WO2015019767A1 - Curing resin composition and semiconductor device employing same - Google Patents

Curing resin composition and semiconductor device employing same Download PDF

Info

Publication number
WO2015019767A1
WO2015019767A1 PCT/JP2014/067864 JP2014067864W WO2015019767A1 WO 2015019767 A1 WO2015019767 A1 WO 2015019767A1 JP 2014067864 W JP2014067864 W JP 2014067864W WO 2015019767 A1 WO2015019767 A1 WO 2015019767A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
polyorganosiloxane
curable resin
weight
Prior art date
Application number
PCT/JP2014/067864
Other languages
French (fr)
Japanese (ja)
Inventor
籔野真也
板谷亮
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to CN201480021387.7A priority Critical patent/CN105209549B/en
Priority to KR1020157031328A priority patent/KR101631048B1/en
Priority to JP2015530761A priority patent/JP5830201B2/en
Publication of WO2015019767A1 publication Critical patent/WO2015019767A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a curable resin composition, a cured product obtained using the curable resin composition, a sealing material, and a semiconductor device obtained using the sealing material.
  • a material covering a semiconductor element is generally required to have a heat resistance of about 150 ° C. or higher.
  • a material (encapsulant) that covers an optical material such as an optical semiconductor element is required to have excellent physical properties such as transparency and flexibility in addition to heat resistance.
  • an epoxy resin material or a silicone resin material is used as a sealing material in a backlight unit of a liquid crystal display.
  • Patent Document 1 as a material having high heat resistance and good heat dissipation, at least one first organosilicon polymer having a crosslinked structure of siloxane (Si—O—Si conjugate) and a linear shape of siloxane are disclosed.
  • a synthetic polymer compound containing at least one kind of a third organosilicon polymer having a molecular weight of 20,000 to 800,000, which is linked to at least one second organosilicon polymer having a linking structure by a siloxane bond. is disclosed. However, the physical properties of these materials are not yet satisfactory.
  • Patent Document 2 discloses a resin composition for sealing an optical element having excellent transparency, UV resistance, and heat resistance coloring property, which contains an aliphatic carbon-carbon unsaturated bond and does not contain an H—Si bond. At least selected from the group consisting of a liquid silsesquioxane of a type structure and a liquid silsesquioxane of a saddle type structure containing an H—Si bond and no aliphatic carbon-carbon unsaturated bond A resin composition for sealing an optical element containing one kind of silsesquioxane as a resin component is disclosed. However, since the cured product of the resin composition containing cage silsesquioxane is relatively hard and lacks flexibility, there is a problem that cracks and cracks are likely to occur.
  • Patent Document 3 discloses an organic compound such as triallyl isocyanurate containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule, and at least two SiH groups in one molecule.
  • a curable composition containing a chain-containing and / or cyclic polyorganosiloxane-containing compound and a hydrosilylation catalyst as an essential component is disclosed.
  • the physical properties such as crack resistance of these materials are still not satisfactory.
  • Patent Document 4 discloses (A) a polysiloxane having at least two alkenyl groups bonded to silicon atoms, (B) a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms, and (C) hydrosilyl. And (D) a zinc compound, the component (D) is contained in an amount of 0.1 to 5 parts by mass relative to a total of 100 parts by mass of the component (A) and the component (B), A silicone resin composition having excellent sulfidation properties is disclosed. However, although corrosion resistance against hydrogen sulfide (H 2 S) is disclosed, there is no description about corrosion resistance against other corrosive gases.
  • H 2 S corrosion resistance against hydrogen sulfide
  • H 2 S hydrogen sulfide
  • SO x sulfur oxide
  • a sealing material having a high refractive index is required to improve the light extraction efficiency.
  • a phosphor may be mixed and used as a sealing material for an optical semiconductor element, and the phosphor settles in the sealing material and is unevenly distributed. In order to prevent this, a sealing material having a high viscosity is required.
  • an object of the present invention transparency, provided with a heat resistance, comprising a thermal shock resistance, and further, the barrier property to corrosive gases (in particular, barrier properties against hydrogen sulfide (H 2 S) gas (resistant H 2 S High refractive index and high viscosity useful for sealing of semiconductor devices (especially optical semiconductor devices), which have both corrosive properties and barrier properties against sulfur oxide (SO X ) gas (SO X corrosion resistance))
  • H 2 S hydrogen sulfide
  • SO X sulfur oxide
  • Another object of the present invention is to provide transparency, heat resistance, flexibility, thermal shock resistance and reflow resistance (crack resistance in the reflow process, adhesion to the package, etc.), and further corrosiveness.
  • An object of the present invention is to provide a curable resin composition having a high refractive index and a high viscosity, which is useful for sealing a semiconductor element having a gas barrier property.
  • Another object of the present invention is to provide a cured product and encapsulant having a high refractive index having excellent transparency, heat resistance, flexibility, thermal shock resistance, reflow resistance, and barrier properties against corrosive gases. There is to do.
  • Still another object of the present invention is to provide a semiconductor device having such a cured product and / or a sealing material.
  • the present inventors added a silsesquioxane and an isocyanurate compound to a polyorganosiloxane having an aryl group, and a curable resin composition having a viscosity of 4000 to 8000 mPa ⁇ s has excellent transparency,
  • the inventors have found that a cured product having heat resistance, in particular, a barrier property against corrosive gas and excellent thermal shock resistance can be formed, and the present invention has been completed.
  • this invention is curable resin composition containing polyorganosiloxane (A), silsesquioxane (B), and isocyanurate compound (C), Comprising: Polyorganosiloxane (A) has an aryl group.
  • a curable resin composition which is a polyorganosiloxane and has a viscosity of 4000 to 8000 mPa ⁇ s.
  • the present invention also provides the curable resin composition as described above, wherein the polyorganosiloxane (A) has a number average molecular weight (Mn) of 500 to 4000 in terms of standard polystyrene by gel permeation chromatography.
  • Mn number average molecular weight
  • the molecular weight dispersity (Mw / Mn) is 0.95 when the weight average molecular weight in terms of standard polystyrene according to gel permeation chromatography of the polyorganosiloxane (A) is Mw and the number average molecular weight is Mn.
  • the present invention also provides the curable resin composition as described above, which contains a polyorganosiloxane (A1) having an aliphatic carbon-carbon double bond as the polyorganosiloxane (A).
  • the present invention also provides the above curable resin composition containing, as the polyorganosiloxane (A), a polyorganosiloxane (A2) having a Si—H bond.
  • the present invention provides a polyorganosiloxane (A) as a formula (6)
  • R 21 to R 26 are the same or different and each represents a hydrogen atom, an aryl group, a monovalent hydrocarbon group, a monovalent heterocyclic group, or an aliphatic carbon-carbon unsaturated bond. Including monovalent group. However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond. One or more of R 21 to R 26 are an aryl group. R 27 represents a divalent hydrocarbon group. r and s each represent an integer of 1 or more. ]
  • the curable resin composition comprising the polyorganosiloxane having the structure represented by:
  • this invention provides said curable resin composition whose silsesquioxane (B) is ladder type silsesquioxane.
  • the isocyanurate compound (C) is represented by the formula (1):
  • R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the curable resin composition is an isocyanurate compound represented by:
  • this invention provides said curable resin composition in which any one or more among Rx , Ry , Rz in Formula (1) is group represented by Formula (3).
  • the present invention further includes a silane coupling agent (D), and the content of the silane coupling agent (D) is the total amount of polyorganosiloxane (A) and silsesquioxane (B) (100 parts by weight).
  • the curable resin composition is 0.01 parts by weight or more and less than 1.0 part by weight.
  • the present invention provides the above curable resin composition, wherein the silane coupling agent (D) includes a partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents. provide.
  • the present invention further includes a zinc compound (E), and the content of the zinc compound (E) is based on the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B).
  • the curable resin composition is provided in an amount of 0.01 part by weight or more and less than 1.0 part by weight.
  • the content of the zinc compound (E) is 0.3 parts by weight or more and 0.000 parts by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B).
  • the curable resin composition is provided in an amount of less than 6 parts by weight.
  • the present invention also provides the curable resin composition as described above, wherein the zinc compound (E) is zinc carboxylate.
  • the present invention also provides a cured product obtained by curing the above curable resin composition.
  • this invention provides the sealing material obtained using said curable resin composition.
  • the present invention also provides a semiconductor device obtained using the above-described sealing material.
  • the curable resin composition of this invention is related with the following.
  • a curable resin composition having a viscosity of 4000 to 8000 mPa ⁇ s.
  • [3] A structure in which the polyorganosiloxane (A) is represented by the formula (6) (in particular, R 27 is preferably a linear or branched alkylene group having 1 to 5 carbon atoms, more preferably an ethylene group.
  • the content (blending amount) of the polyorganosiloxane (A) is 60 to 99.7% by weight with respect to the total amount (100% by weight) of the curable resin composition [1] to [3]
  • the curable resin composition as described in any one of these.
  • the polyorganosiloxane (A) has an aliphatic carbon-carbon double bond, an aryl group-containing polyorganosiloxysilalkylene, an aliphatic carbon-carbon double bond, and a Si—H bond.
  • Any of [1] to [8], wherein the content of silsesquioxane (B) is 0.01 to 30% by weight relative to the total amount (100% by weight) of the curable resin composition
  • the content of silsesquioxane (B) is 0.01 to 30 parts by weight with respect to the total amount (100 parts by weight) of polyorganosiloxane (A) and silserkioxane (B).
  • the curable resin composition according to any one of [9].
  • the isocyanurate compound (C) the formula (1) [In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3). [In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the proportion of the isocyanurate compound (C) is 0.01 to 0.5 parts by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B).
  • a silane coupling agent D
  • the curable resin composition according to [15] wherein the silane coupling (D) is 3-glycidoxypropyltrimethoxysilane.
  • the content of the silane coupling (D) is 0.01 part by weight or more and 1.0 part by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B).
  • the silane coupling agent (D) includes any one of [15] to [18] including a partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents.
  • the proportion of the partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents in the silane coupling agent (D) is the total amount of the silane coupling agent (D).
  • the curable resin composition according to [19] which is 50 to 100% by weight relative to (100% by weight).
  • the proportion of the partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents in the silane coupling agent (D) is the total amount of the curable resin composition (100
  • the ratio of the partial condensate obtained by hydrolyzing and partially condensing one or more silane coupling agents in the silane coupling agent (D) is such that the polyorganosiloxane (A) and the silyl
  • Resin composition [23] The curable resin composition according to any one of [1] to [22], further comprising a zinc compound (E).
  • the curable resin composition of the present invention has the above-described configuration, a cured product having excellent transparency and heat resistance can be formed.
  • the cured product has excellent thermal shock resistance, more specifically, excellent peel resistance (adhesiveness to the LED package) and crack resistance under conditions where the temperature changes severely, and further, H 2 S gas, SO X gas, etc. Excellent barrier properties against multiple corrosive gases.
  • curing material obtained may be excellent also in a softness
  • the curable resin composition of the present invention can be preferably used as a sealing material for an optical semiconductor element (for example, an LED element, a semiconductor laser element, a solar power generation element, a CCD element, etc.).
  • An optical semiconductor device obtained by sealing an optical semiconductor element with a cured product of the curable resin composition has excellent quality and durability.
  • the curable resin composition of the present invention is useful as a sealing material for a next-generation light source that requires heat resistance to an unprecedented high temperature (for example, 180 ° C. or higher).
  • FIG. 1 It is the schematic which shows one Embodiment of the optical semiconductor device which sealed the optical semiconductor element using the curable resin composition of this invention.
  • the left figure (a) is a perspective view
  • the right figure (b) is a sectional view.
  • the curable resin composition of the present invention is a curable resin composition containing a polyorganosiloxane (A), a silsesquioxane (B), and an isocyanurate compound (C), wherein the polyorganosiloxane (A) is It is a polyorganosiloxane having an aryl group and a curable resin composition having a viscosity of 4000 to 8000 mPa ⁇ s.
  • the polyorganosiloxane (A) in the curable resin composition of the present invention is a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si), and an aryl group as a substituent in the main chain. It is a polyorganosiloxane having The polyorganosiloxane (A) may be a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond.
  • polyorganosiloxane (A) examples include well-known and commonly used silicone skeletons such as a phenyl silicone skeleton (polydiphenylsiloxane) and a phenylmethylsilicone skeleton (polymethylphenylsiloxane).
  • the polyorganosiloxane (A) does not include silsesquioxane (B).
  • the polyorganosiloxane (A) may be a polyorganosiloxane having a straight chain and / or a branched chain. Among these, from the viewpoint of the strength of the cured product, a polyorganosiloxane having a branched chain (branched polyorganosiloxane) is preferable.
  • the aryl group in the polyorganosiloxane (A) is not particularly limited, and examples thereof include C 6-14 aryl groups (particularly C 6-10 aryl groups) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
  • the aryl group in the polyorganosiloxane (A) may have one or more substituents.
  • substituents include halogen atoms, substituted or unsubstituted hydrocarbon groups, hydroxyl groups, alkoxy groups, alkenyloxy groups, aryloxy groups, aralkyloxy groups, acyloxy groups, mercapto groups (thiol groups), alkylthio groups, and alkenyls.
  • substituted or unsubstituted hydrocarbon group examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group and dodecyl group (preferably C 1- 10 alkyl group, more preferably C 1-4 alkyl group).
  • alkenyl group examples include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group, 5-hexenyl group and the like.
  • alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the alicyclic hydrocarbon group include C 3-12 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3-12 cyclo group such as a cyclohexenyl group.
  • An alkenyl group; a C 4-15 bridged cyclic hydrocarbon group such as a bicycloheptanyl group and a bicycloheptenyl group.
  • C6-14 aryl groups (especially C6-10 aryl group), such as a phenyl group and a naphthyl group, etc. are mentioned, for example.
  • Examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group. Further, examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups (particularly, C 7-10 aralkyl groups) such as benzyl group and phenethyl group, cinnamyl and the like.
  • a C 6-10 aryl-C 2-6 alkenyl group such as a group, a C 1-4 alkyl-substituted aryl group such as a tolyl group, a C 2-4 alkenyl-substituted aryl group such as a styryl group, and the like.
  • a substituent which the said substituted or unsubstituted hydrocarbon group (substituted hydrocarbon group) has the thing similar to the substituent which the aryl group may have is mentioned, for example.
  • R ′ in formula (4) is a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group, a hydroxyl group, an alkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, a mercapto group (thiol Group), alkylthio group, alkenylthio group, arylthio group, aralkylthio group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, amino group or substituted amino group (mono or dialkylamino group, acylamino group, etc.) ), Epoxy group, cyan
  • each R ′ is a hydrogen atom, a C 1-10 alkyl group (particularly a C 1-4 alkyl group), a C 2-10 alkenyl group (particularly a C 2 group). -4 alkyl group), C 3-12 cycloalkyl group, C 3-12 cycloalkenyl group, aromatic ring with C 1-4 alkyl group, C 2-4 alkenyl group, halogen atom, C 1-4 alkoxy group, etc.
  • the content of aryl group (converted to phenyl group) with respect to the total amount (100% by weight) of polyorganosiloxane (A) is not particularly limited, but is preferably 35% by weight or more (for example, 35 to 70% by weight), preferably 40% by weight. The above is more preferable, and 45% by weight or more is still more preferable.
  • content of the said aryl group is less than 35 weight%, the barrier property with respect to the corrosive gas of the hardened
  • all of the substituents in the main chain composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A) may be aryl groups, or some of the substituents are aryl groups. May be.
  • the content of the aryl group can be measured, for example, by 1 H-NMR.
  • polyorganosiloxane (A) examples include polyorganosiloxane having a structure represented by the formula (6).
  • a polyorganosiloxane having a structure represented by the formula (6) is referred to as “polyorganosiloxysilalkylene”.
  • the curable resin composition of the present invention preferably contains polyorganosiloxysilalkylene as the polyorganosiloxane (A), and more preferably the polyorganosiloxane (A) is only polyorganosiloxysilalkylene.
  • Polyorganosiloxysilalkylene is less prone to form low-molecular-weight rings in the production process than polyorganosiloxanes whose main chain consists solely of siloxane bonds (Si—O—Si), and decomposes by heating to produce silanol groups. It is difficult to produce (-SiOH). Therefore, it becomes easy to obtain a cured product with low surface tackiness and little yellowing.
  • R 21 to R 26 are the same or different and each represents a hydrogen atom, the above-described aryl group, a substituent of the above-described aryl group, a heterocyclic group, or an aliphatic carbon-carbon unsaturated bond described later. (Preferably the same or different, a hydrogen atom, the above-mentioned aryl group, a monovalent hydrocarbon group, a monovalent heterocyclic group, or an aliphatic carbon-carbon unsaturated bond described later) Including monovalent groups). However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond.
  • R 21 to R 26 are not monovalent groups containing an aliphatic carbon-carbon unsaturated bond.
  • at least one of R 21 to R 26 is preferably an aryl group (C 6-14 aryl group such as a phenyl group or a naphthyl group (particularly a C 6-10 aryl group), particularly a phenyl group).
  • the aryl group in R 21 to R 26 may have one or more substituents. Examples of the substituent of the aryl group in R 21 to R 26 include the same substituents as the aryl group in the polyorganosiloxane (A) described above.
  • Examples of the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group; a monovalent alicyclic hydrocarbon group; a monovalent aromatic hydrocarbon group; an aliphatic hydrocarbon group and an alicyclic carbon group. And a monovalent group in which two or more of a hydrogen group and an aromatic hydrocarbon group are bonded.
  • Examples of the monovalent heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and the like.
  • Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include straight chain or branched chain C 1- such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group.
  • 20 alkyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group) and the like.
  • alkenyl group examples include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group.
  • C 2-20 alkenyl groups preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups
  • alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the monovalent alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3 ⁇ group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
  • C6-14 aryl groups (especially C6-10 aryl group), such as a phenyl group, a naphthyl group, an anthryl group, etc. are mentioned, for example.
  • Examples of the group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group.
  • Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include a C 7-18 aralkyl group (particularly a C 7-10 aralkyl group) such as a benzyl group and a phenethyl group, and a C 6-10 such as a cinnamyl group.
  • Examples thereof include C 1-4 alkyl-substituted aryl groups such as aryl-C 2-6 alkenyl group and tolyl group, C 2-4 alkenyl-substituted aryl groups such as styryl group, and the like.
  • the monovalent hydrocarbon group may have a substituent. That is, the monovalent hydrocarbon group may be a monovalent hydrocarbon group in which at least one hydrogen atom of the monovalent hydrocarbon group exemplified above is replaced with a substituent.
  • the substituent preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms.
  • substituents include, for example, a halogen atom; a hydroxyl group; an alkoxy group; an alkenyloxy group; an aryloxy group; an aralkyloxy group; an acyloxy group; a mercapto group; an alkylthio group; Aroxy group; carboxyl group; alkoxycarbonyl group; aryloxycarbonyl group; aralkyloxycarbonyl group; amino group; mono- or dialkylamino group; mono- or diphenylamino group; acylamino group; epoxy group-containing group; Group; oxo group; isocyanate group; a group in which two or more of these are bonded via a C 1-6 alkylene group, if necessary.
  • alkoxy group examples include C 1-6 alkoxy groups (preferably C 1-4 alkoxy groups) such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • alkenyloxy group examples include a C 2-6 alkenyloxy group (preferably a C 2-4 alkenyloxy group) such as an allyloxy group.
  • aryloxy group include, for example, substitution of a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, a C 1-4 alkoxy group, etc.
  • a phenoxy group such as a phenoxy group, a tolyloxy group, and a naphthyloxy group.
  • a C 6-14 aryloxy group which may have a group.
  • the aralkyloxy group include C 7-18 aralkyloxy groups such as benzyloxy group and phenethyloxy group.
  • the acyloxy group include C 1-12 acyloxy groups such as an acetyloxy group, a propionyloxy group, a (meth) acryloyloxy group, and a benzoyloxy group.
  • alkylthio group examples include C 1-6 alkylthio groups (preferably C 1-4 alkylthio groups) such as a methylthio group and an ethylthio group.
  • alkenylthio group examples include C 2-6 alkenylthio groups (preferably C 2-4 alkenylthio groups) such as an allylthio group.
  • arylthio group examples include a phenylthio group, a tolylthio group, a naphthylthio group, and the like, and a substituent such as a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring.
  • Examples thereof include a C 6-14 arylthio group which may be present.
  • Examples of the aralkylthio group include C 7-18 aralkylthio groups such as benzylthio group and phenethylthio group.
  • Examples of the alkoxycarbonyl group include C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group.
  • Examples of the aryloxycarbonyl group include C 6-14 aryloxy-carbonyl groups such as a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
  • Examples of the aralkyloxycarbonyl group include C 7-18 aralkyloxy-carbonyl groups such as benzyloxycarbonyl group.
  • Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a dimethylamino group, and a diethylamino group.
  • Examples of the acylamino group include C 1-11 acylamino groups such as an acetylamino group, a propionylamino group, and a benzoylamino group.
  • Examples of the epoxy group-containing group include a glycidyl group, a glycidyloxy group, and a 3,4-epoxycyclohexyl group.
  • As said oxetanyl group containing group an ethyl oxetanyloxy group etc. are mentioned, for example.
  • As said acyl group an acetyl group, a propionyl group, a benzoyl group etc. are mentioned, for example.
  • Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
  • the monovalent heterocyclic group may have a substituent.
  • substituent in the heterocyclic group include the same substituents as those in the monovalent hydrocarbon group.
  • the monovalent hydrocarbon group and monovalent heterocyclic group more specifically, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, decyl group, Phenyl group, naphthyl group, anthryl group, benzyl group, phenethyl group, pyridyl group, furyl group, thienyl group, vinyl group, allyl group, styryl group (for example, p-styryl group), substituted hydrocarbon group (for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N-2- (aminoethyl) -3-aminopropyl group, 3 -Aminopropyl group, N-phenyl-3-aminopropyl group
  • R 21 to R 26 in the above formula (6) may be the same or different.
  • R 27 represents a divalent hydrocarbon group.
  • the divalent monovalent hydrogen group include a linear or branched alkylene group, a divalent alicyclic hydrocarbon group, and a divalent aromatic hydrocarbon group.
  • the linear or branched alkylene group include a linear or branched chain group having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Of the alkylene group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexene group. And divalent cycloalkylene groups (including cycloalkylidene groups) such as a silene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • Examples of the divalent aromatic hydrocarbon group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenylene group, naphthylene group and the like.
  • R 27 is preferably a linear or branched alkylene group having 1 to 8 carbon atoms (particularly 1 to 5 carbon atoms), and more preferably an ethylene group.
  • r represents an integer of 1 or more.
  • the structures in parentheses to which r is attached may be the same or different.
  • the addition form of the structures is not particularly limited, and may be a random type or a block type.
  • s shows an integer greater than or equal to 1.
  • s is an integer of 2 or more
  • the structures in parentheses to which s is attached may be the same or different.
  • the addition form of the structures is not particularly limited, and may be a random type or a block type.
  • the structure in parentheses with r and the structure in parentheses with s are not particularly limited, and may be a random type or a block type. May be.
  • R and s may be the same or different. That is, in formula (6), r and s are the same or different and each represents an integer of 1 or more.
  • the terminal structure of the polyorganosiloxysilalkylene is not particularly limited, and examples thereof include a silanol group, an alkoxysilyl group, and a trialkylsilyl group (for example, a trimethylsilyl group).
  • Various groups such as a group containing an aliphatic carbon-carbon double bond and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
  • the polyorganosiloxysilalkylene may have a linear or branched chain structure.
  • polyorganosiloxysilalkylene for example, polyorganosiloxysilalkylene having a branched chain and an aryl group is preferable.
  • Examples of the polyorganosiloxysil alkylene include GD-1125A (manufactured by Changxing Chemical Industry Co., Ltd.) and GD-1125B (manufactured by Changxing Chemical Industry Co., Ltd.).
  • polyorganosiloxane (A) it is preferable to use two or more (particularly two) polyorganosiloxysilalkylene.
  • two or more polyorganosiloxysilalkylene from the viewpoint of barrier properties against corrosive gas, a group having an aliphatic carbon-carbon double bond, a polyorganosiloxysilalkylene having an aryl group, a group having an aliphatic carbon-carbon double bond, Si— It is preferable to use two types, a group having an H bond and a polyorganosiloxysilalkylene having an aryl group.
  • the ratio of polyorganosiloxysil alkylene to the total amount (total content, 100% by weight) of polyorganosiloxane (A) in the curable resin composition of the present invention is particularly although not limited, it is preferably 60% by weight or more (for example, 60 to 100% by weight), more preferably 80% by weight or more (for example, 80 to 99.5% by weight), and still more preferably 88% by weight or more. If the ratio of polyorganosiloxysilalkylene is less than 60% by weight, the cured product tends to yellow, or the surface tends to have tackiness and the handleability tends to decrease.
  • the number average molecular weight (Mn) of the polyorganosiloxane (A) is preferably 500 to 4000, more preferably 550 to 2800, and still more preferably 600 to 1500. Further, the weight average molecular weight (Mw) is preferably from 500 to 20,000, more preferably from 600 to 10,000, and still more preferably from 700 to 6,500. When the number average molecular weight (Mn) and / or the weight average molecular weight (Mw) is less than 500, the heat resistance of the resulting cured product may be lowered.
  • the compatibility between the polyorganosiloxane (A) and other components may be reduced.
  • the compatibility between the polyorganosiloxanes (A) may be reduced.
  • the polyorganosiloxane (A) may be a mixture of those having various number average molecular weights (Mn) and / or weight average molecular weights (Mw) within the above range.
  • the number average molecular weight (Mn) and / or the weight average molecular weight (Mw) can be calculated, for example, as a molecular weight in terms of polystyrene by gel permeation chromatography.
  • the molecular weight dispersity (Mw / Mn) calculated from the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyorganosiloxane (A) is preferably 0.95 to 4.00, and preferably 1.00 to 3. 80 is more preferable, and 1.20 to 3.50 is still more preferable.
  • Mw / Mn the molecular weight dispersity
  • the content of the polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but the total amount (100% by weight) of the curable resin composition is not particularly limited. ) Is preferably 60 to 99.7% by weight, more preferably 75 to 99.0% by weight, still more preferably 90 to 98.5% by weight. If the content is less than 60% by weight, the thermal shock resistance of the resulting cured product may be reduced. On the other hand, when the content exceeds 99.5% by weight, the barrier property against the corrosive gas of the obtained cured product may be lowered.
  • the polyorganosiloxane (A) may have a substituent other than an aryl group, and the substituent other than the aryl group may be a substituent of a silicon atom in the polyorganosiloxane (A).
  • substituent other than the aryl group include a hydrogen atom, a halogen atom, a group having a Si—H bond, a substituted or unsubstituted hydrocarbon group (preferably an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group).
  • Hydroxyl group alkoxy group, alkenyloxy group, acyloxy group, mercapto group (thiol group), alkylthio group, alkenylthio group, carboxyl group, alkoxycarbonyl group, amino group or substituted amino group (mono or dialkylamino group, acylamino group) Etc.), an epoxy group, a cyano group, an isocyanate group, a carbamoyl group, an isothiocyanate group, and the like.
  • substituent other than the aryl group in the polyorganosiloxane (A) examples include a hydrogen atom, a group having a Si—H bond (hydrosilyl group, etc.), a substituted or unsubstituted hydrocarbon group (preferably an alkyl group or aliphatic carbon).
  • —At least one substituent selected from a group having a carbon double bond (such as an alkenyl group) is particularly preferable.
  • the polyorganosiloxane (A) includes, for example, a polyorganosiloxane having an aryl group and a group having an aliphatic carbon-carbon double bond, a polyorganosiloxane having an aryl group and a group having a Si—H bond, an aryl group, an aliphatic group It may be a polyorganosiloxane having a group having a group carbon-carbon double bond and a group having a Si—H bond.
  • the polyorganosiloxane (A) can be used alone or in combination of two or more.
  • the curable resin composition of the present invention includes a polyorganosiloxane (A1) having an aliphatic carbon-carbon double bond as the polyorganosiloxane (A) (in this specification, simply “polyorganosiloxane (A1)”). May be included).
  • the polyorganosiloxane (A) is preferably a polyorganosiloxane (A1) (only the polyorganosiloxane (A1)).
  • the aliphatic carbon-carbon double bond may have any partial structure and / or component constituting the polyorganosiloxane (A1).
  • the aliphatic carbon-carbon double bond may have a substituent (for example, a substituent that a silicon atom has) in the polyorganosiloxane (A1).
  • the aliphatic carbon-carbon double bond is present at the end of the main chain (straight chain and / or branched chain) composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A1). May be.
  • Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, C 2-20 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 5-hexenyl group (preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group) Group); C 3-12 cycloalkenyl group such as cyclohexenyl group; C 4-15 bridged cyclic unsaturated hydrocarbon group such as bicycloheptenyl group; C 2-4 alkenyl-substituted aryl group such as styryl group; cinnamyl Groups and the like.
  • R ′ is the above C 2-20 alkenyl group, C 3-12.
  • a group such as a C 4-15 bridged cyclic unsaturated hydrocarbon group, a C 2-4 alkenyl substituted aryl group, a cinnamyl group, and the like.
  • an alkenyl group is preferable, a C 2-20 alkenyl group is more preferable, and a vinyl group is more preferable.
  • the content of the aliphatic carbon-carbon double bond relative to the total amount (100% by weight) of the polyorganosiloxane (A) (in terms of vinyl group) is not particularly limited, but is preferably 1.5 to 15.0% by weight, 2.0 to 13.0 wt% is more preferable, and 3.0 to 12.0 wt% is still more preferable.
  • the content of the aliphatic carbon-carbon double bond can be measured, for example, by 1 H-NMR.
  • the curable resin composition of the present invention may be referred to as a polyorganosiloxane (A2) having a Si—H bond as the polyorganosiloxane (A) (in this specification, simply referred to as “polyorganosiloxane (A2)”). ) May be included.
  • the Si—H bond may have any partial structure and / or component constituting the polyorganosiloxane (A2). Note that the Si—H bond may have a substituent in the polyorganosiloxane (A2) (for example, a substituent that a silicon atom has). Further, the Si—H bond may be present at the end of the main chain (straight chain and / or branched chain) composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A2).
  • the group having an Si—H bond is not particularly limited, and examples thereof include a group represented by formula (4), in which at least one of three R ′ is a hydrogen atom.
  • the content of the Si—H bond relative to the total amount of the polyorganosiloxane (A) is not particularly limited, but is equivalent to a hydrogen atom or H (hydride) in the Si—H bond (H (Converted) is preferably 0.01 to 0.50% by weight, more preferably 0.05 to 0.30% by weight, still more preferably 0.08 to 0.20% by weight.
  • the content of the Si—H bond can be measured by, for example, 1 H-NMR.
  • the content of the polyorganosiloxane (A2) with respect to the total amount (100% by weight) of the polyorganosiloxane (A) is not particularly limited, but is preferably 50% by weight or more, and more preferably 80% by weight or more.
  • a cured product excellent in various physical properties such as heat resistance of the obtained cured product, crack resistance, and barrier property against corrosive gas is easily obtained. .
  • Ratio of aliphatic carbon-carbon double bond content (in terms of vinyl group) a1 (mol / g) to Si—H bond content (in terms of H) a2 (mol / g) in polyorganosiloxane (A) a1 / A2 is preferably 0.80 to 1.10, more preferably 0.90 to 1.05, and still more preferably 0.95 to 1.00.
  • a1 / a2 is preferably 0.80 to 1.10, more preferably 0.90 to 1.05, and still more preferably 0.95 to 1.00.
  • the polyorganosiloxane (A1) may be a polyorganosiloxane (A2) having a Si—H bond at the same time, and the polyorganosiloxane (A2) may be a polyorganosiloxane having an aliphatic carbon-carbon double bond at the same time. Siloxane (A1) may be used.
  • the polyorganosiloxane (A) may be composed of only one of the polyorganosiloxane (A1) and the polyorganosiloxane (A2), and the polyorganosiloxane (A) is two or more different from each other.
  • the polyorganosiloxane (A1) and / or the polyorganosiloxane (A2) may be used.
  • the polyorganosiloxane (A) is composed of two or more different types of polyorganosiloxane, and at least one of the two or more types of polyorganosiloxane is polyorganosiloxane (A2).
  • the two or more kinds of polyorganosiloxanes excluding the polyorganosiloxane (A2) are preferably polyorganosiloxanes (A1) having no Si—H bond.
  • the polyorganosiloxane (A) is a silsesquioxane (B), an isocyanurate compound (C), a silane coupling agent (D), a zinc compound (E), a hydrosilation catalyst, a hydrosilylation reaction inhibitor, which will be described later.
  • some or all of other components such as other siloxane compounds, other silane compounds, solvents, additives, and the like may be included in advance.
  • the polyorganosiloxane (A1) may include a part of the other component
  • the polyorganosiloxane (A2) may include a remaining part of the other component.
  • only one of the polyorganosiloxane (A1) and the polyorganosiloxane (A2) may contain a part or all of the other components.
  • the curable resin composition of the present invention contains silsesquioxane (B).
  • the silsesquioxane is not particularly limited, and examples thereof include a silsesquioxane having a random structure, a cage structure, and a ladder structure (ladder-type silsesquioxane).
  • the silsesquioxane having a ladder structure is a main component. Silsesquioxane is preferred.
  • the silsesquioxane (B) preferably contains a ladder-type silsesquioxane as a main component. Especially, it is more preferable that silsesquioxane (B) is only ladder type silsesquioxane.
  • Silsesquioxane is a kind of polysiloxane.
  • Polysiloxane is generally a compound having a main chain composed of siloxane bonds (Si—O—Si), and the basic structural unit thereof is a monovalent unit in which an M unit (a silicon atom is bonded to one oxygen atom). Units), D units (units composed of divalent groups in which silicon atoms are bonded to two oxygen atoms), T units (units composed of trivalent groups in which silicon atoms are bonded to three oxygen atoms) Unit) and Q unit (unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms).
  • Silsesquioxane (B) is a polysiloxane of the T units and basic units, the empirical formula (basic structure) is represented by RSiO 1.5.
  • Examples of the structure of the Si—O—Si skeleton of the silsesquioxane (B) include a random structure, a cage structure, and a ladder structure.
  • the ladder-type silsesquioxane is a structure of the Si—O—Si skeleton having a ladder structure.
  • the silsesquioxane (B) may have two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule).
  • the silsesquioxane (B) may have a group having two or more Si—H bonds in the molecule (in one molecule).
  • the silsesquioxane (B) is not particularly limited, but is preferably liquid at room temperature.
  • the said silsesquioxane (B) can be used individually by 1 type or in combination of 2 or more types.
  • silsesquioxane (B) By including silsesquioxane (B), the barrier property against a corrosive gas of a cured product formed by curing is improved, and further, toughness (particularly, crack resistance) tends to be improved.
  • the content (blending amount) of silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited, but is 0.01 to 0.1% with respect to the total amount (100 wt%) of the curable resin composition. 30 wt% is preferable, 0.1 to 20 wt% is more preferable, 0.5 to 15 wt% is further preferable, and 7 to 13 wt% is particularly preferable.
  • the content of silsesquioxane (B) is not particularly limited, but from the viewpoint of barrier properties against corrosive gases (particularly, corrosion resistance against H 2 S gas), for example, polyorganosiloxane (A) and silsesquioxane.
  • the amount is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, still more preferably 1 to 15 parts by weight, particularly preferably relative to the total amount (100 parts by weight) of oxan (B). 7 to 13 parts by weight.
  • the curable resin composition of the present invention contains an isocyanurate compound (C).
  • the curable resin composition of the present invention particularly improves the barrier property against the corrosive gas of the cured product formed by curing, and further improves the adhesion to the adherend. To do.
  • an isocyanurate compound (C) contains the isocyanurate compound represented by Formula (1).
  • the isocyanurate compound (C) is preferably only the isocyanurate compound represented by the formula (1).
  • R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3). Among them, one or more (preferably one or two, more preferably one) of R x , R y and R z in the formula (1) is a group represented by the formula (3). Is preferred.
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a pentyl group, a hexyl group, A heptyl group, an octyl group, an ethylhexyl group, etc. are mentioned.
  • R 1 and R 2 in formula (2) and formula (3) are particularly preferably each a hydrogen atom.
  • the isocyanurate compound (C) is not particularly limited.
  • the isocyanurate compound (C) may be blended with other components after previously mixed with a silane coupling agent as described later.
  • the content of the isocyanurate compound (C) is not particularly limited, but is preferably 0.01 to 10% by weight, and 0.05 to 5% by weight with respect to the total amount (100% by weight) of the curable resin composition. More preferred is 0.1 to 3% by weight.
  • the content of the isocyanurate compound (C) is less than 0.01% by weight, the barrier property against the corrosive gas and the adhesion to the adherend may be deteriorated.
  • the content of the isocyanurate compound (C) exceeds 10% by weight, a solid may precipitate in the curable resin composition or the cured product may become cloudy.
  • the ratio of the isocyanurate compound (C) is not particularly limited.
  • the total amount of polyorganosiloxane (A) and silsesquioxane (B) (100 0.01 to 0.5 parts by weight is preferable with respect to parts by weight).
  • the curable resin composition of the present invention may contain a silane coupling agent (D).
  • a silane coupling agent (D) When the curable resin composition of the present invention contains the silane coupling agent (D), in particular, the adhesion to the adherend is improved and the barrier property against the corrosive gas of the cured product is further improved.
  • the silane coupling agent (D) has good compatibility with the polyorganosiloxane (A) and the isocyanurate compound (C), for example, the compatibility of the isocyanurate compound (C) with other components is improved. Therefore, when a composition of the isocyanurate compound (C) and the silane coupling agent (D) is formed in advance and then blended with other components, a uniform curable resin composition is easily obtained.
  • silane coupling agent (D) a known or conventional silane coupling agent can be used, and is not particularly limited.
  • silane coupling agent (D) a partial condensate of the above silane coupling agent may be used.
  • the viscosity of the curable resin composition of the present invention can be improved, and the barrier property against the corrosive gas and the thermal shock resistance can be improved.
  • the partial condensate can be obtained by hydrolyzing and partially condensing one type or two or more types of the silane coupling agents.
  • Well-known or conventional methods can be used for hydrolysis and partial condensation. For example, a method of adding a solvent, water and, if necessary, a catalyst to the mixture of the silane coupling agent and stirring with heating can be mentioned. During the stirring, by-products (such as water and alcohols) may be removed by distillation as necessary.
  • the partial condensate is not particularly limited.
  • 3-glycidoxypropyltrimethoxysilane-tetramethoxysilane oligomer 3-glycidoxypropyltrimethoxysilane-tetraethoxysilane oligomer, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane-tetramethoxysilane oligomer, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane-tetraethoxysilane oligomer, 3-glycidoxypropylmethyldiethoxysilane-tetramethoxysilane oligomer, 3-glycidoxypropylmethyldiethoxysilane-tetraethoxysilane oligomer, 3-glycidoxypropyltriethoxysilane-tetramethoxysilane oligomer, 3-glycidoxypropy
  • the silane coupling agent (D) may be synthesized or a commercially available product may be used.
  • Commercially available silane coupling agents include, for example, Z-6610, Z-6011, Z-6020, Z-6094, Z-6683, Z-6032, Z-6040, Z-6044, Z-6043, Z- 6075, Z-6300, Z-6519, Z-6825, Z-6030, Z-6033, Z-6062, Z-6862, Z-6911, Z-6026, AZ-720, Z-6050 (all trade names , All manufactured by Toray Dow Corning Co., Ltd.), KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE -503, KBM-5103, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9 03, KBM-573, KBM-575, KBE-585, KBM-1003, KBE-1003, KBM-802
  • the content of the silane coupling agent (D) is not particularly limited, but is preferably 0.01 to 5 parts by weight, preferably 0.03 to 1 part by weight with respect to the total amount (100 parts by weight) of the curable resin composition. Is more preferable, and 0.05 to 0.8 part by weight is still more preferable.
  • the content of the silane coupling agent (D) is less than 0.01 parts by weight, the adhesion to the adherend is lowered, and particularly when the isocyanurate compound (C) is used in a compatible state. Curing may not be obtained.
  • the content of the silane coupling agent (D) exceeds 5% by weight, it may be difficult to adjust the viscosity of the curable resin composition within a target range.
  • content of a silane coupling agent (D) is not specifically limited, From a viewpoint of the barrier property with respect to corrosive gas, and reflow resistance, for example, the total amount of polyorganosiloxane (A) and silsesquioxane (B) The amount is preferably 0.01 part by weight or more and less than 1.0 part by weight with respect to (100 parts by weight), more preferably 0.08 to 0.9 part by weight.
  • the ratio of the partial condensate of the silane coupling agent in the silane coupling agent (D) is not particularly limited. For example, it is 50 to 100 with respect to the total amount (100% by weight) of the silane coupling agent (D). % By weight is preferred, more preferably 80 to 100% by weight. Especially, it is preferable that the said silane coupling agent (D) is only the said partial condensate of a silane coupling agent. When the ratio of the partial condensate of the silane coupling agent is within the above range, the corrosion resistance (particularly H 2 S corrosion resistance) and the thermal shock resistance are further improved.
  • the proportion of the above-mentioned partial condensate of the silane coupling agent in the curable resin composition is not particularly limited, but from the viewpoint of corrosion resistance (particularly corrosion resistance against H 2 S gas) and thermal shock resistance, for example,
  • the amount of the curable resin composition is preferably 0.01 to 5 parts by weight, more preferably 0.03 to 1 part by weight, and still more preferably 0.05 to 0.8 parts by weight with respect to the total amount (100 parts by weight). .
  • the ratio of the partial condensate of the silane coupling agent is not particularly limited, but from the viewpoint of corrosion resistance (particularly corrosion resistance against H 2 S gas), thermal shock resistance, and reflow resistance, for example,
  • the amount is preferably 0.01 parts by weight or more and less than 1.0 part by weight, and more preferably 0.08 to 0.000 parts by weight based on the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). 9 parts by weight.
  • the curable resin composition of the present invention may contain a zinc compound (E).
  • a zinc compound (E) By the curable resin composition of the present invention contains the zinc compound, in particular, tends to barrier property against H 2 S gas is improved.
  • a zinc compound (E) for example, the complex, metal salt, etc. which contain zinc are mentioned.
  • zinc diketone complexes such as zinc bisacetylacetonate and bis (octane-2,4-dionato) zinc
  • zinc carboxylates such as zinc naphthenate, zinc octylate, zinc acetoacetate, zinc (meth) acrylate, and zinc neodecanate And the like
  • inorganic zinc compounds typified by zinc oxides such as zinc oxide and zinc stannate, and mixtures thereof.
  • zinc carboxylate is preferable, and zinc octylate is particularly preferable.
  • the zinc compound (E) preferably contains at least zinc carboxylate (particularly zinc octylate).
  • the zinc compound (E) is more preferably only zinc carboxylate (particularly zinc octylate).
  • the zinc compound (E) is not particularly limited, but from the viewpoint of barrier properties against corrosive gas, the zinc content in the compound (100% by weight) is preferably 2 to 30% by weight, for example.
  • the amount is preferably 5 to 20% by weight, particularly preferably 6 to 17% by weight.
  • content of a zinc compound (E) is not specifically limited, 0.01 weight part or more 1 1 with respect to the total amount (100 weight part) of the said polyorganosiloxane (A) and the said silsesquioxane (B). Less than 0.0 part by weight is preferable, 0.1 part by weight or more and less than 0.8 part by weight is more preferable, and 0.3 part by weight or more and less than 0.6 part by weight is still more preferable.
  • the thermal shock resistance and the reflow resistance can be maintained at a practically sufficient level.
  • the content of the zinc compound (E) is less than 0.01 parts by weight, the barrier property against H 2 S gas may be deteriorated.
  • the content of the zinc compound (E) is 1.0 part by weight or more, the barrier property against SO X gas may be lowered.
  • the curable resin composition of the present invention may further contain a hydrosilylation catalyst.
  • a hydrosilylation catalyst By including the hydrosilylation catalyst, the curable resin composition of the present invention can efficiently advance the curing reaction (hydrosilylation reaction).
  • the hydrosilylation catalyst include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts.
  • platinum catalyst include a palladium catalyst or a rhodium catalyst containing a palladium atom or a rhodium atom instead of a platinum atom.
  • the said hydrosilylation catalyst can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited.
  • platinum, palladium, or rhodium in the hydrosilylation catalyst is in a range of 0.01 to 1,000 ppm by weight.
  • the amount is preferably in the range of 0.1 to 500 ppm. It is preferable for the content of the hydrosilylation catalyst to be in such a range because the crosslinking rate will not be remarkably slowed and the cured product is less likely to cause problems such as coloring.
  • the curable resin composition of the present invention may contain a hydrosilylation reaction inhibitor in order to adjust the speed of the curing reaction (hydrosilylation reaction).
  • hydrosilylation reaction inhibitor examples include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; 3-methyl-3 -Enyne compounds such as pentene-1-yne and 3,5-dimethyl-3-hexen-1-yne; thiazole, benzothiazole, benzotriazole and the like.
  • the said hydrosilylation reaction inhibitor can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrosilylation reaction inhibitor varies depending on the crosslinking conditions of the curable resin composition, but practically, the content in the curable resin composition is preferably in the range of 0.00001 to 5% by weight. .
  • the curable resin composition of the present invention may further contain a cyclic siloxane having two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule) as another siloxane compound.
  • the curable resin composition of the present invention may further contain a cyclic siloxane having a group having two or more Si—H bonds in the molecule (in one molecule) as the other siloxane compound.
  • the said cyclic siloxane can be used individually by 1 type or in combination of 2 or more types.
  • the content (blending amount) of the cyclic siloxane in the curable resin composition of the present invention is not particularly limited, but is preferably 0.01 to 30% by weight with respect to the total amount (100% by weight) of the curable resin composition. 0.1 to 20% by weight is more preferable, and 0.5 to 10% by weight is still more preferable.
  • the curable resin composition of the present invention may contain other silane compounds (for example, compounds having a hydrosilyl group).
  • the other silane compounds include methyl (trisdimethylsiloxy) silane, tetrakis (dimethylsiloxy) silane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5- Hexamethyltrisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1, 1,3,5,5,7,7,7-nonamethyltetrasiloxane, 1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,1,1,1, Examples thereof include linear or branched siloxanes having Si—H groups such as 3,5,5,7,7,9,9-undecamethylpentasiloxane.
  • the said silane compound can be used individually by 1 type or in combination of 2 or more types.
  • the content of the silane compound is not particularly limited, but is preferably 0 to 5% by weight or less and more preferably 0 to 1.5% by weight with respect to the total amount (100% by weight) of the curable resin composition.
  • the curable resin composition of the present invention may contain a solvent.
  • the solvent include conventionally known solvents such as toluene, hexane, isopropanol, methyl isobutyl ketone, cyclopentanone, and propylene glycol monomethyl ether acetate.
  • the said solvent can be used individually by 1 type or in combination of 2 or more types.
  • the curable resin composition of the present invention includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, Inorganic fillers such as carbon black, silicon carbide, silicon nitride, boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; silicone resins, epoxy resins, Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), flame retardants (phosphorus) Flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers,
  • the curable resin composition of the present invention is not particularly limited, but the aliphatic carbon-carbon double bond is 0.2 to 4 mol per 1 mol of hydrosilyl group present in the curable resin composition. It is preferable that the composition (formulation composition) be 0.5, more preferably 0.5 to 1.5 mol, still more preferably 0.8 to 1.2 mol. By controlling the ratio of hydrosilyl group and aliphatic carbon-carbon double bond within the above range, the heat resistance, transparency, flexibility, reflow resistance and barrier property against corrosive gas of the cured product are further improved. Tend.
  • the curable resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature.
  • the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
  • the viscosity of the curable resin composition of the present invention at 25 ° C. is 4000 to 8000 mPa ⁇ s.
  • the viscosity is preferably 4500 to 7000 mPa ⁇ s, more preferably 5000 to 6000 mPa ⁇ s.
  • the viscosity is less than 4000 mPa ⁇ s, for example, when the curable resin composition contains a phosphor, the phosphor may be difficult to disperse uniformly.
  • the viscosity exceeds 8000 mPa ⁇ s, for example, when the curable resin composition is injected into the LED package, the injection amount may not be stable.
  • the viscosity of the curable resin composition of the present invention can be appropriately adjusted by a known or common method.
  • silsesquioxane (B), silane coupling agent (D), other siloxane compounds, other silane compounds, solvents, additives, and the like may be appropriately selected to adjust the desired viscosity.
  • a commercially available polyorganosiloxane (A) may be appropriately selected and adjusted to a desired viscosity.
  • cured product of the present invention By curing the curable resin composition of the present invention by a curing reaction (hydrosilylation reaction), a cured product (hereinafter sometimes referred to as “cured product of the present invention”) can be obtained.
  • Conditions for the curing reaction are not particularly limited and can be appropriately selected from conventionally known conditions.
  • the temperature (curing temperature) is 25 to 180 ° C. (more preferably 60 ° C.). To 150 ° C.), and the time (curing time) is preferably 5 to 720 minutes.
  • the cured product of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further excellent in reflow resistance such as crack resistance in a reflow process and adhesion to a package, and in barrier properties against corrosive gas. Also excellent.
  • the sealing material of the present invention is a sealing material containing the curable resin composition of the present invention as an essential component.
  • the sealing material (cured product) obtained by curing the curable resin composition of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further has a barrier against reflow resistance and corrosive gas. Excellent in properties. Therefore, the sealing material of the present invention is preferably used as a sealing material for a semiconductor element in a semiconductor device, particularly as a sealing material for an optical semiconductor element (particularly, a high-luminance, short-wavelength optical semiconductor element) in an optical semiconductor device. Can be used.
  • a semiconductor element especially an optical semiconductor element
  • a semiconductor device excellent in durability and quality can be obtained.
  • GD-1125A manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.13 wt%, phenyl group content 42.79 wt%, SiH group content (hydride conversion) 0 wt%, number average molecular weight 2858, weight Average molecular weight 9598, viscosity 6300 mPa ⁇ s GD-1125B: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 3.71% by weight, phenyl group content 51.75% by weight, SiH group content (hydride conversion) 0.16% by weight, number average molecular weight 671 , Weight average molecular weight 1354, viscosity 5900 mPa ⁇ s OE-6663A: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 1.72% by weight, phenyl group content 54.20% by weight, SiH group content (hydride conversion) 0% by weight, number average molecular weight 3600, Weight average molecular weight 11000, viscos
  • the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 0.16 g of 5N hydrochloric acid (25 mmol as hydrogen chloride) was added, and the polycondensation reaction was performed under nitrogen for 4 hours. . Subsequently, 11.18 g of divinyltetramethyldisiloxane and 3.25 g of hexamethyldisiloxane were added to the reaction solution, and a silylation reaction was performed at 70 ° C. for 4 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
  • 5N hydrochloric acid 25 mmol as hydrogen chloride
  • the solvent was distilled off from the upper layer liquid under the conditions of 1 mmHg and 40 ° C. to obtain a colorless and transparent liquid reaction product (ladder-type silsesquioxane having a vinyl group at the terminal, 13.0 g). .
  • the number average molecular weight (Mn) of the above reaction was 840, and the molecular weight dispersity was 1.06.
  • silane coupling agent (D) The following products were used as the silane coupling agent (D).
  • silane coupling agent (D) 3-Glycidyloxypropyltrimethoxysilane: manufactured by Toray Dow Corning
  • Zinc compound (E) The following products were used as the zinc compound (E).
  • Zinc octylate manufactured by Nippon Chemical Industry Co., Ltd., trade name “Nikka Octix Zinc” (Zn: 15%)
  • Examples 1 to 5 and Comparative Examples 1 to 3 were carried out according to the following procedure.
  • silsesquioxane (B), isocyanurate compound (C), silane coupling agent (D), and zinc compound (E) are mixed at a predetermined weight ratio (the amount of each component in Tables 1 and 2). The unit is parts by weight), and the mixture was stirred at 60 ° C. for 2 hours. Then, after cooling to room temperature, polyorganosiloxane (A) was mixed and further stirred at room temperature for 30 minutes to obtain a curable resin composition.
  • Table 1 for zinc octylate the amount obtained by removing mineral spirit from “Nikka Octix zinc” is shown.
  • Luminance maintenance rate (%) (total luminous flux before corrosion test / total luminous flux after corrosion test) ⁇ 100
  • the evaluation standards for corrosion resistance were as follows. A: The luminous intensity maintenance rate in the SO X corrosion test is 85% or more, the luminous intensity maintenance rate in the H 2 S corrosion test is 99% or more, and B: The luminous intensity maintenance rate in the SO X corrosion test is 85% or more, and Luminance maintenance rate in H 2 S corrosion test is less than 99% C: Luminance maintenance rate in SO X corrosion test is less than 85%
  • thermal shock resistance The evaluation criteria for thermal shock resistance were as follows. A: Peeling occurrence rate is 20% or less and crack occurrence rate is 10% or less B: Peeling occurrence rate is over 20% and 50% or less, and crack occurrence rate is 10% or less C: Crack occurrence rate is 10% Over
  • Example 1 In Comparative Examples 1 to 3, none of the corrosion resistance, thermal shock resistance, and reflow resistance was satisfactory.
  • Example 1 by adding the silsesquioxane (B), the isocyanurate compound (C), and the silane coupling agent (D), the corrosion resistance (especially SO X corrosion resistance) is improved. Along with a significant improvement, a dramatic improvement in reflow resistance (particularly the occurrence rate of peeling) was observed.
  • Example 2 by using the silane coupling agent (D) of Synthesis Example 2, the H 2 S corrosion resistance is significantly improved as compared to Example 1, and a significant improvement in thermal shock resistance is recognized. It was.
  • Example 3 when the zinc compound (E) in the range described in Patent Document 4 was added, the H 2 S corrosion resistance was improved, and the corrosion resistance was at a satisfactory level.
  • the thermal shock resistance tended to be slightly lower than in Example 2. Therefore, in Example 4, when the amount of the zinc compound (E) was further increased as compared with Example 3, surprisingly, the thermal shock resistance decreased in Example 3 was significantly improved in Example 4. Was recognized. In addition, reflow resistance has been dramatically improved.
  • Example 5 when the amount of the silane coupling agent (D) was reduced as compared with Example 3, the thermal shock resistance tended to improve, but the reflow resistance slightly decreased.
  • a curable resin composition, a cured product, a sealing material, and light having both a sufficient level of thermal shock resistance and reflow resistance for practical use while satisfying both SO X corrosion resistance and H 2 S corrosion resistance. A semiconductor device was obtained.
  • the curable resin composition and the cured product of the present invention include heat-resistant, transparent, flexible, barrier property against corrosive gas, thermal shock resistance, reflow resistance, adhesives, coating agents, sealing materials, etc. Useful for applications.
  • the curable resin composition and the cured product of the present invention are suitable as a sealing material for optical semiconductor elements (for example, LED elements, semiconductor laser elements, solar power generation elements, CCD elements, etc.).
  • Reflector resin composition for light reflection
  • Metal wiring Metal wiring
  • Optical semiconductor element Optical semiconductor element
  • Bonding wire Hardened material (sealing material)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

 Provided are a curing resin composition which has transparency, heat resistance, and pliability, as well as having thermal shock resistance and reflow resistance, which moreover has barrier properties with respect to hydrogen sulfide (H2S) gas and sulfur oxide (SOX) gases, and which is useful in sealing applications for semiconductor elements (especially optical semiconductor elements); and a cured article, sealing material, and semiconductor device employing the same. Provided are a curing resin composition containing (A) a polyorganosiloxane, (B) a silsesquioxane, and (C) an isocyanurate compound, the polyorganosiloxane (A) being a polyorganosiloxane having an aryl group, and the curing resin composition having viscosity of 4,000-8,000 mPa·s; and a cured article, sealing material, and semiconductor device employing the same.

Description

硬化性樹脂組成物及びそれを用いた半導体装置Curable resin composition and semiconductor device using the same
 本発明は、硬化性樹脂組成物、並びにその硬化性樹脂組成物を用いて得られる硬化物、封止材、及びその封止材を用いて得られる半導体装置に関する。本願は、2013年8月6日に日本に出願した特願2013-163577号の優先権を主張し、その内容をここに援用する。 The present invention relates to a curable resin composition, a cured product obtained using the curable resin composition, a sealing material, and a semiconductor device obtained using the sealing material. This application claims the priority of Japanese Patent Application No. 2013-163577 for which it applied to Japan on August 6, 2013, and uses the content here.
 高耐熱・高耐電圧が求められる半導体装置において、半導体素子を被覆する材料には一般に、150℃程度以上の耐熱性が求められている。特に、光半導体素子等の光学材料を被覆する材料(封止材)には、耐熱性に加えて、透明性、柔軟性等の物性に優れることが求められている。現在、例えば、液晶ディスプレイのバックライトユニットにおける封止材としては、エポキシ系樹脂材料やシリコーン系樹脂材料が使用されている。 In a semiconductor device that requires high heat resistance and high withstand voltage, a material covering a semiconductor element is generally required to have a heat resistance of about 150 ° C. or higher. In particular, a material (encapsulant) that covers an optical material such as an optical semiconductor element is required to have excellent physical properties such as transparency and flexibility in addition to heat resistance. Currently, for example, as a sealing material in a backlight unit of a liquid crystal display, an epoxy resin material or a silicone resin material is used.
 特許文献1には、耐熱性が高く熱放散性の良い材料として、シロキサン(Si-O-Si結合体)による橋かけ構造を有する少なくとも1種の第1の有機珪素ポリマーと、シロキサンによる線状連結構造を有する少なくとも1種の第2の有機珪素ポリマーとを、シロキサン結合により連結させた、分子量が2万から80万である第3の有機珪素ポリマーの1種以上を含有する合成高分子化合物が開示されている。しかしながら、これらの材料の物性は、未だ満足できるものではない。 In Patent Document 1, as a material having high heat resistance and good heat dissipation, at least one first organosilicon polymer having a crosslinked structure of siloxane (Si—O—Si conjugate) and a linear shape of siloxane are disclosed. A synthetic polymer compound containing at least one kind of a third organosilicon polymer having a molecular weight of 20,000 to 800,000, which is linked to at least one second organosilicon polymer having a linking structure by a siloxane bond. Is disclosed. However, the physical properties of these materials are not yet satisfactory.
 また、特許文献2には、透明性、耐UV性、耐熱着色性に優れた光素子封止用樹脂組成物として、脂肪族炭素-炭素不飽和結合を含有しH-Si結合を含有しない籠型構造体の液状のシルセスキオキサン、及び、H-Si結合を含有し脂肪族炭素-炭素不飽和結合を含有しない籠型構造体の液状のシルセスキオキサンからなる群から選択される少なくとも1種のシルセスキオキサンを樹脂成分として含有する光素子封止用樹脂組成物が開示されている。しかしながら、籠型のシルセスキオキサンを含む樹脂組成物の硬化物は比較的硬く、柔軟性に乏しいため、クラックや割れが生じやすいという問題がある。 Patent Document 2 discloses a resin composition for sealing an optical element having excellent transparency, UV resistance, and heat resistance coloring property, which contains an aliphatic carbon-carbon unsaturated bond and does not contain an H—Si bond. At least selected from the group consisting of a liquid silsesquioxane of a type structure and a liquid silsesquioxane of a saddle type structure containing an H—Si bond and no aliphatic carbon-carbon unsaturated bond A resin composition for sealing an optical element containing one kind of silsesquioxane as a resin component is disclosed. However, since the cured product of the resin composition containing cage silsesquioxane is relatively hard and lacks flexibility, there is a problem that cracks and cracks are likely to occur.
 また、特許文献3には、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有するトリアリルイソシアヌレート等の有機化合物、1分子中に少なくとも2個のSiH基を含有する、鎖状、及び/又は、環状ポリオルガノシロキサン等の化合物、ヒドロシリル化触媒を必須成分として含有する硬化性組成物が開示されている。しかしながら、これらの材料の耐クラック性等の物性は、未だ満足できるものではない。 Patent Document 3 discloses an organic compound such as triallyl isocyanurate containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule, and at least two SiH groups in one molecule. A curable composition containing a chain-containing and / or cyclic polyorganosiloxane-containing compound and a hydrosilylation catalyst as an essential component is disclosed. However, the physical properties such as crack resistance of these materials are still not satisfactory.
 一方、光半導体装置における電極等の金属材料は、腐食性ガスにより腐食され易く、通電特性(例えば、高温環境における通電特性)が経時的に悪化するという問題がある。そのため、光半導体用の封止材料には、腐食性ガスに対する高いバリア性が求められる。しかしながら、特許文献1~3等に開示されている従来のシリコーン系樹脂材料を用いた封止材料は、腐食性ガスに対するバリア性が十分とは言えない。 On the other hand, metal materials such as electrodes in an optical semiconductor device are easily corroded by corrosive gas, and there is a problem that current-carrying characteristics (for example, current-carrying characteristics in a high-temperature environment) deteriorate with time. Therefore, the sealing material for optical semiconductors is required to have a high barrier property against corrosive gas. However, sealing materials using conventional silicone resin materials disclosed in Patent Documents 1 to 3 and the like cannot be said to have sufficient barrier properties against corrosive gases.
 特許文献4には、(A)ケイ素原子に結合したアルケニル基を少なくとも2個有するポリシロキサンと、(B)ケイ素原子に結合した水素基を少なくとも2個有するポリシロキサン架橋剤と、(C)ヒドロシリル化反応触媒と、(D)亜鉛化合物とを含み、前記(D)成分を前記(A)成分および前記(B)成分の合計100質量部に対して0.1~5質量部含有し、耐硫化性に優れたシリコーン樹脂組成物が開示されている。しかしながら、硫化水素(H2S)に対する耐腐食性は開示されているが、他の腐食性ガスに対する耐腐食性については、何ら記載がない。 Patent Document 4 discloses (A) a polysiloxane having at least two alkenyl groups bonded to silicon atoms, (B) a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms, and (C) hydrosilyl. And (D) a zinc compound, the component (D) is contained in an amount of 0.1 to 5 parts by mass relative to a total of 100 parts by mass of the component (A) and the component (B), A silicone resin composition having excellent sulfidation properties is disclosed. However, although corrosion resistance against hydrogen sulfide (H 2 S) is disclosed, there is no description about corrosion resistance against other corrosive gases.
特開2006-206721号公報JP 2006-206721 A 特開2007-031619号公報JP 2007-031619 A 特開2002-314140号公報JP 2002-314140 A 特開2011-178983号公報JP 2011-177893 A
 半導体装置を腐食させる腐食性ガスには複数の種類が存在し、代表的な腐食性ガスである硫化水素(H2S)ガスや硫黄酸化物(SOX)ガス等、複数の腐食性ガスのいずれに対しても十分なバリア性を有するような封止材料は未だ開示されていない。 There are multiple types of corrosive gases that corrode semiconductor devices, and there are several types of corrosive gases such as hydrogen sulfide (H 2 S) gas and sulfur oxide (SO x ) gas, which are typical corrosive gases. A sealing material having a sufficient barrier property for any of them has not yet been disclosed.
 更に、照明用やバックライト用の白色LED(Light Emitting Diode)として用いられる光半導体装置においては、光取出し効率を向上させるため、高屈折率を有する封止材料が求められている。また、白色LEDとして用いられる光半導体装置を製造する工程においては、光半導体素子の封止材料には蛍光体を混合して用いられる事があり、封止材料中で蛍光体が沈降して偏在する事を防止するために、高粘度を有する封止材料が求められている。 Furthermore, in an optical semiconductor device used as a white LED (Light Emitting Diode) for illumination or backlight, a sealing material having a high refractive index is required to improve the light extraction efficiency. Further, in the process of manufacturing an optical semiconductor device used as a white LED, a phosphor may be mixed and used as a sealing material for an optical semiconductor element, and the phosphor settles in the sealing material and is unevenly distributed. In order to prevent this, a sealing material having a high viscosity is required.
 従って、本発明の目的は、透明性、耐熱性を備えると共に、耐熱衝撃性を備え、更に、腐食性ガスに対するバリア性(特に、硫化水素(H2S)ガスに対するバリア性(耐H2S腐食性)、及び硫黄酸化物(SOX)ガスに対するバリア性(耐SOX腐食性))を兼ね備えた、半導体素子(特に光半導体素子)の封止用途に有用な、高屈折率且つ高粘度である硬化性樹脂組成物を提供する事にある。また、本発明の他の目的は、透明性、耐熱性、柔軟性を備えると共に、耐熱衝撃性と耐リフロー性(リフロー工程における耐クラック性、パッケージに対する密着性等)を備え、更に、腐食性ガスに対するバリア性を兼ね備えた半導体素子の封止用途に有用な、高屈折率且つ高粘度である硬化性樹脂組成物を提供することにある。また、本発明の他の目的は、優れた透明性、耐熱性、柔軟性、耐熱衝撃性、耐リフロー性、腐食性ガスに対するバリア性を有する高屈折率である硬化物及び封止材を提供することにある。また、本発明の更に他の目的は、それらの硬化物及び/又は封止材を有する半導体装置を提供することにある。 Accordingly, an object of the present invention, transparency, provided with a heat resistance, comprising a thermal shock resistance, and further, the barrier property to corrosive gases (in particular, barrier properties against hydrogen sulfide (H 2 S) gas (resistant H 2 S High refractive index and high viscosity useful for sealing of semiconductor devices (especially optical semiconductor devices), which have both corrosive properties and barrier properties against sulfur oxide (SO X ) gas (SO X corrosion resistance)) It is providing the curable resin composition which is. Another object of the present invention is to provide transparency, heat resistance, flexibility, thermal shock resistance and reflow resistance (crack resistance in the reflow process, adhesion to the package, etc.), and further corrosiveness. An object of the present invention is to provide a curable resin composition having a high refractive index and a high viscosity, which is useful for sealing a semiconductor element having a gas barrier property. Another object of the present invention is to provide a cured product and encapsulant having a high refractive index having excellent transparency, heat resistance, flexibility, thermal shock resistance, reflow resistance, and barrier properties against corrosive gases. There is to do. Still another object of the present invention is to provide a semiconductor device having such a cured product and / or a sealing material.
 本発明者らは、アリール基を有するポリオルガノシロキサンに対して、シルセスキオキサン及びイソシアヌレート化合物を添加し、粘度が4000~8000mPa・sである硬化性樹脂組成物が、優れた透明性、耐熱性を有し、特に、腐食性ガスに対するバリア性、耐熱衝撃性に優れた硬化物を形成することができることを見出し、本発明を完成させた。 The present inventors added a silsesquioxane and an isocyanurate compound to a polyorganosiloxane having an aryl group, and a curable resin composition having a viscosity of 4000 to 8000 mPa · s has excellent transparency, The inventors have found that a cured product having heat resistance, in particular, a barrier property against corrosive gas and excellent thermal shock resistance can be formed, and the present invention has been completed.
 即ち、本発明は、ポリオルガノシロキサン(A)、シルセスキオキサン(B)、及びイソシアヌレート化合物(C)を含む硬化性樹脂組成物であって、ポリオルガノシロキサン(A)がアリール基を有するポリオルガノシロキサンであり、粘度が4000~8000mPa・sである硬化性樹脂組成物を提供する。 That is, this invention is curable resin composition containing polyorganosiloxane (A), silsesquioxane (B), and isocyanurate compound (C), Comprising: Polyorganosiloxane (A) has an aryl group. Provided is a curable resin composition which is a polyorganosiloxane and has a viscosity of 4000 to 8000 mPa · s.
 また、本発明は、ポリオルガノシロキサン(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)が500~4000である上記の硬化性樹脂組成物を提供する。 The present invention also provides the curable resin composition as described above, wherein the polyorganosiloxane (A) has a number average molecular weight (Mn) of 500 to 4000 in terms of standard polystyrene by gel permeation chromatography.
 また、本発明は、ポリオルガノシロキサン(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量をMw、数平均分子量をMnとしたときの分子量分散度(Mw/Mn)が0.95~4.00である上記の硬化性樹脂組成物を提供する。 Further, in the present invention, the molecular weight dispersity (Mw / Mn) is 0.95 when the weight average molecular weight in terms of standard polystyrene according to gel permeation chromatography of the polyorganosiloxane (A) is Mw and the number average molecular weight is Mn. The curable resin composition described above, which is ˜4.00.
 また、本発明は、ポリオルガノシロキサン(A)として、脂肪族炭素-炭素二重結合を有するポリオルガノシロキサン(A1)を含む上記の硬化性樹脂組成物を提供する。 The present invention also provides the curable resin composition as described above, which contains a polyorganosiloxane (A1) having an aliphatic carbon-carbon double bond as the polyorganosiloxane (A).
 また、本発明は、ポリオルガノシロキサン(A)として、Si-H結合を有するポリオルガノシロキサン(A2)を含む上記の硬化性樹脂組成物を提供する。 The present invention also provides the above curable resin composition containing, as the polyorganosiloxane (A), a polyorganosiloxane (A2) having a Si—H bond.
 また、本発明は、ポリオルガノシロキサン(A)として、式(6)
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R21~R26は、同一又は異なって、水素原子、アリール基、一価の炭化水素基、一価の複素環式基、又は脂肪族炭素-炭素不飽和結合を含む一価の基を示す。但し、R21~R26の内1つ以上は、脂肪族炭素-炭素不飽和結合を含む一価の基である。また、R21~R26の内1つ以上は、アリール基である。R27は、二価の炭化水素基を示す。r、sは、それぞれ1以上の整数を示す。]
で表される構造を含むポリオルガノシロキサンを含む上記の硬化性樹脂組成物を提供する。
Further, the present invention provides a polyorganosiloxane (A) as a formula (6)
Figure JPOXMLDOC01-appb-C000005
[In Formula (6), R 21 to R 26 are the same or different and each represents a hydrogen atom, an aryl group, a monovalent hydrocarbon group, a monovalent heterocyclic group, or an aliphatic carbon-carbon unsaturated bond. Including monovalent group. However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond. One or more of R 21 to R 26 are an aryl group. R 27 represents a divalent hydrocarbon group. r and s each represent an integer of 1 or more. ]
The curable resin composition comprising the polyorganosiloxane having the structure represented by:
 また、本発明は、シルセスキオキサン(B)が、ラダー型シルセスキオキサンである上記の硬化性樹脂組成物を提供する。 Moreover, this invention provides said curable resin composition whose silsesquioxane (B) is ladder type silsesquioxane.
 また、本発明は、イソシアヌレート化合物(C)が、式(1)
Figure JPOXMLDOC01-appb-C000006
[式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[式(2)及び式(3)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を示す。]]
で表されるイソシアヌレート化合物である上記の硬化性樹脂組成物を提供する。
In the present invention, the isocyanurate compound (C) is represented by the formula (1):
Figure JPOXMLDOC01-appb-C000006
[In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]]
The curable resin composition is an isocyanurate compound represented by:
 また、本発明は、式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上が式(3)で表される基である上記の硬化性樹脂組成物を提供する。 Moreover, this invention provides said curable resin composition in which any one or more among Rx , Ry , Rz in Formula (1) is group represented by Formula (3).
 また、本発明は、更にシランカップリング剤(D)を含み、シランカップリング剤(D)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して0.01重量部以上1.0重量部未満である上記の硬化性樹脂組成物を提供する。 The present invention further includes a silane coupling agent (D), and the content of the silane coupling agent (D) is the total amount of polyorganosiloxane (A) and silsesquioxane (B) (100 parts by weight). The curable resin composition is 0.01 parts by weight or more and less than 1.0 part by weight.
 また、本発明は、シランカップリング剤(D)が、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物を含む上記の硬化性樹脂組成物を提供する。 In addition, the present invention provides the above curable resin composition, wherein the silane coupling agent (D) includes a partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents. provide.
 また、本発明は、更に亜鉛化合物(E)を含み、亜鉛化合物(E)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して0.01重量部以上1.0重量部未満である上記の硬化性樹脂組成物を提供する。 The present invention further includes a zinc compound (E), and the content of the zinc compound (E) is based on the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition is provided in an amount of 0.01 part by weight or more and less than 1.0 part by weight.
 また、本発明は、亜鉛化合物(E)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.3重量部以上0.6重量部未満である上記の硬化性樹脂組成物を提供する。 In the present invention, the content of the zinc compound (E) is 0.3 parts by weight or more and 0.000 parts by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition is provided in an amount of less than 6 parts by weight.
 また、本発明は、亜鉛化合物(E)が、カルボン酸亜鉛である上記の硬化性樹脂組成物を提供する。 The present invention also provides the curable resin composition as described above, wherein the zinc compound (E) is zinc carboxylate.
 また、本発明は、上記の硬化性樹脂組成物を硬化して得られる硬化物を提供する。 The present invention also provides a cured product obtained by curing the above curable resin composition.
 また、本発明は、上記の硬化性樹脂組成物を用いて得られる封止材を提供する。 Moreover, this invention provides the sealing material obtained using said curable resin composition.
 また、本発明は、上記の封止材を用いて得られる半導体装置を提供する。 The present invention also provides a semiconductor device obtained using the above-described sealing material.
 また、本発明の硬化性樹脂組成物は以下に関する。
[1]ポリオルガノシロキサン(A)、シルセスキオキサン(B)、及びイソシアヌレート化合物(C)を含む硬化性樹脂組成物であって、ポリオルガノシロキサン(A)がアリール基を有するポリオルガノシロキサンであり、粘度が4000~8000mPa・sであるである硬化性樹脂組成物。
[2]ポリオルガノシロキサン(A)が、分岐鎖を有するポリオルガノシロキサンである[1]に記載の硬化性樹脂組成物。
[3]ポリオルガノシロキサン(A)が、式(6)で表される構造(特に、R27は炭素数1~5の直鎖状又は分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基)を含むポリオルガノシロキサンを含む[1]又は[2]に記載の硬化性樹脂組成物。
[4]ポリオルガノシロキサン(A)の含有量(配合量)が、硬化性樹脂組成物の全量(100重量%)に対して、60~99.7重量%である[1]~[3]の何れか1つに記載の硬化性樹脂組成物。
[5]ポリオルガノシロキサン(A)全量(合計含有量、100重量%)に対する、式(6)で表される構造(特に、R27は炭素数1~5の直鎖状又は分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基)を含むポリオルガノシロキサンの割合が、60~100重量%である[3]又は[4]に記載の硬化性樹脂組成物。
[6]ポリオルガノシロキサン(A)として、脂肪族炭素-炭素二重結合を有し、アリール基を有するポリオルガノシロキシシルアルキレンと、脂肪族炭素-炭素二重結合及びSi-H結合を有し、アリール基を有するポリオルガノシロキシシルアルキレンの2種を用いる[3]~[5]の何れか1つに記載の硬化性樹脂組成物。
[7]シルセスキオキサン(B)を含む[1]~[6]の何れか1つに記載の硬化性樹脂組成物。
[8]シルセスキオキサン(B)が、ラダー型シルセスキオキサンである[1]~[7]の何れか1つに記載の硬化性樹脂組成物。
[9]シルセスキオキサン(B)の含有量が、硬化性樹脂組成物の全量(100重量%)に対して、0.01~30重量%である[1]~[8]の何れか1つに記載の硬化性樹脂組成物。
[10]シルセスキオキサン(B)の含有量が、ポリオルガノシロキサン(A)及びシルセルキオキサン(B)の合計量(100重量部)に対して、0.01~30重量部である[1]~[9]の何れか1つに記載の硬化性樹脂組成物。
[11]イソシアヌレート化合物(C)として、式(1)
[式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。[式(2)及び式(3)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を示す。]]
で表されるイソシアヌレート化合物を含む[1]~[10]の何れか1つに記載の硬化性樹脂組成物。
[12]イソシアヌレート化合物(C)が、モノアリルジグリシジルイソシアヌレートである[1]~[11]の何れか1つに記載の硬化性樹脂組成物。
[13]イソシアヌレート化合物(C)の含有量が、硬化性樹脂組成物の全量(100重量%)に対して0.01~10重量%である[1]~[12]の何れか1つに記載の硬化性樹脂組成物。
[14]イソシアヌレート化合物(C)の割合が、ポリオルガノシロキサン(A)とシルセスキオキサン(B)の合計量(100重量部)に対して、0.01~0.5重量部である[1]~[13]の何れか1つに記載の硬化性樹脂組成物。
[15]更にシランカップリング剤(D)を含む[1]~[14]の何れか1つに記載の硬化性樹脂組成物。
[16]シランカップリング(D)が、3-グリシドキシプロピルトリメトキシシランである[15]に記載の硬化性樹脂組成物。
[17]シランカップリング(D)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満である[15]又は[16]に記載の硬化性樹脂組成物。
[18]シランカップリング(D)の含有量が、硬化性樹脂組成物全量(100重量部)に対して、0.01~5重量部である[15]~[17]の何れか1つに記載の硬化性樹脂組成物。
[19]シランカップリング剤(D)として、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物を含む[15]~[18]の何れか1つに記載の硬化性樹脂組成物。
[20]シランカップリング剤(D)中の、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物の割合が、シランカップリング剤(D)全量(100重量%)に対して、50~100重量%である[19]に記載の硬化性樹脂組成物。
[21]シランカップリング剤(D)中の、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物の割合が、硬化性樹脂組成物全量(100重量部)に対して、0.01~5重量部である[19]又は[20]に記載の硬化性樹脂組成物。
[22]シランカップリング剤(D)中の、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物の割合が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満であるである[19]~[21]の何れか1つに記載の硬化性樹脂組成物。
[23]更に亜鉛化合物(E)を含む[1]~[22]の何れか1つに記載の硬化性樹脂組成物。
[24]亜鉛化合物(E)が、カルボン酸亜鉛である[23]に記載の硬化性樹脂組成物。
[25]亜鉛化合物(E)が、オクチル酸亜鉛である[23]に記載の硬化性樹脂組成物。
[26]亜鉛化合物(E)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満である[23]~[25]の何れか1つに記載の硬化性樹脂組成物。
[27]亜鉛化合物(E)の化合物中(100重量%)の亜鉛含有量が2~30重量%である[23]~[26]の何れか1つに記載の硬化性樹脂組成物。
Moreover, the curable resin composition of this invention is related with the following.
[1] A curable resin composition containing a polyorganosiloxane (A), a silsesquioxane (B), and an isocyanurate compound (C), wherein the polyorganosiloxane (A) has an aryl group A curable resin composition having a viscosity of 4000 to 8000 mPa · s.
[2] The curable resin composition according to [1], wherein the polyorganosiloxane (A) is a polyorganosiloxane having a branched chain.
[3] A structure in which the polyorganosiloxane (A) is represented by the formula (6) (in particular, R 27 is preferably a linear or branched alkylene group having 1 to 5 carbon atoms, more preferably an ethylene group. The curable resin composition according to [1] or [2], comprising a polyorganosiloxane containing).
[4] The content (blending amount) of the polyorganosiloxane (A) is 60 to 99.7% by weight with respect to the total amount (100% by weight) of the curable resin composition [1] to [3] The curable resin composition as described in any one of these.
[5] The structure represented by the formula (6) with respect to the total amount (total content, 100% by weight) of the polyorganosiloxane (A) (particularly, R 27 is a linear or branched chain having 1 to 5 carbon atoms) The curable resin composition according to [3] or [4], wherein the proportion of the polyorganosiloxane containing an alkylene group (preferably an ethylene group) is 60 to 100% by weight.
[6] The polyorganosiloxane (A) has an aliphatic carbon-carbon double bond, an aryl group-containing polyorganosiloxysilalkylene, an aliphatic carbon-carbon double bond, and a Si—H bond. The curable resin composition according to any one of [3] to [5], wherein two types of polyorganosiloxysilalkylene having an aryl group are used.
[7] The curable resin composition according to any one of [1] to [6], comprising silsesquioxane (B).
[8] The curable resin composition according to any one of [1] to [7], wherein the silsesquioxane (B) is a ladder-type silsesquioxane.
[9] Any of [1] to [8], wherein the content of silsesquioxane (B) is 0.01 to 30% by weight relative to the total amount (100% by weight) of the curable resin composition The curable resin composition according to one.
[10] The content of silsesquioxane (B) is 0.01 to 30 parts by weight with respect to the total amount (100 parts by weight) of polyorganosiloxane (A) and silserkioxane (B). [1] The curable resin composition according to any one of [9].
[11] As the isocyanurate compound (C), the formula (1)
[In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3). [In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]]
The curable resin composition according to any one of [1] to [10], comprising an isocyanurate compound represented by:
[12] The curable resin composition according to any one of [1] to [11], wherein the isocyanurate compound (C) is monoallyl diglycidyl isocyanurate.
[13] Any one of [1] to [12], wherein the content of the isocyanurate compound (C) is 0.01 to 10% by weight relative to the total amount (100% by weight) of the curable resin composition. The curable resin composition described in 1.
[14] The proportion of the isocyanurate compound (C) is 0.01 to 0.5 parts by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). [1] The curable resin composition according to any one of [13].
[15] The curable resin composition according to any one of [1] to [14], further comprising a silane coupling agent (D).
[16] The curable resin composition according to [15], wherein the silane coupling (D) is 3-glycidoxypropyltrimethoxysilane.
[17] The content of the silane coupling (D) is 0.01 part by weight or more and 1.0 part by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition according to [15] or [16], which is less than part.
[18] Any one of [15] to [17], wherein the content of the silane coupling (D) is 0.01 to 5 parts by weight with respect to the total amount of the curable resin composition (100 parts by weight). The curable resin composition described in 1.
[19] The silane coupling agent (D) includes any one of [15] to [18] including a partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents. The curable resin composition described in 1.
[20] The proportion of the partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents in the silane coupling agent (D) is the total amount of the silane coupling agent (D). [19] The curable resin composition according to [19], which is 50 to 100% by weight relative to (100% by weight).
[21] The proportion of the partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents in the silane coupling agent (D) is the total amount of the curable resin composition (100 The curable resin composition according to [19] or [20], which is 0.01 to 5 parts by weight relative to (parts by weight).
[22] The ratio of the partial condensate obtained by hydrolyzing and partially condensing one or more silane coupling agents in the silane coupling agent (D) is such that the polyorganosiloxane (A) and the silyl The curing according to any one of [19] to [21], which is 0.01 part by weight or more and less than 1.0 part by weight relative to the total amount (100 parts by weight) of sesquioxane (B). Resin composition.
[23] The curable resin composition according to any one of [1] to [22], further comprising a zinc compound (E).
[24] The curable resin composition according to [23], wherein the zinc compound (E) is zinc carboxylate.
[25] The curable resin composition according to [23], wherein the zinc compound (E) is zinc octylate.
[26] The content of the zinc compound (E) is 0.01 parts by weight or more and 1.0 part by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition according to any one of [23] to [25], which is less than
[27] The curable resin composition according to any one of [23] to [26], wherein the zinc content (100% by weight) in the compound of zinc compound (E) is 2 to 30% by weight.
 本発明の硬化性樹脂組成物は、上記構成を有するため、優れた透明性、耐熱性を有する硬化物を形成できる。特に、上記硬化物は、耐熱衝撃性、より詳しくは、温度変化の激しい条件における耐剥離性(LEDパッケージに対する密着性)や耐クラック性等に優れ、更に、H2SガスやSOXガス等、複数の腐食性ガスに対するバリア性にも優れる。また、得られる硬化物は、柔軟性や耐リフロー性にも優れる場合がある。このため、本発明の硬化性樹脂組成物は、光半導体素子(例えば、LED素子、半導体レーザー素子、太陽光発電素子、CCD素子等)の封止材として好ましく使用することができ、本発明の硬化性樹脂組成物の硬化物により光半導体素子を封止して得られる光半導体装置は、優れた品質と耐久性を備える。特に、本発明の硬化性樹脂組成物は、これまでにない高温(例えば、180℃以上)に対する耐熱性が要求される次世代の光源用の封止材として有用である。 Since the curable resin composition of the present invention has the above-described configuration, a cured product having excellent transparency and heat resistance can be formed. In particular, the cured product has excellent thermal shock resistance, more specifically, excellent peel resistance (adhesiveness to the LED package) and crack resistance under conditions where the temperature changes severely, and further, H 2 S gas, SO X gas, etc. Excellent barrier properties against multiple corrosive gases. Moreover, the cured | curing material obtained may be excellent also in a softness | flexibility and reflow resistance. For this reason, the curable resin composition of the present invention can be preferably used as a sealing material for an optical semiconductor element (for example, an LED element, a semiconductor laser element, a solar power generation element, a CCD element, etc.). An optical semiconductor device obtained by sealing an optical semiconductor element with a cured product of the curable resin composition has excellent quality and durability. In particular, the curable resin composition of the present invention is useful as a sealing material for a next-generation light source that requires heat resistance to an unprecedented high temperature (for example, 180 ° C. or higher).
本発明の硬化性樹脂組成物を用いて光半導体素子を封止した光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図であり、右側の図(b)は断面図である。It is the schematic which shows one Embodiment of the optical semiconductor device which sealed the optical semiconductor element using the curable resin composition of this invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view.
 本発明の硬化性樹脂組成物は、ポリオルガノシロキサン(A)、シルセスキオキサン(B)、及びイソシアヌレート化合物(C)を含む硬化性樹脂組成物であって、ポリオルガノシロキサン(A)がアリール基を有するポリオルガノシロキサンであり、粘度が4000~8000mPa・sである硬化性樹脂組成物である。 The curable resin composition of the present invention is a curable resin composition containing a polyorganosiloxane (A), a silsesquioxane (B), and an isocyanurate compound (C), wherein the polyorganosiloxane (A) is It is a polyorganosiloxane having an aryl group and a curable resin composition having a viscosity of 4000 to 8000 mPa · s.
[ポリオルガノシロキサン(A)]
 本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)は、シロキサン結合(Si-O-Si)で構成された主鎖を有するポリオルガノシロキサンであって、上記主鎖における置換基としてアリール基を有するポリオルガノシロキサンである。ポリオルガノシロキサン(A)は、ヒドロシリル基又は脂肪族炭素-炭素不飽和結合を有する基を有する直鎖状又は分岐鎖状のポリオルガノシロキサンであっても良い。ポリオルガノシロキサン(A)としては、例えば、フェニルシリコーン骨格(ポリジフェニルシロキサン)、フェニルメチルシリコーン骨格(ポリメチルフェニルシロキサン)等の周知慣用のシリコーン骨格が挙げられる。なお、ポリオルガノシロキサン(A)には、シルセスキオキサン(B)は含まれない。
[Polyorganosiloxane (A)]
The polyorganosiloxane (A) in the curable resin composition of the present invention is a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si), and an aryl group as a substituent in the main chain. It is a polyorganosiloxane having The polyorganosiloxane (A) may be a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond. Examples of the polyorganosiloxane (A) include well-known and commonly used silicone skeletons such as a phenyl silicone skeleton (polydiphenylsiloxane) and a phenylmethylsilicone skeleton (polymethylphenylsiloxane). The polyorganosiloxane (A) does not include silsesquioxane (B).
 上記ポリオルガノシロキサン(A)は、直鎖及び/又は分岐鎖を有するポリオルガノシロキサンであってもよい。中でも、硬化物の強度の観点から、分岐鎖を有するポリオルガノシロキサン(分岐鎖状のポリオルガノシロキサン)であることが好ましい。 The polyorganosiloxane (A) may be a polyorganosiloxane having a straight chain and / or a branched chain. Among these, from the viewpoint of the strength of the cured product, a polyorganosiloxane having a branched chain (branched polyorganosiloxane) is preferable.
 ポリオルガノシロキサン(A)におけるアリール基としては、特に限定されないが、例えば、フェニル基、ナフチル基等のC6-14アリール基(特にC6-10アリール基)等が挙げられる。これらアリール基は、ポリオルガノシロキサン(A)におけるケイ素原子が有する置換基(ケイ素原子に直接結合する基)であっても良い。 The aryl group in the polyorganosiloxane (A) is not particularly limited, and examples thereof include C 6-14 aryl groups (particularly C 6-10 aryl groups) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
 ポリオルガノシロキサン(A)におけるアリール基は、一以上の置換基を有していても良い。上記置換基としては、ハロゲン原子、置換又は無置換の炭化水素基、ヒドロキシル基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基、メルカプト基(チオール基)、アルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アミノ基又は置換アミノ基(モノ又はジアルキルアミノ基、アシルアミノ基等)、エポキシ基、シアノ基、イソシアナート基、カルバモイル基、イソチオシアナート基等が挙げられる。 The aryl group in the polyorganosiloxane (A) may have one or more substituents. Examples of the substituent include halogen atoms, substituted or unsubstituted hydrocarbon groups, hydroxyl groups, alkoxy groups, alkenyloxy groups, aryloxy groups, aralkyloxy groups, acyloxy groups, mercapto groups (thiol groups), alkylthio groups, and alkenyls. Thio group, arylthio group, aralkylthio group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, amino group or substituted amino group (mono or dialkylamino group, acylamino group, etc.), epoxy group, cyano group An isocyanate group, a carbamoyl group, an isothiocyanate group, and the like.
 上記置換又は無置換の炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基等が挙げられる。 Examples of the substituted or unsubstituted hydrocarbon group include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
 上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基等のC1-20アルキル基(好ましくはC1-10アルキル基、更に好ましくはC1-4アルキル基)等が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等のC2-20アルケニル基(好ましくはC2-10アルケニル基、更に好ましくはC2-4アルケニル基)等が挙げられる。アルキニル基としては、例えば、エチニル基、プロピニル基等のC2-20アルキニル基(好ましくはC2-10アルキニル基、更に好ましくはC2-4アルキニル基)等が挙げられる。 Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group and dodecyl group (preferably C 1- 10 alkyl group, more preferably C 1-4 alkyl group). Examples of the alkenyl group include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group, 5-hexenyl group and the like. Examples of the alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
 上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等のC3-12のシクロアルキル基;シクロヘキセニル基等のC3-12のシクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基等のC4-15の架橋環式炭化水素基等が挙げられる。 Examples of the alicyclic hydrocarbon group include C 3-12 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3-12 cyclo group such as a cyclohexenyl group. An alkenyl group; a C 4-15 bridged cyclic hydrocarbon group such as a bicycloheptanyl group and a bicycloheptenyl group.
 上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)等が挙げられる。 As said aromatic hydrocarbon group, C6-14 aryl groups (especially C6-10 aryl group), such as a phenyl group and a naphthyl group, etc. are mentioned, for example.
 また、上記脂肪族炭化水素基と上記脂環式炭化水素基とが結合した基としては、例えば、シクロへキシルメチル基、メチルシクロヘキシル基等が挙げられる。更に、上記脂肪族炭化水素基と上記芳香族炭化水素基とが結合した基としては、例えば、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基等が挙げられる。
 上記置換又は無置換の炭化水素基(置換された炭化水素基)が有する置換基としては、例えば、アリール基が有していてもよい置換基と同様のものが挙げられる。
Examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group. Further, examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups (particularly, C 7-10 aralkyl groups) such as benzyl group and phenethyl group, cinnamyl and the like. A C 6-10 aryl-C 2-6 alkenyl group such as a group, a C 1-4 alkyl-substituted aryl group such as a tolyl group, a C 2-4 alkenyl-substituted aryl group such as a styryl group, and the like.
As a substituent which the said substituted or unsubstituted hydrocarbon group (substituted hydrocarbon group) has, the thing similar to the substituent which the aryl group may have is mentioned, for example.
 また、ポリオルガノシロキサン(A)におけるアリール基が有する一以上の置換基としては、その他の例として、式(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(4)中の複数個のR´は、それぞれ同一でも良いし、異なっていても良い。式(4)中のR´は、水素原子、ハロゲン原子、置換又は無置換の炭化水素基、ヒドロキシル基、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基、メルカプト基(チオール基)、アルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アミノ基又は置換アミノ基(モノ又はジアルキルアミノ基、アシルアミノ基等)、エポキシ基、シアノ基、イソシアナート基、カルバモイル基、イソチオシアナート基等が挙げられる。
Moreover, as one or more substituents which the aryl group in polyorganosiloxane (A) has, group represented by Formula (4) is mentioned as another example.
Figure JPOXMLDOC01-appb-C000009
A plurality of R ′ in the formula (4) may be the same or different. R ′ in formula (4) is a hydrogen atom, a halogen atom, a substituted or unsubstituted hydrocarbon group, a hydroxyl group, an alkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, a mercapto group (thiol Group), alkylthio group, alkenylthio group, arylthio group, aralkylthio group, carboxyl group, alkoxycarbonyl group, aryloxycarbonyl group, aralkyloxycarbonyl group, amino group or substituted amino group (mono or dialkylamino group, acylamino group, etc.) ), Epoxy group, cyano group, isocyanate group, carbamoyl group, isothiocyanate group and the like.
 式(4)で表される基において、各R´としては、それぞれ、水素原子、C1-10アルキル基(特に、C1-4アルキル基)、C2-10アルケニル基(特に、C2-4アルキル基)、C3-12シクロアルキル基、C3-12シクロアルケニル基、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリール基、C7-18アラルキル基、C6-10アリール-C2-6アルケニル基、ヒドロキシル基、C1-6アルコキシ基、ハロゲン原子が好ましい。 In the group represented by the formula (4), each R ′ is a hydrogen atom, a C 1-10 alkyl group (particularly a C 1-4 alkyl group), a C 2-10 alkenyl group (particularly a C 2 group). -4 alkyl group), C 3-12 cycloalkyl group, C 3-12 cycloalkenyl group, aromatic ring with C 1-4 alkyl group, C 2-4 alkenyl group, halogen atom, C 1-4 alkoxy group, etc. which may have a substituent C 6-14 aryl group, C 7-18 aralkyl groups, C 6-10 aryl -C 2-6 alkenyl group, a hydroxyl group, C 1-6 alkoxy group, a halogen atom .
 ポリオルガノシロキサン(A)の全量(100重量%)に対するアリール基(フェニル基換算)の含有量は、特に限定されないが、35重量%以上(例えば、35~70重量%)が好ましく、40重量%以上がより好ましく、45重量%以上が更に好ましい。上記アリール基の含有量が35重量%を下回ると、得られる硬化物の腐食性ガスに対するバリア性が低くなる場合がある。また、ポリオルガノシロキサン(A)のシロキサン結合(Si-O-Si)で構成された主鎖における置換基の全てがアリール基であっても良く、又は上記置換基の一部がアリール基であっても良い。なお、上記アリール基の含有量は、例えば、1H-NMR等によって測定することができる。 The content of aryl group (converted to phenyl group) with respect to the total amount (100% by weight) of polyorganosiloxane (A) is not particularly limited, but is preferably 35% by weight or more (for example, 35 to 70% by weight), preferably 40% by weight. The above is more preferable, and 45% by weight or more is still more preferable. When content of the said aryl group is less than 35 weight%, the barrier property with respect to the corrosive gas of the hardened | cured material obtained may become low. Further, all of the substituents in the main chain composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A) may be aryl groups, or some of the substituents are aryl groups. May be. The content of the aryl group can be measured, for example, by 1 H-NMR.
 ポリオルガノシロキサン(A)としては、例えば、式(6)で表される構造を含むポリオルガノシロキサンが挙げられる。本明細書において、式(6)で表される構造を含むポリオルガノシロキサンを「ポリオルガノシロキシシルアルキレン」と称する。
 本発明の硬化性樹脂組成物は、ポリオルガノシロキサン(A)として、ポリオルガノシロキシシルアルキレンを含むことが好ましく、ポリオルガノシロキサン(A)が、ポリオルガノシロキシシルアルキレンのみであることがより好ましい。ポリオルガノシロキシシルアルキレンは、主鎖がシロキサン結合(Si-O-Si)のみからなるポリオルガノシロキサンに比べて、製造工程上、低分子量の環を生じ難く、また、加熱により分解してシラノール基(-SiOH)を生じ難い。そのため、表面粘着性が低く、黄変が少ない硬化物が得られやすくなる。
Figure JPOXMLDOC01-appb-C000010
Examples of the polyorganosiloxane (A) include polyorganosiloxane having a structure represented by the formula (6). In the present specification, a polyorganosiloxane having a structure represented by the formula (6) is referred to as “polyorganosiloxysilalkylene”.
The curable resin composition of the present invention preferably contains polyorganosiloxysilalkylene as the polyorganosiloxane (A), and more preferably the polyorganosiloxane (A) is only polyorganosiloxysilalkylene. Polyorganosiloxysilalkylene is less prone to form low-molecular-weight rings in the production process than polyorganosiloxanes whose main chain consists solely of siloxane bonds (Si—O—Si), and decomposes by heating to produce silanol groups. It is difficult to produce (-SiOH). Therefore, it becomes easy to obtain a cured product with low surface tackiness and little yellowing.
Figure JPOXMLDOC01-appb-C000010
 式(6)中、R21~R26は、同一又は異なって、水素原子、上述したアリール基、上述したアリール基の置換基、複素環式基、又は後述の脂肪族炭素-炭素不飽和結合を含む一価の基(好ましくは、同一又は異なって、水素原子、上述したアリール基、一価の炭化水素基、一価の複素環式基、又は後述の脂肪族炭素-炭素不飽和結合を含む一価の基)を示す。但し、R21~R26の内1つ以上は、脂肪族炭素-炭素不飽和結合を含む一価の基である。
 なお、R21~R26の全てが脂肪族炭素-炭素不飽和結合を含む一価の基ではないことが好ましい。また、R21~R26のうち少なくとも1つ以上が、アリール基(フェニル基、ナフチル基等のC6-14アリール基(特にC6-10アリール基)、特にフェニル基)であることが好ましい。なお、R21~R26におけるアリール基は、一種以上の置換基を有していてもよい。R21~R26におけるアリール基の置換基としては、上述のポリオルガノシロキサン(A)におけるアリール基の置換基と同様のものが挙げられる。
In formula (6), R 21 to R 26 are the same or different and each represents a hydrogen atom, the above-described aryl group, a substituent of the above-described aryl group, a heterocyclic group, or an aliphatic carbon-carbon unsaturated bond described later. (Preferably the same or different, a hydrogen atom, the above-mentioned aryl group, a monovalent hydrocarbon group, a monovalent heterocyclic group, or an aliphatic carbon-carbon unsaturated bond described later) Including monovalent groups). However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond.
It is preferable that all of R 21 to R 26 are not monovalent groups containing an aliphatic carbon-carbon unsaturated bond. Further, at least one of R 21 to R 26 is preferably an aryl group (C 6-14 aryl group such as a phenyl group or a naphthyl group (particularly a C 6-10 aryl group), particularly a phenyl group). . The aryl group in R 21 to R 26 may have one or more substituents. Examples of the substituent of the aryl group in R 21 to R 26 include the same substituents as the aryl group in the polyorganosiloxane (A) described above.
 上記一価の炭化水素基としては、例えば、一価の脂肪族炭化水素基;一価の脂環式炭化水素基;一価の芳香族炭化水素基;脂肪族炭化水素基、脂環式炭化水素基、及び芳香族炭化水素基の2以上が結合した一価の基等が挙げられる。上記一価の複素環式基としては、例えば、ピリジル基、フリル基、チエニル基等が挙げられる。 Examples of the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group; a monovalent alicyclic hydrocarbon group; a monovalent aromatic hydrocarbon group; an aliphatic hydrocarbon group and an alicyclic carbon group. And a monovalent group in which two or more of a hydrogen group and an aromatic hydrocarbon group are bonded. Examples of the monovalent heterocyclic group include a pyridyl group, a furyl group, a thienyl group, and the like.
 上記一価の脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基等の直鎖状又は分岐鎖状のC1-20アルキル基(好ましくはC1-10アルキル基、より好ましくはC1-4アルキル基)等が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等のC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基)等が挙げられる。上記アルキニル基としては、例えば、エチニル基、プロピニル基等のC2-20アルキニル基(好ましくはC2-10アルキニル基、さらに好ましくはC2-4アルキニル基)等が挙げられる。 Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the alkyl group include straight chain or branched chain C 1- such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group. 20 alkyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group) and the like. Examples of the alkenyl group include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group. C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group. Examples of the alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
 上記一価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等のC3-12のシクロアルキル基;シクロヘキセニル基等のC3-12のシクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基等のC4-15の架橋環式炭化水素基等が挙げられる。 Examples of the monovalent alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3− group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
 上記一価の芳香族炭化水素基としては、例えば、フェニル基、ナフチル基、アントリル基等のC6-14アリール基(特に、C6-10アリール基)等が挙げられる。 As said monovalent | monohydric aromatic hydrocarbon group, C6-14 aryl groups (especially C6-10 aryl group), such as a phenyl group, a naphthyl group, an anthryl group, etc. are mentioned, for example.
 また、脂肪族炭化水素基と脂環式炭化水素基とが結合した基として、例えば、シクロへキシルメチル基、メチルシクロヘキシル基等が挙げられる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基として、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基等が挙げられる。 Examples of the group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group. Examples of the group in which an aliphatic hydrocarbon group and an aromatic hydrocarbon group are bonded include a C 7-18 aralkyl group (particularly a C 7-10 aralkyl group) such as a benzyl group and a phenethyl group, and a C 6-10 such as a cinnamyl group. Examples thereof include C 1-4 alkyl-substituted aryl groups such as aryl-C 2-6 alkenyl group and tolyl group, C 2-4 alkenyl-substituted aryl groups such as styryl group, and the like.
 上記一価の炭化水素基は置換基を有していてもよい。即ち、上記一価の炭化水素基は、上記で例示した一価の炭化水素基の少なくとも1つの水素原子が置換基と置き換わった一価の炭化水素基であってもよい。上記置換基の炭素数は0~20が好ましく、より好ましくは0~10である。上記置換基としては、具体的には、例えば、ハロゲン原子;ヒドロキシル基;アルコキシ基;アルケニルオキシ基;アリールオキシ基;アラルキルオキシ基;アシルオキシ基;メルカプト基;アルキルチオ基;アルケニルチオ基;アリールチオ基;アラルキルチオ基;カルボキシル基;アルコキシカルボニル基;アリールオキシカルボニル基;アラルキルオキシカルボニル基;アミノ基;モノ又はジアルキルアミノ基;モノ又はジフェニルアミノ基;アシルアミノ基;エポキシ基含有基;オキセタニル基含有基;アシル基;オキソ基;イソシアネート基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基等が挙げられる。 The monovalent hydrocarbon group may have a substituent. That is, the monovalent hydrocarbon group may be a monovalent hydrocarbon group in which at least one hydrogen atom of the monovalent hydrocarbon group exemplified above is replaced with a substituent. The substituent preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms. Specific examples of the substituent include, for example, a halogen atom; a hydroxyl group; an alkoxy group; an alkenyloxy group; an aryloxy group; an aralkyloxy group; an acyloxy group; a mercapto group; an alkylthio group; Aroxy group; carboxyl group; alkoxycarbonyl group; aryloxycarbonyl group; aralkyloxycarbonyl group; amino group; mono- or dialkylamino group; mono- or diphenylamino group; acylamino group; epoxy group-containing group; Group; oxo group; isocyanate group; a group in which two or more of these are bonded via a C 1-6 alkylene group, if necessary.
 上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のC1-6アルコキシ基(好ましくはC1-4アルコキシ基)等が挙げられる。上記アルケニルオキシ基としては、例えば、アリルオキシ基等のC2-6アルケニルオキシ基(好ましくはC2-4アルケニルオキシ基)等が挙げられる。上記アリールオキシ基としては、例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリールオキシ基等が挙げられる。上記アラルキルオキシ基としては、例えば、ベンジルオキシ基、フェネチルオキシ基等のC7-18アラルキルオキシ基等が挙げられる。上記アシルオキシ基としては、例えば、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等のC1-12アシルオキシ基等が挙げられる。 Examples of the alkoxy group include C 1-6 alkoxy groups (preferably C 1-4 alkoxy groups) such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group. Examples of the alkenyloxy group include a C 2-6 alkenyloxy group (preferably a C 2-4 alkenyloxy group) such as an allyloxy group. Examples of the aryloxy group include, for example, substitution of a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, a C 1-4 alkoxy group, etc. on the aromatic ring, such as a phenoxy group, a tolyloxy group, and a naphthyloxy group. And a C 6-14 aryloxy group which may have a group. Examples of the aralkyloxy group include C 7-18 aralkyloxy groups such as benzyloxy group and phenethyloxy group. Examples of the acyloxy group include C 1-12 acyloxy groups such as an acetyloxy group, a propionyloxy group, a (meth) acryloyloxy group, and a benzoyloxy group.
 上記アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基等のC1-6アルキルチオ基(好ましくはC1-4アルキルチオ基)等が挙げられる。上記アルケニルチオ基としては、例えば、アリルチオ基等のC2-6アルケニルチオ基(好ましくはC2-4アルケニルチオ基)等が挙げられる。上記アリールチオ基としては、例えば、フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリールチオ基等が挙げられる。上記アラルキルチオ基としては、例えば、ベンジルチオ基、フェネチルチオ基等のC7-18アラルキルチオ基等が挙げられる。上記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のC1-6アルコキシ-カルボニル基等が挙げられる。上記アリールオキシカルボニル基としては、例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のC6-14アリールオキシ-カルボニル基等が挙げられる。上記アラルキルオキシカルボニル基としては、例えば、ベンジルオキシカルボニル基等のC7-18アラルキルオキシ-カルボニル基等が挙げられる。上記モノ又はジアルキルアミノ基としては、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基等が挙げられる。上記アシルアミノ基としては、例えば、アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基等のC1-11アシルアミノ基等が挙げられる。上記エポキシ基含有基としては、例えば、グリシジル基、グリシジルオキシ基、3,4-エポキシシクロヘキシル基等が挙げられる。上記オキセタニル基含有基としては、例えば、エチルオキセタニルオキシ基等が挙げられる。上記アシル基としては、例えば、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。上記ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the alkylthio group include C 1-6 alkylthio groups (preferably C 1-4 alkylthio groups) such as a methylthio group and an ethylthio group. Examples of the alkenylthio group include C 2-6 alkenylthio groups (preferably C 2-4 alkenylthio groups) such as an allylthio group. Examples of the arylthio group include a phenylthio group, a tolylthio group, a naphthylthio group, and the like, and a substituent such as a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring. Examples thereof include a C 6-14 arylthio group which may be present. Examples of the aralkylthio group include C 7-18 aralkylthio groups such as benzylthio group and phenethylthio group. Examples of the alkoxycarbonyl group include C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group. Examples of the aryloxycarbonyl group include C 6-14 aryloxy-carbonyl groups such as a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group. Examples of the aralkyloxycarbonyl group include C 7-18 aralkyloxy-carbonyl groups such as benzyloxycarbonyl group. Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a dimethylamino group, and a diethylamino group. Examples of the acylamino group include C 1-11 acylamino groups such as an acetylamino group, a propionylamino group, and a benzoylamino group. Examples of the epoxy group-containing group include a glycidyl group, a glycidyloxy group, and a 3,4-epoxycyclohexyl group. As said oxetanyl group containing group, an ethyl oxetanyloxy group etc. are mentioned, for example. As said acyl group, an acetyl group, a propionyl group, a benzoyl group etc. are mentioned, for example. Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
 上記一価の複素環式基は置換基を有していてもよい。複素環式基における上記置換基としては、一価の上記炭化水素基の上記置換基と同様のものが挙げられる。 The monovalent heterocyclic group may have a substituent. Examples of the substituent in the heterocyclic group include the same substituents as those in the monovalent hydrocarbon group.
 上記一価の炭化水素基、一価の複素環式基としては、より具体的には、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、フェニル基、ナフチル基、アントリル基、ベンジル基、フェネチル基、ピリジル基、フリル基、チエニル基、ビニル基、アリル基、スチリル基(例えば、p-スチリル基)、置換基を有する炭化水素基(例えば、2-(3,4-エポキシシクロヘキシル)エチル基、3-グリシジルプロピル基、3-メタクリロキシプロピル基、3-アクリロキシプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-フェニル-3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基等)等が挙げられる。 As the monovalent hydrocarbon group and monovalent heterocyclic group, more specifically, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, decyl group, Phenyl group, naphthyl group, anthryl group, benzyl group, phenethyl group, pyridyl group, furyl group, thienyl group, vinyl group, allyl group, styryl group (for example, p-styryl group), substituted hydrocarbon group (for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N-2- (aminoethyl) -3-aminopropyl group, 3 -Aminopropyl group, N-phenyl-3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.)
 上記式(6)におけるR21~R26は、それぞれ同一であってもよいし、異なっていてもよい。 R 21 to R 26 in the above formula (6) may be the same or different.
 式(6)中、R27は、二価の炭化水素基を示す。上記二価の単価水素基としては、例えば、直鎖状又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基、二価の芳香族炭化水素基等が挙げられる。直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等の炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基が挙げられる。二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロエルキリデン基を含む)が挙げられる。二価の芳香族炭化水素基としては、例えば、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、4,4’-ビフェニレン基、ナフチレン基等が挙げられる。中でも、R27としては、炭素数1~8(特に炭素数1~5)の直鎖状又は分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基である。 In the formula (6), R 27 represents a divalent hydrocarbon group. Examples of the divalent monovalent hydrogen group include a linear or branched alkylene group, a divalent alicyclic hydrocarbon group, and a divalent aromatic hydrocarbon group. Examples of the linear or branched alkylene group include a linear or branched chain group having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Of the alkylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexene group. And divalent cycloalkylene groups (including cycloalkylidene groups) such as a silene group, 1,4-cyclohexylene group, and cyclohexylidene group. Examples of the divalent aromatic hydrocarbon group include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group, 4,4′-biphenylene group, naphthylene group and the like. Among them, R 27 is preferably a linear or branched alkylene group having 1 to 8 carbon atoms (particularly 1 to 5 carbon atoms), and more preferably an ethylene group.
 式(6)中、rは1以上の整数を示す。rが2以上の整数の場合、rが付された括弧内の構造は、それぞれ同一であっても良く、異なっていても良い。rが付された括弧内の構造がそれぞれ異なる場合、各構造同士の付加形態は特に限定されず、ランダム型であっても良く、ブロック型であっても良い。また、式(6)中、sは1以上の整数を示す。sが2以上の整数の場合、sが付された括弧内の構造は、それぞれ同一であっても良く、異なっていても良い。sが付された括弧内の構造がそれぞれ異なる場合、各構造同士の付加形態は特に限定されず、ランダム型であっても良く、ブロック型であっても良い。更に、式(6)において、rが付された括弧内の構造と、sが付された括弧内の構造の付加形態は、特に限定されず、ランダム型であっても良く、ブロック型であっても良い。なお、rとsは、同一であってもよいし異なっていてもよい。即ち、式(6)中、r、sは、同一又は異なって、それぞれ1以上の整数を示す。 In formula (6), r represents an integer of 1 or more. When r is an integer of 2 or more, the structures in parentheses to which r is attached may be the same or different. When the structures in parentheses marked with r are different from each other, the addition form of the structures is not particularly limited, and may be a random type or a block type. Moreover, in Formula (6), s shows an integer greater than or equal to 1. When s is an integer of 2 or more, the structures in parentheses to which s is attached may be the same or different. When the structures in parentheses with s are different from each other, the addition form of the structures is not particularly limited, and may be a random type or a block type. Furthermore, in the formula (6), the structure in parentheses with r and the structure in parentheses with s are not particularly limited, and may be a random type or a block type. May be. R and s may be the same or different. That is, in formula (6), r and s are the same or different and each represents an integer of 1 or more.
 上記ポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、トリメチルシリル基)等が挙げられる。上記ポリオルガノシロキシシルアルキレンの末端には、脂肪族炭素-炭素二重結合を含む基やヒドロシリル基等の各種の基が導入されていてもよい。 The terminal structure of the polyorganosiloxysilalkylene is not particularly limited, and examples thereof include a silanol group, an alkoxysilyl group, and a trialkylsilyl group (for example, a trimethylsilyl group). Various groups such as a group containing an aliphatic carbon-carbon double bond and a hydrosilyl group may be introduced at the terminal of the polyorganosiloxysilalkylene.
 上記ポリオルガノシロキシシルアルキレンは、上述のように、直鎖、分岐鎖のいずれの鎖状構造を有するものであっても良い。上記ポリオルガノシロキシシルアルキレンとしては、例えば、分岐鎖を有し、アリール基を有するポリオルガノシロキシシルアルキレンが好ましい。 As described above, the polyorganosiloxysilalkylene may have a linear or branched chain structure. As the polyorganosiloxysilalkylene, for example, polyorganosiloxysilalkylene having a branched chain and an aryl group is preferable.
 上記ポリオルガノシロキシシルアルキレンとしては、例えば、GD-1125A(長興化学工業(株)製)、GD-1125B(長興化学工業(株)製などが挙げられる。 Examples of the polyorganosiloxysil alkylene include GD-1125A (manufactured by Changxing Chemical Industry Co., Ltd.) and GD-1125B (manufactured by Changxing Chemical Industry Co., Ltd.).
 ポリオルガノシロキサン(A)としては、2種以上の(特に2種の)上記ポリオルガノシロキシシルアルキレンを用いることが好ましい。中でも、腐食性ガスに対するバリア性の観点から、脂肪族炭素-炭素二重結合を有する基、及びアリール基を有するポリオルガノシロキシシルアルキレンと、脂肪族炭素-炭素二重結合を有する基、Si-H結合を有する基、及びアリール基を有するポリオルガノシロキシシルアルキレンの2種を用いることが好ましい。 As the polyorganosiloxane (A), it is preferable to use two or more (particularly two) polyorganosiloxysilalkylene. Among these, from the viewpoint of barrier properties against corrosive gas, a group having an aliphatic carbon-carbon double bond, a polyorganosiloxysilalkylene having an aryl group, a group having an aliphatic carbon-carbon double bond, Si— It is preferable to use two types, a group having an H bond and a polyorganosiloxysilalkylene having an aryl group.
 ポリオルガノシロキサン(A)を2種以上用いる場合、本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)の全量(合計含有量、100重量%)に対するポリオルガノシロキシシルアルキレンの割合は、特に限定されないが、60重量%以上(例えば、60~100重量%)が好ましく、より好ましくは80重量%以上(例えば、80~99.5重量%)、さらに好ましくは88重量%以上である。ポリオルガノシロキシシルアルキレンの割合が60重量%未満であると、硬化物が黄変しやすくなったり、表面に粘着性を有しやすく取り扱い性が低下する傾向がある。 When two or more types of polyorganosiloxane (A) are used, the ratio of polyorganosiloxysil alkylene to the total amount (total content, 100% by weight) of polyorganosiloxane (A) in the curable resin composition of the present invention is particularly Although not limited, it is preferably 60% by weight or more (for example, 60 to 100% by weight), more preferably 80% by weight or more (for example, 80 to 99.5% by weight), and still more preferably 88% by weight or more. If the ratio of polyorganosiloxysilalkylene is less than 60% by weight, the cured product tends to yellow, or the surface tends to have tackiness and the handleability tends to decrease.
 ポリオルガノシロキサン(A)の数平均分子量(Mn)は、500~4000が好ましく、550~2800がより好ましく、600~1500が更に好ましい。また、重量平均分子量(Mw)は、500~20000が好ましく、600~10000がより好ましく、700~6500が更に好ましい。数平均分子量(Mn)及び/又は重量平均分子量(Mw)が500を下回ると、得られる硬化物の耐熱性が低下する場合がある。一方、数平均分子量(Mn)が4000を超え、及び/又は、重量平均分子量(Mw)が20000を超えると、ポリオルガノシロキサン(A)と他成分との相溶性が低下したり、又、ポリオルガノシロキサン(A)を2種以上組合せて使用した場合にはポリオルガノシロキサン相互の相溶性が低下する場合がある。なお、ポリオルガノシロキサン(A)は、上記範囲の種々の数平均分子量(Mn)及び/又は重量平均分子量(Mw)を有するものの混合物であっても良い。なお、上記数平均分子量(Mn)及び/又は重量平均分子量(Mw)は、例えば、ゲル・パーミエーション・クロマトグラフィーによるポリスチレン換算の分子量として算出することができる。 The number average molecular weight (Mn) of the polyorganosiloxane (A) is preferably 500 to 4000, more preferably 550 to 2800, and still more preferably 600 to 1500. Further, the weight average molecular weight (Mw) is preferably from 500 to 20,000, more preferably from 600 to 10,000, and still more preferably from 700 to 6,500. When the number average molecular weight (Mn) and / or the weight average molecular weight (Mw) is less than 500, the heat resistance of the resulting cured product may be lowered. On the other hand, if the number average molecular weight (Mn) exceeds 4000 and / or the weight average molecular weight (Mw) exceeds 20000, the compatibility between the polyorganosiloxane (A) and other components may be reduced. When two or more organosiloxanes (A) are used in combination, the compatibility between the polyorganosiloxanes may be reduced. The polyorganosiloxane (A) may be a mixture of those having various number average molecular weights (Mn) and / or weight average molecular weights (Mw) within the above range. The number average molecular weight (Mn) and / or the weight average molecular weight (Mw) can be calculated, for example, as a molecular weight in terms of polystyrene by gel permeation chromatography.
 ポリオルガノシロキサン(A)の重量平均分子量(Mw)と数平均分子量(Mn)より算出される分子量分散度(Mw/Mn)は、0.95~4.00が好ましく、1.00~3.80がより好ましく、1.20~3.50が更に好ましい。上記分子量分散度(Mw/Mn)が3.50を超えると、得られる硬化物の耐熱性や腐食性ガスに対するバリア性が低くなる場合がある。 The molecular weight dispersity (Mw / Mn) calculated from the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polyorganosiloxane (A) is preferably 0.95 to 4.00, and preferably 1.00 to 3. 80 is more preferable, and 1.20 to 3.50 is still more preferable. When the molecular weight dispersity (Mw / Mn) exceeds 3.50, the resulting cured product may have low heat resistance and barrier properties against corrosive gas.
 本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)の含有量(配合量、2種以上用いる場合は合計含有量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、60~99.7重量%が好ましく、75~99.0重量%がより好ましく、90~98.5重量%が更に好ましい。含有量が60重量%未満であると、得られる硬化物の耐熱衝撃性が低下する場合がある。一方、含有量が99.5重量%を超えると、得られる硬化物の腐食性ガスに対するバリア性が低くなる場合がある。 The content of the polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but the total amount (100% by weight) of the curable resin composition is not particularly limited. ) Is preferably 60 to 99.7% by weight, more preferably 75 to 99.0% by weight, still more preferably 90 to 98.5% by weight. If the content is less than 60% by weight, the thermal shock resistance of the resulting cured product may be reduced. On the other hand, when the content exceeds 99.5% by weight, the barrier property against the corrosive gas of the obtained cured product may be lowered.
 ポリオルガノシロキサン(A)は、アリール基以外の置換基を有していても良く、上記アリール基以外の置換基は、ポリオルガノシロキサン(A)におけるケイ素原子が有する置換基であっても良い。上記アリール基以外の置換基としては、水素原子、ハロゲン原子、Si-H結合を有する基、置換又は無置換の炭化水素基(好ましくはアルキル基、アルケニル基、シクロアルキル基、又はシクロアルケニル基)、ヒドロキシル基、アルコキシ基、アルケニルオキシ基、アシルオキシ基、メルカプト基(チオール基)、アルキルチオ基、アルケニルチオ基、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基(モノ又はジアルキルアミノ基、アシルアミノ基等)、エポキシ基、シアノ基、イソシアナート基、カルバモイル基、イソチオシアナート基等が挙げられる。 The polyorganosiloxane (A) may have a substituent other than an aryl group, and the substituent other than the aryl group may be a substituent of a silicon atom in the polyorganosiloxane (A). Examples of the substituent other than the aryl group include a hydrogen atom, a halogen atom, a group having a Si—H bond, a substituted or unsubstituted hydrocarbon group (preferably an alkyl group, an alkenyl group, a cycloalkyl group, or a cycloalkenyl group). , Hydroxyl group, alkoxy group, alkenyloxy group, acyloxy group, mercapto group (thiol group), alkylthio group, alkenylthio group, carboxyl group, alkoxycarbonyl group, amino group or substituted amino group (mono or dialkylamino group, acylamino group) Etc.), an epoxy group, a cyano group, an isocyanate group, a carbamoyl group, an isothiocyanate group, and the like.
 ポリオルガノシロキサン(A)における上記アリール基以外の置換基としては、水素原子、Si-H結合を有する基(ヒドロシリル基等)、置換又は無置換の炭化水素基(好ましくはアルキル基又は脂肪族炭素-炭素二重結合を有する基(アルケニル基など))から選ばれる少なくとも1以上の置換基が特に好ましい。ポリオルガノシロキサン(A)は、例えば、アリール基及び脂肪族炭素-炭素二重結合を有する基を有するポリオルガノシロキサン、アリール基及びSi-H結合を有する基を有するポリオルガノシロキサン、アリール基、脂肪族炭素-炭素二重結合を有する基、及びSi-H結合を有する基を有するポリオルガノシロキサンなどであってもよい。 Examples of the substituent other than the aryl group in the polyorganosiloxane (A) include a hydrogen atom, a group having a Si—H bond (hydrosilyl group, etc.), a substituted or unsubstituted hydrocarbon group (preferably an alkyl group or aliphatic carbon). —At least one substituent selected from a group having a carbon double bond (such as an alkenyl group) is particularly preferable. The polyorganosiloxane (A) includes, for example, a polyorganosiloxane having an aryl group and a group having an aliphatic carbon-carbon double bond, a polyorganosiloxane having an aryl group and a group having a Si—H bond, an aryl group, an aliphatic group It may be a polyorganosiloxane having a group having a group carbon-carbon double bond and a group having a Si—H bond.
 本発明の硬化性樹脂組成物において、ポリオルガノシロキサン(A)は、1種を単独で、又は2種以上を組合せて使用することができる。 In the curable resin composition of the present invention, the polyorganosiloxane (A) can be used alone or in combination of two or more.
[脂肪族炭素-炭素二重結合を有するポリオルガノシロキサン(A1)]
 本発明の硬化性樹脂組成物は、ポリオルガノシロキサン(A)として、脂肪族炭素-炭素二重結合を有するポリオルガノシロキサン(A1)(本明細書において、単に「ポリオルガノシロキサン(A1)」と称する場合がある)を含んでも良い。中でも、ポリオルガノシロキサン(A)は、ポリオルガノシロキサン(A1)であること(ポリオルガノシロキサン(A1)のみであること)が好ましい。上記脂肪族炭素-炭素二重結合は、ポリオルガノシロキサン(A1)を構成するいずれかの部分構造及び/又は構成成分が有していれば良い。上記脂肪族炭素-炭素二重結合は、ポリオルガノシロキサン(A1)における置換基(例えば、ケイ素原子が有する置換基)が有していても良い。また、上記脂肪族炭素-炭素二重結合は、ポリオルガノシロキサン(A1)のシロキサン結合(Si-O-Si)で構成された主鎖(直鎖及び/又は分岐鎖)の末端に存在していても良い。
[Polyorganosiloxane having an aliphatic carbon-carbon double bond (A1)]
The curable resin composition of the present invention includes a polyorganosiloxane (A1) having an aliphatic carbon-carbon double bond as the polyorganosiloxane (A) (in this specification, simply “polyorganosiloxane (A1)”). May be included). Among these, the polyorganosiloxane (A) is preferably a polyorganosiloxane (A1) (only the polyorganosiloxane (A1)). The aliphatic carbon-carbon double bond may have any partial structure and / or component constituting the polyorganosiloxane (A1). The aliphatic carbon-carbon double bond may have a substituent (for example, a substituent that a silicon atom has) in the polyorganosiloxane (A1). The aliphatic carbon-carbon double bond is present at the end of the main chain (straight chain and / or branched chain) composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A1). May be.
 上記脂肪族炭素-炭素二重結合を有する基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等のC2-20アルケニル基(好ましくはC2-10アルケニル基、更に好ましくはC2-4アルケニル基);シクロヘキセニル基等のC3-12のシクロアルケニル基;ビシクロヘプテニル基等のC4-15架橋環式不飽和炭化水素基;スチリル基等のC2-4アルケニル置換アリール基;シンナミル基等が挙げられる。なお、上記脂肪族炭素-炭素二重結合を有する基には、式(4)で表される基において、3つのR´のうち少なくとも1つが上記のC2-20アルケニル基、C3-12のシクロアルケニル基、C4-15の架橋環式不飽和炭化水素基、C2-4アルケニル置換アリール基、シンナミル基等である基も含まれる。中でも、アルケニル基が好ましく、より好ましくはC2-20アルケニル基、更に好ましくはビニル基である。 Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, C 2-20 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 5-hexenyl group (preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group) Group); C 3-12 cycloalkenyl group such as cyclohexenyl group; C 4-15 bridged cyclic unsaturated hydrocarbon group such as bicycloheptenyl group; C 2-4 alkenyl-substituted aryl group such as styryl group; cinnamyl Groups and the like. In the group having an aliphatic carbon-carbon double bond, in the group represented by the formula (4), at least one of three R ′ is the above C 2-20 alkenyl group, C 3-12. And a group such as a C 4-15 bridged cyclic unsaturated hydrocarbon group, a C 2-4 alkenyl substituted aryl group, a cinnamyl group, and the like. Among them, an alkenyl group is preferable, a C 2-20 alkenyl group is more preferable, and a vinyl group is more preferable.
 ポリオルガノシロキサン(A)の全量(100重量%)に対する上記脂肪族炭素-炭素二重結合の含有量(ビニル基換算)は、特に限定されないが、1.5~15.0重量%が好ましく、2.0~13.0重量%がより好ましく、3.0~12.0重量%が更に好ましい。上記の範囲で上記脂肪族炭素-炭素二重結合を有することにより、得られる硬化物の耐熱性等の各種物性、耐クラック性、腐食性ガスに対するバリア性に優れた硬化物が得られやすい傾向がある。なお、上記脂肪族炭素-炭素二重結合の含有量は、例えば、1H-NMR等によって測定することができる。 The content of the aliphatic carbon-carbon double bond relative to the total amount (100% by weight) of the polyorganosiloxane (A) (in terms of vinyl group) is not particularly limited, but is preferably 1.5 to 15.0% by weight, 2.0 to 13.0 wt% is more preferable, and 3.0 to 12.0 wt% is still more preferable. By having the aliphatic carbon-carbon double bond within the above range, it is easy to obtain a cured product excellent in various physical properties such as heat resistance, crack resistance and corrosive gas resistance of the obtained cured product. There is. The content of the aliphatic carbon-carbon double bond can be measured, for example, by 1 H-NMR.
[Si-H結合を有するポリオルガノシロキサン(A2)]
 本発明の硬化性樹脂組成物は、ポリオルガノシロキサン(A)として、Si-H結合を有するポリオルガノシロキサン(A2)(本明細書において、単に「ポリオルガノシロキサン(A2)」と称する場合がある)を含んでも良い。上記Si-H結合は、ポリオルガノシロキサン(A2)を構成するいずれかの部分構造及び/又は構成成分が有していれば良い。なお、上記Si-H結合は、ポリオルガノシロキサン(A2)における置換基(例えば、ケイ素原子が有する置換基)が有していても良い。また、上記Si-H結合は、ポリオルガノシロキサン(A2)のシロキサン結合(Si-O-Si)で構成された主鎖(直鎖及び/又は分岐鎖)の末端に存在していても良い。
[Polyorganosiloxane having Si—H bond (A2)]
The curable resin composition of the present invention may be referred to as a polyorganosiloxane (A2) having a Si—H bond as the polyorganosiloxane (A) (in this specification, simply referred to as “polyorganosiloxane (A2)”). ) May be included. The Si—H bond may have any partial structure and / or component constituting the polyorganosiloxane (A2). Note that the Si—H bond may have a substituent in the polyorganosiloxane (A2) (for example, a substituent that a silicon atom has). Further, the Si—H bond may be present at the end of the main chain (straight chain and / or branched chain) composed of the siloxane bond (Si—O—Si) of the polyorganosiloxane (A2).
 上記Si-H結合を有する基としては、特に限定されないが、例えば、式(4)で表される基において、3つのR′のうち少なくとも1つが水素原子である基等が挙げられる。 The group having an Si—H bond is not particularly limited, and examples thereof include a group represented by formula (4), in which at least one of three R ′ is a hydrogen atom.
 ポリオルガノシロキサン(A)の全量(合計含有量、100重量%)に対する上記Si-H結合の含有量は、特に限定されないが、水素原子又はSi-H結合におけるH(ヒドリド)の重量換算(H換算)で、0.01~0.50重量%が好ましく、0.05~0.30重量%がより好ましく、0.08~0.20重量%が更に好ましい。上記の範囲で上記Si-H結合を有することにより、得られる硬化物の耐熱性等の各種物性、耐クラック性、腐食性ガスに対するバリア性に優れた硬化物が得られやすい傾向がある。なお、上記Si-H結合の含有量は、例えば、1H-NMR等によって測定することができる。 The content of the Si—H bond relative to the total amount of the polyorganosiloxane (A) (total content, 100% by weight) is not particularly limited, but is equivalent to a hydrogen atom or H (hydride) in the Si—H bond (H (Converted) is preferably 0.01 to 0.50% by weight, more preferably 0.05 to 0.30% by weight, still more preferably 0.08 to 0.20% by weight. By having the Si—H bond within the above range, there is a tendency that a cured product excellent in various physical properties such as heat resistance, crack resistance, and barrier property against corrosive gas is easily obtained. The content of the Si—H bond can be measured by, for example, 1 H-NMR.
 ポリオルガノシロキサン(A)の全量(100重量%)に対するポリオルガノシロキサン(A2)の含有量は、特に限定されないが、50重量%以上が好ましく、80重量%以上がより好ましい。上記の範囲でポリオルガノシロキサン(A2)を含有することにより、得られる硬化物の耐熱性等の各種物性、耐クラック性、腐食性ガスに対するバリア性に優れた硬化物が得られやすい傾向がある。 The content of the polyorganosiloxane (A2) with respect to the total amount (100% by weight) of the polyorganosiloxane (A) is not particularly limited, but is preferably 50% by weight or more, and more preferably 80% by weight or more. By containing the polyorganosiloxane (A2) within the above range, there is a tendency that a cured product excellent in various physical properties such as heat resistance of the obtained cured product, crack resistance, and barrier property against corrosive gas is easily obtained. .
 ポリオルガノシロキサン(A)における脂肪族炭素-炭素二重結合の含有量(ビニル基換算)a1(mol/g)とSi-H結合の含有量(H換算)a2(mol/g)の比率a1/a2は、0.80~1.10が好ましく、0.90~1.05がより好ましく、0.95~1.00が更に好ましい。a1/a2を1.10以下とする事により、特に腐食性ガスに対するバリア性を高める事ができる。また、a1/a2を0.80以上とする事により、特に耐クラック性等の強度を高める事ができる。 Ratio of aliphatic carbon-carbon double bond content (in terms of vinyl group) a1 (mol / g) to Si—H bond content (in terms of H) a2 (mol / g) in polyorganosiloxane (A) a1 / A2 is preferably 0.80 to 1.10, more preferably 0.90 to 1.05, and still more preferably 0.95 to 1.00. By setting a1 / a2 to 1.10 or less, it is possible to improve the barrier property against corrosive gas. In addition, by setting a1 / a2 to 0.80 or more, strength such as crack resistance can be particularly enhanced.
 なお、ポリオルガノシロキサン(A1)が同時にSi-H結合を有するポリオルガノシロキサン(A2)であっても良く、また、ポリオルガノシロキサン(A2)が同時に脂肪族炭素-炭素二重結合を有するポリオルガノシロキサン(A1)であっても良い。 The polyorganosiloxane (A1) may be a polyorganosiloxane (A2) having a Si—H bond at the same time, and the polyorganosiloxane (A2) may be a polyorganosiloxane having an aliphatic carbon-carbon double bond at the same time. Siloxane (A1) may be used.
 また、ポリオルガノシロキサン(A)はポリオルガノシロキサン(A1)又はポリオルガノシロキサン(A2)のいずれか一方のみで構成されていても良く、また、ポリオルガノシロキサン(A)は相互に異なる2種類以上のポリオルガノシロキサン(A1)及び/又はポリオルガノシロキサン(A2)で構成されていても良い。 Further, the polyorganosiloxane (A) may be composed of only one of the polyorganosiloxane (A1) and the polyorganosiloxane (A2), and the polyorganosiloxane (A) is two or more different from each other. The polyorganosiloxane (A1) and / or the polyorganosiloxane (A2) may be used.
 また、ポリオルガノシロキサン(A)が相互に異なる2種類以上のポリオルガノシロキサンで構成されている場合であって、上記2種類以上のポリオルガノシロキサンの内、少なくとも1種類がポリオルガノシロキサン(A2)である場合、ポリオルガノシロキサン(A2)を除く上記2種類以上のポリオルガノシロキサンは、Si-H結合を有しないポリオルガノシロキサン(A1)であることが好ましい。 The polyorganosiloxane (A) is composed of two or more different types of polyorganosiloxane, and at least one of the two or more types of polyorganosiloxane is polyorganosiloxane (A2). In this case, the two or more kinds of polyorganosiloxanes excluding the polyorganosiloxane (A2) are preferably polyorganosiloxanes (A1) having no Si—H bond.
 また、ポリオルガノシロキサン(A)は、後述するシルセスキオキサン(B)、イソシアヌレート化合物(C)、シランカップリング剤(D)、亜鉛化合物(E)、ヒドロシシル化触媒、ヒドロシリル化反応抑制剤、その他のシロキサン化合物、その他のシラン化合物、溶媒、添加剤等、他の成分の一部又は全部を、予め含んでいても良い。その場合、ポリオルガノシロキサン(A1)が上記他の成分の一部を含み、ポリオルガノシロキサン(A2)が上記他の成分の残る一部を含んでも良い。また、ポリオルガノシロキサン(A1)又はポリオルガノシロキサン(A2)のいずれか一方のみが、上記他の成分の一部又は全部含んでも良い。 The polyorganosiloxane (A) is a silsesquioxane (B), an isocyanurate compound (C), a silane coupling agent (D), a zinc compound (E), a hydrosilation catalyst, a hydrosilylation reaction inhibitor, which will be described later. In addition, some or all of other components such as other siloxane compounds, other silane compounds, solvents, additives, and the like may be included in advance. In that case, the polyorganosiloxane (A1) may include a part of the other component, and the polyorganosiloxane (A2) may include a remaining part of the other component. Further, only one of the polyorganosiloxane (A1) and the polyorganosiloxane (A2) may contain a part or all of the other components.
[シルセスキオキサン(B)]
 本発明の硬化性樹脂組成物は、シルセスキオキサン(B)を含む。上記シルセスキオキサンは、特に限定されないが、ランダム構造、カゴ構造、ラダー構造を有するシルセスキオキサン(ラダー型シルセスキオキサン)が挙げられ、ラダー構造を有するシルセスキオキサンを主成分とするシルセスキオキサンであることが好ましい。シルセスキオキサン(B)は、ラダー型シルセスキオキサンを主成分として含むことが好ましい。中でも、シルセスキオキサン(B)は、ラダー型シルセスキオキサンのみであることがより好ましい。
[Silsesquioxane (B)]
The curable resin composition of the present invention contains silsesquioxane (B). The silsesquioxane is not particularly limited, and examples thereof include a silsesquioxane having a random structure, a cage structure, and a ladder structure (ladder-type silsesquioxane). The silsesquioxane having a ladder structure is a main component. Silsesquioxane is preferred. The silsesquioxane (B) preferably contains a ladder-type silsesquioxane as a main component. Especially, it is more preferable that silsesquioxane (B) is only ladder type silsesquioxane.
 シルセスキオキサンは、ポリシロキサンの一種である。ポリシロキサンは、一般に、シロキサン結合(Si-O-Si)で構成された主鎖を有する化合物であり、その基本構成単位としては、M単位(ケイ素原子が1個の酸素原子と結合した1価の基からなる単位)、D単位(ケイ素原子が2個の酸素原子と結合した2価の基からなる単位)、T単位(ケイ素原子が3個の酸素原子と結合した3価の基からなる単位)、Q単位(ケイ素原子が4個の酸素原子と結合した4価の基からなる単位)が挙げられる。
 シルセスキオキサン(B)は、上記T単位を基本構成単位とするポリシロキサンであり、その実験式(基本構造式)はRSiO1.5で表される。シルセスキオキサン(B)のSi-O-Si骨格の構造としては、ランダム構造、カゴ構造、ラダー構造が挙げられ、ラダー型シルセスキオキサンは、ラダー構造のSi-O-Si骨格の構造を有するシルセスキオキサンである。
Silsesquioxane is a kind of polysiloxane. Polysiloxane is generally a compound having a main chain composed of siloxane bonds (Si—O—Si), and the basic structural unit thereof is a monovalent unit in which an M unit (a silicon atom is bonded to one oxygen atom). Units), D units (units composed of divalent groups in which silicon atoms are bonded to two oxygen atoms), T units (units composed of trivalent groups in which silicon atoms are bonded to three oxygen atoms) Unit) and Q unit (unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms).
Silsesquioxane (B) is a polysiloxane of the T units and basic units, the empirical formula (basic structure) is represented by RSiO 1.5. Examples of the structure of the Si—O—Si skeleton of the silsesquioxane (B) include a random structure, a cage structure, and a ladder structure. The ladder-type silsesquioxane is a structure of the Si—O—Si skeleton having a ladder structure. Silsesquioxane having
 上記シルセスキオキサン(B)は、分子内(一分子中)に2個以上の脂肪族炭素-炭素二重結合を有していても良い。また、上記シルセスキオキサン(B)は、分子内(一分子中)に2個以上のSi-H結合を有する基を有していても良い。更に、上記シルセスキオキサン(B)は、特に限定されないが、室温にて液状であることが好ましい。上記シルセスキオキサン(B)は1種を単独で、又は2種以上を組合せて使用することができる。 The silsesquioxane (B) may have two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule). The silsesquioxane (B) may have a group having two or more Si—H bonds in the molecule (in one molecule). Furthermore, the silsesquioxane (B) is not particularly limited, but is preferably liquid at room temperature. The said silsesquioxane (B) can be used individually by 1 type or in combination of 2 or more types.
 シルセスキオキサン(B)を含ことにより、特に、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、更に、強靭性(特に、耐クラック性)が向上する傾向がある。本発明の硬化性樹脂組成物におけるシルセスキオキサン(B)の含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~30重量%が好ましく、0.1~20重量%がより好ましく、0.5~15重量%が更に好ましく、7~13重量%が特に好ましい。 By including silsesquioxane (B), the barrier property against a corrosive gas of a cured product formed by curing is improved, and further, toughness (particularly, crack resistance) tends to be improved. The content (blending amount) of silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited, but is 0.01 to 0.1% with respect to the total amount (100 wt%) of the curable resin composition. 30 wt% is preferable, 0.1 to 20 wt% is more preferable, 0.5 to 15 wt% is further preferable, and 7 to 13 wt% is particularly preferable.
 シルセスキオキサン(B)の含有量は、特に限定されないが、腐食性ガスに対するバリア性(特に、H2Sガスに対する耐腐食性)の観点から、例えば、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01~30重量部が好ましく、より好ましくは0.1~20重量部、さらに好ましくは1~15重量部、特に好ましくは7~13重量部である。 The content of silsesquioxane (B) is not particularly limited, but from the viewpoint of barrier properties against corrosive gases (particularly, corrosion resistance against H 2 S gas), for example, polyorganosiloxane (A) and silsesquioxane. The amount is preferably 0.01 to 30 parts by weight, more preferably 0.1 to 20 parts by weight, still more preferably 1 to 15 parts by weight, particularly preferably relative to the total amount (100 parts by weight) of oxan (B). 7 to 13 parts by weight.
[イソシアヌレート化合物(C)]
 本発明の硬化性樹脂組成物は、イソシアヌレート化合物(C)を含む。本発明の硬化性樹脂組成物はイソシアヌレート化合物(C)を含むことにより、特に、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、更に、被着体に対する密着性が向上する。中でも、イソシアヌレート化合物(C)は、式(1)で表されるイソシアヌレート化合物を含むことが好ましい。特に、イソシアヌレート化合物(C)は、式(1)で表されるイソシアヌレート化合物のみであることが好ましい。
Figure JPOXMLDOC01-appb-C000011
[Isocyanurate Compound (C)]
The curable resin composition of the present invention contains an isocyanurate compound (C). By including the isocyanurate compound (C), the curable resin composition of the present invention particularly improves the barrier property against the corrosive gas of the cured product formed by curing, and further improves the adhesion to the adherend. To do. Especially, it is preferable that an isocyanurate compound (C) contains the isocyanurate compound represented by Formula (1). In particular, the isocyanurate compound (C) is preferably only the isocyanurate compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000011
 式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。中でも、式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上(好ましくは1つ又は2つ、より好ましくは1つ)が式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3). Among them, one or more (preferably one or two, more preferably one) of R x , R y and R z in the formula (1) is a group represented by the formula (3). Is preferred.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(2)及び式(3)中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を表す。炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、エチルヘキシル基等が挙げられる。上記アルキル基の中でも、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3の直鎖状若しくは分岐鎖状のアルキル基が好ましい。式(2)及び式(3)におけるR1、R2は、それぞれ水素原子であることが特に好ましい。 In formula (2) and formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. Examples of the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a pentyl group, a hexyl group, A heptyl group, an octyl group, an ethylhexyl group, etc. are mentioned. Among the above alkyl groups, linear or branched alkyl groups having 1 to 3 carbon atoms such as methyl group, ethyl group, propyl group, and isopropyl group are preferable. R 1 and R 2 in formula (2) and formula (3) are particularly preferably each a hydrogen atom.
 イソシアヌレート化合物(C)としては、特に限定されないが、例えば、モノアリルジメチルイソシアヌレート、ジアリルモノメチルイソシアヌレート、トリアリルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1,3-ジアリル-5-(2-メチルエポキシプロピル)イソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-グリシジルイソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-(2-メチルエポキシプロピル)イソシアヌレート、トリス(2-メチルプロペニル)イソシアヌレート等が挙げられる。中でも、モノアリルジグリシジルイソシアヌレートが好ましい。なお、イソシアヌレート化合物(C)は、1種を単独で、又は2種以上を組合せて使用することができる。 The isocyanurate compound (C) is not particularly limited. For example, monoallyl dimethyl isocyanurate, diallyl monomethyl isocyanurate, triallyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl monoglycidyl isocyanurate, triglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methylpropenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5- Bis (2-methylepoxypropyl) isocyanurate, 1,3-diallyl-5- (2-methylepoxypropyl) isocyanurate, 1,3-bis (2-methylpropenyl) -5-glycidyl isocyanurate, 1,3 -Screw (2 Methyl propenyl) -5- (2-methyl-epoxypropyl) isocyanurate, tris (2-methyl-propenyl) isocyanurate. Of these, monoallyl diglycidyl isocyanurate is preferable. In addition, an isocyanurate compound (C) can be used individually by 1 type or in combination of 2 or more types.
 イソシアヌレート化合物(C)は、他の成分との相溶性を向上させる観点から、後述のように、シランカップリング剤とあらかじめ混合してから他の成分と配合しても良い。 From the viewpoint of improving compatibility with other components, the isocyanurate compound (C) may be blended with other components after previously mixed with a silane coupling agent as described later.
 イソシアヌレート化合物(C)の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~10重量%が好ましく、0.05~5重量%がより好ましく、0.1~3重量%が更に好ましい。イソシアヌレート化合物(C)の含有量が0.01重量%未満であると、硬化物の腐食性ガスに対するバリア性、被着体に対する密着性が低下する場合がある。一方、イソシアヌレート化合物(C)の含有量が10重量%を超えると、硬化性樹脂組成物において固体が析出したり、硬化物が白濁する場合がある。上記イソシアヌレート化合物(C)の割合は、特に限定されないが、硬化物の腐食性ガスに対するバリア性の観点から、例えば、ポリオルガノシロキサン(A)とシルセスキオキサン(B)の合計量(100重量部)に対して、0.01~0.5重量部が好ましい。 The content of the isocyanurate compound (C) is not particularly limited, but is preferably 0.01 to 10% by weight, and 0.05 to 5% by weight with respect to the total amount (100% by weight) of the curable resin composition. More preferred is 0.1 to 3% by weight. When the content of the isocyanurate compound (C) is less than 0.01% by weight, the barrier property against the corrosive gas and the adhesion to the adherend may be deteriorated. On the other hand, when the content of the isocyanurate compound (C) exceeds 10% by weight, a solid may precipitate in the curable resin composition or the cured product may become cloudy. The ratio of the isocyanurate compound (C) is not particularly limited. From the viewpoint of the barrier property against the corrosive gas of the cured product, for example, the total amount of polyorganosiloxane (A) and silsesquioxane (B) (100 0.01 to 0.5 parts by weight is preferable with respect to parts by weight).
[シランカップリング剤(D)]
 本発明の硬化性樹脂組成物は、シランカップリング剤(D)を含んでも良い。本発明の硬化性樹脂組成物がシランカップリング剤(D)を含むことにより、特に、被着体に対する密着性が向上し、また硬化物の腐食性ガスに対するバリア性が一層向上する。
[Silane coupling agent (D)]
The curable resin composition of the present invention may contain a silane coupling agent (D). When the curable resin composition of the present invention contains the silane coupling agent (D), in particular, the adhesion to the adherend is improved and the barrier property against the corrosive gas of the cured product is further improved.
 シランカップリング剤(D)は、ポリオルガノシロキサン(A)及びイソシアヌレート化合物(C)等との相溶性が良好であるため、例えば、イソシアヌレート化合物(C)のその他成分に対する相溶性を向上させるために、あらかじめイソシアヌレート化合物(C)とシランカップリング剤(D)の組成物を形成した上で、その他成分と配合すると、均一な硬化性樹脂組成物が得られやすい。 Since the silane coupling agent (D) has good compatibility with the polyorganosiloxane (A) and the isocyanurate compound (C), for example, the compatibility of the isocyanurate compound (C) with other components is improved. Therefore, when a composition of the isocyanurate compound (C) and the silane coupling agent (D) is formed in advance and then blended with other components, a uniform curable resin composition is easily obtained.
 シランカップリング剤(D)としては、公知乃至慣用のシランカップリング剤を使用することができ、特に限定されないが、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン等のアミノ基含有シランカップリング剤;テトラメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(メトキシエトキシシラン)、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、メルカプトプロピレントリメトキシシラン、メルカプトプロピレントリエトキシシラン等が挙げられる。中でも、エポキシ基含有シランカップリング剤(特に、3-グリシドキシプロピルトリメトキシシラン)を好ましく使用できる。 As the silane coupling agent (D), a known or conventional silane coupling agent can be used, and is not particularly limited. For example, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, epoxy group-containing silane coupling agent such as 3-glycidoxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropyl Methyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Triethoxysilane, 3-triethoxysilyl-N- (1, -Dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, N- (β-aminoethyl) ) -Γ-aminopropylmethyldiethoxysilane and other amino group-containing silane coupling agents; tetramethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, vinyltri Methoxysilane, vinyltris (methoxyethoxysilane), phenyltrimethoxysilane, diphenyldimethoxysilane, vinyltriacetoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropylto Examples include limethoxysilane, γ- (meth) acryloxypropylmethyldimethoxysilane, γ- (meth) acryloxypropylmethyldiethoxysilane, mercaptopropylenetrimethoxysilane, mercaptopropylenetriethoxysilane, and the like. Among them, an epoxy group-containing silane coupling agent (particularly 3-glycidoxypropyltrimethoxysilane) can be preferably used.
 シランカップリング剤(D)としては、上記のシランカップリング剤の部分縮合物を用いても良い。上記部分縮合物を用いる事により、本発明の硬化性樹脂組成物の粘度を向上させると共に、腐食性ガスに対するバリア性や耐熱衝撃性を向上させる事ができる。 As the silane coupling agent (D), a partial condensate of the above silane coupling agent may be used. By using the partial condensate, the viscosity of the curable resin composition of the present invention can be improved, and the barrier property against the corrosive gas and the thermal shock resistance can be improved.
 上記部分縮合物は、1種類又は2種類以上の上記シランカップリング剤を加水分解及び部分縮合させる事により得られる。加水分解および部分縮合には周知乃至慣用の方法を用いる事ができる。例えば、上記シランカップリング剤の混合物に溶媒、水、必要に応じて触媒を添加し、加熱攪拌する方法が挙げられる。攪拌中、必要に応じて蒸留によって副生成物(水やアルコール類等)を除去しても良い。 The partial condensate can be obtained by hydrolyzing and partially condensing one type or two or more types of the silane coupling agents. Well-known or conventional methods can be used for hydrolysis and partial condensation. For example, a method of adding a solvent, water and, if necessary, a catalyst to the mixture of the silane coupling agent and stirring with heating can be mentioned. During the stirring, by-products (such as water and alcohols) may be removed by distillation as necessary.
 上記部分縮合物としては、特に限定されないが、例えば、3-グリシドキシプロピルトリメトキシシラン-テトラメトキシシランオリゴマー、3-グリシドキシプロピルトリメトキシシラン-テトラエトキシシランオリゴマー、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン-テトラメトキシシランオリゴマー、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン-テトラエトキシシランオリゴマー、3-グリシドキシプロピルメチルジエトキシシラン-テトラメトキシシランオリゴマー、3-グリシドキシプロピルメチルジエトキシシラン-テトラエトキシシランオリゴマー、3-グリシドキシプロピルトリエトキシシラン-テトラメトキシシランオリゴマー、3-グリシドキシプロピルトリエトキシシラン-テトラエトキシシランオリゴマー等のエポキシ基含有のコオリゴマー;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン-テトラメトキシシランオリゴマー、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン-テトラエトキシシランオリゴマー、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン-テトラメトキシシランオリゴマー、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン-テトラエトキシシランオリゴマー、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン-テトラメトキシシランオリゴマー、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン-テトラエトキシシランオリゴマー、3-アミノプロピルトリメトキシシラン-テトラメトキシシランオリゴマー、3-アミノプロピルトリメトキシシラン-テトラエトキシシランオリゴマー、3-アミノプロピルトリエトキシシラン-テトラメトキシシランオリゴマー、3-アミノプロピルトリエトキシシラン-テトラエトキシシランオリゴマー、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン-テトラメトキシシランオリゴマー、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン-テトラエトキシシランオリゴマー、N-フェニル-3-アミノプロピルトリメトキシシラン-テトラメトキシシランオリゴマー、N-フェニル-3-アミノプロピルトリメトキシシラン-テトラエトキシシランオリゴマー等のアミノ基含有のコオリゴマー;ビニルトリエトキシシラン-テトラメトキシシランオリゴマー、ビニルトリエトキシシラン-テトラエトキシシランオリゴマー、ビニルトリメトキシシラン-テトラメトキシシランオリゴマー、ビニルトリメトキシシラン-テトラエトキシシランオリゴマー、ビニルトリス(メトキシエトキシシラン)-テトラメトキシシランオリゴマー、ビニルトリス(メトキシエトキシシラン)-テトラエトキシシランオリゴマー、ビニルトリアセトキシシラン-テトラメトキシシランオリゴマー、ビニルトリアセトキシシラン-テトラエトキシシランオリゴマー等のビニル基含有のコオリゴマー;フェニルトリメトキシシラン-テトラメトキシシランオリゴマー、フェニルトリメトキシシラン-テトラエトキシシランオリゴマー、ジフェニルジメトキシシラン-テトラメトキシシランオリゴマー、ジフェニルジメトキシシラン-テトラエトキシシランオリゴマー等のフェニル基含有のコオリゴマー;γ-(メタ)アクリロキシプロピルトリエトキシシラン-テトラメトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルトリエトキシシラン-テトラエトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルトリメトキシシラン-テトラメトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルトリメトキシシラン-テトラエトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン-テトラメトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン-テトラエトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン-テトラメトキシシランオリゴマー、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン-テトラエトキシシランオリゴマー等の(メタ)アクリル基含有のコオリゴマー;メルカプトプロピレントリメトキシシラン-テトラメトキシシランオリゴマー、メルカプトプロピレントリメトキシシラン-テトラエトキシシランオリゴマー、メルカプトプロピレントリエトキシシラン-テトラメトキシシランオリゴマー、メルカプトプロピレントリエトキシシラン-テトラエトキシシランオリゴマー等のメルカプト基含有のコオリゴマー等が挙げられる。 The partial condensate is not particularly limited. For example, 3-glycidoxypropyltrimethoxysilane-tetramethoxysilane oligomer, 3-glycidoxypropyltrimethoxysilane-tetraethoxysilane oligomer, 2- (3,4 -Epoxycyclohexyl) ethyltrimethoxysilane-tetramethoxysilane oligomer, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane-tetraethoxysilane oligomer, 3-glycidoxypropylmethyldiethoxysilane-tetramethoxysilane oligomer, 3-glycidoxypropylmethyldiethoxysilane-tetraethoxysilane oligomer, 3-glycidoxypropyltriethoxysilane-tetramethoxysilane oligomer, 3-glycidoxypropyltriet Epoxy group-containing co-oligomer such as silane-tetraethoxysilane oligomer; N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane-tetramethoxysilane oligomer, N-2- (aminoethyl) -3-aminopropyl Methyldimethoxysilane-tetraethoxysilane oligomer, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane-tetramethoxysilane oligomer, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane-tetraethoxy Silane oligomer, N-2- (aminoethyl) -3-aminopropyltriethoxysilane-tetramethoxysilane oligomer, N-2- (aminoethyl) -3-aminopropyltriethoxysilane-tetraethoxysilane oligomer, 3-a Nopropyltrimethoxysilane-tetramethoxysilane oligomer, 3-aminopropyltrimethoxysilane-tetraethoxysilane oligomer, 3-aminopropyltriethoxysilane-tetramethoxysilane oligomer, 3-aminopropyltriethoxysilane-tetraethoxysilane oligomer, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine-tetramethoxysilane oligomer, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine-tetraethoxysilane oligomer, Amino groups such as N-phenyl-3-aminopropyltrimethoxysilane-tetramethoxysilane oligomer and N-phenyl-3-aminopropyltrimethoxysilane-tetraethoxysilane oligomer Containing oligomers: vinyltriethoxysilane-tetramethoxysilane oligomer, vinyltriethoxysilane-tetraethoxysilane oligomer, vinyltrimethoxysilane-tetramethoxysilane oligomer, vinyltrimethoxysilane-tetraethoxysilane oligomer, vinyltris (methoxyethoxysilane) ) -Tetramethoxysilane oligomer, vinyltris (methoxyethoxysilane) -tetraethoxysilane oligomer, vinyltriacetoxysilane-tetramethoxysilane oligomer, vinyltriacetoxysilane-tetraethoxysilane oligomer, and other vinyl group-containing co-oligomers; phenyltrimethoxy Silane-tetramethoxysilane oligomer, phenyltrimethoxysilane-tetraethoxysilane oligomer, Phenyl group-containing co-oligomers such as phenyldimethoxysilane-tetramethoxysilane oligomer and diphenyldimethoxysilane-tetraethoxysilane oligomer; γ- (meth) acryloxypropyltriethoxysilane-tetramethoxysilane oligomer, γ- (meth) acryloxy Propyltriethoxysilane-tetraethoxysilane oligomer, γ- (meth) acryloxypropyltrimethoxysilane-tetramethoxysilane oligomer, γ- (meth) acryloxypropyltrimethoxysilane-tetraethoxysilane oligomer, γ- (meth) acryl Roxypropylmethyldimethoxysilane-tetramethoxysilane oligomer, γ- (meth) acryloxypropylmethyldimethoxysilane-tetraethoxysilane oligomer, γ- (me (T) Acryloxypropylmethyldiethoxysilane-tetramethoxysilane oligomer, γ- (meth) acryloxypropylmethyldiethoxysilane-tetraethoxysilane oligomer and other (meth) acryl group-containing co-oligomers; mercaptopropylenetrimethoxysilane- Examples thereof include mercapto group-containing co-oligomers such as tetramethoxysilane oligomer, mercaptopropylenetrimethoxysilane-tetraethoxysilane oligomer, mercaptopropylenetriethoxysilane-tetramethoxysilane oligomer, mercaptopropylenetriethoxysilane-tetraethoxysilane oligomer.
 シランカップリング剤(D)は、合成しても良く、市販品を使用しても良い。シランカップリング剤の市販品としては、例えば、Z-6610、Z-6011、Z-6020、Z-6094、Z-6883、Z-6032、Z-6040、Z-6044、Z-6043、Z-6075、Z-6300、Z-6519、Z-6825、Z-6030、Z-6033、Z-6062、Z-6862、Z-6911、Z-6026、AZ-720、Z-6050(いずれも商品名、いずれも東レ・ダウコーニング(株)製)、KBM-303、KBM-402、KBM-403、KBE-402、KBE-403、KBM-1403、KBM-502、KBM-503、KBE-502、KBE-503、KBM-5103、KBM-602、KBM-603、KBE-603、KBM-903、KBE-903、KBE-9103、KBM-573、KBM-575、KBE-585、KBM-1003、KBE-1003、KBM-802、KBM-803、KBE-846、KBE-9007、X-41-1053、X-41-1056、X-41-1059A、X-41-1805、X-41-1808、X-41-1810、KR-513、X-40-2672B、X-40-9272B、X-40-2651等(いずれも商品名、いずれも信越化学工業(株)製)等が挙げられる。なお、上記シランカップリング剤は、単独で使用されてもよいし、2種以上組み合わせて使用されてもよい。 The silane coupling agent (D) may be synthesized or a commercially available product may be used. Commercially available silane coupling agents include, for example, Z-6610, Z-6011, Z-6020, Z-6094, Z-6683, Z-6032, Z-6040, Z-6044, Z-6043, Z- 6075, Z-6300, Z-6519, Z-6825, Z-6030, Z-6033, Z-6062, Z-6862, Z-6911, Z-6026, AZ-720, Z-6050 (all trade names , All manufactured by Toray Dow Corning Co., Ltd.), KBM-303, KBM-402, KBM-403, KBE-402, KBE-403, KBM-1403, KBM-502, KBM-503, KBE-502, KBE -503, KBM-5103, KBM-602, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9 03, KBM-573, KBM-575, KBE-585, KBM-1003, KBE-1003, KBM-802, KBM-803, KBE-846, KBE-9007, X-41-1053, X-41-1056, X-41-1059A, X-41-1805, X-41-1808, X-41-1810, KR-513, X-40-2672B, X-40-9272B, X-40-2651, etc. Name, both of which are manufactured by Shin-Etsu Chemical Co., Ltd.). In addition, the said silane coupling agent may be used independently and may be used in combination of 2 or more type.
 シランカップリング剤(D)の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量部)に対して、0.01~5重量部が好ましく、0.03~1重量部がより好ましく、0.05~0.8重量部が更に好ましい。シランカップリング剤(D)の含有量を上記の範囲とする事により、腐食性ガスに対するバリア性及び耐リフロー性を向上させる効果がある。特に、シランカップリング剤の部分縮合物を用いた場合、耐腐食性(特に耐H2S腐食性)及び耐熱衝撃性を大幅に向上させる効果がある。シランカップリング剤(D)の含有量が0.01重量部未満であると、被着体に対する密着性が低下し、特に、イソシアヌレート化合物(C)を相溶させて使用する際に、十分な硬化が得られない場合がある。一方、シランカップリング剤(D)の含有量が5重量%を超えると、硬化性樹脂組成物の粘度を目的とする範囲内に調整する事が困難になる場合がある。 The content of the silane coupling agent (D) is not particularly limited, but is preferably 0.01 to 5 parts by weight, preferably 0.03 to 1 part by weight with respect to the total amount (100 parts by weight) of the curable resin composition. Is more preferable, and 0.05 to 0.8 part by weight is still more preferable. By making content of a silane coupling agent (D) into said range, there exists an effect which improves the barrier property with respect to corrosive gas, and reflow resistance. In particular, when a partial condensate of a silane coupling agent is used, there is an effect of greatly improving the corrosion resistance (particularly H 2 S corrosion resistance) and the thermal shock resistance. When the content of the silane coupling agent (D) is less than 0.01 parts by weight, the adhesion to the adherend is lowered, and particularly when the isocyanurate compound (C) is used in a compatible state. Curing may not be obtained. On the other hand, when the content of the silane coupling agent (D) exceeds 5% by weight, it may be difficult to adjust the viscosity of the curable resin composition within a target range.
 シランカップリング剤(D)の含有量は、特に限定されないが、腐食性ガスに対するバリア性及び耐リフロー性の観点から、例えば、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満が好ましく、より好ましくは0.08~0.9重量部である。 Although content of a silane coupling agent (D) is not specifically limited, From a viewpoint of the barrier property with respect to corrosive gas, and reflow resistance, for example, the total amount of polyorganosiloxane (A) and silsesquioxane (B) The amount is preferably 0.01 part by weight or more and less than 1.0 part by weight with respect to (100 parts by weight), more preferably 0.08 to 0.9 part by weight.
 シランカップリング剤(D)中の、シランカップリング剤の上記部分縮合物の割合は、特に限定されないが、例えば、シランカップリング剤(D)全量(100重量%)に対して、50~100重量%が好ましく、より好ましくは80~100重量%である。中でも、上記シランカップリング剤(D)は、シランカップリング剤の上記部分縮合物のみであることが好ましい。シランカップリング剤の上記部分縮合物の割合が上記範囲であることにより、耐腐食性(特に耐H2S腐食性)及び耐熱衝撃性が一層優れる。 The ratio of the partial condensate of the silane coupling agent in the silane coupling agent (D) is not particularly limited. For example, it is 50 to 100 with respect to the total amount (100% by weight) of the silane coupling agent (D). % By weight is preferred, more preferably 80 to 100% by weight. Especially, it is preferable that the said silane coupling agent (D) is only the said partial condensate of a silane coupling agent. When the ratio of the partial condensate of the silane coupling agent is within the above range, the corrosion resistance (particularly H 2 S corrosion resistance) and the thermal shock resistance are further improved.
 硬化性樹脂組成物中の、シランカップリング剤の上記部分縮合物の割合は、特に限定されないが、耐腐食性(特に耐H2Sガスに対する耐腐食性)及び耐熱衝撃性の観点から、例えば、硬化性樹脂組成物の全量(100重量部)に対して、0.01~5重量部が好ましく、0.03~1重量部がより好ましく、0.05~0.8重量部が更に好ましい。 The proportion of the above-mentioned partial condensate of the silane coupling agent in the curable resin composition is not particularly limited, but from the viewpoint of corrosion resistance (particularly corrosion resistance against H 2 S gas) and thermal shock resistance, for example, The amount of the curable resin composition is preferably 0.01 to 5 parts by weight, more preferably 0.03 to 1 part by weight, and still more preferably 0.05 to 0.8 parts by weight with respect to the total amount (100 parts by weight). .
 また、シランカップリング剤の上記部分縮合物の割合は、特に限定されないが、耐腐食性(特に耐H2Sガスに対する耐腐食性)、耐熱衝撃性、及び耐リフロー性の観点から、例えば、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満が好ましく、より好ましくは0.08~0.9重量部である。 Further, the ratio of the partial condensate of the silane coupling agent is not particularly limited, but from the viewpoint of corrosion resistance (particularly corrosion resistance against H 2 S gas), thermal shock resistance, and reflow resistance, for example, The amount is preferably 0.01 parts by weight or more and less than 1.0 part by weight, and more preferably 0.08 to 0.000 parts by weight based on the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). 9 parts by weight.
[亜鉛化合物(E)]
 本発明の硬化性樹脂組成物は、亜鉛化合物(E)を含んでも良い。本発明の硬化性樹脂組成物が上記亜鉛化合物を含むことにより、特に、H2Sガスに対するバリア性が向上する傾向がある。
[Zinc compound (E)]
The curable resin composition of the present invention may contain a zinc compound (E). By the curable resin composition of the present invention contains the zinc compound, in particular, tends to barrier property against H 2 S gas is improved.
 亜鉛化合物(E)としては、特に限定されないが、例えば、亜鉛を含有する錯体や金属塩等が挙げられる。例えば、亜鉛ビスアセチルアセトネート、ビス(オクタン-2,4-ジオナト)亜鉛等の亜鉛ジケトン錯体やナフテン酸亜鉛、オクチル酸亜鉛、アセト酢酸亜鉛、亜鉛(メタ)アクリレート、亜鉛ネオデカネート等のカルボン酸亜鉛等に代表される有機亜鉛化合物、亜鉛華、スズ酸亜鉛などの亜鉛酸化物に代表される無機亜鉛化合物、及びこれらの混合物が挙げられる。中でも、カルボン酸亜鉛が好ましく、特に好ましくはオクチル酸亜鉛である。亜鉛化合物(E)は、カルボン酸亜鉛(特にオクチル酸亜鉛)を少なくとも含むことが好ましい。中でも、亜鉛化合物(E)は、カルボン酸亜鉛(特にオクチル酸亜鉛)のみであることがより好ましい。 Although it does not specifically limit as a zinc compound (E), For example, the complex, metal salt, etc. which contain zinc are mentioned. For example, zinc diketone complexes such as zinc bisacetylacetonate and bis (octane-2,4-dionato) zinc, and zinc carboxylates such as zinc naphthenate, zinc octylate, zinc acetoacetate, zinc (meth) acrylate, and zinc neodecanate And the like, and inorganic zinc compounds typified by zinc oxides such as zinc oxide and zinc stannate, and mixtures thereof. Of these, zinc carboxylate is preferable, and zinc octylate is particularly preferable. The zinc compound (E) preferably contains at least zinc carboxylate (particularly zinc octylate). Among these, the zinc compound (E) is more preferably only zinc carboxylate (particularly zinc octylate).
 上記亜鉛化合物(E)は、特に限定されないが、腐食性ガスに対するバリア性の観点から、化合物中(100重量%)の亜鉛含有量が、例えば、2~30重量%であることが好ましく、より好ましくは5~20重量%、特に好ましくは6~17重量%である。 The zinc compound (E) is not particularly limited, but from the viewpoint of barrier properties against corrosive gas, the zinc content in the compound (100% by weight) is preferably 2 to 30% by weight, for example. The amount is preferably 5 to 20% by weight, particularly preferably 6 to 17% by weight.
 亜鉛化合物(E)の含有量は、特に限定されないが、上記ポリオルガノシロキサン(A)と上記シルセスキオキサン(B)の合計量(100重量部)に対して、0.01重量部以上1.0重量部未満が好ましく、0.1重量部以上0.8重量部未満がより好ましく、0.3重量部以上0.6重量部未満が更に好ましい。亜鉛化合物(E)の含有量を上記範囲とする事により、耐熱衝撃性及び耐リフロー性を実用に十分なレベルに保持する事が可能となる。亜鉛化合物(E)の含有量が0.01重量部未満であると、H2Sガスに対するバリア性が低下する場合がある。一方、亜鉛化合物(E)の含有量が1.0重量部以上であると、SOXガスに対するバリア性が低下する場合がある。 Although content of a zinc compound (E) is not specifically limited, 0.01 weight part or more 1 1 with respect to the total amount (100 weight part) of the said polyorganosiloxane (A) and the said silsesquioxane (B). Less than 0.0 part by weight is preferable, 0.1 part by weight or more and less than 0.8 part by weight is more preferable, and 0.3 part by weight or more and less than 0.6 part by weight is still more preferable. By setting the content of the zinc compound (E) within the above range, the thermal shock resistance and the reflow resistance can be maintained at a practically sufficient level. When the content of the zinc compound (E) is less than 0.01 parts by weight, the barrier property against H 2 S gas may be deteriorated. On the other hand, when the content of the zinc compound (E) is 1.0 part by weight or more, the barrier property against SO X gas may be lowered.
[ヒドロシリル化触媒]
 本発明の硬化性樹脂組成物は、更に、ヒドロシリル化触媒を含んでいても良い。本発明の硬化性樹脂組成物は、ヒドロシリル化触媒を含むことにより、硬化反応(ヒドロシリル化反応)を効率的に進行させることができる。上記ヒドロシリル化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示される。具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体等の白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体等の白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、ならびに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。なお、上記ヒドロシリル化触媒は1種を単独で、又は2種以上を組合せて使用することができる。
[Hydrosilylation catalyst]
The curable resin composition of the present invention may further contain a hydrosilylation catalyst. By including the hydrosilylation catalyst, the curable resin composition of the present invention can efficiently advance the curing reaction (hydrosilylation reaction). Examples of the hydrosilylation catalyst include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, complexes of chloroplatinic acid and alcohols, aldehydes, ketones, etc., platinum olefin complexes, platinum-carbonylvinylmethyl Platinum-based catalysts such as platinum carbonyl complexes such as complexes, platinum-vinylmethylsiloxane complexes such as platinum-divinyltetramethyldisiloxane complexes and platinum-cyclovinylmethylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, and the like Examples of the platinum catalyst include a palladium catalyst or a rhodium catalyst containing a palladium atom or a rhodium atom instead of a platinum atom. In addition, the said hydrosilylation catalyst can be used individually by 1 type or in combination of 2 or more types.
 本発明の硬化性樹脂組成物における上記ヒドロシリル化触媒の含有量は、特に限定されないが、例えば、ヒドロシリル化触媒中の白金、パラジウム、又はロジウムが重量単位で、0.01~1,000ppmの範囲内となる量が好ましく、0.1~500ppmの範囲内となる量が更に好ましい。ヒドロシリル化触媒の含有量がこのような範囲にあると、架橋速度が著しく遅くなることがなく、硬化物に着色等の問題を生じるおそれが少ないため好ましい。 The content of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited. For example, platinum, palladium, or rhodium in the hydrosilylation catalyst is in a range of 0.01 to 1,000 ppm by weight. The amount is preferably in the range of 0.1 to 500 ppm. It is preferable for the content of the hydrosilylation catalyst to be in such a range because the crosslinking rate will not be remarkably slowed and the cured product is less likely to cause problems such as coloring.
[ヒドロシリル化反応抑制剤]
 本発明の硬化性樹脂組成物は、硬化反応(ヒドロシリル化反応)の速度を調整するために、ヒドロシリル化反応抑制剤を含んでいても良い。上記ヒドロシリル化反応抑制剤としては、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;チアゾール、ベンゾチアゾール、ベンゾトリアゾール等が挙げられる。上記ヒドロシリル化反応抑制剤は1種を単独で、又は2種以上を組合せて使用することができる。上記ヒドロシリル化反応抑制剤の含有量としては、硬化性樹脂組成物の架橋条件により異なるが、実用上、硬化性樹脂組成物中の含有量として、0.00001~5重量%の範囲内が好ましい。
[Hydrosilylation reaction inhibitor]
The curable resin composition of the present invention may contain a hydrosilylation reaction inhibitor in order to adjust the speed of the curing reaction (hydrosilylation reaction). Examples of the hydrosilylation reaction inhibitor include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; 3-methyl-3 -Enyne compounds such as pentene-1-yne and 3,5-dimethyl-3-hexen-1-yne; thiazole, benzothiazole, benzotriazole and the like. The said hydrosilylation reaction inhibitor can be used individually by 1 type or in combination of 2 or more types. The content of the hydrosilylation reaction inhibitor varies depending on the crosslinking conditions of the curable resin composition, but practically, the content in the curable resin composition is preferably in the range of 0.00001 to 5% by weight. .
[その他のシロキサン化合物]
 本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上の脂肪族炭素-炭素二重結合を有する環状シロキサンを含んでいても良い。また、本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上のSi-H結合を有する基を有する環状シロキサンを含んでいても良い。上記環状シロキサンは1種を単独で、又は2種以上を組合せて使用することができる。本発明の硬化性樹脂組成物における環状シロキサンの含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~30重量%が好ましく、0.1~20重量%がより好ましく、0.5~10重量%が更に好ましい。
[Other siloxane compounds]
The curable resin composition of the present invention may further contain a cyclic siloxane having two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule) as another siloxane compound. The curable resin composition of the present invention may further contain a cyclic siloxane having a group having two or more Si—H bonds in the molecule (in one molecule) as the other siloxane compound. The said cyclic siloxane can be used individually by 1 type or in combination of 2 or more types. The content (blending amount) of the cyclic siloxane in the curable resin composition of the present invention is not particularly limited, but is preferably 0.01 to 30% by weight with respect to the total amount (100% by weight) of the curable resin composition. 0.1 to 20% by weight is more preferable, and 0.5 to 10% by weight is still more preferable.
[その他のシラン化合物]
 本発明の硬化性樹脂組成物は、その他のシラン化合物(例えば、ヒドロシリル基を有する化合物)を含んでいても良い。上記その他のシラン化合物としては、例えば、メチル(トリスジメチルシロキシ)シラン、テトラキス(ジメチルシロキシ)シラン、1,1,3,3-テトラメチルジシロキサン、1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,1,1,3,5,5,5-へプタメチルトリシロキサン、1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン、1,1,1,3,5,5,7,7,7-ノナメチルテトラシロキサン、1,1,3,3,5,5,7,7,9,9-デカメチルペンタシロキサン、1,1,1,3,5,5,7,7,9,9,9-ウンデカメチルペンタシロキサン等のSi-H基を有する直鎖状又は分岐鎖状シロキサン等が挙げられる。なお、上記シラン化合物は1種を単独で、又は2種以上を組合せて使用することができる。上記シラン化合物の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0~5重量%以下が好ましく、0~1.5重量%がより好ましい。
[Other silane compounds]
The curable resin composition of the present invention may contain other silane compounds (for example, compounds having a hydrosilyl group). Examples of the other silane compounds include methyl (trisdimethylsiloxy) silane, tetrakis (dimethylsiloxy) silane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5- Hexamethyltrisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1, 1,3,5,5,7,7,7-nonamethyltetrasiloxane, 1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,1,1, Examples thereof include linear or branched siloxanes having Si—H groups such as 3,5,5,7,7,9,9,9-undecamethylpentasiloxane. In addition, the said silane compound can be used individually by 1 type or in combination of 2 or more types. The content of the silane compound is not particularly limited, but is preferably 0 to 5% by weight or less and more preferably 0 to 1.5% by weight with respect to the total amount (100% by weight) of the curable resin composition.
[溶媒]
 本発明の硬化性樹脂組成物は、溶媒を含んでいても良い。上記溶媒としては、例えば、トルエン、ヘキサン、イソプロパノール、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等の従来公知の溶媒が挙げられる。上記溶媒は1種を単独で、又は2種以上を組合せて使用することができる。
[solvent]
The curable resin composition of the present invention may contain a solvent. Examples of the solvent include conventionally known solvents such as toluene, hexane, isopropanol, methyl isobutyl ketone, cyclopentanone, and propylene glycol monomethyl ether acetate. The said solvent can be used individually by 1 type or in combination of 2 or more types.
[添加剤]
 本発明の硬化性樹脂組成物は、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤等)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤等)、難燃助剤、補強材(他の充填剤等)、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料等)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤等の慣用の添加剤を含んでいても良い。これらの添加剤は単独で、又は2種以上を組合せて使用することができる。
[Additive]
The curable resin composition of the present invention includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, Inorganic fillers such as carbon black, silicon carbide, silicon nitride, boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; silicone resins, epoxy resins, Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), flame retardants (phosphorus) Flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers, etc.), nucleating agents, coupling agents, lubricants Wax, plasticizer, mold release agent, impact resistance improver, hue improver, fluidity improver, colorant (dye, pigment, etc.), dispersant, defoamer, defoamer, antibacterial agent, preservative, viscosity Conventional additives such as regulators and thickeners may be included. These additives can be used alone or in combination of two or more.
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、特に限定されないが、硬化性樹脂組成物中に存在するヒドロシリル基1モルに対して、脂肪族炭素-炭素二重結合が0.2~4モルとなるような組成(配合組成)であることが好ましく、より好ましくは0.5~1.5モル、更に好ましくは0.8~1.2モルである。ヒドロシリル基と脂肪族炭素-炭素二重結合との割合を上記範囲に制御することにより、硬化物の耐熱性、透明性、柔軟性、耐リフロー性、及び腐食性ガスに対するバリア性がより向上する傾向がある。
[Curable resin composition]
The curable resin composition of the present invention is not particularly limited, but the aliphatic carbon-carbon double bond is 0.2 to 4 mol per 1 mol of hydrosilyl group present in the curable resin composition. It is preferable that the composition (formulation composition) be 0.5, more preferably 0.5 to 1.5 mol, still more preferably 0.8 to 1.2 mol. By controlling the ratio of hydrosilyl group and aliphatic carbon-carbon double bond within the above range, the heat resistance, transparency, flexibility, reflow resistance and barrier property against corrosive gas of the cured product are further improved. Tend.
 本発明の硬化性樹脂組成物は、特に限定されないが、上記の各成分を室温で攪拌・混合することにより調製することができる。なお、本発明の硬化性樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。 The curable resin composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature. In addition, the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
 本発明の硬化性樹脂組成物は、25℃における粘度が4000~8000mPa・sである。上記粘度は、4500~7000mPa・sが好ましく、5000~6000mPa・sがより好ましい。粘度が4000mPa・s未満であると、例えば、硬化性樹脂組成物が蛍光体を含む場合には、蛍光体が均一に分散し難くなる場合がある。一方、粘度が8000mPa・sを超えると、例えば、硬化性樹脂組成物をLEDパッケージに注入する際に、注入量が安定しない場合がある。 The viscosity of the curable resin composition of the present invention at 25 ° C. is 4000 to 8000 mPa · s. The viscosity is preferably 4500 to 7000 mPa · s, more preferably 5000 to 6000 mPa · s. When the viscosity is less than 4000 mPa · s, for example, when the curable resin composition contains a phosphor, the phosphor may be difficult to disperse uniformly. On the other hand, when the viscosity exceeds 8000 mPa · s, for example, when the curable resin composition is injected into the LED package, the injection amount may not be stable.
 本発明の硬化性樹脂組成物の粘度は、周知乃至慣用の方法で適宜調整する事ができる。例えば、シルセスキオキサン(B)、シランカップリング剤(D)、その他シロキサン化合物、その他シラン化合物、溶媒、添加剤等を適宜選択して、所望の粘度に調整しても良い。又は、市販のポリオルガノシロキサン(A)を適宜選択して、所望の粘度に調整しても良い。
 本明細書において、25℃における粘度とは、円錐-平板形回転粘度計(コーンプレート型粘度計)(例えば、レオメーター(商品名「PhysicaUDS-200」、AntonPaar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°))を用いて、温度:25℃、回転数:5rpmの条件で測定された粘度をいう。
The viscosity of the curable resin composition of the present invention can be appropriately adjusted by a known or common method. For example, silsesquioxane (B), silane coupling agent (D), other siloxane compounds, other silane compounds, solvents, additives, and the like may be appropriately selected to adjust the desired viscosity. Alternatively, a commercially available polyorganosiloxane (A) may be appropriately selected and adjusted to a desired viscosity.
In this specification, the viscosity at 25 ° C. refers to a cone-plate rotational viscometer (cone plate viscometer) (for example, a rheometer (trade name “PhysicaUDS-200”, manufactured by Anton Paar)) and a cone plate (cone diameter). : 16 mm, taper angle = 0 °)), and the viscosity measured under the conditions of temperature: 25 ° C. and rotation speed: 5 rpm.
[硬化物]
 本発明の硬化性樹脂組成物を硬化反応(ヒドロシリル化反応)により硬化させることにより、硬化物(以下、「本発明の硬化物」と称する場合がある)を得ることができる。硬化反応の際の条件は、特に限定されず、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25~180℃(より好ましくは60℃~150℃)が好ましく、時間(硬化時間)は5~720分が好ましい。本発明の硬化物は、耐熱性、透明性、柔軟性等の各種物性に優れ、更に、リフロー工程における耐クラック性、パッケージに対する密着性等の耐リフロー性に優れ、腐食性ガスに対するバリア性にも優れる。
[Cured product]
By curing the curable resin composition of the present invention by a curing reaction (hydrosilylation reaction), a cured product (hereinafter sometimes referred to as “cured product of the present invention”) can be obtained. Conditions for the curing reaction are not particularly limited and can be appropriately selected from conventionally known conditions. For example, from the viewpoint of reaction rate, the temperature (curing temperature) is 25 to 180 ° C. (more preferably 60 ° C.). To 150 ° C.), and the time (curing time) is preferably 5 to 720 minutes. The cured product of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further excellent in reflow resistance such as crack resistance in a reflow process and adhesion to a package, and in barrier properties against corrosive gas. Also excellent.
[封止材及び半導体装置]
 本発明の封止材は、本発明の硬化性樹脂組成物を必須成分として含む封止材である。本発明の硬化性樹脂組成物を硬化させることにより得られる封止材(硬化物)は、耐熱性、透明性、柔軟性等の各種物性に優れ、更に、耐リフロー性、腐食性ガスに対するバリア性に優れる。このため、本発明の封止材は、半導体装置における半導体素子の封止材、特に、光半導体装置における光半導体素子(特に、高輝度、短波長の光半導体素子)の封止材等として好ましく使用できる。本発明の封止材を用いて半導体素子(特に、光半導体素子)を封止することによって、耐久性及び品質に優れた半導体装置(特に、光半導体装置)が得られる。
[Encapsulant and semiconductor device]
The sealing material of the present invention is a sealing material containing the curable resin composition of the present invention as an essential component. The sealing material (cured product) obtained by curing the curable resin composition of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further has a barrier against reflow resistance and corrosive gas. Excellent in properties. Therefore, the sealing material of the present invention is preferably used as a sealing material for a semiconductor element in a semiconductor device, particularly as a sealing material for an optical semiconductor element (particularly, a high-luminance, short-wavelength optical semiconductor element) in an optical semiconductor device. Can be used. By sealing a semiconductor element (especially an optical semiconductor element) using the sealing material of the present invention, a semiconductor device (particularly an optical semiconductor device) excellent in durability and quality can be obtained.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 反応生成物及び製品の1H-NMR分析は、JEOL ECA500(500MHz)により行った。また、反応生成物及び製品の数平均分子量及び重量平均分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guardcolumn HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃、により行った。
[ポリオルガノシロキサン(A)]
 ポリオルガノシロキサン(A)として、以下の製品を使用した。
1 H-NMR analysis of the reaction product and product was performed by JEOL ECA500 (500 MHz). In addition, the number average molecular weight and the weight average molecular weight of the reaction product and the product are measured by Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), column: Tskel GMH HR -M × 2 (Tosoh Corporation) )), Guard column: Tskel guardcolumn H HR L (manufactured by Tosoh Corp.), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF, measurement conditions: 40 ° C.
[Polyorganosiloxane (A)]
The following products were used as the polyorganosiloxane (A).
 GD-1125A:長興化学工業(株)製、ビニル基含有量1.13重量%、フェニル基含有量42.79重量%、SiH基含有量(ヒドリド換算)0重量%、数平均分子量2858、重量平均分子量9598、粘度6300mPa・s
 GD-1125B:長興化学工業(株)製、ビニル基含有量3.71重量%、フェニル基含有量51.75重量%、SiH基含有量(ヒドリド換算)0.16重量%、数平均分子量671、重量平均分子量1354、粘度5900mPa・s
 OE-6631A:東レ・ダウコーニング(株)製、ビニル基含有量1.72重量%、フェニル基含有量54.20重量%、SiH基含有量(ヒドリド換算)0重量%、数平均分子量3600、重量平均分子量11000、粘度5100mPa・s
 OE-6631B:東レ・ダウコーニング(株)製、ビニル基含有量3.81重量%、フェニル基含有量57.49重量%、SiH基含有量(ヒドリド換算)0.34重量%、数平均分子量830、重量平均分子量2200、粘度13500mPa・s
GD-1125A: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.13 wt%, phenyl group content 42.79 wt%, SiH group content (hydride conversion) 0 wt%, number average molecular weight 2858, weight Average molecular weight 9598, viscosity 6300 mPa · s
GD-1125B: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 3.71% by weight, phenyl group content 51.75% by weight, SiH group content (hydride conversion) 0.16% by weight, number average molecular weight 671 , Weight average molecular weight 1354, viscosity 5900 mPa · s
OE-6663A: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 1.72% by weight, phenyl group content 54.20% by weight, SiH group content (hydride conversion) 0% by weight, number average molecular weight 3600, Weight average molecular weight 11000, viscosity 5100 mPa · s
OE-6631B: manufactured by Toray Dow Corning Co., Ltd., vinyl group content 3.81% by weight, phenyl group content 57.49% by weight, SiH group content (hydride conversion) 0.34% by weight, number average molecular weight 830, weight average molecular weight 2200, viscosity 13500 mPa · s
[シルセスキオキサン(B)の合成]
<合成例1>
 反応容器に、フェニルトリエトキシシラン(信越化学工業(株)製)15.86g及びメチルイソブチルケトン(MIBK)6.16gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水4.32g及び5Nの塩酸0.16g(塩化水素として2.4ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを26.67g添加して、反応溶媒を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で5Nの塩酸0.16g(塩化水素として25ミリモル)を添加し、重縮合反応を窒素下で4時間行った。
 続いて、上記反応溶液にジビニルテトラメチルジシロキサン11.18g及びヘキサメチルジシロキサン3.25gを添加して、シリル化反応を70℃で4時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。
 次に、当該上層液から、1mmHg、40℃の条件で溶媒を留去し、無色透明の液状の反応生成物(末端にビニル基を有するラダー型シルセスキオキサン、13.0g)を得た。
 上記反応の数平均分子量(Mn)は840であり、分子量分散度は1.06であった。
[Synthesis of Silsesquioxane (B)]
<Synthesis Example 1>
A reaction vessel was charged with 15.86 g of phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) and 6.16 g of methyl isobutyl ketone (MIBK), and the mixture was cooled to 10 ° C. To the above mixture, 4.32 g of water and 0.16 g of 5N hydrochloric acid (2.4 mmol as hydrogen chloride) were added dropwise over 1 hour. After the addition, these mixtures were kept at 10 ° C. for 1 hour. Thereafter, 26.67 g of MIBK was added to dilute the reaction solvent.
Next, the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 0.16 g of 5N hydrochloric acid (25 mmol as hydrogen chloride) was added, and the polycondensation reaction was performed under nitrogen for 4 hours. .
Subsequently, 11.18 g of divinyltetramethyldisiloxane and 3.25 g of hexamethyldisiloxane were added to the reaction solution, and a silylation reaction was performed at 70 ° C. for 4 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
Next, the solvent was distilled off from the upper layer liquid under the conditions of 1 mmHg and 40 ° C. to obtain a colorless and transparent liquid reaction product (ladder-type silsesquioxane having a vinyl group at the terminal, 13.0 g). .
The number average molecular weight (Mn) of the above reaction was 840, and the molecular weight dispersity was 1.06.
[イソシアヌレート化合物(C)]
 イソシアヌレート化合物(C)として、以下の製品を使用した。
 モノアリルジグリシジルイソシアヌレート:四国化成工業(株)製
[Isocyanurate Compound (C)]
The following products were used as the isocyanurate compound (C).
Monoallyl diglycidyl isocyanurate: manufactured by Shikoku Chemicals Co., Ltd.
[シランカップリング剤(D)]
 シランカップリング剤(D)として、以下の製品を使用した。
 3-グリシジルオキシプロピルトリメトキシシラン:東レ・ダウ・コーニング(株)製
[Silane coupling agent (D)]
The following products were used as the silane coupling agent (D).
3-Glycidyloxypropyltrimethoxysilane: manufactured by Toray Dow Corning
[シランカップリング剤(D)の合成]
<合成例2>
 反応容器に、3-グリシドキシプロピルトリメトキシシラン210.9g、テトラエトキシシラン20.8g、メタノール210.9g、エタノール20.8g及びフッ化カリウム(1%エタノール溶液)17.4gを仕込み、これらの混合物を50℃まで昇温した。
 次に、水16.2g及びエタノール16.2gを30分間かけて滴下し、更に昇温した後、重縮合反応を還流下で4時間行った。
 続いて、常圧下、80℃まで昇温しながら揮発成分を留去した。その後、減圧条件(30Torr)下、100℃まで昇温しながら残存する揮発成分を留去し、無色透明の液状の反応生成物(141.5g)を得た。
[Synthesis of Silane Coupling Agent (D)]
<Synthesis Example 2>
A reaction vessel was charged with 210.9 g of 3-glycidoxypropyltrimethoxysilane, 20.8 g of tetraethoxysilane, 210.9 g of methanol, 20.8 g of ethanol and 17.4 g of potassium fluoride (1% ethanol solution). The mixture was heated to 50 ° C.
Next, 16.2 g of water and 16.2 g of ethanol were added dropwise over 30 minutes, the temperature was further raised, and a polycondensation reaction was performed under reflux for 4 hours.
Subsequently, the volatile components were distilled off while raising the temperature to 80 ° C. under normal pressure. Thereafter, the remaining volatile components were distilled off while raising the temperature to 100 ° C. under reduced pressure conditions (30 Torr) to obtain a colorless and transparent liquid reaction product (141.5 g).
[亜鉛化合物(E)]
 亜鉛化合物(E)として、以下の製品を使用した。
 オクチル酸亜鉛:日本化学産業(株)製、商品名「ニッカオクチックス亜鉛」(Zn:15%)
[Zinc compound (E)]
The following products were used as the zinc compound (E).
Zinc octylate: manufactured by Nippon Chemical Industry Co., Ltd., trade name “Nikka Octix Zinc” (Zn: 15%)
<実施例及び比較例>
 実施例1~5及び比較例1~3を、以下の手順に従って実施した。
 表1に従って、シルセスキオキサン(B)、イソシアヌレート化合物(C)、シランカップリング剤(D)、及び亜鉛化合物(E)を所定重量比率(表1及び表2中の各成分の配合量の単位は、重量部である)で混合した後、60℃で2時間攪拌した。その後、室温まで冷却した後、ポリオルガノシロキサン(A)を混合し、更に室温で30分間攪拌して硬化性樹脂組成物を得た。
 なお、表1中、オクチル酸亜鉛については、「ニッカオクチックス亜鉛」からミネラルスピリットを除いた量を示した。
<Examples and Comparative Examples>
Examples 1 to 5 and Comparative Examples 1 to 3 were carried out according to the following procedure.
According to Table 1, silsesquioxane (B), isocyanurate compound (C), silane coupling agent (D), and zinc compound (E) are mixed at a predetermined weight ratio (the amount of each component in Tables 1 and 2). The unit is parts by weight), and the mixture was stirred at 60 ° C. for 2 hours. Then, after cooling to room temperature, polyorganosiloxane (A) was mixed and further stirred at room temperature for 30 minutes to obtain a curable resin composition.
In Table 1, for zinc octylate, the amount obtained by removing mineral spirit from “Nikka Octix zinc” is shown.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[粘度の測定]
 上記各試料を、レオメーター(商品名「PhysicaUDS-200」、AntonPaar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:25℃、回転数:5rpmの条件の条件で、25℃における粘度(mPa・s)を測定した。
[Measurement of viscosity]
Using the rheometer (trade name “PhysicaUDS-200”, manufactured by Anton Paar) and a cone plate (cone diameter: 16 mm, taper angle = 0 °), the above samples were subjected to conditions of temperature: 25 ° C. and rotation speed: 5 rpm. Under the conditions, the viscosity (mPa · s) at 25 ° C. was measured.
[光度維持率の測定]
 図1に示すLEDパッケージ(InGaN素子、3.5mm×2.8mm)に、実施例1~5、比較例1~3で得られた硬化性樹脂組成物を注入し、60℃で1時間、続いて、80℃で1時間150℃で4時間加熱して、試料を作成した。なお、LEDパッケージに硬化性樹脂組成物を注入した後、150℃で1時間加熱して、試料を作成しても良い。
 上記各試料について、全光束測定機(オプトロニックラボラトリーズ社製、マルチ分光放射測定システム「OL771」)を用いて、20mAの電流を流した際の全光束(単位:lm)を測定し、これを腐食性試験前の全光束とした。
 次に、上記各試料について、後述するSOX腐食性試験及びH2S腐食性試験に供し、上記と同様にして全光束を測定し、これを腐食性試験後の全光束とした。
 その後、次式に従って、光度維持率を算出した。
 光度維持率(%)=(腐食試験前の全光束/腐食試験後の全光束)×100
[Measurement of luminous intensity maintenance rate]
The curable resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were injected into the LED package (InGaN element, 3.5 mm × 2.8 mm) shown in FIG. Then, it heated at 80 degreeC for 1 hour and 150 degreeC for 4 hours, and created the sample. In addition, after inject | pouring curable resin composition into a LED package, it may heat at 150 degreeC for 1 hour, and may produce a sample.
Using the total luminous flux measuring machine (manufactured by Optronic Laboratories, multi-spectral radiation measurement system “OL771”), the total luminous flux (unit: lm) when a current of 20 mA is passed is measured for each sample. The total luminous flux before the corrosivity test was used.
Next, each sample was subjected to the SO X corrosion test and H 2 S corrosion test described later, and the total luminous flux was measured in the same manner as described above, and this was defined as the total luminous flux after the corrosion test.
Then, the luminous intensity maintenance factor was calculated according to the following formula.
Luminance maintenance rate (%) = (total luminous flux before corrosion test / total luminous flux after corrosion test) × 100
[SOX腐食性試験]
 上記各試料と硫黄粉末(キシダ化学(株)製)0.3gとを450mlのガラス瓶に入れ、更に上記ガラス瓶をアルミ製の箱の中に入れた。続いて、上記アルミ製の箱をオーブン(ヤマト科学(株)製、型番「DN-64」)に入れ、オーブン温度を80℃に設定した後、24時間後に取出し、上述の通り全光束を測定した。
[SO X corrosion test]
Each of the above samples and 0.3 g of sulfur powder (manufactured by Kishida Chemical Co., Ltd.) were placed in a 450 ml glass bottle, and the glass bottle was further placed in an aluminum box. Subsequently, the aluminum box is put into an oven (manufactured by Yamato Kagaku Co., Ltd., model number “DN-64”), the oven temperature is set to 80 ° C., taken out after 24 hours, and the total luminous flux is measured as described above. did.
[H2S腐食性試験]
 上記各試料を硫化水素濃度25ppm、温度50℃、湿度80%RHに調整したガス腐食試験機(スガ試験機(株)製、型番「GS-UV」)に入れ、96時間後に取出し、上述の通り全光束を測定した。
[H 2 S corrosion test]
Each sample was placed in a gas corrosion tester (model number “GS-UV” manufactured by Suga Test Instruments Co., Ltd.) adjusted to a hydrogen sulfide concentration of 25 ppm, a temperature of 50 ° C., and a humidity of 80% RH, and taken out after 96 hours. The total luminous flux was measured.
[耐腐食性の評価]
 耐腐食性の評価基準については、以下の通りとした。
A:SOX腐食性試験における光度維持率が85%以上、且つ、H2S腐食性試験における光度維持率が99%以上
B:SOX腐食性試験における光度維持率が85%以上、且つ、H2S腐食性試験における光度維持率が99%未満
C:SOX腐食性試験における光度維持率が85%未満
[Evaluation of corrosion resistance]
The evaluation standards for corrosion resistance were as follows.
A: The luminous intensity maintenance rate in the SO X corrosion test is 85% or more, the luminous intensity maintenance rate in the H 2 S corrosion test is 99% or more, and B: The luminous intensity maintenance rate in the SO X corrosion test is 85% or more, and Luminance maintenance rate in H 2 S corrosion test is less than 99% C: Luminance maintenance rate in SO X corrosion test is less than 85%
[耐熱衝撃性試験]
 上記各試料につき、熱衝撃試験機(エスペック(株)社製、型番「TSB-21」)を用いて、温度-40℃で5分間、続いて温度100℃で5分間、曝露する事を1サイクルとした熱衝撃付与を、1000サイクル実施した。その後、デジタルマイクロスコープ((株)キーエンス製、型番「VW-9000」)を用いて、LEDパッケージの封止材に剥離及びクラックが認められる試料数をカウントし、剥離発生率及びクラック発生率を次式に従って算出した。
 剥離発生率(%)=(剥離が認められる試料数/全試料数)×100
 クラック発生率(%)=(クラックが認められる試料数/全試料数)×100
[Thermal shock resistance test]
Using the thermal shock tester (manufactured by ESPEC Corporation, model number “TSB-21”) for each of the above samples, exposure to a temperature of −40 ° C. for 5 minutes, followed by a temperature of 100 ° C. for 5 minutes is 1 The application of thermal shock as a cycle was performed 1000 cycles. Then, using a digital microscope (manufactured by Keyence Co., Ltd., model number “VW-9000”), the number of samples where peeling and cracks were observed in the LED package sealing material was counted, and the peeling occurrence rate and crack occurrence rate were calculated. It calculated according to the following formula.
Peeling occurrence rate (%) = (number of samples in which peeling is recognized / total number of samples) × 100
Crack generation rate (%) = (number of samples with cracks / total number of samples) × 100
[耐熱衝撃性の評価]
 耐熱衝撃性の評価基準については、以下の通りとした。
A:剥離発生率が20%以下、且つ、クラック発生率が10%以下
B:剥離発生率が20%を超え50%以下、且つ、クラック発生率が10%以下
C:クラック発生率が10%を超える
[Evaluation of thermal shock resistance]
The evaluation criteria for thermal shock resistance were as follows.
A: Peeling occurrence rate is 20% or less and crack occurrence rate is 10% or less B: Peeling occurrence rate is over 20% and 50% or less, and crack occurrence rate is 10% or less C: Crack occurrence rate is 10% Over
[耐リフロー性試験]
 上記各試料を温度30℃、湿度70%RHに調整した恒温恒湿層(エスペック(株)社製、型番「SH-641」)に入れ、192時間後に取り出した。続いて、上記各試料につき、リフロー炉(ANTOM(株)社製、型番「UNI-5016F」)を用いて、温度260℃で10秒間の加熱処理を2回施した。その後、剥離発生率及びクラック発生率を、上記耐熱衝撃性試験と同じ要領で算出した。
[Reflow resistance test]
Each of the above samples was placed in a constant temperature and humidity layer (manufactured by ESPEC Corp., model number “SH-641”) adjusted to a temperature of 30 ° C. and a humidity of 70% RH, and taken out after 192 hours. Subsequently, each sample was heat-treated twice at a temperature of 260 ° C. for 10 seconds using a reflow furnace (manufactured by ANTOM Co., Ltd., model number “UNI-5016F”). Thereafter, the peel occurrence rate and the crack occurrence rate were calculated in the same manner as in the thermal shock resistance test.
[耐リフロー性の評価]
 耐リフロー性の評価基準については、以下の通りとした。
A:剥離発生率が10%以下、且つ、クラック発生率が20%以下
B:剥離発生率が10%以下、且つ、クラック発生率が20%を超え50%以下
C:剥離発生率が10%を超える
[Evaluation of reflow resistance]
The evaluation criteria for reflow resistance were as follows.
A: Peeling rate is 10% or less and cracking rate is 20% or less B: Peeling rate is 10% or less, and cracking rate is over 20% and 50% or less C: Peeling rate is 10% Over
 比較例1~3では、耐腐食性、耐熱衝撃性、耐リフロー性のいずれも、満足できる結果ではなかった。
 それに対して、実施例1では、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及びシランカップリング剤(D)を添加する事により、耐腐食性(特に耐SOX腐食性)が大幅に向上すると共に、耐リフロー性(特に剥離発生率)の劇的な改善が認められた。
 また、実施例2では、合成例2のシランカップリング剤(D)を用いる事により、実施例1よりも耐H2S腐食性が大幅に向上すると共に、耐熱衝撃性の大幅な改善が認められた。
 次に、実施例3では、特許文献4に記載された範囲の亜鉛化合物(E)を添加したところ、耐H2S腐食性が向上し、耐腐食性としては満足できるレベルとなった。一方、耐熱衝撃性は、実施例2よりも若干低下する傾向が認められた。
 そこで、実施例4では、実施例3よりも亜鉛化合物(E)を更に増量したところ、驚くべき事に、実施例3では低下した耐熱衝撃性が、実施例4では逆に大幅に向上する事が認められた。それに加えて、耐リフロー性も劇的に改善する事が認められた。
 なお、実施例5では、実施例3よりもシランカップリング剤(D)を減量したところ、耐熱衝撃性は向上する傾向が認められたが、耐リフロー性は若干低下する結果となった。
 以上より、耐SOX腐食性と耐H2S腐食性を両立しながら、実用に十分なレベルの耐熱衝撃性及び耐リフロー性を併せ持つ硬化性樹脂組成物、硬化物、封止材、及び光半導体装置を得る事ができた。
In Comparative Examples 1 to 3, none of the corrosion resistance, thermal shock resistance, and reflow resistance was satisfactory.
On the other hand, in Example 1, by adding the silsesquioxane (B), the isocyanurate compound (C), and the silane coupling agent (D), the corrosion resistance (especially SO X corrosion resistance) is improved. Along with a significant improvement, a dramatic improvement in reflow resistance (particularly the occurrence rate of peeling) was observed.
Further, in Example 2, by using the silane coupling agent (D) of Synthesis Example 2, the H 2 S corrosion resistance is significantly improved as compared to Example 1, and a significant improvement in thermal shock resistance is recognized. It was.
Next, in Example 3, when the zinc compound (E) in the range described in Patent Document 4 was added, the H 2 S corrosion resistance was improved, and the corrosion resistance was at a satisfactory level. On the other hand, the thermal shock resistance tended to be slightly lower than in Example 2.
Therefore, in Example 4, when the amount of the zinc compound (E) was further increased as compared with Example 3, surprisingly, the thermal shock resistance decreased in Example 3 was significantly improved in Example 4. Was recognized. In addition, reflow resistance has been dramatically improved.
In Example 5, when the amount of the silane coupling agent (D) was reduced as compared with Example 3, the thermal shock resistance tended to improve, but the reflow resistance slightly decreased.
As described above, a curable resin composition, a cured product, a sealing material, and light having both a sufficient level of thermal shock resistance and reflow resistance for practical use while satisfying both SO X corrosion resistance and H 2 S corrosion resistance. A semiconductor device was obtained.
 本発明の硬化性樹脂組成物及び硬化物は、耐熱性、透明性、柔軟性、腐食性ガスに対するバリア性、耐熱衝撃性、耐リフロー性が求められる接着剤、コーティング剤、封止材等の用途に有用である。特に、本発明の硬化性樹脂組成物及び硬化物は、光半導体素子(例えば、LED素子、半導体レーザー素子、太陽光発電素子、CCD素子等)の封止材として好適である。 The curable resin composition and the cured product of the present invention include heat-resistant, transparent, flexible, barrier property against corrosive gas, thermal shock resistance, reflow resistance, adhesives, coating agents, sealing materials, etc. Useful for applications. In particular, the curable resin composition and the cured product of the present invention are suitable as a sealing material for optical semiconductor elements (for example, LED elements, semiconductor laser elements, solar power generation elements, CCD elements, etc.).
100:リフレクター(光反射用樹脂組成物)
101:金属配線
102:光半導体素子
103:ボンディングワイヤ
104:硬化物(封止材)
100: Reflector (resin composition for light reflection)
101: Metal wiring 102: Optical semiconductor element 103: Bonding wire 104: Hardened material (sealing material)

Claims (17)

  1.  ポリオルガノシロキサン(A)、シルセスキオキサン(B)、及びイソシアヌレート化合物(C)を含む硬化性樹脂組成物であって、
     ポリオルガノシロキサン(A)がアリール基を有するポリオルガノシロキサンであり、
     粘度が4000~8000mPa・sである硬化性樹脂組成物。
    A curable resin composition comprising a polyorganosiloxane (A), a silsesquioxane (B), and an isocyanurate compound (C),
    The polyorganosiloxane (A) is a polyorganosiloxane having an aryl group,
    A curable resin composition having a viscosity of 4000 to 8000 mPa · s.
  2.  ポリオルガノシロキサン(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)が500~4000である請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the polyorganosiloxane (A) has a number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography of 500 to 4000.
  3.  ポリオルガノシロキサン(A)のゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の重量平均分子量をMw、数平均分子量をMnとしたときの分子量分散度(Mw/Mn)が0.95~4.00である請求項1又は2に記載の硬化性樹脂組成物。 The molecular weight dispersity (Mw / Mn) is 0.95 to 4.00 when the weight average molecular weight of the polyorganosiloxane (A) in terms of standard polystyrene by gel permeation chromatography is Mw and the number average molecular weight is Mn. The curable resin composition according to claim 1 or 2.
  4.  ポリオルガノシロキサン(A)として、脂肪族炭素-炭素二重結合を有するポリオルガノシロキサン(A1)を含む請求項1~3のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, comprising a polyorganosiloxane (A1) having an aliphatic carbon-carbon double bond as the polyorganosiloxane (A).
  5.  ポリオルガノシロキサン(A)として、Si-H結合を有するポリオルガノシロキサン(A2)を含む請求項1~4のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, comprising a polyorganosiloxane (A2) having a Si-H bond as the polyorganosiloxane (A).
  6.  ポリオルガノシロキサン(A)として、式(6)
    Figure JPOXMLDOC01-appb-C000001
     [式(6)中、R21~R26は、同一又は異なって、水素原子、アリール基、一価の炭化水素基、一価の複素環式基、又は脂肪族炭素-炭素不飽和結合を含む一価の基を示す。但し、R21~R26の内1つ以上は、脂肪族炭素-炭素不飽和結合を含む一価の基である。また、R21~R26の内1つ以上は、アリール基である。R27は、二価の炭化水素基を示す。r、sは、それぞれ1以上の整数を示す。]
    で表される構造を含むポリオルガノシロキサンを含む請求項1~5のいずれか1項に記載の硬化性樹脂組成物。
    As polyorganosiloxane (A), formula (6)
    Figure JPOXMLDOC01-appb-C000001
    [In Formula (6), R 21 to R 26 are the same or different and each represents a hydrogen atom, an aryl group, a monovalent hydrocarbon group, a monovalent heterocyclic group, or an aliphatic carbon-carbon unsaturated bond. Including monovalent group. However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond. One or more of R 21 to R 26 are an aryl group. R 27 represents a divalent hydrocarbon group. r and s each represent an integer of 1 or more. ]
    The curable resin composition according to any one of claims 1 to 5, comprising a polyorganosiloxane having a structure represented by:
  7.  シルセスキオキサン(B)が、ラダー型シルセスキオキサンである請求項1~6のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, wherein the silsesquioxane (B) is a ladder-type silsesquioxane.
  8.  イソシアヌレート化合物(C)が、式(1)
    Figure JPOXMLDOC01-appb-C000002
    [式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [式(2)及び式(3)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を示す。]]
    で表されるイソシアヌレート化合物である請求項1~7のいずれか1項に記載の硬化性樹脂組成物。
    The isocyanurate compound (C) has the formula (1)
    Figure JPOXMLDOC01-appb-C000002
    [In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]]
    The curable resin composition according to any one of claims 1 to 7, which is an isocyanurate compound represented by the formula:
  9.  式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上が式(3)で表される基である請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein any one or more of R x , R y , and R z in the formula (1) is a group represented by the formula (3).
  10.  更にシランカップリング剤(D)を含み、シランカップリング剤(D)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して0.01重量部以上1.0重量部未満である請求項1~9のいずれか1項に記載の硬化性樹脂組成物。 Further, a silane coupling agent (D) is contained, and the content of the silane coupling agent (D) is 0.00 with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition according to any one of claims 1 to 9, wherein the content is 01 parts by weight or more and less than 1.0 part by weight.
  11.  シランカップリング剤(D)が、1種類又は2種類以上のシランカップリング剤を加水分解及び部分縮合させる事により得られる部分縮合物を含む請求項10に記載の硬化性樹脂組成物。 The curable resin composition according to claim 10, wherein the silane coupling agent (D) contains a partial condensate obtained by hydrolysis and partial condensation of one or more silane coupling agents.
  12.  更に亜鉛化合物(E)を含み、亜鉛化合物(E)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して0.01重量部以上1.0重量部未満である請求項1~11のいずれか1項に記載の硬化性樹脂組成物。 Furthermore, the zinc compound (E) is contained, and the content of the zinc compound (E) is 0.01 parts by weight or more with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition according to any one of claims 1 to 11, which is less than 1.0 part by weight.
  13.  亜鉛化合物(E)の含有量が、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、0.3重量部以上0.6重量部未満である請求項12に記載の硬化性樹脂組成物。 The content of the zinc compound (E) is 0.3 parts by weight or more and less than 0.6 parts by weight with respect to the total amount (100 parts by weight) of the polyorganosiloxane (A) and the silsesquioxane (B). The curable resin composition according to claim 12.
  14.  亜鉛化合物(E)が、カルボン酸亜鉛である請求項12又は13に記載の硬化性樹脂組成物。 The curable resin composition according to claim 12 or 13, wherein the zinc compound (E) is zinc carboxylate.
  15.  請求項1~14のいずれか1項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか1項に記載の硬化性樹脂組成物を用いて得られる封止材。 A sealing material obtained using the curable resin composition according to any one of claims 1 to 14.
  17.  請求項16に記載の封止材を用いて得られる半導体装置。 A semiconductor device obtained using the sealing material according to claim 16.
PCT/JP2014/067864 2013-08-06 2014-07-04 Curing resin composition and semiconductor device employing same WO2015019767A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480021387.7A CN105209549B (en) 2013-08-06 2014-07-04 Hardening resin composition and use its semiconductor device
KR1020157031328A KR101631048B1 (en) 2013-08-06 2014-07-04 Curing resin composition and semiconductor device employing same
JP2015530761A JP5830201B2 (en) 2013-08-06 2014-07-04 Curable resin composition and semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013163577 2013-08-06
JP2013-163577 2013-08-06

Publications (1)

Publication Number Publication Date
WO2015019767A1 true WO2015019767A1 (en) 2015-02-12

Family

ID=52461106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067864 WO2015019767A1 (en) 2013-08-06 2014-07-04 Curing resin composition and semiconductor device employing same

Country Status (6)

Country Link
JP (1) JP5830201B2 (en)
KR (1) KR101631048B1 (en)
CN (1) CN105209549B (en)
MY (1) MY157548A (en)
TW (1) TWI546339B (en)
WO (1) WO2015019767A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186722A1 (en) * 2014-06-06 2015-12-10 株式会社ダイセル Curable resin composition, cured product, sealing material, and semiconductor device
JP2016216642A (en) * 2015-05-22 2016-12-22 株式会社ダイセル Curable resin composition, cured article thereof, encapsulation agent and semiconductor device
JP2017002172A (en) * 2015-06-09 2017-01-05 株式会社ダイセル Curable resin composition providing high hardness polysiloxane cured article and cured article thereof
WO2017192345A1 (en) * 2016-05-03 2017-11-09 Dow Corning Corporation Silsesquioxane resin and oxaamine composition

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125964A1 (en) 2013-02-14 2014-08-21 株式会社ダイセル Curable resin composition, cured product, sealing member semiconductor device
US9912311B2 (en) 2015-07-22 2018-03-06 Samsung Electronics Co., Ltd Multimode reconfigurable amplifier and analog filter including the same
WO2017119363A1 (en) * 2016-01-08 2017-07-13 株式会社ダイセル Curable silicone resin composition, cured article thereof, and optical-semiconductor device
CN109075229B (en) * 2016-03-30 2021-03-19 昭和电工材料株式会社 Thermosetting resin composition, substrate for mounting optical semiconductor element, method for producing same, and optical semiconductor device
JP6944120B2 (en) * 2016-09-07 2021-10-06 日亜化学工業株式会社 Curable resin composition, cured product thereof, and semiconductor device
TWI825299B (en) * 2019-03-26 2023-12-11 日商琳得科股份有限公司 Curable composition, cured product and method of using curable composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065044A1 (en) * 2009-11-30 2011-06-03 日本化薬株式会社 Curable resin composition and cured product thereof
JP2011111584A (en) * 2009-11-30 2011-06-09 Nippon Kayaku Co Ltd Epoxy resin composition, and curable resin composition
JP2011178983A (en) * 2010-01-26 2011-09-15 Yokohama Rubber Co Ltd:The Silicone resin composition and method for using the same, silicone resin, silicone resin-containing structure, and optical semiconductor device sealed body
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2012039322A1 (en) * 2010-09-22 2012-03-29 株式会社カネカ Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
WO2012063822A1 (en) * 2010-11-10 2012-05-18 横浜ゴム株式会社 Thermosetting silicone resin composition, and silicone resin-containing structure and optical semiconductor element encapsulant obtained using same
WO2012066998A1 (en) * 2010-11-18 2012-05-24 横浜ゴム株式会社 Heat-curable silicone resin composition, silicone resin-containing structure, optical semiconductor element sealed body, and silanol condensation catalyst
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
JP2012162666A (en) * 2011-02-08 2012-08-30 Kaneka Corp Polysiloxane-based composition of polyhedral structure
JP2012201706A (en) * 2011-03-23 2012-10-22 Kaneka Corp Polysiloxane-based composition
WO2013005633A1 (en) * 2011-07-04 2013-01-10 Jnc株式会社 Compound comprising isocyanuric skeleton, epoxy groups, and organopolysiloxane or silsesquioxane skeleton having sih groups, thermosetting resin composition comprising compound as agent for imparting adhesion, cured product, and sealing member for optical semiconductor
WO2013094625A1 (en) * 2011-12-22 2013-06-27 株式会社ダイセル Curable resin composition and curable product thereof
WO2013176238A1 (en) * 2012-05-25 2013-11-28 株式会社ダイセル Curable resin composition, and cured product, sealing agent, and optical semiconductor device using same
WO2014109349A1 (en) * 2013-01-09 2014-07-17 株式会社ダイセル Curable resin composition, and cured product of same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4275889B2 (en) 2001-02-09 2009-06-10 株式会社カネカ Light emitting diode and manufacturing method thereof
JP2006206721A (en) 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The Highly heat-resistant synthetic polymer compound and semiconductor device of high dielectric strength coated with the same
JP4826160B2 (en) 2005-07-28 2011-11-30 ナガセケムテックス株式会社 Optical element sealing resin composition
JP2011159912A (en) * 2010-02-03 2011-08-18 Sekisui Chem Co Ltd Sealing agent for optical semiconductor element, and optical semiconductor device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065044A1 (en) * 2009-11-30 2011-06-03 日本化薬株式会社 Curable resin composition and cured product thereof
JP2011111584A (en) * 2009-11-30 2011-06-09 Nippon Kayaku Co Ltd Epoxy resin composition, and curable resin composition
JP2011178983A (en) * 2010-01-26 2011-09-15 Yokohama Rubber Co Ltd:The Silicone resin composition and method for using the same, silicone resin, silicone resin-containing structure, and optical semiconductor device sealed body
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2012039322A1 (en) * 2010-09-22 2012-03-29 株式会社カネカ Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
WO2012063822A1 (en) * 2010-11-10 2012-05-18 横浜ゴム株式会社 Thermosetting silicone resin composition, and silicone resin-containing structure and optical semiconductor element encapsulant obtained using same
WO2012066998A1 (en) * 2010-11-18 2012-05-24 横浜ゴム株式会社 Heat-curable silicone resin composition, silicone resin-containing structure, optical semiconductor element sealed body, and silanol condensation catalyst
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
JP2012162666A (en) * 2011-02-08 2012-08-30 Kaneka Corp Polysiloxane-based composition of polyhedral structure
JP2012201706A (en) * 2011-03-23 2012-10-22 Kaneka Corp Polysiloxane-based composition
WO2013005633A1 (en) * 2011-07-04 2013-01-10 Jnc株式会社 Compound comprising isocyanuric skeleton, epoxy groups, and organopolysiloxane or silsesquioxane skeleton having sih groups, thermosetting resin composition comprising compound as agent for imparting adhesion, cured product, and sealing member for optical semiconductor
WO2013094625A1 (en) * 2011-12-22 2013-06-27 株式会社ダイセル Curable resin composition and curable product thereof
WO2013176238A1 (en) * 2012-05-25 2013-11-28 株式会社ダイセル Curable resin composition, and cured product, sealing agent, and optical semiconductor device using same
WO2014109349A1 (en) * 2013-01-09 2014-07-17 株式会社ダイセル Curable resin composition, and cured product of same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015186722A1 (en) * 2014-06-06 2015-12-10 株式会社ダイセル Curable resin composition, cured product, sealing material, and semiconductor device
JP2016216642A (en) * 2015-05-22 2016-12-22 株式会社ダイセル Curable resin composition, cured article thereof, encapsulation agent and semiconductor device
JP2017002172A (en) * 2015-06-09 2017-01-05 株式会社ダイセル Curable resin composition providing high hardness polysiloxane cured article and cured article thereof
WO2017192345A1 (en) * 2016-05-03 2017-11-09 Dow Corning Corporation Silsesquioxane resin and oxaamine composition
US10990012B2 (en) 2016-05-03 2021-04-27 Dow Silicones Corporation Silsesquioxane resin and oxaamine composition

Also Published As

Publication number Publication date
MY157548A (en) 2016-06-16
CN105209549A (en) 2015-12-30
TWI546339B (en) 2016-08-21
TW201506087A (en) 2015-02-16
KR101631048B1 (en) 2016-06-15
KR20150135531A (en) 2015-12-02
JP5830201B2 (en) 2015-12-09
CN105209549B (en) 2016-10-26
JPWO2015019767A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5830201B2 (en) Curable resin composition and semiconductor device using the same
JP5778875B2 (en) Curable resin composition and cured product thereof
JP6027209B2 (en) Curable resin composition, cured product, sealing material, and semiconductor device
JP5736524B1 (en) Curable resin composition and semiconductor device using the same
JP5736525B1 (en) Curable resin composition and semiconductor device using the same
JP6502658B2 (en) Curable silicone resin composition and cured product thereof
JP6474801B2 (en) Curable resin composition, cured product, sealing material, and semiconductor device
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
WO2015178475A1 (en) Branched-chain polyorganosiloxycyl alkylene, method for producing same, curable resin composition, and semiconductor device
WO2018235811A1 (en) Curable silicone resin composition and cured product thereof
JP6452545B2 (en) Curable silicone resin composition and cured product thereof
JP6460714B2 (en) Curable resin composition, cured product thereof, and semiconductor device
JP2017002172A (en) Curable resin composition providing high hardness polysiloxane cured article and cured article thereof
JP2016216642A (en) Curable resin composition, cured article thereof, encapsulation agent and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835123

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530761

Country of ref document: JP

Kind code of ref document: A

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20157031328

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835123

Country of ref document: EP

Kind code of ref document: A1