electronic device 13 is arranged and fixed so that the circuit forming surface of the electronic device 13 faces the adhesive sheet 41. For fixing the electronic device 13, a known apparatus such as a flip chip bonder or a die bonder can be used.
 粘着シート41は、通常、支持体42と、支持体42上に積層された粘着剤層43とを有する。 The pressure-sensitive adhesive sheet 41 usually has a support 42 and a pressure-sensitive adhesive layer 43 laminated on the support 42.
 粘着剤層43としては特に限定されないが、容易に剥離できるという理由から、通常は、熱剥離性粘着剤層、放射線硬化型粘着剤層等を使用する。支持体42の材料としては特に限定されない。例えば、SUS等の金属材料、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルサルフォン等のプラスチック材料等である。 The pressure-sensitive adhesive layer 43 is not particularly limited, but a heat-peelable pressure-sensitive adhesive layer, a radiation curable pressure-sensitive adhesive layer, or the like is usually used because it can be easily peeled off. The material for the support 42 is not particularly limited. For example, metal materials such as SUS, plastic materials such as polyimide, polyamideimide, polyetheretherketone, and polyethersulfone.
 (封止工程)
 封止工程では、樹脂層2が粘着シート41及び電子デバイス13と接触するように、粘着シート41上に樹脂シート11を積層し、電子デバイス13を樹脂シート11で封止する(図7参照)。これにより、電子デバイス13が樹脂封止された封止体51を得る。
(Sealing process)
In the sealing step, the resin sheet 11 is laminated on the adhesive sheet 41 so that the resin layer 2 is in contact with the adhesive sheet 41 and the electronic device 13, and the electronic device 13 is sealed with the resin sheet 11 (see FIG. 7). . Thereby, the sealing body 51 by which the electronic device 13 was resin-sealed is obtained.
 樹脂シート11を粘着シート41上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。 The method for laminating the resin sheet 11 on the pressure-sensitive adhesive sheet 41 is not particularly limited, and can be performed by a known method such as hot pressing or laminator.
 (熱硬化工程)
 必要に応じて、封止体51を熱硬化する(封止体51の樹脂シート11を熱硬化する)。
(Thermosetting process)
If necessary, the sealing body 51 is thermoset (the resin sheet 11 of the sealing body 51 is thermoset).
 (剥離工程)
 次いで、封止体51から粘着シート41を剥離する(図8参照)。剥離方法は特に限定されないが、粘着剤層43の粘着力を低下させた後に剥離することが好ましい。例えば、粘着剤層43が熱剥離性粘着剤層である場合、粘着剤層43を加熱し、粘着剤層43の粘着力を低下させた後に剥離する。
(Peeling process)
Next, the adhesive sheet 41 is peeled from the sealing body 51 (see FIG. 8). Although the peeling method is not particularly limited, it is preferable to peel the adhesive layer 43 after reducing the adhesive strength. For example, when the pressure-sensitive adhesive layer 43 is a heat-peelable pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer 43 is heated and peeled after the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer 43 is reduced.
 (研削工程)
 次いで、必要に応じて、封止体51の樹脂シート11を研削する。研削方法としては、例えば、高速回転する砥石を用いるグラインディング法などが挙げられる。
(Grinding process)
Next, the resin sheet 11 of the sealing body 51 is ground as necessary. Examples of the grinding method include a grinding method using a grindstone that rotates at high speed.
 (配線層形成工程)
 次いで、セミアディティブ法などを利用して、封止体51に再配線52を形成する(図9参照)。
(Wiring layer formation process)
Next, the rewiring 52 is formed in the sealing body 51 using a semi-additive method or the like (see FIG. 9).
 その後、封止体51の再配線52を形成した面に、ポリイミドやポリベンゾオキサゾール(PBO)などの絶縁層を形成する。絶縁層は、例えば、ドライフィルムレジストなどのフィルムをラミネートすることで形成できる。 Thereafter, an insulating layer such as polyimide or polybenzoxazole (PBO) is formed on the surface of the sealing body 51 where the rewiring 52 is formed. The insulating layer can be formed, for example, by laminating a film such as a dry film resist.
 次いで、再配線52上にバンプ53を形成するバンピング加工を行う。バンピング加工は、半田ボールや半田メッキ等公知の方法で行うことができる。 Next, a bumping process for forming bumps 53 on the rewiring 52 is performed. The bumping process can be performed by a known method such as solder ball or solder plating.
 (ダイシング工程)
 電子デバイス13、樹脂層2、熱反射層1及び再配線52などの要素からなる封止体51のダイシングを行ってもよい(図10参照)。以上により、チップ領域の外側に配線を引き出した電子デバイスパッケージ61を得ることができる。なお、ダイシングせずに封止体51をそのまま電子デバイスパッケージとして使用してもよい。
(Dicing process)
Dicing of the sealing body 51 including elements such as the electronic device 13, the resin layer 2, the heat reflection layer 1, and the rewiring 52 may be performed (see FIG. 10). As described above, the electronic device package 61 in which the wiring is drawn outside the chip region can be obtained. In addition, you may use the sealing body 51 as an electronic device package as it is, without dicing.
 (基板実装工程)
 必要に応じて、電子デバイスパッケージ61を基板などに実装する。
(Board mounting process)
The electronic device package 61 is mounted on a substrate or the like as necessary.
 (レーザーマーキング工程)
 レーザーマーキングは、封止体51又は電子デバイスパッケージ61に任意のタイミングで行うことができる。例えば、熱硬化前の封止体51にレーザーマーキングを行ってもよく、熱硬化後の封止体51にレーザーマーキングを行ってもよく、電子デバイスパッケージ61にレーザーマーキングを行ってもよい。
(Laser marking process)
Laser marking can be performed on the sealing body 51 or the electronic device package 61 at an arbitrary timing. For example, laser marking may be performed on the sealing body 51 before thermosetting, laser marking may be performed on the sealing body 51 after thermosetting, or laser marking may be performed on the electronic device package 61.
 封止体51又は電子デバイスパッケージ61は熱反射層1を備えるため、輻射熱による電子デバイス13の温度上昇を抑制できる。よって、ホットスポット(局所高温部)の発生を低減できる。
 (変形例)
 実施形態1では、熱反射層1及び熱反射層1上に配置された樹脂層2を備える樹脂シート11について説明した。変形例1では、樹脂シートは、熱反射層1と、熱反射層1上に配置された層と、層上に配置された樹脂層2とを備える。層としては、例えば、樹脂を含む層、金属層などが好適である。層は単層であってもよいし、複層であってもよい。変形例2では、樹脂シートは、熱反射層1と、熱反射層1上に配置された樹脂層2と、樹脂層2上に配置された層とを備える。変形例2では、層としては、例えば、樹脂を含む層、金属層などが好適であり、樹脂を含む層がより好適である。変形例2では、層は単層であってもよいし、複層であってもよい。
Since the sealing body 51 or the electronic device package 61 includes the heat reflecting layer 1, the temperature increase of the electronic device 13 due to radiant heat can be suppressed. Therefore, generation | occurrence | production of a hot spot (local high temperature part) can be reduced.
(Modification)
In Embodiment 1, the resin sheet 11 provided with the heat | fever reflection layer 1 and the resin layer 2 arrange | positioned on the heat | fever reflection layer 1 was demonstrated. In Modification 1, the resin sheet includes a heat reflecting layer 1, a layer disposed on the heat reflecting layer 1, and a resin layer 2 disposed on the layer. As the layer, for example, a layer containing a resin, a metal layer, and the like are suitable. The layer may be a single layer or a multilayer. In the second modification, the resin sheet includes the heat reflecting layer 1, the resin layer 2 disposed on the heat reflecting layer 1, and the layer disposed on the resin layer 2. In the modified example 2, as the layer, for example, a layer including a resin, a metal layer, or the like is preferable, and a layer including a resin is more preferable. In Modification 2, the layer may be a single layer or a multilayer.
 [実施形態2]
 図11は実施形態2の樹脂シート31の断面模式図である。樹脂シート31は、熱伝導層3を備える点以外は、実施形態1の樹脂シート11と同様である。樹脂シート31は、熱反射層1、樹脂層2及び熱伝導層3がこの順に積層された構造である。
[Embodiment 2]
FIG. 11 is a schematic cross-sectional view of the resin sheet 31 of the second embodiment. The resin sheet 31 is the same as the resin sheet 11 of Embodiment 1 except that the heat conductive layer 3 is provided. The resin sheet 31 has a structure in which the heat reflecting layer 1, the resin layer 2, and the heat conductive layer 3 are laminated in this order.
 電子デバイスの発熱や他の電子デバイスからの輻射熱により電子デバイスの温度が上昇したとしても、樹脂シート31は、熱伝導率が高い熱伝導層3を備えるため熱を基板及び筐体に逃がすことができる。よって、樹脂シート31は、スマートフォンなどにおけるホットスポットの発生を効果的に低減できる。 Even if the temperature of the electronic device rises due to heat generation of the electronic device or radiant heat from other electronic devices, the resin sheet 31 includes the heat conductive layer 3 having high thermal conductivity, so that heat can be released to the substrate and the housing. it can. Therefore, the resin sheet 31 can effectively reduce the occurrence of hot spots in a smartphone or the like.
 熱伝導層3の熱伝導率は1W/mK以上である。1W/mK以上であるので、電子デバイスの熱を熱伝導層3を介して基板に逃がすことができる。熱伝導層3の熱伝導率は好ましくは3W/mK以上、より好ましくは3.5W/mK以上である。熱伝導層3の熱伝導率の上限は特に限定されないが、例えば100W/mK以下である。熱伝導層3の熱伝導率は、例えば10W/mK以下でもよい。 The thermal conductivity of the heat conductive layer 3 is 1 W / mK or more. Since it is 1 W / mK or more, the heat of the electronic device can be released to the substrate through the heat conductive layer 3. The thermal conductivity of the heat conductive layer 3 is preferably 3 W / mK or more, more preferably 3.5 W / mK or more. Although the upper limit of the heat conductivity of the heat conductive layer 3 is not specifically limited, For example, it is 100 W / mK or less. The heat conductivity of the heat conductive layer 3 may be, for example, 10 W / mK or less.
 なお、熱伝導層3は、電気絶縁性であることが好ましい。 The heat conductive layer 3 is preferably electrically insulating.
 熱伝導層3は、熱伝導粒子を含むことが好ましい。これにより、熱伝導率を1W/mK以上に設計できる。 The heat conductive layer 3 preferably contains heat conductive particles. Thereby, thermal conductivity can be designed to be 1 W / mK or more.
 熱伝導粒子としては特に限定されず、例えば、アルミナ(酸化アルミニウム)、酸化亜鉛、酸化マグネシウム、窒化ホウ素、水酸化マグネシウム、窒化アルミニウム、炭化珪素等の電気絶縁性のものが挙げられる。これらは、単独で又は2種以上を併用して用いることができる。なかでも、熱伝導率が高く、良好な流動性が得られるという理由から、アルミナ、窒化ホウ素が好ましい。 The heat conductive particles are not particularly limited, and examples thereof include electrically insulating particles such as alumina (aluminum oxide), zinc oxide, magnesium oxide, boron nitride, magnesium hydroxide, aluminum nitride, and silicon carbide. These can be used alone or in combination of two or more. Of these, alumina and boron nitride are preferred because of their high thermal conductivity and good fluidity.
 熱伝導粒子の熱伝導率は、熱伝導層3に熱伝導性を付与可能な限り特に限定されないが、好ましくは12W/mK以上であり、より好ましくは15W/mK以上であり、さらに好ましくは25W/mK以上である。12W/mK以上であると、熱伝導層3に1W/mK以上の熱伝導性を容易に付与できる。熱伝導粒子の熱伝導率は、例えば、70W/mK以下である。 The thermal conductivity of the thermal conductive particles is not particularly limited as long as thermal conductivity can be imparted to the thermal conductive layer 3, but is preferably 12 W / mK or more, more preferably 15 W / mK or more, and even more preferably 25 W. / MK or more. When it is 12 W / mK or more, thermal conductivity of 1 W / mK or more can be easily imparted to the heat conductive layer 3. The heat conductivity of the heat conductive particles is, for example, 70 W / mK or less.
 熱伝導粒子の粒子形状は特に限定されず、例えば、球状、楕円球体状、扁平形状、針状、繊維状、フレーク状、スパイク状、コイル状等が挙げられる。これらの形状のうち、分散性に優れ、充填率を向上できる点で球状が好ましい。 The particle shape of the heat conductive particles is not particularly limited, and examples thereof include a spherical shape, an elliptical sphere shape, a flat shape, a needle shape, a fiber shape, a flake shape, a spike shape, and a coil shape. Of these shapes, a spherical shape is preferable in that it has excellent dispersibility and can improve the filling rate.
 熱伝導層3中の熱伝導粒子の含有量は好ましくは60体積%以上である。60体積%以上であると、熱伝導層3の熱伝導率を高めることができる。一方、熱伝導粒子の含有量は、好ましくは85体積%以下である。85体積%以下であると、熱伝導層3中の接着成分の相対的な減少を防止でき、電子デバイスや基板に対する濡れ性及び接着性を確保できる。 The content of the heat conductive particles in the heat conductive layer 3 is preferably 60% by volume or more. The heat conductivity of the heat conductive layer 3 can be improved as it is 60 volume% or more. On the other hand, the content of the heat conductive particles is preferably 85% by volume or less. When the amount is 85% by volume or less, a relative decrease in the adhesive component in the heat conductive layer 3 can be prevented, and wettability and adhesiveness to an electronic device or a substrate can be secured.
 熱伝導粒子の含有量は、「重量%」を単位としても説明できる。代表的にアルミナの含有量について、「重量%」を単位として説明する。
 アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は例えば以下のとおりである。
 すなわち、熱伝導層3中のアルミナの含有量は、83重量%以上が好ましく、85重量%以上がより好ましい。熱伝導層3中のアルミナの含有量は、95重量%以下が好ましく、93重量%以下がより好ましい。
The content of the heat conductive particles can be explained by using “wt%” as a unit. Typically, the content of alumina will be described with “wt%” as a unit.
Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows.
That is, the content of alumina in the heat conductive layer 3 is preferably 83% by weight or more, and more preferably 85% by weight or more. The content of alumina in the heat conductive layer 3 is preferably 95% by weight or less, and more preferably 93% by weight or less.
 熱伝導層3では、熱伝導粒子の全量を100体積%とした際の熱伝導粒子のレーザー回折散乱法により測定した粒度分布が以下の関係を満たすことが好ましい。
   100μm超:1体積%以下
   10μm以下:30体積%以上70体積%以下
   1μm以下:10体積%以上
In the heat conductive layer 3, it is preferable that the particle size distribution measured by the laser diffraction scattering method of the heat conductive particles when the total amount of the heat conductive particles is 100% by volume satisfies the following relationship.
Over 100 μm: 1 vol% or less 10 μm or less: 30 vol% or more and 70 vol% or less 1 μm or less: 10 vol% or more
 該粒度分布において、粒径が100μm超の粒子の比率は1体積%以下であり、0.5体積%以下が好ましく、0.3体積%以下がより好ましい。なお、粒径が100μm超の粒子の比率の下限は0.01体積%以上が好ましい。粒径が10μm以下の粒子の比率は30体積%以上70体積%以下であり、35体積%以上65体積%以下が好ましく、40体積%以上60体積%以下がより好ましい。さらに、粒径が1μm以下の粒子の比率は10体積%以上であり、13体積%以上が好ましく、15体積%以上がより好ましい。なお、粒径が1μm以下の粒子の比率の上限は40体積%以下が好ましい。粒度分布が上記特定の関係にあることにより、中空構造付近における樹脂へダイラタンシー様作用を付与して封止時の中空構造への樹脂進入を好適に抑制することができる。粒度分布は、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。 In the particle size distribution, the ratio of particles having a particle size of more than 100 μm is 1% by volume or less, preferably 0.5% by volume or less, and more preferably 0.3% by volume or less. In addition, the lower limit of the ratio of particles having a particle size of more than 100 μm is preferably 0.01% by volume or more. The ratio of particles having a particle size of 10 μm or less is 30% to 70% by volume, preferably 35% to 65% by volume, and more preferably 40% to 60% by volume. Furthermore, the ratio of particles having a particle size of 1 μm or less is 10% by volume or more, preferably 13% by volume or more, and more preferably 15% by volume or more. The upper limit of the ratio of particles having a particle size of 1 μm or less is preferably 40% by volume or less. When the particle size distribution is in the specific relationship, a dilatancy-like action can be imparted to the resin in the vicinity of the hollow structure, and the resin entry into the hollow structure at the time of sealing can be suitably suppressed. The particle size distribution can be derived by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.
 熱伝導層3は、エポキシ樹脂を含むことが好ましい。エポキシ樹脂としては、樹脂層2で説明したものを好適に使用できる。 The heat conductive layer 3 preferably contains an epoxy resin. As an epoxy resin, what was demonstrated by the resin layer 2 can be used conveniently.
 熱伝導層3は、フェノール樹脂を含むことが好ましい。フェノール樹脂としては、樹脂層2で説明したものを好適に使用できる。 The heat conductive layer 3 preferably contains a phenol resin. As a phenol resin, what was demonstrated by the resin layer 2 can be used conveniently.
 熱伝導層3中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2重量%以上が好ましい。2重量%以上であると、電子デバイス、基板などに対する接着力が良好に得られる。熱伝導層3中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましい。20重量%以下であると、吸湿性を低く抑えることができる。 The total content of epoxy resin and phenol resin in the heat conductive layer 3 is preferably 2% by weight or more. Adhesive strength with respect to an electronic device, a board | substrate, etc. is acquired favorably as it is 2 weight% or more. The total content of the epoxy resin and the phenol resin in the heat conductive layer 3 is preferably 20% by weight or less. If it is 20% by weight or less, the hygroscopicity can be kept low.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 熱伝導層3は、熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、樹脂層2で説明したものを好適に使用できる。 The heat conductive layer 3 preferably contains a thermoplastic resin. As a thermoplastic resin, what was demonstrated by the resin layer 2 can be used conveniently.
 熱伝導層3中の熱可塑性樹脂の含有量は、0.5重量%以上が好ましい。0.5重量%以上であると、柔軟性、可撓性を付与できる。熱伝導層3中の熱可塑性樹脂の含有量は、20重量%以下が好ましい。20重量%以下であると、電子デバイス、基板などに対する接着力が良好に得られる。 The content of the thermoplastic resin in the heat conductive layer 3 is preferably 0.5% by weight or more. A softness | flexibility and flexibility can be provided as it is 0.5 weight% or more. The content of the thermoplastic resin in the heat conductive layer 3 is preferably 20% by weight or less. Adhesive strength with respect to an electronic device, a board | substrate, etc. is acquired favorably as it is 20 weight% or less.
 熱伝導層3は、硬化促進剤を含むことが好ましい。硬化促進剤としては、樹脂層2で説明したものを好適に使用できる。 The heat conductive layer 3 preferably contains a curing accelerator. As a hardening accelerator, what was demonstrated by the resin layer 2 can be used conveniently.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1~5重量部が好ましい。 The content of the curing accelerator is preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 熱伝導層3は、前記成分以外にも、封止樹脂の製造に一般に使用される配合剤、例えば、シリカなどを適宜含有してよい。 In addition to the above components, the heat conductive layer 3 may appropriately contain a compounding agent generally used for manufacturing a sealing resin, such as silica.
 熱伝導層3は一般的な製法で作製できる。例えば、前記各成分を溶媒(例えば、メチルエチルケトン、酢酸エチルなど)に溶解ないし分散させて塗布液を調製し、塗布液を基材セパレータ上に塗布した後、塗布膜を乾燥させる。これにより、熱伝導層3を作製できる。 The heat conductive layer 3 can be manufactured by a general manufacturing method. For example, each of the above components is dissolved or dispersed in a solvent (for example, methyl ethyl ketone, ethyl acetate, etc.) to prepare a coating solution. After the coating solution is applied onto a substrate separator, the coating film is dried. Thereby, the heat conductive layer 3 can be produced.
 熱伝導層3の厚みは、好ましくは200μm以下、より好ましくは100μm以下である。200μm以下であると、ダイシングブレードの摩耗を低減できる。また、熱伝導層3の厚みは、好ましくは5μm以上である。5μm以上であると、熱を効率的に伝導させることができる。 The thickness of the heat conductive layer 3 is preferably 200 μm or less, more preferably 100 μm or less. When it is 200 μm or less, wear of the dicing blade can be reduced. Further, the thickness of the heat conductive layer 3 is preferably 5 μm or more. Heat can be efficiently conducted as it is 5 μm or more.
 樹脂シート31において、樹脂層2の熱伝導率は、熱伝導層3の熱伝導率より低いことが好ましい。これにより、電子デバイスの熱を基板に逃がし易くなる。 In the resin sheet 31, the thermal conductivity of the resin layer 2 is preferably lower than the thermal conductivity of the thermal conductive layer 3. This makes it easier for the heat of the electronic device to escape to the substrate.
 樹脂層2の熱伝導率は、好ましくは5W/mK以下、より好ましくは3W/mK以下、より好ましくは2W/mK以下である。また、樹脂層2の熱伝導率の下限は特に限定されないが、例えば0.1W/mK以上である。 The thermal conductivity of the resin layer 2 is preferably 5 W / mK or less, more preferably 3 W / mK or less, and more preferably 2 W / mK or less. Moreover, although the minimum of the heat conductivity of the resin layer 2 is not specifically limited, For example, it is 0.1 W / mK or more.
 熱伝導層3の熱伝導率/樹脂層2の熱伝導率(熱伝導層3の熱伝導率の樹脂層2の熱伝導率に対する比)が、好ましくは1以上であり、より好ましくは3以上である。1以上であると、電子デバイスの熱を基板に効果的に逃がすことができる。熱伝導層3の熱伝導率/樹脂層2の熱伝導率の値の上限は特に限定されないが、例えば50以下である。 The thermal conductivity of the thermal conductive layer 3 / the thermal conductivity of the resin layer 2 (ratio of the thermal conductivity of the thermal conductive layer 3 to the thermal conductivity of the resin layer 2) is preferably 1 or more, more preferably 3 or more. It is. When it is 1 or more, the heat of the electronic device can be effectively released to the substrate. Although the upper limit of the value of the heat conductivity of the heat conductive layer 3 / the heat conductivity of the resin layer 2 is not specifically limited, For example, it is 50 or less.
 熱伝導層3の厚み/樹脂層2の厚み(熱伝導層3の厚みの樹脂層2の厚みに対する比)が、好ましくは0.5以下であり、より好ましくは0.2以下である。0.5以下であると、電子デバイスの熱を基板に効果的に逃がしつつ、ダイシングブレードの摩耗を低減できる。熱伝導層3の厚み/樹脂層2の厚みが、好ましくは0.1以上である。0.1以上であると、電子デバイスパッケージの反りを低減できる。 The thickness of the heat conductive layer 3 / the thickness of the resin layer 2 (ratio of the thickness of the heat conductive layer 3 to the thickness of the resin layer 2) is preferably 0.5 or less, and more preferably 0.2 or less. When it is 0.5 or less, it is possible to reduce the wear of the dicing blade while effectively releasing the heat of the electronic device to the substrate. The thickness of the heat conductive layer 3 / the thickness of the resin layer 2 is preferably 0.1 or more. Warpage of an electronic device package can be reduced as it is 0.1 or more.
 なお、図11では、熱伝導層3が単層である場合を示しているが、熱伝導層3はこれに限定されず、複層であってもよい。 In addition, in FIG. 11, although the case where the heat conductive layer 3 is a single layer is shown, the heat conductive layer 3 is not limited to this, A multilayer may be sufficient.
 樹脂シート31で電子デバイスを封止する際は、熱伝導層3を電子デバイスと接触させることが重要である。これにより、熱伝導経路を確保できる(図12参照)。 When sealing the electronic device with the resin sheet 31, it is important to bring the heat conductive layer 3 into contact with the electronic device. Thereby, a heat conduction path can be secured (see FIG. 12).
 樹脂シート31で製造された電子デバイスパッケージにおいて、高熱伝導率の熱伝導層3が電子デバイス13と接触しているので、電子デバイス13で発生した熱を、基板12など(例えば、基板12、筐体など)に逃がすことができる。
 (変形例)
 実施形態2では、熱反射層1と、熱反射層1上に配置された樹脂層2と、樹脂層2上に配置された熱伝導層3とを備える樹脂シート31について説明した。変形例1では、樹脂シートは、熱反射層1と、熱反射層1上に配置された第1層と、第1層上に配置された樹脂層2と、樹脂層2上に配置された熱伝導層3とを備える。変形例2では、樹脂シートは、熱反射層1と、熱反射層1上に配置された樹脂層2と、樹脂層2上に配置された第1層と、第1層上に配置された熱伝導層3とを備える。変形例3では、樹脂シートは、熱反射層1と、熱反射層1上に配置された第1層と、第1層上に配置された樹脂層2と、樹脂層2上に配置された第2層と、第2層上に配置された熱伝導層3とを備える。第1層としては、例えば、樹脂を含む層、金属層などが好適である。第1層は単層であってもよいし、複層であってもよい。第2層としては、例えば、樹脂を含む層、金属層などが好適である。第2層は単層であってもよいし、複層であってもよい。
In the electronic device package manufactured with the resin sheet 31, since the heat conductive layer 3 having high thermal conductivity is in contact with the electronic device 13, the heat generated in the electronic device 13 is transferred to the substrate 12 or the like (for example, the substrate 12, Body).
(Modification)
Embodiment 2 demonstrated the resin sheet 31 provided with the heat | fever reflection layer 1, the resin layer 2 arrange | positioned on the heat | fever reflection layer 1, and the heat conductive layer 3 arrange | positioned on the resin layer 2. As shown in FIG. In Modification 1, the resin sheet is disposed on the heat reflecting layer 1, the first layer disposed on the heat reflecting layer 1, the resin layer 2 disposed on the first layer, and the resin layer 2. And a heat conductive layer 3. In Modification 2, the resin sheet is disposed on the heat reflecting layer 1, the resin layer 2 disposed on the heat reflecting layer 1, the first layer disposed on the resin layer 2, and the first layer. And a heat conductive layer 3. In Modification 3, the resin sheet is disposed on the heat reflecting layer 1, the first layer disposed on the heat reflecting layer 1, the resin layer 2 disposed on the first layer, and the resin layer 2. A second layer and a heat conductive layer 3 disposed on the second layer are provided. As the first layer, for example, a layer containing a resin, a metal layer, and the like are suitable. The first layer may be a single layer or multiple layers. As the second layer, for example, a layer containing a resin, a metal layer, and the like are suitable. The second layer may be a single layer or a multiple layer.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 まず、実施例で使用した成分について説明する。 First, the components used in the examples will be described.
 熱反射層について説明する。
 熱反射層1:日本製箔株式会社製のアルミ箔(アルミニウム、厚み20μm)
 熱反射層2:日本製箔株式会社製の銅箔(銅、厚み20μm)
The heat reflection layer will be described.
Heat reflection layer 1: Aluminum foil (aluminum, thickness 20 μm) manufactured by Nippon Foil Co., Ltd.
Heat reflection layer 2: Copper foil (copper, thickness 20 μm) manufactured by Nippon Foil Co., Ltd
 樹脂層を作製するために使用した成分について説明する。
 エポキシ樹脂:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
 フェノール樹脂:明和化成社製のMEH-7851-SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.軟化点67℃)
 熱可塑性樹脂:三菱レイヨン社製メタブレンC-132E(MBS樹脂、平均粒径120μm)
 シランカップリング剤処理フィラー:電気化学工業社製のFB-9454FC(溶融球状シリカ、平均一次粒子径20μm)を信越化学社製のKBM-403(3-グリシドキシプロピルトリメトキシシラン)で処理したもの(FB-9454FC 87.9重量部に対して、KBM-403 0.5重量部の割合で処理)
 カーボンブラック:三菱化学社製の#20
 硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
The components used for producing the resin layer will be described.
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Phenolic resin: MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
Thermoplastic resin: Metablene C-132E manufactured by Mitsubishi Rayon Co., Ltd. (MBS resin, average particle size 120 μm)
Silane coupling agent treated filler: FB-9454FC (fused spherical silica, average primary particle size 20 μm) manufactured by Denki Kagaku Kogyo Co., Ltd. was treated with KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. Material (treated at a ratio of 0.5 part by weight of KBM-403 to 87.9 parts by weight of FB-9454FC)
Carbon black: # 20 manufactured by Mitsubishi Chemical
Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
 熱伝導層を作製するために使用した成分について説明する。
 エポキシ樹脂:新日鐵化学(株)製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
 フェノール樹脂:明和化成社製のMEH-7851-SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.軟化点67℃)
 熱可塑性樹脂:三菱レイヨン社製メタブレンC-132E(MBS樹脂、平均粒径120μm)
 熱伝導粒子:電気化学工業製のDAS―30(アルミナ、平均粒径27.9μm、最大粒径128μm、熱伝導率36W/mK)
 硬化促進剤:四国化成工業社製の2PHZ-PW(2-フェニル-4,5-ジヒドロキシメチルイミダゾール)
The component used in order to produce a heat conductive layer is demonstrated.
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Phenolic resin: MEH-7851-SS (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq. Softening point 67 ° C.) manufactured by Meiwa Kasei Co., Ltd.
Thermoplastic resin: Metablene C-132E manufactured by Mitsubishi Rayon Co., Ltd. (MBS resin, average particle size 120 μm)
Thermally conductive particles: DAS-30 manufactured by Denki Kagaku Kogyo (alumina, average particle size 27.9 μm, maximum particle size 128 μm, thermal conductivity 36 W / mK)
Curing accelerator: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
 [実施例1]
 (樹脂層の作製)
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、樹脂層を作製した。
[Example 1]
(Production of resin layer)
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer.
 (樹脂シートの作製)
 ロールラミネ―タ―を用いて熱反射層1上に樹脂層を積層した。これにより、熱反射層1上に樹脂層が積層された樹脂シートを作製した。
(Production of resin sheet)
A resin layer was laminated on the heat reflecting layer 1 using a roll laminator. Thereby, a resin sheet having a resin layer laminated on the heat reflecting layer 1 was produced.
 [実施例2]
 (樹脂層の作製)
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、樹脂層を作製した。
 (熱伝導層の作製)
 表3に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、熱伝導層を作製した。
[Example 2]
(Production of resin layer)
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer.
(Preparation of heat conduction layer)
Each component was blended according to the blending ratio shown in Table 3, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a heat conductive layer.
 (樹脂シートの作製)
 ロールラミネ―タ―を用いて熱反射層1上に樹脂層及び熱伝導層をこの順に積層した。これにより、熱反射層1、樹脂層及び熱伝導層がこの順に積層された樹脂シートを作製した。
(Production of resin sheet)
A resin layer and a heat conductive layer were laminated in this order on the heat reflecting layer 1 using a roll laminator. Thereby, the resin sheet in which the heat reflection layer 1, the resin layer, and the heat conductive layer were laminated in this order was produced.
 [実施例3]
 (樹脂層の作製)
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、樹脂層を作製した。
[Example 3]
(Production of resin layer)
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to prepare a resin layer.
 (樹脂シートの作製)
 ロールラミネ―タ―を用いて熱反射層2上に樹脂層を積層した。これにより、熱反射層2上に樹脂層が積層された樹脂シートを作製した。
(Production of resin sheet)
A resin layer was laminated on the heat reflecting layer 2 using a roll laminator. Thereby, a resin sheet having a resin layer laminated on the heat reflecting layer 2 was produced.
 [比較例1]
 表1に記載の配合比に従い、各成分を配合し、ロール混練機により60~120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、樹脂層(樹脂シート)を作製した。
[Comparative Example 1]
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded in a roll kneader at 60 to 120 ° C. for 10 minutes under reduced pressure conditions (0.01 kg / cm 2 ) to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method to produce a resin layer (resin sheet).
 [評価]
 樹脂層、熱反射層、熱伝導層及び樹脂シートについて以下の評価を行った。結果を表2に示す。
[Evaluation]
The following evaluation was performed about the resin layer, the heat | fever reflection layer, the heat conductive layer, and the resin sheet. The results are shown in Table 2.
 (赤外線反射率)
 サンプル(熱反射層又は樹脂層)を、乾燥機内において175℃、1時間で熱処理を行い、熱硬化させた。その後、ATR法(全反射吸収分光法、測定装置;NICOLET 4700、サーモフィッシャーサイエンティフィック株式会社製)により、サンプルの赤外線反射率(%)を測定した。
(Infrared reflectance)
The sample (heat reflective layer or resin layer) was heat-cured by heat treatment at 175 ° C. for 1 hour in a dryer. Thereafter, the infrared reflectance (%) of the sample was measured by the ATR method (total reflection absorption spectroscopy, measuring apparatus; NICOLET 4700, manufactured by Thermo Fisher Scientific Co., Ltd.).
 (熱伝導率)
 サンプル(熱伝導層又は樹脂層)を、乾燥機内において175℃、1時間で熱処理を行い、熱硬化させた。その後、TWA法(温度波熱分析法、測定装置;アイフェイズモバイル、(株)アイフェイズ製)により、サンプルの熱拡散率α(m/s)を測定した。次に、サンプルの比熱Cp(J/g・℃)を、DSC法により測定した。比熱測定は、エスアイアイナノテクノロジー(株)製のDSC6220を用い、昇温速度10℃/min、温度20~300℃の条件下で行い、得られた実験データを基に、JISハンドブック(比熱容量測定方法K-7123)により算出した。更に、サンプルの比重を測定した。
(Thermal conductivity)
The sample (thermal conductive layer or resin layer) was heat-cured by heat treatment at 175 ° C. for 1 hour in a dryer. Thereafter, the thermal diffusivity α (m 2 / s) of the sample was measured by a TWA method (temperature wave thermal analysis method, measuring device; Eye Phase Mobile, manufactured by Eye Phase Co., Ltd.). Next, the specific heat Cp (J / g · ° C.) of the sample was measured by the DSC method. Specific heat measurement was performed using DSC 6220 manufactured by SII Nano Technology Co., Ltd. under the conditions of a heating rate of 10 ° C./min and a temperature of 20 to 300 ° C., and based on the obtained experimental data, a JIS handbook (specific heat capacity) It was calculated by measuring method K-7123). Furthermore, the specific gravity of the sample was measured.
 熱拡散率α、比熱Cp及び比重の値を基に、下記式により熱伝導率を算出した。
Figure JPOXMLDOC01-appb-M000001
Based on the values of thermal diffusivity α, specific heat Cp and specific gravity, the thermal conductivity was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
 (温度測定)
 23℃に調整した室内にて、断熱材(厚み10mm)の上にシートサンプル(200×200mmの樹脂シート)を置き、シートサンプルの上方500mmからランプ(レフランプ、180W)を照射した。60分間照射後のシートサンプル表面温度の平均値をサーモグラフィ(TH9100WR、NEC/Avio)にて測定した。
(Temperature measurement)
In a room adjusted to 23 ° C., a sheet sample (200 × 200 mm resin sheet) was placed on a heat insulating material (thickness 10 mm), and a lamp (ref lamp, 180 W) was irradiated from 500 mm above the sheet sample. The average value of the surface temperature of the sheet sample after irradiation for 60 minutes was measured by thermography (TH9100WR, NEC / Avio).
 (温度差測定)
 23℃に調整した室内にて、断熱材(厚み10mm)の上にシートサンプル(200×200mmの樹脂シート)を置き、シートサンプルの上方500mmからランプ(レフランプ、180W)を照射した。 60分間照射後のシートサンプル裏面温度をサーモグラフィ(TH9100WR、NEC/Avio)にて測定し,最高温度と最低温度の差を計測した。
(Temperature difference measurement)
In a room adjusted to 23 ° C., a sheet sample (200 × 200 mm resin sheet) was placed on a heat insulating material (thickness 10 mm), and a lamp (ref lamp, 180 W) was irradiated from 500 mm above the sheet sample. The back surface temperature of the sheet sample after irradiation for 60 minutes was measured by thermography (TH9100WR, NEC / Avio), and the difference between the maximum temperature and the minimum temperature was measured.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
     1    熱反射層
     2    樹脂層
     3    熱伝導層
    11、31 樹脂シート
    12    基板
    13    電子デバイス
    13a   突起電極
    14    中空部
    15、16 電子デバイスパッケージ
    17    バンプ
    18    基板
    41    粘着シート
    42    支持体
    43    粘着剤層
    51    封止体
    52    再配線
    53    バンプ
    61    電子デバイスパッケージ
    101   筐体
    102   電子デバイス
    103   輻射熱
 
DESCRIPTION OF SYMBOLS 1 Heat reflection layer 2 Resin layer 3 Thermal conductive layer 11, 31 Resin sheet 12 Substrate 13 Electronic device 13a Projection electrode 14 Hollow part 15, 16 Electronic device package 17 Bump 18 Substrate 41 Adhesive sheet 42 Support body 43 Adhesive layer 51 Sealing Body 52 Rewiring 53 Bump 61 Electronic device package 101 Case 102 Electronic device 103 Radiant heat

Claims (5)

  1. 熱反射層及び樹脂層を備える電子デバイス封止用樹脂シート。 An electronic device sealing resin sheet comprising a heat reflecting layer and a resin layer.
  2. 前記熱反射層の赤外線反射率が50%以上である請求項1に記載の電子デバイス封止用樹脂シート。 The resin sheet for sealing an electronic device according to claim 1, wherein the infrared reflectance of the heat reflecting layer is 50% or more.
  3. 前記熱反射層が金属を含有する層である請求項1又は2に記載の電子デバイス封止用樹脂シート。 The resin sheet for sealing an electronic device according to claim 1, wherein the heat reflecting layer is a layer containing a metal.
  4. 前記熱反射層、前記樹脂層及び熱伝導層がこの順に積層されている請求項1~3のいずれかに記載の電子デバイス封止用樹脂シート。 The resin sheet for sealing an electronic device according to any one of claims 1 to 3, wherein the heat reflecting layer, the resin layer, and the heat conductive layer are laminated in this order.
  5. 請求項1~4のいずれかに記載の電子デバイス封止用樹脂シートで電子デバイスを封止する工程を含む電子デバイスパッケージの製造方法。
     
    An electronic device package manufacturing method comprising a step of sealing an electronic device with the electronic device sealing resin sheet according to any one of claims 1 to 4.
PCT/JP2014/067923 2013-08-09 2014-07-04 Resin sheet for sealing electronic device, and method for manufacturing electronic device package WO2015019770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157036118A KR20160040465A (en) 2013-08-09 2014-07-04 Resin sheet for sealing electronic device, and method for manufacturing electronic device package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167058A JP6356395B2 (en) 2013-08-09 2013-08-09 Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2013-167058 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015019770A1 true WO2015019770A1 (en) 2015-02-12

Family

ID=52461109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067923 WO2015019770A1 (en) 2013-08-09 2014-07-04 Resin sheet for sealing electronic device, and method for manufacturing electronic device package

Country Status (4)

Country Link
JP (1) JP6356395B2 (en)
KR (1) KR20160040465A (en)
TW (1) TW201513277A (en)
WO (1) WO2015019770A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600748B2 (en) 2016-06-20 2020-03-24 Samsung Electronics Co., Ltd. Fan-out semiconductor package
KR102003390B1 (en) * 2016-06-20 2019-07-24 삼성전자주식회사 Fan-out semiconductor package
JP6834265B2 (en) * 2016-09-05 2021-02-24 昭和電工マテリアルズ株式会社 Manufacturing method of sealing structure, sealing material and cured product
JP7200674B2 (en) * 2016-09-20 2023-01-10 住友ベークライト株式会社 Manufacturing method of heat dissipation structure
JP6610498B2 (en) 2016-10-21 2019-11-27 株式会社村田製作所 Method for manufacturing composite electronic component
JP2020136600A (en) * 2019-02-25 2020-08-31 東レ株式会社 Self-adhesive film for semiconductor or electronic component production, and production method of semiconductor or electronic component

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125956A (en) * 1990-09-17 1992-04-27 Mitsubishi Electric Corp Semiconductor integrated circuit
JPH04127561A (en) * 1990-09-19 1992-04-28 Nec Corp Semiconductor integrated circuit device
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2006117919A (en) * 2004-09-24 2006-05-11 Nagase & Co Ltd Three-dimensional sheet-like adherend for sealing semiconductor
JP2009231750A (en) * 2008-03-25 2009-10-08 Nitto Denko Corp Resin sheet for sealing optical semiconductor element and the optical semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332155A (en) * 1999-03-12 2000-11-30 Sony Corp Semiconductor device and manufacture thereof
JP2008294021A (en) * 2007-05-22 2008-12-04 Nichicon Corp Electronic component module and manufacturing method thereof
JP2010109246A (en) * 2008-10-31 2010-05-13 Yaskawa Electric Corp Semiconductor device, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125956A (en) * 1990-09-17 1992-04-27 Mitsubishi Electric Corp Semiconductor integrated circuit
JPH04127561A (en) * 1990-09-19 1992-04-28 Nec Corp Semiconductor integrated circuit device
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2006117919A (en) * 2004-09-24 2006-05-11 Nagase & Co Ltd Three-dimensional sheet-like adherend for sealing semiconductor
JP2009231750A (en) * 2008-03-25 2009-10-08 Nitto Denko Corp Resin sheet for sealing optical semiconductor element and the optical semiconductor device

Also Published As

Publication number Publication date
TW201513277A (en) 2015-04-01
KR20160040465A (en) 2016-04-14
JP6356395B2 (en) 2018-07-11
JP2015035568A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
JP6259608B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP6320239B2 (en) Semiconductor chip sealing thermosetting resin sheet and semiconductor package manufacturing method
JP6356395B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098829A1 (en) Production method for semiconductor package
JP6274784B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098833A1 (en) Production method for semiconductor package
WO2015098835A1 (en) Method for producing semiconductor package
JP5735029B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2015216229A (en) Method for manufacturing semiconductor device, and thermosetting resin sheet
WO2016072236A1 (en) Resin composition, semiconductor device manufacturing method and semiconductor device
JP5793160B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2015098838A1 (en) Method for producing semiconductor device, and thermosetting resin sheet
TWI655230B (en) Resin sheet for hollow sealing and manufacturing method of hollow package
WO2023068277A1 (en) Adhesive tape for circuit connection, connection structure, and method for producing connection structure
WO2016080117A1 (en) Separator-equipped sealing sheet and semiconductor device production method
WO2023120542A1 (en) Adhesive composition, adhesive film for circuit connection, connection structure, and method for producing connection structure
JP5735030B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP2003332361A (en) Adhesive sheet for semiconductor device, and substrate for connecting semiconductor using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036118

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834793

Country of ref document: EP

Kind code of ref document: A1