WO2015186722A1 - Curable resin composition, cured product, sealing material, and semiconductor device - Google Patents

Curable resin composition, cured product, sealing material, and semiconductor device Download PDF

Info

Publication number
WO2015186722A1
WO2015186722A1 PCT/JP2015/065989 JP2015065989W WO2015186722A1 WO 2015186722 A1 WO2015186722 A1 WO 2015186722A1 JP 2015065989 W JP2015065989 W JP 2015065989W WO 2015186722 A1 WO2015186722 A1 WO 2015186722A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
curable resin
ladder
silsesquioxane
Prior art date
Application number
PCT/JP2015/065989
Other languages
French (fr)
Japanese (ja)
Inventor
中川泰伸
板谷亮
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2016525196A priority Critical patent/JP6474801B2/en
Priority to CN201580029165.4A priority patent/CN106459584A/en
Priority to KR1020177000106A priority patent/KR20170016432A/en
Publication of WO2015186722A1 publication Critical patent/WO2015186722A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings

Definitions

  • the present invention relates to a curable resin composition, a cured product obtained using the curable resin composition, a sealing material, and a semiconductor device obtained using the sealing material.
  • a material covering a semiconductor element is generally required to have a heat resistance of about 150 ° C. or higher.
  • a material (encapsulant) that covers an optical material such as an optical semiconductor element is required to have excellent physical properties such as transparency and flexibility in addition to heat resistance.
  • silicone-based resin materials such as Patent Documents 1 to 4 are used.
  • Patent Document 1 as a material having high heat resistance and good heat dissipation, at least one first organosilicon polymer having a crosslinked structure of siloxane (Si—O—Si conjugate) and a linear shape of siloxane are disclosed.
  • a synthetic polymer compound containing at least one kind of a third organosilicon polymer having a molecular weight of 20,000 to 800,000, which is linked to at least one second organosilicon polymer having a linking structure by a siloxane bond. is disclosed. However, the physical properties of cured products of these compounds are not yet satisfactory.
  • Patent Document 2 discloses an optical element sealing resin composition excellent in transparency, UV resistance, and heat resistance colorability, which contains an aliphatic carbon-carbon unsaturated bond and does not contain an Si—H bond. At least selected from the group consisting of a liquid silsesquioxane of a type structure and a liquid silsesquioxane of a saddle type structure containing an Si—H bond and no aliphatic carbon-carbon unsaturated bond A resin composition for sealing an optical element containing one kind of silsesquioxane as a resin component is disclosed. And it describes that the transmittance
  • Patent Document 3 discloses an organic compound such as triallyl isocyanurate containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, and at least two SiH groups in one molecule.
  • a curable composition containing a chain-containing and / or cyclic polyorganosiloxane-containing compound and a hydrosilylation catalyst as an essential component is disclosed.
  • physical properties such as heat resistance and crack resistance of these materials are still not satisfactory.
  • the sealing material for optical semiconductors is required to have a high barrier property against corrosive gas (corrosion resistance against corrosive gas).
  • sealing materials using conventional silicone resin materials disclosed in Patent Documents 1 to 3 and the like cannot be said to have sufficient barrier properties against corrosive gases.
  • Patent Document 4 discloses (A) a polysiloxane having at least two alkenyl groups bonded to silicon atoms, (B) a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms, and (C) hydrosilyl. And (D) a zinc compound, the component (D) is contained in an amount of 0.1 to 5 parts by mass relative to a total of 100 parts by mass of the component (A) and the component (B), A silicone resin composition having excellent sulfidation properties is disclosed. However, although corrosion resistance against hydrogen sulfide (H 2 S) is disclosed, there is no description about corrosion resistance against other corrosive gases. Also, the heat resistance was not satisfactory.
  • H 2 S corrosion resistance against hydrogen sulfide
  • the object of the present invention is to provide heat resistance (especially heat resistance of 180 ° C. or more) and corrosion resistance against corrosive gases (particularly barrier properties against hydrogen sulfide (H 2 S) gas (H 2 S corrosion resistance). ) and sulfur oxides (combines SO x) barrier properties against gases (resistance SO x corrosion)), to provide a useful cure resin composition for the sealing purpose of the semiconductor device (particularly an optical semiconductor element) It is in.
  • Another object of the present invention is to provide a curable resin composition useful for sealing semiconductor devices (especially optical semiconductor devices), which has transparency and flexibility, and also has heat resistance and corrosion resistance against corrosive gases. To provide things.
  • the present invention includes a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare earth metal atom.
  • a curable resin composition comprising a polyorganosiloxane having no group and a ladder-type silsesquioxane as the silsesquioxane (B).
  • the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule.
  • the ladder-type silsesquioxane includes a ladder-type silsesquioxane having a Si—H bond in the molecule.
  • the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aryl group in the molecule.
  • the formula (1) [In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3). [In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]] It is preferable that the isocyanurate compound represented by these is included.
  • the compound represented by the formula (1) is preferably a compound in which at least one of R x , R y and R z is a group represented by the formula (3).
  • the carboxylate (E) of the rare earth metal atom it is preferable to contain yttrium carboxylate.
  • the carboxylate (E) of the rare earth metal atom is preferably a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate.
  • the ratio of the total number is preferably less than 1.
  • a silane coupling agent (D) is included.
  • the present invention provides a cured product obtained by curing the curable resin composition.
  • this invention provides the sealing material obtained using the said curable resin composition.
  • the present invention provides a semiconductor device obtained using the sealing material.
  • the polyorganosiloxane (A) has an aryl group.
  • a curable resin composition comprising a polyorganosiloxane that does not contain a ladder-type silsesquioxane as silsesquioxane (B).
  • the isocyanurate compound represented by the formula (1) is an isocyanurate compound in which one or more of R x , R y , and R z are groups represented by the formula (3)
  • the rare earth metal carboxylate (E) is a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate, [1] to [6] Curable resin composition.
  • Si— present in the compound contained in the curable resin composition relative to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition The curable resin composition according to any one of [1] to [8], wherein the ratio of the total number of H groups is less than 1.
  • the polyorganosiloxane contained in the polyorganosiloxane (A) is a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond [1] ]
  • the content of the ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule is 20% by weight or more based on the total amount of the silsesquioxane (B) [2]
  • the content of the ladder-type silsesquioxane having a Si—H bond in the molecule is 10% by weight or more based on the total amount of the silsesquioxane (B) [3] to [16]
  • the curable resin composition of the present invention Since the curable resin composition of the present invention has the above-described configuration, it has heat resistance and barrier properties against a plurality of corrosive gases such as H 2 S gas and SO x gas (H 2 S corrosion resistance, SO resistance). x Excellent corrosion resistance. Moreover, it is excellent also in transparency, a softness
  • H 2 S gas and SO x gas H 2 S corrosion resistance, SO resistance
  • x Excellent corrosion resistance
  • the curable resin composition of the present invention includes at least a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare earth metal atom.
  • the polyorganosiloxane (A) contains at least a polyorganosiloxane having no aryl group.
  • the silsesquioxane (B) includes at least a ladder-type silsesquioxane.
  • the polyorganosiloxane (A) in the curable resin composition of the present invention is a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si) and having no aryl group. Including at least.
  • a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si) may be simply referred to as “polyorganosiloxane”.
  • the polyorganosiloxane contained in the polyorganosiloxane (A) is not particularly limited.
  • polyorganosiloxane having no aryl group polyorganosiloxane having an aryl group, -Si-O- group
  • a polyorganosiloxane having an —Si—A— group [silalkylene group; A represents a divalent hydrocarbon group (for example, an alkylene group)] and no aryl group (hereinafter referred to as the “siloxy group”).
  • Polyorganosiloxane is referred to as “polyorganosiloxysilalkylene”).
  • the polyorganosiloxane contained in the polyorganosiloxane (A) may be a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond.
  • Examples of the polyorganosiloxane contained in the polyorganosiloxane (A) include polyorganosiloxanes having a well-known and commonly used silicone skeleton such as a dimethyl silicone skeleton (polydimethylsiloxane).
  • silsesquioxane (B) is not contained in the polyorganosiloxane contained in polyorganosiloxane (A).
  • the polyorganosiloxane contained in the polyorganosiloxane (A) may be a polyorganosiloxane having a straight chain and / or a branched chain.
  • the aryl group in the polyorganosiloxane having an aryl group is not particularly limited, and examples thereof include C 6-14 aryl groups (particularly C 6-10 aryl groups) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
  • the polyorganosiloxane having no aryl group is preferably a polyorganosiloxane that does not substantially contain an aryl group in the molecule.
  • the content of the aryl group in the polyorganosiloxane having no aryl group (100% by weight) is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, The content is more preferably 0.1% by weight or less, and particularly preferably no aryl group is present in the polyorganosiloxane (A).
  • the content of the aryl group is 0.5% by weight or less (particularly due to the absence of the aryl group), desired physical properties (such as heat resistance and refractive index) are easily obtained in the cured product.
  • the content of aryl groups in the polyorganosiloxane can be measured by 1 H-NMR.
  • Examples of the substituent of the silicon atom in the polyorganosiloxane contained in the polyorganosiloxane (A) include a group having a Si—H bond, a substituted or unsubstituted hydrocarbon group (preferably an alkyl group, an alkenyl group).
  • Cycloalkyl group or cycloalkenyl group hydroxyl group, alkoxy group, alkenyloxy group, acyloxy group, mercapto group (thiol group), alkylthio group, alkenylthio group, carboxyl group, alkoxycarbonyl group, amino group or substituted amino group
  • Examples include a group (mono or dialkylamino group, acylamino group, etc.), an epoxy group, a halogen atom, and the like.
  • alkyl group a C 1-10 alkyl group is preferable, and a C 1-4 alkyl group is more preferable.
  • the alkenyl group is preferably a C 2-10 alkenyl group, and more preferably a C 2-4 alkenyl group.
  • the cycloalkyl group is preferably a C 3-12 cycloalkyl group.
  • As the cycloalkenyl group a C 3-12 cycloalkenyl group is preferable.
  • alkoxy group a C 1-6 alkoxy group is preferable.
  • the alkenyloxy group is preferably a C 1-6 alkenyloxy group.
  • acyloxy group a C 1-6 acyloxy group is preferable.
  • alkylthio group a C 1-6 alkylthio group is preferable.
  • alkenylthio group a C 1-6 alkenylthio group is preferable.
  • the alkoxycarbonyl group is preferably a C 1-6 alkoxycarbonyl group.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are preferable.
  • At least one substituent selected from a group having a Si—H bond and a substituted or unsubstituted hydrocarbon group (preferably an alkyl group or an alkenyl group) is preferable.
  • the position of the substituent in the polyorganosiloxane is not particularly limited, and may be located in the side chain or at the terminal with respect to the main chain composed of the siloxane bond (Si—O—Si). May be.
  • the polyorganosiloxane having a hydrosilyl group may be a polyorganosiloxane having an aliphatic carbon-carbon unsaturated bond at the same time. Further, the polyorganosiloxane having an aliphatic carbon-carbon unsaturated bond may be a polyorganosiloxane having a hydrosilyl group at the same time.
  • Examples of the divalent hydrocarbon group (A) in the silalkylene group of the polyorganosiloxysilalkylene include, for example, an alkylene group (such as a linear or branched alkylene group having 1 to 18 carbon atoms), divalent
  • the alicyclic hydrocarbon group is preferably a linear or branched alkylene group having 2 to 4 carbon atoms (particularly an ethylene group).
  • polyorganosiloxysilalkylene examples include polyorganosiloxysilalkylene having a structure represented by the following formula (6).
  • R 21 to R 26 are the same or different and each represents a hydrogen atom, a monovalent hydrocarbon group, or a monovalent heterocyclic group. However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond.
  • Examples of the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group; a monovalent alicyclic hydrocarbon group; a monovalent group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded to each other. Etc.
  • Examples of the monovalent heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
  • Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include straight chain or branched chain C 1- such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group.
  • 20 alkyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group) and the like.
  • alkenyl group examples include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group.
  • C 2-20 alkenyl groups preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups
  • alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the monovalent alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3 ⁇ group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
  • examples of the monovalent group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group.
  • the monovalent hydrocarbon group and the monovalent heterocyclic group may have a substituent. That is, in the monovalent hydrocarbon group or the monovalent heterocyclic group, at least one hydrogen atom of the monovalent hydrocarbon group or monovalent heterocyclic group exemplified above is replaced with a substituent. Further, it may be a monovalent hydrocarbon group or a monovalent heterocyclic group.
  • the substituent preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms.
  • substituents include a halogen atom; a hydroxyl group; an alkoxy group; an alkenyloxy group; an acyloxy group; an mercapto group; an alkylthio group; an alkenylthio group; a carboxyl group; Or a dialkylamino group; an acylamino group; an epoxy group-containing group; an oxetanyl group-containing group; an acyl group; an oxo group; an isocyanate group; a group in which two or more of these are bonded via a C 1-6 alkylene group, if necessary. Can be mentioned.
  • Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group include C 1-6 alkoxy groups (preferably C 1-4 alkoxy groups) such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • Examples of the alkenyloxy group include a C 2-6 alkenyloxy group (preferably a C 2-4 alkenyloxy group) such as an allyloxy group.
  • Examples of the acyloxy group include C 1-12 acyloxy groups such as an acetyloxy group, a propionyloxy group, and a (meth) acryloyloxy group.
  • alkylthio group examples include C 1-6 alkylthio groups (preferably C 1-4 alkylthio groups) such as a methylthio group and an ethylthio group.
  • alkenylthio group examples include C 2-6 alkenylthio groups (preferably C 2-4 alkenylthio groups) such as an allylthio group.
  • alkoxycarbonyl group examples include C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group.
  • Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a dimethylamino group, and a diethylamino group.
  • Examples of the acylamino group include C 1-11 acylamino groups such as an acetylamino group and a propionylamino group.
  • the epoxy group-containing group include a glycidyl group, a glycidyloxy group, and a 3,4-epoxycyclohexyl group.
  • As said oxetanyl group containing group, an ethyl oxetanyloxy group etc. are mentioned, for example.
  • As said acyl group an acetyl group, a propionyl group, a benzoyl group etc. are mentioned, for example.
  • Examples of the monovalent hydrocarbon group and monovalent heterocyclic group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, decyl group, pyridyl group, furyl group, and thienyl group.
  • Vinyl group, allyl group, substituted hydrocarbon group for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.
  • substituted hydrocarbon group for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.
  • R 21 to R 26 in the above formula (6) may be the same or different.
  • R 27 represents a divalent hydrocarbon group.
  • the divalent hydrocarbon group include a linear or branched alkylene group, a divalent alicyclic hydrocarbon group, and the like.
  • the linear or branched alkylene group include a linear or branched chain group having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Of the alkylene group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexene group.
  • divalent cycloalkylene groups such as a silene group, 1,4-cyclohexylene group, and cyclohexylidene group.
  • R 27 is a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and further preferably 2 to 4 carbon atoms). Is more preferable, and an ethylene group is more preferable.
  • r represents an integer of 1 or more.
  • the structures in parentheses to which r is attached may be the same or different.
  • the addition form of the structures is not particularly limited, and may be a random type or a block type.
  • s shows an integer greater than or equal to 1.
  • s is an integer of 2 or more
  • the structures in parentheses to which s is attached may be the same or different.
  • the addition form of the structures is not particularly limited, and may be a random type or a block type.
  • the structure in parentheses with r and the structure in parentheses with s are not particularly limited, and may be a random type or a block type. May be.
  • R and s may be the same or different. That is, in formula (6), r and s are the same or different and each represents an integer of 1 or more.
  • the terminal structure of the polyorganosiloxysilalkylene is not particularly limited.
  • the polyorganosiloxysilalkylene may have a linear or branched chain structure.
  • the above polyorganosiloxysilalkylene can be produced, for example, by the method described in JP2012-140617A.
  • the polyorganosiloxane contained in the polyorganosiloxane (A) can be used singly or in combination of two or more.
  • the ratio of the polyorganosiloxane having no aryl group in the polyorganosiloxane (A) is not particularly limited, but from the viewpoint of flexibility, for example, the total amount of polyorganosiloxane (A) ( 100% by weight) is preferably 50% by weight or more, more preferably 80% by weight or more, and still more preferably 95% by weight or more.
  • the polyorganosiloxane (A) is particularly preferably only a polyorganosiloxane having no aryl group.
  • the ratio of total content (weight) is said.
  • At least one has a hydrosilyl group and at least one has an aliphatic carbon-carbon unsaturated bond.
  • the number average molecular weight (Mn) of the polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in the polyorganosiloxane (A) is preferably 500 to 20000, more preferably 1000 to 10,000, and 2000 to 8000. Is more preferable.
  • the weight average molecular weight (Mw) is preferably from 500 to 50,000, more preferably from 5,000 to 40,000, and even more preferably from 10,000 to 30,000. When the number average molecular weight and / or the weight average molecular weight is 500 or more, the resulting cured product is excellent in heat resistance.
  • the compatibility between the polyorganosiloxane (A) and other components is excellent.
  • the number average molecular weight and the weight average molecular weight in the present specification are, for example, Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), as a molecular weight in terms of polystyrene by gel permeation chromatography.
  • Molecular weight dispersity (Mw / Mn) calculated from weight average molecular weight (Mw) and number average molecular weight (Mn) of polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in polyorganosiloxane (A) ) Is not particularly limited, but is preferably 1.0 to 7.0, more preferably 2.0 to 6.5, and still more preferably 3. from the viewpoint of heat resistance and compatibility with other components. It is 0 to 6.0, particularly preferably 4.0 to 5.5.
  • the content (in terms of vinyl group) of aliphatic carbon-carbon double bond in the molecule of polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in polyorganosiloxane (A) is not particularly limited. However, from the viewpoint that it is easy to adjust the number of aliphatic carbon-carbon double bonds bonded to the silicon atom present in the compound contained in the curable resin composition, and that a cured product having excellent flexibility and strength can be easily obtained. For example, it is preferably 3.0% by weight or less (eg 0.5 to 3.0% by weight).
  • the content of the aliphatic carbon-carbon double bond in the molecule can be measured by 1 H-NMR, for example.
  • the content (blending amount) of the polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 55 to 95% by weight with respect to the total amount (100% by weight) of the curable resin composition. It is preferably 60 to 92% by weight, more preferably 65 to 90% by weight. If the content is less than 55% by weight, the crack resistance of the cured product may be lowered. On the other hand, if the content exceeds 90% by weight, gas barrier properties against corrosive gas may not be sufficiently obtained.
  • the curable resin composition of the present invention contains at least a ladder-type silsesquioxane as the silsesquioxane (B).
  • the ladder-type silsesquioxane is a polysiloxane having a crosslinked three-dimensional structure.
  • Polysiloxane is a compound having a main chain composed of siloxane bonds (Si—O—Si), and the basic structural unit thereof is an M unit (a monovalent group in which a silicon atom is bonded to one oxygen atom).
  • Unit D unit (unit consisting of a divalent group in which a silicon atom is bonded to two oxygen atoms), T unit (unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms) ,
  • Q unit unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms.
  • examples of the structure of the Si—O—Si skeleton include a random structure, a cage structure, and a ladder structure.
  • Silsesquioxane (B) contained in silsesquioxane is a polysiloxane represented by the empirical formula (basic structural formula) SiO 1.5 having the T unit as a basic structural unit, for example, Si having a random structure.
  • the silsesquioxane (for example, ladder-type cissesquioxane) contained in cissesquioxane (B) can be used individually by 1 type or in combination of 2 or more types.
  • the R includes, for example, a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group (not including a carbon atom) Monovalent oxygen atom-containing group), monovalent nitrogen atom-containing group (carbon atom, monovalent nitrogen atom-containing group not containing oxygen atom), or monovalent sulfur atom-containing group (including carbon atom, oxygen atom) Non-monovalent sulfur atom-containing groups). At least a part of R is preferably a monovalent organic group.
  • the Rs may be the same or different.
  • halogen atom in R examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the monovalent organic group in R include a substituted or unsubstituted hydrocarbon group (monovalent hydrocarbon group), an alkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, and an alkylthio group.
  • hydrocarbon group in R examples include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
  • Examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group.
  • Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, dodecyl group (preferably C 1- 10 alkyl group, more preferably C 1-4 alkyl group).
  • alkenyl group examples include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, Examples thereof include C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group, and 5-hexenyl group.
  • alkynyl group examples include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
  • Examples of the alicyclic hydrocarbon group in the R include C 3-12 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3 ⁇ group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
  • Examples of the aromatic hydrocarbon group in R include C 6-14 aryl groups (particularly, C 6-10 aryl groups) such as phenyl group and naphthyl group.
  • examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group in R are bonded to each other include a cyclohexylmethyl group and a methylcyclohexyl group.
  • examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups such as benzyl group and phenethyl group (particularly C 7-10 aralkyl groups), and C such as cinnamyl group.
  • Examples thereof include C 1-4 alkyl-substituted aryl groups such as 6-10 aryl-C 2-6 alkenyl groups and tolyl groups, and C 2-4 alkenyl-substituted aryl groups such as styryl groups.
  • the hydrocarbon group in R may have a substituent.
  • the number of carbon atoms of the substituent in the hydrocarbon group is preferably 0-20, more preferably 0-10.
  • the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group and isooctyl group.
  • C 1-20 alkyl group such as decyl group, dodecyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group); vinyl group, allyl group, methallyl group, 1-propenyl group, iso C 2-20 alkenyl groups such as propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (Preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group); methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy Alkoxy groups (preferably C 1-6 alkoxy groups, more preferably C 1-4 alkoxy groups) such as cis groups and isobutyloxy groups; Alkenyloxy groups such as allyloxy groups (preferably C 2-6 alkenyloxy groups, more Pre
  • aryloxy group (preferably a C 6-14 aryloxy group) which may have the following substituents; an aralkyloxy group such as a benzyloxy group or a phenethyloxy group (preferably a C 7-18 aralkyloxy group); Acyloxy groups such as oxy group, propionyloxy group, (meth) acryloyloxy group, benzoyloxy group (preferably C 1-12 acyloxy group); Luccapto group; alkylthio group such as methylthio group and ethylthio group (preferably C 1-6 alkylthio group, more preferably C 1-4 alkylthio group); alkenylthio group such as allylthio group (preferably C 2-6 alkenylthio group) More preferably a C 2-4 alkenylthio group); a C
  • An arylthio group (preferably a C 6-14 arylthio group) which may have a substituent such as aralkylthio group (preferably a C 7-18 aralkylthio group) such as a benzylthio group or a phenethylthio group; a carboxyl group; Alkoxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group (preferably C 1 -6 alkoxy-carbonyl group); aryloxycarbonyl group such as phenoxycarbonyl group, tolyloxycarbonyl group, naphthyloxycarbonyl group (preferably C 6-14 aryloxy-carbonyl group); aralkyloxycarbonyl such as benzyloxycarbonyl group Group (preferably C 7-18 aralkyloxy-carbonyl group); amino group; mono- or dialkylamino group such as methylamino group, ethy
  • Examples of the alkoxy group, the alkenyloxy group, the acyloxy group, the alkylthio group, the alkenylthio group, and the alkoxycarbonyl group in R include those exemplified as R 21 to R 26 in Formula (6). It is done.
  • Examples of the aryloxy group in R include a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring, such as a phenoxy group, a tolyloxy group, and a naphthyloxy group. And a C 6-14 aryloxy group which may have a substituent such as Examples of the aralkyloxy group include C 7-18 aralkyloxy groups such as benzyloxy group and phenethyloxy group.
  • arylthio group examples include a phenylthio group, a tolylthio group, a naphthylthio group, and the like, and a substituent such as a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring. Examples thereof include a C 6-14 arylthio group which may be present.
  • aralkylthio group examples include C 7-18 aralkylthio groups such as benzylthio group and phenethylthio group.
  • Examples of the aryloxycarbonyl group include C 6-14 aryloxy-carbonyl groups such as a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group.
  • Examples of the aralkyloxycarbonyl group include C 7-18 aralkyloxy-carbonyl groups such as benzyloxycarbonyl group.
  • Examples of the monovalent oxygen atom-containing group in R include a hydroxyl group, a hydroperoxy group, and a sulfo group.
  • Examples of the monovalent nitrogen atom-containing group include an amino group or a substituted amino group (mono- or dialkylamino group, acylamino group, etc.).
  • monohydric sulfur atom containing group a mercapto group (thiol group) etc. are mentioned, for example.
  • examples of R in the empirical formula (basic structural formula) RSiO 1.5 include a group represented by the following formula (4).
  • a plurality of R ′ in the above formula (4) may be the same or different.
  • examples of R ′ in the formula (4) include a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group. Is mentioned.
  • These groups include the same groups as those exemplified as R in the above empirical formula (Basic Structure) RSiO 1.5.
  • each R ′ is a hydrogen atom, a C 1-10 alkyl group (especially a C 1-4 alkyl group), a C 2-10 alkenyl group (especially C 1 2-4 alkenyl groups), C 3-12 cycloalkyl groups, C 3-12 cycloalkenyl groups, C 1-4 alkyl groups on aromatic rings, C 2-4 alkenyl groups, halogen atoms, C 1-4 alkoxy groups, etc.
  • the R in the empirical formula (basic structural formula) RSiO 1.5 is preferably a hydrogen atom or a substituted or unsubstituted hydrocarbon group, more preferably a substituted or unsubstituted hydrocarbon group, and still more preferably a fatty acid.
  • the ladder type silsesquioxane represented by following formula (5) may be sufficient, for example.
  • T in the above formula (5) represents a terminal group.
  • R in the formula (5) (hereinafter sometimes referred to as “side chain”) include those exemplified as R in the empirical formula RSiO 1.5 .
  • the T in the above formula (5) for example, those exemplified as R of the empirical formula RSiO 1.5.
  • R or T in the above formula (5) is preferably a hydrogen atom, a substituted or unsubstituted hydrocarbon group, or a group represented by formula (4), more preferably a hydrogen atom or aliphatic carbonization.
  • T in the formula (5) preferably includes a trimethyl group, and more preferably includes a trimethyl group and a vinyl group, or a trimethyl group and a SiH-containing group.
  • the ratio of the substituted or unsubstituted hydrocarbon group to the total amount (100 mol%) of R in the formula (5) is not particularly limited, but is preferably 50 mol% or more, more preferably 80 mol% or more, 90 More preferably, it is at least mol%.
  • a substituted or unsubstituted alkyl group preferably an alkyl group having 1 to 10 carbon atoms, particularly a methyl group or an ethyl group, etc., having 1 to 4 carbon atoms, based on the total amount (100 mol%) of R in formula (5).
  • Alkyl groups substituted or unsubstituted aryl groups (preferably aryl groups having 6 to 10 carbon atoms, particularly phenyl groups), substituted or unsubstituted aralkyl groups having 7 to 10 carbon atoms (preferably 7 to 10 carbon atoms).
  • the total amount of aralkyl groups, particularly benzyl groups is preferably 50 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • a part or all of R is preferably a substituted or unsubstituted aryl group.
  • ladder-type silsesquioxane (B1) examples include a ladder-type silsesquioxane (B1) having an aliphatic carbon-carbon double bond in the molecule (hereinafter simply referred to as “ladder-type silsesquioxane (B1)”). May be included).
  • the ladder-type silsesquioxane is preferably a ladder-type silsesquioxane (B1).
  • the ladder-type silsesquioxane (B1) is not particularly limited as long as it is a compound having a group having an aliphatic carbon-carbon double bond in the side chain or the terminal group.
  • Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, C 2-20 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group) Group); C 3-12 cycloalkenyl group such as cyclohexenyl group; C 4-15 bridged cyclic unsaturated hydrocarbon group such as bicycloheptenyl group; C 2-4 alkenyl-substituted aryl group such as styryl group; cinnamyl Group and the like.
  • R ′ has an aliphatic carbon-carbon double bond
  • the number of the aliphatic carbon-carbon double bonds in the molecule (in one molecule) is not particularly limited, but is preferably 2 or more (for example, 2 to 50). 2 to 30 are more preferable.
  • the content of the aliphatic carbon-carbon double bond in the ladder-type silsesquioxane (B1) is not particularly limited, but is preferably 0.7 to 5.5 mmol / g, and 1.1 to 4.4 mmol / g is more preferable.
  • the ratio (by weight) of the aliphatic carbon-carbon double bond contained in the ladder-type silsesquioxane (B1) is not particularly limited, but is 2.0 to 15.0% by weight in terms of vinyl group. Is preferable, and 3.0 to 12.0% by weight is more preferable.
  • the ladder-type silsesquioxane (B1) is not particularly limited, but may be liquid at room temperature (about 25 ° C.) or may be solid. Among these, it is preferably liquid at room temperature. More specifically, the viscosity of the ladder-type silsesquioxane (B1) at 25 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease.
  • the silsesquioxane (B) contains silsesquioxane (B1) that is solid at room temperature, the corrosion resistance against corrosive gas and toughness (particularly crack resistance) tend to be improved.
  • ladder-type silsesquioxane (B2) examples include a ladder-type silsesquioxane (B2) having a Si—H bond in the molecule (hereinafter, simply referred to as “ladder-type silsesquioxane (B2)”). ) May be included.
  • the ladder-type silsesquioxane may be a ladder-type silsesquioxane (B2).
  • the ladder-type silsesquioxane (B2) is not particularly limited as long as it is a compound having a hydrogen atom or a group having a Si—H bond in the side chain or the terminal group.
  • the group having an Si—H bond is not particularly limited, and examples thereof include a hydrosilyl group and a group represented by the above formula (4), in which at least one of three R ′ is a hydrogen atom. It is done.
  • the number of the hydrogen atom or the group having the Si—H bond in the molecule (in one molecule) is not particularly limited, but two or more (for example, 2 to 50) ) Is preferred, and 2 to 30 are more preferred.
  • the heat resistance of the cured product of the curable resin composition tends to be improved.
  • the ratio (weight basis) of the hydrogen atom or the SiH group contained in the ladder-type silsesquioxane (B2) is not particularly limited, but is in terms of weight (H conversion) of H (hydride) in the hydrogen atom or SiH group. 0.01 to 0.50 wt% is preferable, and 0.08 to 0.28 wt% is more preferable. When there is too little content of the said hydrogen atom or the said SiH group (for example, when less than 0.01 weight% in conversion of H), hardening of curable resin composition may not fully advance.
  • cured material will become high and it may become easy to crack.
  • the content of the hydrogen atom or the SiH group in the ladder-type silsesquioxane (B2) can be measured, for example, by 1 H-NMR.
  • the proportion of SiH groups present in the ladder-type silsesquioxane (B2) is not particularly limited, but from the viewpoint of flexibility, for example, all of the compounds present in the curable resin composition of the present invention are present.
  • the amount is preferably 0 to 80 mol%, more preferably 0 to 50 mol%, based on the SiH group (100 mol%).
  • the ladder-type silsesquioxane (B2) is not particularly limited, but may be liquid at normal temperature (about 25 ° C.) or may be solid. Among these, it is preferably liquid at normal temperature. More specifically, the viscosity of the ladder-type silsesquioxane (B2) at 25 ° C. is preferably 100 to 100,000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 100 mPa ⁇ s, the heat resistance of the cured product may decrease.
  • the viscosity at 25 ° C. can be measured, for example, by the same method as that for ladder type silsesquioxane (B1).
  • the silsesquioxane (B) contains silsesquioxane (B2) that is solid at room temperature, the corrosion resistance against corrosive gas and the toughness (particularly crack resistance) tend to be improved.
  • the ladder-type silsesquioxane may contain, for example, a ladder-type silsesquioxane having an aryl group in the molecule.
  • the aryl group in the ladder-type silsesquioxane having an aryl group in the molecule include a C 6-14 aryl group (particularly a C 6-10 aryl group) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
  • the ladder-type silsesquioxane is a ladder-type silsesquioxane (B1), a ladder-type silsesquioxane (B2), or a ladder-type silsesquioxane other than a ladder-type silsesquioxane having an aryl group in the molecule.
  • Sesquioxane hereinafter may be referred to as “other ladder-type silsesquioxane”
  • the other ladder-type silsesquioxane is preferably used in combination with ladder-type silsesquioxane (B1) or ladder-type silsesquioxane (B2).
  • the ladder-type silsesquioxane is not particularly limited.
  • the ladder-type silsesquioxane includes a ladder-type polyorganosiloxane (B1), a ladder-type polyorganosiloxane (B2), and a ladder-type silsesquioxane having an aryl group in the molecule. It preferably contains at least one silsesquioxane selected from the group, and more preferably contains ladder-type silsesquioxane (B1) and / or ladder-type silsesquioxane (B2).
  • the content of the ladder-type silsesquioxane in the silsesquioxane (B) is not particularly limited.
  • the content is 50% by weight or more with respect to the total amount of the silsesquioxane (B) (100% by weight). More preferably, it is 70 weight% or more, More preferably, it is 90 weight% or more.
  • silsesquioxane (B) is only the said ladder type silsesquioxane. That is, the silsesquioxane (B) is preferably the ladder-type silsesquioxane.
  • the content of the ladder-type silsesquioxane is within the above range, more excellent in SO x corrosion.
  • the content of the ladder-type silsesquioxane (B1) in the silsesquioxane (B) is not particularly limited, but is, for example, 20% by weight with respect to the total amount (100% by weight) of the silsesquioxane (B).
  • the above is preferable, more preferably 40% by weight or more, still more preferably 50% by weight or more, and particularly preferably 90% by weight or more.
  • 100 weight% is preferable, for example, and 95 weight%, 80 weight%, and 60 weight% may be sufficient.
  • silsesquioxane (B) is only the said ladder type silsesquioxane (B1). That is, the ladder-type silsesquioxane (B1) may be used as the silsesquioxane (B).
  • the content of the ladder-type silsesquioxane (B2) in the silsesquioxane (B) is not particularly limited.
  • the content is 10% by weight with respect to the total amount (100% by weight) of the silsesquioxane (B).
  • the above is preferable, more preferably 20% by weight or more, and still more preferably 40% by weight or more.
  • the upper limit is, for example, preferably 100% by weight, more preferably 80% by weight, still more preferably 60% by weight, and particularly preferably 50% by weight.
  • the silsesquioxane (B) may be only the ladder-type silsesquioxane (B2).
  • Silsesquioxane (B2) is preferably used in combination with silsesquioxane (B1) from the viewpoint of easy control of the number of SiH groups contained in the curable resin composition.
  • the ratio of silsesquioxane (B1) to silsesquioxane (B2) is preferably 2 to 8: 8 to 2, more preferably. Is 4-6: 6-4.
  • the ladder type silsesquioxane can be produced by a known production method (for example, a hydrolytic condensation method using a trifunctional silane compound as a raw material).
  • the number average molecular weight and / or weight average molecular weight of the silsesquioxane contained in the silsesquioxane (B) is not particularly limited, but is preferably 100 to 800,000, more preferably 200 to 100,000, and 300 to 3 Is more preferable, and 500 to 20000 is particularly preferable. If it is less than 100, the heat resistance of the cured product may be reduced, and if it exceeds 800,000, the compatibility of the silsesquioxane (B) with other components may be reduced. Silsesquioxane (B) may be a mixture having various molecular weights within the above range.
  • the content of the aliphatic carbon-carbon double bond in the molecule of silsesquioxane (particularly ladder-type silsesquioxane) contained in the silsesquioxane (B) (weight basis, in terms of vinyl group) is: Although not particularly limited, it is preferably 15.0% by weight or less (for example, 1.0 to 15.0% by weight), more preferably 1.2% from the viewpoint that a cured product excellent in flexibility and strength is easily obtained. ⁇ 12.0% by weight.
  • the content of the aliphatic carbon-carbon double bond in the molecule can be measured, for example, by 1 H-NMR.
  • SiH group in the molecule of silsesquioxane (particularly ladder-type silsesquioxane) contained in silsesquioxane (B) (weight conversion of H (hydride) in SiH group) is particularly limited.
  • 0.50% by weight or less (for example, 0.01 to 0.50% by weight) is preferable, and more preferably 0.03 to 0%. .28% by weight.
  • the SiH group content can be measured, for example, by 1 H-NMR.
  • Silsesquioxane (particularly ladder type silsesquioxane) contained in silsesquioxane (B) is not particularly limited, but from the viewpoint of compatibility with organosiloxane (A), a methyl group and a vinyl group
  • the ratio of methyl group to vinyl group is in the range of 5: 5 to 9.5: 0.5.
  • a range of 5: 4.5 to 9: 1 is more preferable.
  • the contents of the methyl group and vinyl group can be measured, for example, by 1 H-NMR.
  • Silsesquioxane (B) is not particularly limited, but is preferably colorless and transparent, for example. Specifically, it is preferable that the light transmittance at 400 nm measured with an ultraviolet-visible light spectrophotometer is 90% or more.
  • silsesquioxane (B) is not specifically limited, For example, it can be manufactured by mixing the said ladder type silsesquioxane etc. uniformly.
  • the content (blending amount) of silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited, but is 5 to 45 wt% with respect to the total amount (100 wt%) of the curable resin composition. %, More preferably 7 to 40% by weight, still more preferably 10 to 35% by weight.
  • the content is less than 5 wt%, the gas barrier property to corrosive gases such as SO x is not sufficiently obtained.
  • the content exceeds 45% by weight, the crack resistance of the cured product may be lowered, or the heat resistance may not be sufficiently obtained.
  • content of silsesquioxane (B) in the curable resin composition of this invention is not specifically limited, For example, the total amount (100 weight part) of polyorganosiloxane (A) and silsesquioxane (B) The amount is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, still more preferably 8 to 30 parts by weight.
  • the corrosion resistance against a corrosive gas especially SO x corrosion resistance
  • the total content of the polyorganosiloxane (A) and the silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited.
  • the total amount (100% by weight) of the curable resin composition Is preferably 60.000 to 100% by weight, more preferably 70.000 to 99.000% by weight.
  • the total content of the polyorganosiloxane (A) and silsesquioxane (B) is in the above range, excellent corrosion resistance against corrosive gas (in particular resistance to SO x corrosion). In particular, by being 99% by weight or less, the heat resistance and the corrosion resistance against corrosive gas are further improved.
  • the curable resin composition of the present invention contains an isocyanurate compound (C).
  • the curable resin composition of the present invention particularly improves the barrier property against a corrosive gas of a cured product formed by curing, and further improves the adhesion to an adherend. Tend to.
  • the isocyanurate compound (C) preferably includes an isocyanurate compound represented by the formula (1).
  • the isocyanurate compound (C) is preferably only the isocyanurate compound represented by the formula (1).
  • R x , R y and R z are the same or different and represent a group represented by the above formula (2) or a group represented by the above formula (3).
  • any one or more (preferably one or two, more preferably one) of R x , R y and R z in the above formula (1) is a group represented by the above formula (3).
  • R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms.
  • the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a pentyl group, a hexyl group, A heptyl group, an octyl group, an ethylhexyl group, etc. are mentioned.
  • R 1 and R 2 are each particularly preferably a hydrogen atom.
  • the isocyanurate compound contained in the isocyanurate compound (C) is not particularly limited.
  • the isocyanurate compound (C) may be blended with other components after previously mixed with a silane coupling agent as described later.
  • the content of the isocyanurate compound (C) is not particularly limited, but is preferably 0.01 to 10% by weight, and 0.05 to 5% by weight with respect to the total amount (100% by weight) of the curable resin composition. More preferred is 0.1 to 3% by weight. If the content of the isocyanurate compound is less than 0.01% by weight, the barrier property against corrosive gas and the adhesion to the adherend may be lowered. On the other hand, when the content of the isocyanurate compound exceeds 10% by weight, solids may precipitate in the curable resin composition or the cured product may become cloudy.
  • the curable resin composition of the present invention may contain a silane coupling agent (D).
  • a silane coupling agent (D) By including a silane coupling agent (D), there exists a tendency for the adhesiveness with respect to a to-be-adhered body to improve.
  • the silane coupling agent (D) Since the silane coupling agent (D) has good compatibility with the silsesquioxane (B), the isocyanurate compound (C) and the like, for example, to improve the compatibility of the isocyanurate compound with other components.
  • a composition of the isocyanurate compound (C) and the silane coupling agent (D) is previously formed and then blended with other components, a uniform curable resin composition is easily obtained.
  • silane coupling agent (D) a known or conventional silane coupling agent can be used, and is not particularly limited.
  • 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, epoxy group-containing silane coupling agents such as 3-glycidoxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropyl Methyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Triethoxysilane, 3-triethoxysilyl-N-
  • an epoxy group-containing silane coupling agent particularly 3-glycidoxypropyltrimethoxysilane
  • a silane coupling agent (D) can be used individually by 1 type or in combination of 2 or more types.
  • the content of the silane coupling agent (D) is not particularly limited, but is preferably 0.01 to 15% by weight, preferably 0.1 to 10% by weight with respect to the total amount (100% by weight) of the curable resin composition. Is more preferable, and 0.5 to 5% by weight is still more preferable.
  • the content of the silane coupling agent is less than 0.01% by weight, the adhesion to the adherend is lowered, and particularly when the isocyanurate compound (C) is used in a compatible state, sufficient curing is achieved. May not be obtained.
  • content of a silane coupling agent (D) exceeds 15 weight%, hardening will become inadequate and the toughness of a hardened
  • the curable resin composition of the present invention contains a carboxylate (E) of a rare earth metal atom.
  • a carboxylate (E) of the rare earth metal atom By including the carboxylate (E) of the rare earth metal atom, the H 2 S corrosion resistance and the heat resistance tend to be improved. 1 type may be sufficient as the rare earth metal atom contained in the carboxylate of a rare earth metal atom, and 2 or more types may be sufficient as it.
  • a carboxylate of a rare earth metal atom is sometimes referred to as a rare earth carboxylate.
  • Examples of the rare earth metal atom in the carboxylate of the rare earth metal atom contained in the carboxylate (E) of the rare earth metal atom include yttrium, cerium, lanthanum, praseodymium, neodymium and the like.
  • Examples of the carboxylate in the carboxylate of the rare earth metal atom include a carboxylate of a carboxylic acid having 1 to 20 carbon atoms (preferably 2 to 12, more preferably 4 to 10, more preferably 5 to 7). And more preferably hexanoate such as 2-ethylhexanoate.
  • the rare earth metal atom carboxylates include yttrium carboxylate, cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, neodymium carboxylate (particularly yttrium carboxylate having 1 to 20 carbon atoms, 1 to 20 carbon atoms).
  • the rare earth metal atom carboxylates in the rare earth metal atom carboxylates (E) can be used alone or in combination of two or more.
  • the carboxylate (E) of the rare earth metal atom is, for example, a carboxylate of the rare earth metal atom containing cerium (for example, at least selected from the group consisting of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate)
  • cerium for example, at least selected from the group consisting of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate
  • a mixture of carboxylates of two or more rare earth metal atoms such as a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate), or only cerium carboxylate (single compound)
  • carboxyl It is preferably a carboxylate of a rare earth metal atom containing yttrium acid (for example, yttrium carboxylate alone), and a 2-
  • the content of the rare earth metal atom in the curable resin composition of the present invention is not particularly limited, but is preferably 5 ppm or more and less than 5000 ppm, for example, 7 ppm or more and 1000 ppm with respect to the total amount of the curable resin composition (100 wt%). Is more preferably 10 ppm or more and less than 300 ppm.
  • the content of the rare earth metal atom is less than 5 ppm, the effect of the carboxylate (E) of the rare earth metal atom is not sufficiently exhibited, and the barrier property against the H 2 S gas or the heat resistance may be lowered. .
  • cured material may fall that it is 5000 ppm or more.
  • Content of the said rare earth metal atom in curable resin composition can be measured by the method as described in the below-mentioned evaluation (rare earth metal atom content (ppm)).
  • the content of the rare earth metal atom in the curable resin composition of the present invention is not particularly limited.
  • the content of the rare earth metal atoms is in the above range, the heat resistance and the corrosion resistance against a corrosive gas (particularly, the H 2 S corrosion resistance) are further improved.
  • the content of the carboxylate (E) of the rare earth metal atom is not particularly limited, but is preferably 0.008 to 1.000% by weight with respect to the total amount (100% by weight) of the curable resin composition, for example.
  • the amount is preferably 0.010 to 0.500% by weight, more preferably 0.015 to 0.400% by weight.
  • the heat resistance and the corrosion resistance against corrosive gas are further improved.
  • the curable resin composition of the present invention may further contain a hydrosilylation catalyst.
  • a hydrosilylation catalyst By including the hydrosilylation catalyst, the curable resin composition of the present invention can efficiently advance the curing reaction (hydrosilylation reaction).
  • the hydrosilylation catalyst include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts.
  • platinum catalyst include a palladium catalyst or a rhodium catalyst containing a palladium atom or a rhodium atom instead of a platinum atom.
  • the said hydrosilylation catalyst can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited.
  • platinum, palladium, or rhodium in the hydrosilylation catalyst is in a range of 0.01 to 1,000 ppm by weight.
  • the amount is preferably within the range of 0.1 to 500 ppm. It is preferable for the content of the hydrosilylation catalyst to be in such a range because the crosslinking rate will not be remarkably slowed and the cured product is less likely to cause problems such as coloring.
  • the curable resin composition of the present invention may contain a hydrosilylation reaction inhibitor in order to adjust the speed of the curing reaction (hydrosilylation reaction).
  • hydrosilylation reaction inhibitor examples include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; 3-methyl-3 -Enyne compounds such as pentene-1-yne and 3,5-dimethyl-3-hexen-1-yne; and thiazole, benzothiazole, benzotriazole and the like.
  • the said hydrosilylation reaction inhibitor can be used individually by 1 type or in combination of 2 or more types.
  • the content of the hydrosilylation reaction inhibitor varies depending on the crosslinking conditions of the curable resin composition, but practically, the content in the curable resin composition is preferably in the range of 0.00001 to 5% by weight. .
  • the curable resin composition of the present invention may further contain a cyclic siloxane having two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule) as another siloxane compound.
  • the curable resin composition of the present invention may further contain a cyclic siloxane having two or more SiH groups in the molecule (in one molecule) as the other siloxane compound.
  • the said cyclic siloxane can be used individually by 1 type or in combination of 2 or more types.
  • the content (blending amount) of the cyclic siloxane in the curable resin composition of the present invention is not particularly limited, but is preferably 0.01 to 30% by weight with respect to the total amount (100% by weight) of the curable resin composition. 0.1 to 20% by weight is more preferable, and 0.5 to 10% by weight is still more preferable.
  • the curable resin composition of the present invention may contain other silane compounds (for example, compounds having a hydrosilyl group).
  • the other silane compounds include methyl (trisdimethylsiloxy) silane, tetrakis (dimethylsiloxy) silane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5- Hexamethyltrisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1, 1,3,5,5,7,7,7-nonamethyltetrasiloxane, 1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,1,1,1, Examples thereof include linear or branched siloxanes having SiH groups such as 3,5,5,7,7,9,9-undecamethylpentasiloxane.
  • the said silane compound can be used individually by 1 type or in combination of 2 or more types.
  • the content of the silane compound is not particularly limited, but is preferably 0 to 5% by weight and more preferably 0 to 1.5% by weight with respect to the total amount (100% by weight) of the curable resin composition.
  • the curable resin composition of the present invention may contain a solvent.
  • the solvent include conventionally known solvents such as toluene, hexane, isopropanol, methyl isobutyl ketone, cyclopentanone, and propylene glycol monomethyl ether acetate.
  • the said solvent can be used individually by 1 type or in combination of 2 or more types.
  • the curable resin composition of the present invention includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, Inorganic fillers such as carbon black, silicon carbide, silicon nitride, boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; silicone resins, epoxy resins, Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), flame retardants (phosphorus) Flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers,
  • the curable resin composition of the present invention is not particularly limited, the curable resin composition with respect to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition.
  • the ratio of the total number of hydrosilyl groups present in the compound contained in the product is less than 1 (preferably 0.20 or more and less than 1.00, more preferably 0.50 to 0.98, even more preferably Is preferably 0.70 to 0.95) (formulation composition).
  • an aliphatic carbon-carbon double bond bonded to a silicon atom means an aliphatic carbon-carbon double bond contained in a substituent of the silicon atom.
  • the aliphatic carbon-carbon double bond bonded to the silicon atom includes the terminal of the substituent of the silicon atom and the aliphatic carbon-carbon double bond other than the terminal.
  • the curable resin composition of the present invention is not particularly limited, but can be prepared, for example, by stirring and mixing the above components at room temperature.
  • the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
  • the curable resin composition of the present invention is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the curable resin composition of the present invention has a viscosity at 25 ° C. of preferably 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. If the viscosity is less than 300 mPa ⁇ s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 20000 mPa ⁇ s, it is difficult to prepare and handle the curable resin composition, and bubbles may remain in the cured product. In addition, the viscosity of curable resin composition can be measured by the method similar to the viscosity of the above-mentioned ladder type silsesquioxane (B1), for example.
  • B1 ladder type silsesquioxane
  • cured product of the present invention By curing the curable resin composition of the present invention by a curing reaction (hydrosilylation reaction), a cured product (hereinafter sometimes referred to as “cured product of the present invention”) can be obtained.
  • the conditions for the curing reaction are not particularly limited and can be appropriately selected from conventionally known conditions.
  • the temperature (curing temperature) is 25 to 180 ° C. (more preferably 60 ° C. to 150 ° C.). ° C), and the time (curing time) is preferably 5 to 720 minutes.
  • the cured product of the present invention is excellent in various physical properties such as heat resistance, transparency, flexibility and the like, and further excellent in reflow resistance such as crack resistance in a reflow process and adhesion to a package, and in barrier properties against corrosive gas. Also excellent.
  • the A hardness before aging of the cured product of the present invention is not particularly limited, but is preferably less than 70, more preferably 30 to 69, still more preferably 40 to 68, and particularly preferably 45 or more and less than 60.
  • the A hardness before aging is within the above range, the hardness tends to hardly increase even after heating (for example, after heating at 200 ° C. for 500 hours).
  • the A hardness is less than 60, an increase in hardness after heating tends to be further suppressed.
  • the A hardness before aging specifically refers to a value measured by the method described in “(A hardness before aging, A hardness after aging)” in (Evaluation) described later.
  • the A hardness before aging is bonded to, for example, silicon atoms present in all compounds contained in the curable resin composition with respect to hydrosilyl groups present in all compounds contained in the curable resin composition before curing. Adjusted by the ratio of aliphatic carbon-carbon double bond, vinyl weight ratio of polyorganosiloxane (A) and silsesquioxane (B), Si-H weight ratio, and blend amount of silsesquioxane (B) can do.
  • the A hardness after aging of the cured product of the present invention is not particularly limited, but is preferably, for example, less than 90, more preferably 50 to 89, still more preferably 60 to 85, and particularly preferably. Is 65-75.
  • the heat resistance and the reliability against thermal shock are excellent. In particular, by being 85 or less, the heat resistance and the reliability against thermal shock are further improved.
  • the A hardness after aging specifically refers to a value measured by the method described in “A hardness before aging, A hardness after aging” in (Evaluation) described later.
  • the A hardness after the aging is bonded to, for example, silicon atoms present in all compounds contained in the curable resin composition with respect to hydrosilyl groups present in all compounds contained in the curable resin composition before curing. It can be adjusted by the ratio of the aliphatic carbon-carbon double bond, the vinyl weight percentage contained in the polyorganosiloxane (A) or silsesquioxane (B), the SiH weight percentage, the amount of hydrosilylation catalyst, and the like.
  • the sealing material of the present invention is a sealing material containing the curable resin composition of the present invention as an essential component.
  • the sealing material (cured product) obtained by using (for example, curing) the sealing material of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further, reflow resistance and corrosion resistance. Excellent barrier to gas. Therefore, the sealing material of the present invention is preferably used as a sealing material for a semiconductor element in a semiconductor device, particularly as a sealing material for an optical semiconductor element (particularly, a high-luminance, short-wavelength optical semiconductor element) in an optical semiconductor device. Can be used.
  • a semiconductor element especially an optical semiconductor element
  • a semiconductor device excellent in durability and quality can be obtained.
  • Polyorganosiloxane (A) The following products were used as the polyorganosiloxane (A).
  • GD-1012A manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.33% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0% by weight, number average molecular weight 5108, weight average molecular weight 23385
  • GD-1012B manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.65% by weight, phenyl group content 0% by weight, SiH group (in terms of hydride) content 0.19% by weight, number average molecular weight 4563, weight average molecular weight 21873 KER-2500A: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.53% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0.03% by weight, number average molecular weight 4453, weight Average molecular weight 19355 KER-2500B:
  • the ladder-type silsesquioxane has a weight average molecular weight (Mw) of 5000, a vinyl group content (average content) per molecule of 11.68% by weight, and a methyl group / vinyl group (molar ratio) is 60/40.
  • Mw weight average molecular weight
  • the 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows. 1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) ⁇ : 0 to 0.3 ppm (br), 5.8 to 6.1 ppm (br)
  • the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
  • the solvent is distilled off from the upper layer solution under conditions of 1 mmHg and 60 ° C., and a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used.
  • the above-described ladder-type silsesquioxane (B1) is used.
  • the ladder type silsesquioxane has a weight average molecular weight (Mw) of 3400, a vinyl group content per molecule (average content) of 3.96% by weight, and a phenyl group / methyl group / vinyl group (moles). Ratio) was 17/68/15.
  • the 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows. 1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) ⁇ : -0.3-0.3 ppm (br), 5.7-6.2 ppm (br), 7.1-7.7 ppm (br)
  • the temperature of the reaction vessel was raised to 50 ° C., and when the temperature reached 50 ° C., 120 mmol (2.16 g) of water was added, and the polycondensation reaction was performed under nitrogen for 4 hours. Furthermore, 11.18 g of vinyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and reacted for 4 hours. Subsequently, 19.5 g of hexamethyldisiloxane was added to the reaction solution after the polycondensation reaction, and the silylation reaction was performed at 50 ° C. for 1 hour. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected.
  • the solvent is distilled off from the upper layer solution under conditions of 1 mmHg and 60 ° C., and a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used.
  • a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used.
  • the ladder type silsesquioxane had a number average molecular weight (Mn) of 879 and a weight average molecular weight (Mw) of 1116.
  • the ladder-type silsesquioxane has a weight average molecular weight (Mw) of 3700, and the SiH group content (average content) per molecule is 0.11% by weight in terms of the weight of H (hydride) in the SiH group. there were.
  • Mw weight average molecular weight
  • the 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows. 1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) ⁇ : -0.3-0.3 ppm (br), 4.7 ppm (s), 7.1-7.7 ppm (br)
  • silane coupling agent (D) The following products were used as the silane coupling agent (D).
  • silane coupling agent (D) 3-Glycidyloxypropyltrimethoxysilane: manufactured by Toray Dow Corning
  • 2-ethylhexanoic acid 8 wt%, mineral spirit 68% Including) Yttrium 2-ethylhexanoate (Wako Pure Chemical Industries, Ltd .; Yttrium 2-ethylhexanoate (III), 49% toluene solution) Cerium 2-ethylhexanoate (Wako Pure Chemical Industries, Ltd .; cerium (III) 2-ethylhexanoate, 49% 2-ethylhexanoic acid solution)
  • Examples 1 to 9 and Comparative Examples 1 to 4 were carried out according to the following procedure.
  • the isocyanurate compound (C) and the silane coupling agent (D) were mixed at a predetermined weight ratio, and then the rare earth metal atom carboxylate (E) and silsesquioxane (B) were mixed. Stir for 2 hours at ° C. Then, it cooled to room temperature, mixed polyorganosiloxane (A), and stirred for 10 minutes at room temperature, and obtained curable resin composition.
  • the aluminum box was put in an oven (manufactured by Yamato Scientific Co., Ltd., model number “DN-64”), and after 24 hours at 80 ° C., the corrosion state of the silver electrode in the LED package was observed.
  • the color of the electrode is silver white before the test, but changes to brown and further black as corrosion progresses.
  • the evaluation standard of the corrosivity test was the same as that of the above H 2 S corrosion test method.
  • Examples 1 to 7 all compounds contained in the curable resin composition with respect to 1 mol of an aliphatic carbon-carbon double bond bonded to a silicon atom present in the compound contained in the curable resin composition. Since the number of moles (molar ratio) of the hydrosilyl group present in is less than 1, the A hardness before aging was low and less than 60. In Examples 1 to 7, by adding a sufficient amount of the carboxylate (E) of a rare earth metal atom, the increase in A hardness by aging at 200 ° C. for 500 hours is the same as in Examples 8 to 9. It was about.
  • E carboxylate
  • the curable resin composition and cured product of the present invention are useful for applications such as adhesives, coating agents, and sealing materials that are required to have heat resistance, transparency, flexibility, and barrier properties against corrosive gases.
  • the curable resin composition and the cured product of the present invention are suitable as a sealing material for an optical semiconductor element (LED element).

Abstract

 The purpose of the present invention is to provide a curable resin composition useful for sealing semiconductor elements (particularly optical semiconductor elements), said curable resin composition having both heat resistance and corrosion resistance against corrosive gases. This curable resin composition is characterized by including a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare-earth metal element, wherein a polyorganosiloxane not containing an aryl group is included as the polyorganosiloxane (A), and a ladder-type silsesquioxane is included as the silsesquioxane (B).

Description

硬化性樹脂組成物、硬化物、封止材、及び半導体装置Curable resin composition, cured product, sealing material, and semiconductor device
 本発明は、硬化性樹脂組成物、並びにその硬化性樹脂組成物を用いて得られる硬化物、封止材、及びその封止材を用いて得られる半導体装置に関する。本願は、2014年6月6日に日本に出願した、特願2014-117841号の優先権を主張し、その内容をここに援用する。 The present invention relates to a curable resin composition, a cured product obtained using the curable resin composition, a sealing material, and a semiconductor device obtained using the sealing material. This application claims the priority of Japanese Patent Application No. 2014-117841 for which it applied to Japan on June 6, 2014, and uses the content here.
 高耐熱・高耐電圧が求められる半導体装置において、半導体素子を被覆する材料には一般に、150℃程度以上の耐熱性が求められている。特に、光半導体素子などの光学材料を被覆する材料(封止材)には、耐熱性に加えて、透明性、柔軟性等の物性に優れることが求められている。現在、例えば、液晶ディスプレイのバックライトユニットにおける封止材としては、特許文献1~4などのシリコーン系樹脂材料が使用されている。 In a semiconductor device that requires high heat resistance and high withstand voltage, a material covering a semiconductor element is generally required to have a heat resistance of about 150 ° C. or higher. In particular, a material (encapsulant) that covers an optical material such as an optical semiconductor element is required to have excellent physical properties such as transparency and flexibility in addition to heat resistance. Currently, for example, as a sealing material in a backlight unit of a liquid crystal display, silicone-based resin materials such as Patent Documents 1 to 4 are used.
特開2006-206721号公報JP 2006-206721 A 特開2007-031619号公報JP 2007-031619 A 特開2002-314140号公報JP 2002-314140 A 特開2011-178983号公報JP 2011-177893 A
 特許文献1には、耐熱性が高く熱放散性の良い材料として、シロキサン(Si-O-Si結合体)による橋かけ構造を有する少なくとも1種の第1の有機珪素ポリマーと、シロキサンによる線状連結構造を有する少なくとも1種の第2の有機珪素ポリマーとを、シロキサン結合により連結させた、分子量が2万から80万である第3の有機珪素ポリマーの1種以上を含有する合成高分子化合物が開示されている。しかしながら、これらの化合物の硬化物の物性は、未だ満足できるものではない。 In Patent Document 1, as a material having high heat resistance and good heat dissipation, at least one first organosilicon polymer having a crosslinked structure of siloxane (Si—O—Si conjugate) and a linear shape of siloxane are disclosed. A synthetic polymer compound containing at least one kind of a third organosilicon polymer having a molecular weight of 20,000 to 800,000, which is linked to at least one second organosilicon polymer having a linking structure by a siloxane bond. Is disclosed. However, the physical properties of cured products of these compounds are not yet satisfactory.
 また、特許文献2には、透明性、耐UV性、耐熱着色性に優れた光素子封止用樹脂組成物として、脂肪族炭素-炭素不飽和結合を含有しSi-H結合を含有しない籠型構造体の液状のシルセスキオキサン、及び、Si-H結合を含有し脂肪族炭素-炭素不飽和結合を含有しない籠型構造体の液状のシルセスキオキサンからなる群から選択される少なくとも1種のシルセスキオキサンを樹脂成分として含有する光素子封止用樹脂組成物が開示されている。そして、150℃で100時間加熱後の透過率低下が、比較的小さくなることが記載されている。しかし、耐熱性は、未だ満足できるものではなく、また、籠型のシルセスキオキサンを含む樹脂組成物の硬化物は比較的硬く、柔軟性に乏しいため、クラックや割れが生じやすいという問題がある。 Patent Document 2 discloses an optical element sealing resin composition excellent in transparency, UV resistance, and heat resistance colorability, which contains an aliphatic carbon-carbon unsaturated bond and does not contain an Si—H bond. At least selected from the group consisting of a liquid silsesquioxane of a type structure and a liquid silsesquioxane of a saddle type structure containing an Si—H bond and no aliphatic carbon-carbon unsaturated bond A resin composition for sealing an optical element containing one kind of silsesquioxane as a resin component is disclosed. And it describes that the transmittance | permeability fall after heating at 150 degreeC for 100 hours becomes comparatively small. However, the heat resistance is not yet satisfactory, and the cured product of the resin composition containing a cage silsesquioxane is relatively hard and lacks flexibility, so that there is a problem that cracks and cracks are likely to occur. is there.
 また、特許文献3には、SiH基と反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有するトリアリルイソシアヌレートなどの有機化合物、1分子中に少なくとも2個のSiH基を含有する、鎖状、及び/又は、環状ポリオルガノシロキサンなどの化合物、ヒドロシリル化触媒を必須成分として含有する硬化性組成物が開示されている。しかしながら、これらの材料の耐熱性、耐クラック性等の物性は、未だ満足できるものではない。 Patent Document 3 discloses an organic compound such as triallyl isocyanurate containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, and at least two SiH groups in one molecule. A curable composition containing a chain-containing and / or cyclic polyorganosiloxane-containing compound and a hydrosilylation catalyst as an essential component is disclosed. However, physical properties such as heat resistance and crack resistance of these materials are still not satisfactory.
 一方、光半導体装置における電極等の金属材料は、腐食性ガスにより腐食され易く、通電特性(例えば、高温環境における通電特性)が経時的に悪化するという問題がある。そのため、光半導体用の封止材料には、腐食性ガスに対する高いバリア性(腐食性ガスに対する耐腐食性)が求められる。しかしながら、特許文献1~3等に開示されている従来のシリコーン系樹脂材料を用いた封止材料は、腐食性ガスに対するバリア性が十分とは言えない。 On the other hand, metal materials such as electrodes in an optical semiconductor device are easily corroded by corrosive gas, and there is a problem that current-carrying characteristics (for example, current-carrying characteristics in a high-temperature environment) deteriorate with time. Therefore, the sealing material for optical semiconductors is required to have a high barrier property against corrosive gas (corrosion resistance against corrosive gas). However, sealing materials using conventional silicone resin materials disclosed in Patent Documents 1 to 3 and the like cannot be said to have sufficient barrier properties against corrosive gases.
 特許文献4には、(A)ケイ素原子に結合したアルケニル基を少なくとも2個有するポリシロキサンと、(B)ケイ素原子に結合した水素基を少なくとも2個有するポリシロキサン架橋剤と、(C)ヒドロシリル化反応触媒と、(D)亜鉛化合物とを含み、前記(D)成分を前記(A)成分および前記(B)成分の合計100質量部に対して0.1~5質量部含有し、耐硫化性に優れたシリコーン樹脂組成物が開示されている。しかしながら、硫化水素(H2S)に対する耐腐食性は開示されているが、他の腐食性ガスに対する耐腐食性については、何ら記載がない。また、耐熱性についても、満足できるものではなかった。 Patent Document 4 discloses (A) a polysiloxane having at least two alkenyl groups bonded to silicon atoms, (B) a polysiloxane crosslinking agent having at least two hydrogen groups bonded to silicon atoms, and (C) hydrosilyl. And (D) a zinc compound, the component (D) is contained in an amount of 0.1 to 5 parts by mass relative to a total of 100 parts by mass of the component (A) and the component (B), A silicone resin composition having excellent sulfidation properties is disclosed. However, although corrosion resistance against hydrogen sulfide (H 2 S) is disclosed, there is no description about corrosion resistance against other corrosive gases. Also, the heat resistance was not satisfactory.
 次世代光源用の封止材として、一層優れた耐熱性が要求されてきている。また、機器の小型化、薄型化に伴い、半導体素子を被覆する材料には、一層優れた耐熱性が要求されてきている。
 さらに、半導体装置を腐食させる腐食性ガスには複数の種類が存在するため、多種多様な腐食性ガスに対するバリア性も併せて有することが要求されてきている。中でも、本発明者らは、半導体素子を被覆する材料には、少なくとも、硫化水素(H2S)ガスに対するバリア性(耐H2S腐食性)と硫黄酸化物(SOx)ガスに対するバリア性(耐SOx腐食性)の二つを兼ね備えていることが重要であることを見出した。
As a sealing material for next-generation light sources, higher heat resistance has been demanded. In addition, with the miniaturization and thinning of equipment, a material that covers a semiconductor element has been required to have better heat resistance.
Furthermore, since there are a plurality of types of corrosive gases that corrode semiconductor devices, it has been required to have barrier properties against a wide variety of corrosive gases. In particular, the present inventors have at least a barrier property against hydrogen sulfide (H 2 S) gas (H 2 S corrosion resistance) and a barrier property against sulfur oxide (SO x ) gas as a material covering the semiconductor element. It has been found that it is important to combine (SO x corrosion resistance).
 従って、本発明の目的は、耐熱性(特に、180℃以上の耐熱性)、及び腐食性ガスに対する耐腐食性(特に、硫化水素(H2S)ガスに対するバリア性(耐H2S腐食性)、及び硫黄酸化物(SOx)ガスに対するバリア性(耐SOx腐食性))を兼ね備えた、半導体素子(特に光半導体素子)の封止用途に有用な硬化性樹脂組成物を提供することにある。本発明の他の目的は、透明性、柔軟性を備えると共に、耐熱性、腐食性ガスに対する耐腐食性を兼ね備えた、半導体素子(特に光半導体素子)の封止用途に有用な硬化性樹脂組成物を提供することにある。 Accordingly, the object of the present invention is to provide heat resistance (especially heat resistance of 180 ° C. or more) and corrosion resistance against corrosive gases (particularly barrier properties against hydrogen sulfide (H 2 S) gas (H 2 S corrosion resistance). ) and sulfur oxides (combines SO x) barrier properties against gases (resistance SO x corrosion)), to provide a useful cure resin composition for the sealing purpose of the semiconductor device (particularly an optical semiconductor element) It is in. Another object of the present invention is to provide a curable resin composition useful for sealing semiconductor devices (especially optical semiconductor devices), which has transparency and flexibility, and also has heat resistance and corrosion resistance against corrosive gases. To provide things.
 本発明者らは、特定のシリコーン樹脂に希土類金属原子のカルボン酸塩を添加すると、硬化物の加熱後の硬度上昇が抑えられ、耐熱性が著しく向上することに加え、耐H2S腐食性も向上することを見出した。さらには、特定のシリコーン樹脂及び希土類金属原子のカルボン酸塩に、ラダー型シルセスキオキサンを含むシルセスキオキサン及びイソシアヌレート化合物を配合することで、耐熱性、耐H2S腐食性(H2Sガスバリア性)を低下させることなく、耐SOx腐食性(SOxガスバリア性)にも優れることを見出し、本発明を完成させた。 When the present inventors add a carboxylate of a rare earth metal atom to a specific silicone resin, an increase in hardness after heating of the cured product is suppressed, and in addition to a remarkable improvement in heat resistance, H 2 S corrosion resistance Also found to improve. Furthermore, by adding a silsesquioxane containing a silsesquioxane ladder and an isocyanurate compound to a specific silicone resin and a carboxylate of a rare earth metal atom, heat resistance, H 2 S corrosion resistance (H 2 S gas barrier property) without reducing, it found that excellent resistance to SO x corrosion (SO x gas barrier properties), thereby completing the present invention.
 即ち、本発明は、ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及び希土類金属原子のカルボン酸塩(E)を含み、ポリオルガノシロキサン(A)としてアリール基を有しないポリオルガノシロキサンを含み、シルセスキオキサン(B)としてラダー型シルセスキオキサンを含むことを特徴とする硬化性樹脂組成物を提供する。 That is, the present invention includes a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare earth metal atom. There is provided a curable resin composition comprising a polyorganosiloxane having no group and a ladder-type silsesquioxane as the silsesquioxane (B).
 上記ラダー型シルセスキオキサンとして、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンを含むことが好ましい。 It is preferable that the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule.
 上記ラダー型シルセスキオキサンとして、分子内にSi-H結合を有するラダー型シルセスキオキサンを含むことが好ましい。 It is preferable that the ladder-type silsesquioxane includes a ladder-type silsesquioxane having a Si—H bond in the molecule.
 上記ラダー型シルセスキオキサンとして、分子内にアリール基を有するラダー型シルセスキオキサンを含むことが好ましい。 It is preferable that the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aryl group in the molecule.
 イソシアヌレート化合物(C)として、式(1)
Figure JPOXMLDOC01-appb-C000004
[式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[式(2)及び式(3)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を示す。]]
で表されるイソシアヌレート化合物を含むことが好ましい。
As the isocyanurate compound (C), the formula (1)
Figure JPOXMLDOC01-appb-C000004
[In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
[In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]]
It is preferable that the isocyanurate compound represented by these is included.
 式(1)で表される上記化合物が、Rx、Ry、Rzのうち、いずれかひとつ以上が式(3)で表される基である化合物であることが好ましい。 The compound represented by the formula (1) is preferably a compound in which at least one of R x , R y and R z is a group represented by the formula (3).
 希土類金属原子のカルボン酸塩(E)として、カルボン酸イットリウムを含むことが好ましい。 As the carboxylate (E) of the rare earth metal atom, it is preferable to contain yttrium carboxylate.
 希土類金属原子のカルボン酸塩(E)が、カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、及びカルボン酸ネオジムの混合物であることが好ましい。 The carboxylate (E) of the rare earth metal atom is preferably a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate.
 硬化性樹脂組成物中に含まれる化合物中に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の総数に対する、硬化性樹脂組成物中に含まれる化合物中に存在するSi-H基の総数の比が、1未満であることが好ましい。 Of Si—H groups present in the compound contained in the curable resin composition relative to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition The ratio of the total number is preferably less than 1.
 更に、シランカップリング剤(D)を含むことが好ましい。 Furthermore, it is preferable that a silane coupling agent (D) is included.
 さらに、本発明は、上記硬化性樹脂組成物を硬化して得られる硬化物を提供する。 Furthermore, the present invention provides a cured product obtained by curing the curable resin composition.
 さらに、本発明は、上記硬化性樹脂組成物を用いて得られる封止材を提供する。 Furthermore, this invention provides the sealing material obtained using the said curable resin composition.
 さらに、本発明は、上記封止材を用いて得られる半導体装置を提供する。 Furthermore, the present invention provides a semiconductor device obtained using the sealing material.
 すなわち、本発明は以下に関する。
[1]ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及び希土類金属原子のカルボン酸塩(E)を含み、ポリオルガノシロキサン(A)としてアリール基を有しないポリオルガノシロキサンを含み、シルセスキオキサン(B)としてラダー型シルセスキオキサンを含むことを特徴とする硬化性樹脂組成物。
[2]前記ラダー型シルセスキオキサンとして、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンを含む[1]に記載の硬化性樹脂組成物。
[3]前記ラダー型シルセスキオキサンとして、分子内にSi-H結合を有するラダー型シルセスキオキサンを含む[1]又は[2]に記載の硬化性樹脂組成物。
[4]前記ラダー型シルセスキオキサンとして、分子内にアリール基を有するラダー型シルセスキオキサンを含む[1]~[3]のいずれか一項に記載の硬化性樹脂組成物。
[5]イソシアヌレート化合物(C)として、前記式(1)で表されるイソシアヌレート化合物を含む[1]~[4]のいずれか一項に記載の硬化性樹脂組成物。
[6]前記式(1)で表される前記イソシアヌレート化合物が、Rx、Ry、Rzのうち、ひとつ以上が前記式(3)で表される基であるイソシアヌレート化合物である[5]に記載の硬化性樹脂組成物。
[7]希土類金属原子のカルボン酸塩(E)として、カルボン酸イットリウムを含む[1]~[6]のいずれか一項に記載の硬化性樹脂組成物。
[8]希土類金属原子のカルボン酸塩(E)が、カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、及びカルボン酸ネオジムの混合物である[1]~[6]のいずれか一項に記載の硬化性樹脂組成物。
[9]硬化性樹脂組成物中に含まれる化合物中に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の総数に対する、硬化性樹脂組成物中に含まれる化合物中に存在するSi-H基の総数の比が、1未満である[1]~[8]のいずれか一項に記載の硬化性樹脂組成物。
[10]更に、シランカップリング剤(D)を含む[1]~[9]のいずれか一項に記載の硬化性樹脂組成物。
[11]前記ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンが、ヒドロシリル基又は脂肪族炭素-炭素不飽和結合を有する基を有する直鎖状又は分岐鎖状のポリオルガノシロキサンである[1]~[10]のいずれか一項に記載の硬化性樹脂組成物。
[12]前記ポリオルガノシロキシシルアルキレンが、式(6)で表される構造を有するポリオルガノシロキシシルアルキレンである[1]~[11]のいずれか一項に記載の硬化性樹脂組成物。
[13]前記のアリール基を有しないポリオルガノシロキサンの割合が、ポリオルガノシロキサン(A)全量に対して、50重量%以上である[1]~[12]のいずれか一項に記載の硬化性樹脂組成物。
[14]前記ポリオルガノシロキサン(A)の含有量が、硬化性樹脂組成物の全量に対して、55~95重量%である[1]~[13]のいずれか一項に記載の硬化性樹脂組成物。
[15]前記ラダー型シルセスキオキサンの含有量が、シルセスキオキサン(B)全量に対して、50重量%以上である[1]~[14]のいずれか一項に記載の硬化性樹脂組成物。
[16]前記の分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンの含有量が、シルセスキオキサン(B)全量に対して、20重量%以上である[2]~[15]のいずれか一項に記載の硬化性樹脂組成物。
[17]前記の分子内にSi-H結合を有するラダー型シルセスキオキサンの含有量が、シルセスキオキサン(B)全量に対して、10重量%以上である[3]~[16]のいずれか一項に記載の硬化性樹脂組成物。
[18]前記シルセスキオキサン(B)の含有量が、硬化性樹脂組成物の全量に対して、5~45重量%である[1]~[17]のいずれか一項に記載の硬化性樹脂組成物。
[19]前記イソシアヌレート化合物(C)の含有量が、硬化性樹脂組成物の全量に対して、0.01~10重量%である[1]~[18]のいずれか一項に記載の硬化性樹脂組成物。
[20]前記シランカップリング剤(D)の含有量が、硬化性樹脂組成物の全量に対して、0.01~15重量%である[1]~[19]のいずれか一項に記載の硬化性樹脂組成物。
[21]前記の希土類金属原子のカルボン酸塩(E)の含有量が、硬化性樹脂組成物全量に対して、0.008~1.000重量%である[1]~[20]のいずれか一項に記載の硬化性樹脂組成物。
[22][1]~[21]のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。
[23][1]~[21]のいずれか一項に記載の硬化性樹脂組成物を用いて得られる封止材。
[24][23]に記載の封止材を用いて得られる半導体装置。
That is, the present invention relates to the following.
[1] A polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare earth metal atom. The polyorganosiloxane (A) has an aryl group. A curable resin composition comprising a polyorganosiloxane that does not contain a ladder-type silsesquioxane as silsesquioxane (B).
[2] The curable resin composition according to [1], wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule.
[3] The curable resin composition according to [1] or [2], wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having a Si—H bond in the molecule.
[4] The curable resin composition according to any one of [1] to [3], wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aryl group in the molecule.
[5] The curable resin composition according to any one of [1] to [4], which contains an isocyanurate compound represented by the formula (1) as the isocyanurate compound (C).
[6] The isocyanurate compound represented by the formula (1) is an isocyanurate compound in which one or more of R x , R y , and R z are groups represented by the formula (3) [ [5] The curable resin composition according to [5].
[7] The curable resin composition according to any one of [1] to [6], wherein the carboxylate (E) of the rare earth metal atom contains yttrium carboxylate.
[8] The rare earth metal carboxylate (E) is a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate, [1] to [6] Curable resin composition.
[9] Si— present in the compound contained in the curable resin composition relative to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition The curable resin composition according to any one of [1] to [8], wherein the ratio of the total number of H groups is less than 1.
[10] The curable resin composition according to any one of [1] to [9], further including a silane coupling agent (D).
[11] The polyorganosiloxane contained in the polyorganosiloxane (A) is a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond [1] ] The curable resin composition according to any one of [10] to [10].
[12] The curable resin composition according to any one of [1] to [11], wherein the polyorganosiloxysilalkylene is a polyorganosiloxysilalkylene having a structure represented by the formula (6).
[13] The curing according to any one of [1] to [12], wherein the proportion of the polyorganosiloxane having no aryl group is 50% by weight or more based on the total amount of the polyorganosiloxane (A). Resin composition.
[14] The curable property according to any one of [1] to [13], wherein the content of the polyorganosiloxane (A) is 55 to 95% by weight based on the total amount of the curable resin composition. Resin composition.
[15] The curability according to any one of [1] to [14], wherein the content of the ladder-type silsesquioxane is 50% by weight or more based on the total amount of the silsesquioxane (B). Resin composition.
[16] The content of the ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule is 20% by weight or more based on the total amount of the silsesquioxane (B) [2] The curable resin composition according to any one of [15] to [15].
[17] The content of the ladder-type silsesquioxane having a Si—H bond in the molecule is 10% by weight or more based on the total amount of the silsesquioxane (B) [3] to [16] The curable resin composition as described in any one of these.
[18] The curing according to any one of [1] to [17], wherein the content of the silsesquioxane (B) is 5 to 45% by weight with respect to the total amount of the curable resin composition. Resin composition.
[19] The content of the isocyanurate compound (C) is 0.01 to 10% by weight based on the total amount of the curable resin composition, according to any one of [1] to [18] Curable resin composition.
[20] The content of the silane coupling agent (D) is 0.01 to 15% by weight, based on the total amount of the curable resin composition, [1] to [19] Curable resin composition.
[21] Any of [1] to [20], wherein the content of the carboxylate (E) of the rare earth metal atom is 0.008 to 1.000% by weight with respect to the total amount of the curable resin composition. The curable resin composition according to claim 1.
[22] A cured product obtained by curing the curable resin composition according to any one of [1] to [21].
[23] A sealing material obtained using the curable resin composition according to any one of [1] to [21].
[24] A semiconductor device obtained using the sealing material according to [23].
 本発明の硬化性樹脂組成物は、上記構成を有することにより、耐熱性、及び、H2SガスやSOxガス等、複数の腐食性ガスに対するバリア性(耐H2S腐食性、耐SOx腐食性など)に優れる。また、透明性、柔軟性、耐リフロー性、密着性等にも優れる。そのため、本発明の硬化性樹脂組成物は、半導体装置の封止材、特に、LED等の光半導体素子用の封止材として有用である。また、本発明の硬化性樹脂組成物は、これまでにない高温(例えば、180℃以上)の環境における耐熱性が要求される次世代光源用の封止材として有用である。更に、光半導体素子が、本発明の硬化性樹脂組成物の硬化物によって封止されることにより、品質や耐久性等に優れた光半導体装置を得ることができる。 Since the curable resin composition of the present invention has the above-described configuration, it has heat resistance and barrier properties against a plurality of corrosive gases such as H 2 S gas and SO x gas (H 2 S corrosion resistance, SO resistance). x Excellent corrosion resistance. Moreover, it is excellent also in transparency, a softness | flexibility, reflow resistance, adhesiveness, etc. Therefore, the curable resin composition of the present invention is useful as a sealing material for semiconductor devices, particularly as a sealing material for optical semiconductor elements such as LEDs. Further, the curable resin composition of the present invention is useful as a sealing material for next-generation light sources that are required to have heat resistance in an environment of an unprecedented high temperature (for example, 180 ° C. or higher). Furthermore, an optical semiconductor device excellent in quality, durability, and the like can be obtained by sealing the optical semiconductor element with a cured product of the curable resin composition of the present invention.
 本発明の硬化性樹脂組成物は、ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及び希土類金属原子のカルボン酸塩(E)を少なくとも含む。ポリオルガノシロキサン(A)は、アリール基を有しないポリオルガノシロキサンを少なくとも含む。シルセスキオキサン(B)は、ラダー型シルセスキオキサンを少なくとも含む。 The curable resin composition of the present invention includes at least a polyorganosiloxane (A), a silsesquioxane (B), an isocyanurate compound (C), and a carboxylate (E) of a rare earth metal atom. The polyorganosiloxane (A) contains at least a polyorganosiloxane having no aryl group. The silsesquioxane (B) includes at least a ladder-type silsesquioxane.
[ポリオルガノシロキサン(A)]
 本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)は、シロキサン結合(Si-O-Si)で構成された主鎖を有するポリオルガノシロキサンであって、アリール基を有しないポリオルガノシロキサンを少なくとも含む。
 なお、本明細書において、シロキサン結合(Si-O-Si)で構成された主鎖を有するポリオルガノシロキサンを、単に「ポリオルガノシロキサン」と称する場合がある。
[Polyorganosiloxane (A)]
The polyorganosiloxane (A) in the curable resin composition of the present invention is a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si) and having no aryl group. Including at least.
In this specification, a polyorganosiloxane having a main chain composed of siloxane bonds (Si—O—Si) may be simply referred to as “polyorganosiloxane”.
 ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンとしては、特に限定されないが、例えば、アリール基を有しないポリオルガノシロキサン、アリール基を有するポリオルガノシロキサン、主鎖として-Si-O-基(シロキシ基)に加え、さらに-Si-A-基[シルアルキレン基;Aは二価の炭化水素基(例えば、アルキレン基)を示す]を有する、アリール基を有しないポリオルガノシロキサン(以下、当該ポリオルガノシロキサンを「ポリオルガノシロキシシルアルキレン」と称する)などが挙げられる。
 また、ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンは、ヒドロシリル基又は脂肪族炭素-炭素不飽和結合を有する基を有する直鎖状又は分岐鎖状のポリオルガノシロキサンであっても良い。ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンとしては、ジメチルシリコーン骨格(ポリジメチルシロキサン)等の周知慣用のシリコーン骨格を有するポリオルガノシロキサンが挙げられる。
 なお、ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンには、シルセスキオキサン(B)は含まれない。
The polyorganosiloxane contained in the polyorganosiloxane (A) is not particularly limited. For example, polyorganosiloxane having no aryl group, polyorganosiloxane having an aryl group, -Si-O- group ( In addition to a siloxy group), a polyorganosiloxane having an —Si—A— group [silalkylene group; A represents a divalent hydrocarbon group (for example, an alkylene group)] and no aryl group (hereinafter referred to as the “siloxy group”). Polyorganosiloxane is referred to as “polyorganosiloxysilalkylene”).
The polyorganosiloxane contained in the polyorganosiloxane (A) may be a linear or branched polyorganosiloxane having a hydrosilyl group or a group having an aliphatic carbon-carbon unsaturated bond. Examples of the polyorganosiloxane contained in the polyorganosiloxane (A) include polyorganosiloxanes having a well-known and commonly used silicone skeleton such as a dimethyl silicone skeleton (polydimethylsiloxane).
In addition, silsesquioxane (B) is not contained in the polyorganosiloxane contained in polyorganosiloxane (A).
 上記ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンは、直鎖及び/又は分岐鎖を有するポリオルガノシロキサンであってもよい。 The polyorganosiloxane contained in the polyorganosiloxane (A) may be a polyorganosiloxane having a straight chain and / or a branched chain.
 上記アリール基を有するポリオルガノシロキサンにおけるアリール基としては、特に限定されないが、例えば、フェニル基、ナフチル基等のC6-14アリール基(特にC6-10アリール基)等が挙げられる。これらアリール基は、ポリオルガノシロキサン(A)におけるケイ素原子が有する置換基(ケイ素原子に直接結合する基)であっても良い。 The aryl group in the polyorganosiloxane having an aryl group is not particularly limited, and examples thereof include C 6-14 aryl groups (particularly C 6-10 aryl groups) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
 上記アリール基を有しないポリオルガノシロキサンは、分子内に実質的にアリール基を含有しないポリオルガノシロキサンであることが好ましい。具体的には、上記アリール基を有しないポリオルガノシロキサン(100重量%)中のアリール基の含有量が、0.5重量%以下であることが好ましく、0.2重量%以下がより好ましく、0.1重量%以下がさらに好ましく、ポリオルガノシロキサン(A)中にアリール基が存在しないことが特に好ましい。アリール基の含有量が0.5重量%以下であることにより(特に、アリール基が存在しないことにより)、硬化物において所望の物性(耐熱性や屈折率等)が得られやすい。ポリオルガノシロキサン中のアリール基の含有量は、1H-NMRにより測定することができる。 The polyorganosiloxane having no aryl group is preferably a polyorganosiloxane that does not substantially contain an aryl group in the molecule. Specifically, the content of the aryl group in the polyorganosiloxane having no aryl group (100% by weight) is preferably 0.5% by weight or less, more preferably 0.2% by weight or less, The content is more preferably 0.1% by weight or less, and particularly preferably no aryl group is present in the polyorganosiloxane (A). When the content of the aryl group is 0.5% by weight or less (particularly due to the absence of the aryl group), desired physical properties (such as heat resistance and refractive index) are easily obtained in the cured product. The content of aryl groups in the polyorganosiloxane can be measured by 1 H-NMR.
 上記ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンにおけるケイ素原子が有する置換基としては、例えば、Si-H結合を有する基、置換又は無置換の炭化水素基(好ましくはアルキル基、アルケニル基、シクロアルキル基、又はシクロアルケニル基)、ヒドロキシル基、アルコキシ基、アルケニルオキシ基、アシルオキシ基、メルカプト基(チオール基)、アルキルチオ基、アルケニルチオ基、カルボキシル基、アルコキシカルボニル基、アミノ基又は置換アミノ基(モノ又はジアルキルアミノ基、アシルアミノ基等)、エポキシ基、ハロゲン原子等が挙げられる。 Examples of the substituent of the silicon atom in the polyorganosiloxane contained in the polyorganosiloxane (A) include a group having a Si—H bond, a substituted or unsubstituted hydrocarbon group (preferably an alkyl group, an alkenyl group). , Cycloalkyl group or cycloalkenyl group), hydroxyl group, alkoxy group, alkenyloxy group, acyloxy group, mercapto group (thiol group), alkylthio group, alkenylthio group, carboxyl group, alkoxycarbonyl group, amino group or substituted amino group Examples include a group (mono or dialkylamino group, acylamino group, etc.), an epoxy group, a halogen atom, and the like.
 上記アルキル基としては、C1-10アルキル基が好ましく、C1-4アルキル基がより好ましい。上記アルケニル基としては、C2-10アルケニル基が好ましく、C2-4アルケニル基がより好ましい。上記シクロアルキル基としては、C3-12シクロアルキル基が好ましい。上記シクロアルケニル基としては、C3-12シクロアルケニル基が好ましい。上記アルコキシ基としては、C1-6アルコキシ基が好ましい。上記アルケニルオキシ基としては、C1-6アルケニルオキシ基が好ましい。上記アシルオキシ基としては、C1-6アシルオキシ基が好ましい。上記アルキルチオ基としては、C1-6アルキルチオ基が好ましい。上記アルケニルチオ基としては、C1-6アルケニルチオ基が好ましい。上記アルコキシカルボニル基としては、C1-6アルコキシカルボニル基が好ましい。上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が好ましい。 As the alkyl group, a C 1-10 alkyl group is preferable, and a C 1-4 alkyl group is more preferable. The alkenyl group is preferably a C 2-10 alkenyl group, and more preferably a C 2-4 alkenyl group. The cycloalkyl group is preferably a C 3-12 cycloalkyl group. As the cycloalkenyl group, a C 3-12 cycloalkenyl group is preferable. As the alkoxy group, a C 1-6 alkoxy group is preferable. The alkenyloxy group is preferably a C 1-6 alkenyloxy group. As the acyloxy group, a C 1-6 acyloxy group is preferable. As the alkylthio group, a C 1-6 alkylthio group is preferable. As the alkenylthio group, a C 1-6 alkenylthio group is preferable. The alkoxycarbonyl group is preferably a C 1-6 alkoxycarbonyl group. As said halogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are preferable.
 上記置換基として、Si-H結合を有する基、置換又は無置換の炭化水素基(好ましくはアルキル基又はアルケニル基)から選ばれる少なくとも1種以上の置換基が好ましい。 As the substituent, at least one substituent selected from a group having a Si—H bond and a substituted or unsubstituted hydrocarbon group (preferably an alkyl group or an alkenyl group) is preferable.
 ポリオルガノシロキサン中の上記置換基の位置は、特に限定されず、シロキサン結合(Si-O-Si)で構成された主鎖に対して、側鎖に位置しても良いし、末端に位置しても良い。 The position of the substituent in the polyorganosiloxane is not particularly limited, and may be located in the side chain or at the terminal with respect to the main chain composed of the siloxane bond (Si—O—Si). May be.
 なお、ヒドロシリル基を有するポリオルガノシロキサンは、同時に、脂肪族炭素-炭素不飽和結合を有するポリオルガノシロキサンであっても良い。また、脂肪族炭素-炭素不飽和結合を有するポリオルガノシロキサンは、同時に、ヒドロシリル基を有するポリオルガノシロキサンであっても良い。 The polyorganosiloxane having a hydrosilyl group may be a polyorganosiloxane having an aliphatic carbon-carbon unsaturated bond at the same time. Further, the polyorganosiloxane having an aliphatic carbon-carbon unsaturated bond may be a polyorganosiloxane having a hydrosilyl group at the same time.
 上記ポリオルガノシロキシシルアルキレンのシルアルキレン基における二価の炭化水素基(上記A)としては、例えば、アルキレン基(炭素数1~18の直鎖状又は分岐鎖状のアルキレン基など)、二価の脂環式炭化水素基などが挙げられ、好ましくは炭素数2~4の直鎖状又は分岐鎖状のアルキレン基(特にエチレン基)である。 Examples of the divalent hydrocarbon group (A) in the silalkylene group of the polyorganosiloxysilalkylene include, for example, an alkylene group (such as a linear or branched alkylene group having 1 to 18 carbon atoms), divalent The alicyclic hydrocarbon group is preferably a linear or branched alkylene group having 2 to 4 carbon atoms (particularly an ethylene group).
 上記ポリオルガノシロキシシルアルキレンとしては、例えば、下記式(6)で表される構造を有するポリオルガノシロキシシルアルキレンが挙げられる。
Figure JPOXMLDOC01-appb-C000007
Examples of the polyorganosiloxysilalkylene include polyorganosiloxysilalkylene having a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000007
 式(6)中、R21~R26は、同一又は異なって、水素原子、一価の炭化水素基、又は一価の複素環式基を示す。但し、R21~R26の内一つ以上は、脂肪族炭素-炭素不飽和結合を含む一価の基である。 In formula (6), R 21 to R 26 are the same or different and each represents a hydrogen atom, a monovalent hydrocarbon group, or a monovalent heterocyclic group. However, at least one of R 21 to R 26 is a monovalent group containing an aliphatic carbon-carbon unsaturated bond.
 上記一価の炭化水素基としては、例えば、一価の脂肪族炭化水素基;一価の脂環式炭化水素基;脂肪族炭化水素基及び脂環式炭化水素基が結合した一価の基等が挙げられる。 Examples of the monovalent hydrocarbon group include a monovalent aliphatic hydrocarbon group; a monovalent alicyclic hydrocarbon group; a monovalent group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded to each other. Etc.
 上記一価の複素環式基としては、例えば、ピリジル基、フリル基、チエニル基等が挙げられる。 Examples of the monovalent heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
 上記一価の脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基等の直鎖状又は分岐鎖状のC1-20アルキル基(好ましくはC1-10アルキル基、より好ましくはC1-4アルキル基)等が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基等のC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基)等が挙げられる。上記アルキニル基としては、例えば、エチニル基、プロピニル基等のC2-20アルキニル基(好ましくはC2-10アルキニル基、さらに好ましくはC2-4アルキニル基)等が挙げられる。 Examples of the monovalent aliphatic hydrocarbon group include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the alkyl group include straight chain or branched chain C 1- such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, and dodecyl group. 20 alkyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group) and the like. Examples of the alkenyl group include vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group and 2-pentenyl group. C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group and 5-hexenyl group. Examples of the alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
 上記一価の脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基等のC3-12のシクロアルキル基;シクロヘキセニル基等のC3-12のシクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基等のC4-15の架橋環式炭化水素基等が挙げられる。 Examples of the monovalent alicyclic hydrocarbon group include a C 3-12 cycloalkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3− group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
 また、脂肪族炭化水素基と脂環式炭化水素基とが結合した一価の基として、例えば、シクロへキシルメチル基、メチルシクロヘキシル基等が挙げられる。 In addition, examples of the monovalent group in which an aliphatic hydrocarbon group and an alicyclic hydrocarbon group are bonded include a cyclohexylmethyl group and a methylcyclohexyl group.
 上記一価の炭化水素基、及び上記一価の複素環式基は、置換基を有していてもよい。
 即ち、上記一価の炭化水素基、又は上記一価の複素環式基は、上記で例示した一価の炭化水素基又は一価の複素環式基の少なくとも1つの水素原子が置換基と置き換わった一価の炭化水素基又は一価の複素環式基であってもよい。上記置換基の炭素数は0~20が好ましく、より好ましくは0~10である。上記置換基としては、具体的には、例えば、ハロゲン原子;ヒドロキシル基;アルコキシ基;アルケニルオキシ基;アシルオキシ基;メルカプト基;アルキルチオ基;アルケニルチオ基;カルボキシル基;アルコキシカルボニル基;アミノ基;モノ又はジアルキルアミノ基;アシルアミノ基;エポキシ基含有基;オキセタニル基含有基;アシル基;オキソ基;イソシアネート基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基等が挙げられる。
The monovalent hydrocarbon group and the monovalent heterocyclic group may have a substituent.
That is, in the monovalent hydrocarbon group or the monovalent heterocyclic group, at least one hydrogen atom of the monovalent hydrocarbon group or monovalent heterocyclic group exemplified above is replaced with a substituent. Further, it may be a monovalent hydrocarbon group or a monovalent heterocyclic group. The substituent preferably has 0 to 20 carbon atoms, more preferably 0 to 10 carbon atoms. Specific examples of the substituent include a halogen atom; a hydroxyl group; an alkoxy group; an alkenyloxy group; an acyloxy group; an mercapto group; an alkylthio group; an alkenylthio group; a carboxyl group; Or a dialkylamino group; an acylamino group; an epoxy group-containing group; an oxetanyl group-containing group; an acyl group; an oxo group; an isocyanate group; a group in which two or more of these are bonded via a C 1-6 alkylene group, if necessary. Can be mentioned.
 上記ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子等が挙げられる。上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のC1-6アルコキシ基(好ましくはC1-4アルコキシ基)等が挙げられる。上記アルケニルオキシ基としては、例えば、アリルオキシ基等のC2-6アルケニルオキシ基(好ましくはC2-4アルケニルオキシ基)等が挙げられる。上記アシルオキシ基としては、例えば、アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基等のC1-12アシルオキシ基等が挙げられる。 Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom. Examples of the alkoxy group include C 1-6 alkoxy groups (preferably C 1-4 alkoxy groups) such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group. Examples of the alkenyloxy group include a C 2-6 alkenyloxy group (preferably a C 2-4 alkenyloxy group) such as an allyloxy group. Examples of the acyloxy group include C 1-12 acyloxy groups such as an acetyloxy group, a propionyloxy group, and a (meth) acryloyloxy group.
 上記アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基等のC1-6アルキルチオ基(好ましくはC1-4アルキルチオ基)等が挙げられる。上記アルケニルチオ基としては、例えば、アリルチオ基等のC2-6アルケニルチオ基(好ましくはC2-4アルケニルチオ基)等が挙げられる。上記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のC1-6アルコキシ-カルボニル基等が挙げられる。上記モノ又はジアルキルアミノ基としては、メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジ-C1-6アルキルアミノ基等が挙げられる。上記アシルアミノ基としては、例えば、アセチルアミノ基、プロピオニルアミノ基、等のC1-11アシルアミノ基等が挙げられる。上記エポキシ基含有基としては、例えば、グリシジル基、グリシジルオキシ基、3,4-エポキシシクロヘキシル基等が挙げられる。上記オキセタニル基含有基としては、例えば、エチルオキセタニルオキシ基等が挙げられる。上記アシル基としては、例えば、アセチル基、プロピオニル基、ベンゾイル基等が挙げられる。 Examples of the alkylthio group include C 1-6 alkylthio groups (preferably C 1-4 alkylthio groups) such as a methylthio group and an ethylthio group. Examples of the alkenylthio group include C 2-6 alkenylthio groups (preferably C 2-4 alkenylthio groups) such as an allylthio group. Examples of the alkoxycarbonyl group include C 1-6 alkoxy-carbonyl groups such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, and a butoxycarbonyl group. Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a dimethylamino group, and a diethylamino group. Examples of the acylamino group include C 1-11 acylamino groups such as an acetylamino group and a propionylamino group. Examples of the epoxy group-containing group include a glycidyl group, a glycidyloxy group, and a 3,4-epoxycyclohexyl group. As said oxetanyl group containing group, an ethyl oxetanyloxy group etc. are mentioned, for example. As said acyl group, an acetyl group, a propionyl group, a benzoyl group etc. are mentioned, for example.
 上記一価の炭化水素基、一価の複素環式基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、デシル基、ピリジル基、フリル基、チエニル基、ビニル基、アリル基、置換基を有する炭化水素基(例えば、2-(3,4-エポキシシクロヘキシル)エチル基、3-グリシジルプロピル基、3-メタクリロキシプロピル基、3-アクリロキシプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、3-メルカプトプロピル基、3-イソシアネートプロピル基等)等が好ましい。 Examples of the monovalent hydrocarbon group and monovalent heterocyclic group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, decyl group, pyridyl group, furyl group, and thienyl group. Vinyl group, allyl group, substituted hydrocarbon group (for example, 2- (3,4-epoxycyclohexyl) ethyl group, 3-glycidylpropyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group, etc.) are preferred.
 上記式(6)におけるR21~R26は、それぞれ同一であってもよいし、異なっていてもよい。 R 21 to R 26 in the above formula (6) may be the same or different.
 式(6)中、R27は、二価の炭化水素基を示す。上記二価の炭化水素基としては、例えば、直鎖状又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等の炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基が挙げられる。二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロエルキリデン基を含む)が挙げられる。中でも、R27としては、炭素数1~18(好ましくは炭素数1~8、より好ましくは炭素数1~5、さらに好ましくは炭素数2~4)の直鎖状又は分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基である。 In the formula (6), R 27 represents a divalent hydrocarbon group. Examples of the divalent hydrocarbon group include a linear or branched alkylene group, a divalent alicyclic hydrocarbon group, and the like. Examples of the linear or branched alkylene group include a linear or branched chain group having 1 to 18 carbon atoms such as a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group. Of the alkylene group. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclohexene group. And divalent cycloalkylene groups (including cycloalkylidene groups) such as a silene group, 1,4-cyclohexylene group, and cyclohexylidene group. Among them, R 27 is a linear or branched alkylene group having 1 to 18 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 5 carbon atoms, and further preferably 2 to 4 carbon atoms). Is more preferable, and an ethylene group is more preferable.
 式(6)中、rは1以上の整数を示す。rが2以上の整数の場合、rが付された括弧内の構造は、それぞれ同一であっても良く、異なっていても良い。rが付された括弧内の構造がそれぞれ異なる場合、各構造同士の付加形態は特に限定されず、ランダム型であっても良く、ブロック型であっても良い。また、式(6)中、sは1以上の整数を示す。sが2以上の整数の場合、sが付された括弧内の構造は、それぞれ同一であっても良く、異なっていても良い。sが付された括弧内の構造がそれぞれ異なる場合、各構造同士の付加形態は特に限定されず、ランダム型であっても良く、ブロック型であっても良い。更に、式(6)において、rが付された括弧内の構造と、sが付された括弧内の構造の付加形態は、特に限定されず、ランダム型であっても良く、ブロック型であっても良い。なお、rとsは、同一であってもよいし異なっていてもよい。即ち、式(6)中、r、sは、同一又は異なって、それぞれ1以上の整数を示す。 In formula (6), r represents an integer of 1 or more. When r is an integer of 2 or more, the structures in parentheses to which r is attached may be the same or different. When the structures in parentheses marked with r are different from each other, the addition form of the structures is not particularly limited, and may be a random type or a block type. Moreover, in Formula (6), s shows an integer greater than or equal to 1. When s is an integer of 2 or more, the structures in parentheses to which s is attached may be the same or different. When the structures in parentheses with s are different from each other, the addition form of the structures is not particularly limited, and may be a random type or a block type. Furthermore, in the formula (6), the structure in parentheses with r and the structure in parentheses with s are not particularly limited, and may be a random type or a block type. May be. R and s may be the same or different. That is, in formula (6), r and s are the same or different and each represents an integer of 1 or more.
 上記ポリオルガノシロキシシルアルキレンの末端構造は、特に限定されないが、例えば、脂肪族炭素-炭素二重結合を含む基、ヒドロシリル基、シラノール基、アルコキシシリル基、トリアルキルシリル基(例えば、トリメチルシリル基)等が挙げられる。 The terminal structure of the polyorganosiloxysilalkylene is not particularly limited. For example, a group containing an aliphatic carbon-carbon double bond, hydrosilyl group, silanol group, alkoxysilyl group, trialkylsilyl group (for example, trimethylsilyl group) Etc.
 上記ポリオルガノシロキシシルアルキレンは、上述のように、直鎖、分岐鎖のいずれの鎖状構造を有するものであっても良い。 As described above, the polyorganosiloxysilalkylene may have a linear or branched chain structure.
 上記ポリオルガノシロキシシルアルキレンは、例えば、特開2012-140617号公報に記載の方法により製造できる。 The above polyorganosiloxysilalkylene can be produced, for example, by the method described in JP2012-140617A.
 ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンは、1種を単独で、又は2種以上を組合せて使用することができる。 The polyorganosiloxane contained in the polyorganosiloxane (A) can be used singly or in combination of two or more.
 ポリオルガノシロキサン(A)中のアリール基を有しないポリオルガノシロキサン(例えば、ポリオルガノシロキシシルアルキレン)の割合は、特に限定されないが、柔軟性の観点から、例えば、ポリオルガノシロキサン(A)全量(100重量%)に対して、50重量%以上が好ましく、より好ましくは80重量%以上、さらに好ましくは95重量%以上である。中でも、一層優れた柔軟性が得られる観点から、ポリオルガノシロキサン(A)は、アリール基を有しないポリオルガノシロキサンのみであることが特に好ましい。なお、アリール基を有しないポリオルガノシロキサンを2種以上含む場合は、合計含有量(重量)の割合をいう。 The ratio of the polyorganosiloxane having no aryl group in the polyorganosiloxane (A) (for example, polyorganosiloxysilalkylene) is not particularly limited, but from the viewpoint of flexibility, for example, the total amount of polyorganosiloxane (A) ( 100% by weight) is preferably 50% by weight or more, more preferably 80% by weight or more, and still more preferably 95% by weight or more. Among these, from the viewpoint of obtaining more excellent flexibility, the polyorganosiloxane (A) is particularly preferably only a polyorganosiloxane having no aryl group. In addition, when 2 or more types of polyorganosiloxane which does not have an aryl group is included, the ratio of total content (weight) is said.
 ポリオルガノシロキサンを2種以上組合せて使用する場合、少なくとも1種はヒドロシリル基を有し、少なくとも1種は脂肪族炭素-炭素不飽和結合を有することが好ましい。 When two or more polyorganosiloxanes are used in combination, it is preferable that at least one has a hydrosilyl group and at least one has an aliphatic carbon-carbon unsaturated bond.
 ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサン(特に、アリール基を有しないポリオルガノシロキサン)の数平均分子量(Mn)は、500~20000が好ましく、1000~10000がより好ましく、2000~8000が更に好ましい。また、重量平均分子量(Mw)は、500~50000が好ましく、5000~40000がより好ましく、10000~30000が更に好ましい。数平均分子量及び/又は重量平均分子量が500以上であることにより、得られる硬化物の耐熱性に優れる。数平均分子量が20000以下、及び/又は重量平均分子量が50000以下であることにより、ポリオルガノシロキサン(A)と他成分との相溶性に優れる。
 なお、本明細書における上記数平均分子量、重量平均分子量は、例えば、ゲル・パーミエーション・クロマトグラフィーによるポリスチレン換算の分子量として、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃、の条件で測定したものをいう。
 したがって、数平均分子量、重量平均分子量が、他の分析機器を用いた場合に別の範囲に含まれるものであっても、上記測定条件によって、数平均分子量、及び/又は重量平均分子量が上記範囲であれば、本発明の硬化性樹脂組成物を構成する一つの成分であるポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサンに該当する。
The number average molecular weight (Mn) of the polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in the polyorganosiloxane (A) is preferably 500 to 20000, more preferably 1000 to 10,000, and 2000 to 8000. Is more preferable. The weight average molecular weight (Mw) is preferably from 500 to 50,000, more preferably from 5,000 to 40,000, and even more preferably from 10,000 to 30,000. When the number average molecular weight and / or the weight average molecular weight is 500 or more, the resulting cured product is excellent in heat resistance. When the number average molecular weight is 20000 or less and / or the weight average molecular weight is 50000 or less, the compatibility between the polyorganosiloxane (A) and other components is excellent.
In addition, the number average molecular weight and the weight average molecular weight in the present specification are, for example, Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), as a molecular weight in terms of polystyrene by gel permeation chromatography. Column: Tskel GMH HR -M × 2 (manufactured by Tosoh Corporation), guard column: Tskel guard column H HR L (manufactured by Tosoh Corporation), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF Measurement conditions: measured under the conditions of 40 ° C.
Therefore, even if the number average molecular weight and the weight average molecular weight are included in different ranges when other analytical instruments are used, the number average molecular weight and / or the weight average molecular weight are within the above range depending on the measurement conditions. Then, it corresponds to the polyorganosiloxane contained in the polyorganosiloxane (A) which is one component constituting the curable resin composition of the present invention.
 ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサン(特に、アリール基を有しないポリオルガノシロキサン)の重量平均分子量(Mw)と数平均分子量(Mn)より算出される分子量分散度(Mw/Mn)は、特に限定されないが、耐熱性及び他の成分との相溶性の観点から、例えば、1.0~7.0が好ましく、より好ましくは2.0~6.5、さらに好ましくは3.0~6.0、特に好ましくは4.0~5.5である。 Molecular weight dispersity (Mw / Mn) calculated from weight average molecular weight (Mw) and number average molecular weight (Mn) of polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in polyorganosiloxane (A) ) Is not particularly limited, but is preferably 1.0 to 7.0, more preferably 2.0 to 6.5, and still more preferably 3. from the viewpoint of heat resistance and compatibility with other components. It is 0 to 6.0, particularly preferably 4.0 to 5.5.
 ポリオルガノシロキサン(A)中に含まれるポリオルガノシロキサン(特に、アリール基を有しないポリオルガノシロキサン)の分子内の脂肪族炭素-炭素二重結合の含有量(ビニル基換算)は、特に限定されないが、硬化性樹脂組成物中に含まれる化合物に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の数を調整しやすく、柔軟性および強度に優れる硬化物が得られやすいという観点から、例えば、3.0重量%以下(例えば0.5~3.0重量%)が好ましい。なお、分子内の脂肪族炭素-炭素二重結合の含有量は、例えば、1H-NMRによって測定することができる。 The content (in terms of vinyl group) of aliphatic carbon-carbon double bond in the molecule of polyorganosiloxane (particularly polyorganosiloxane having no aryl group) contained in polyorganosiloxane (A) is not particularly limited. However, from the viewpoint that it is easy to adjust the number of aliphatic carbon-carbon double bonds bonded to the silicon atom present in the compound contained in the curable resin composition, and that a cured product having excellent flexibility and strength can be easily obtained. For example, it is preferably 3.0% by weight or less (eg 0.5 to 3.0% by weight). The content of the aliphatic carbon-carbon double bond in the molecule can be measured by 1 H-NMR, for example.
 本発明の硬化性樹脂組成物におけるポリオルガノシロキサン(A)の含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、55~95重量%が好ましく、60~92重量%がより好ましく、65~90重量%が更に好ましい。含有量が55重量%未満であると、硬化物の耐クラック性が低下する場合がある。一方、含有量が90重量%を超えると、腐食性ガスに対するガスバリア性が十分得られない場合がある。 The content (blending amount) of the polyorganosiloxane (A) in the curable resin composition of the present invention is not particularly limited, but is 55 to 95% by weight with respect to the total amount (100% by weight) of the curable resin composition. It is preferably 60 to 92% by weight, more preferably 65 to 90% by weight. If the content is less than 55% by weight, the crack resistance of the cured product may be lowered. On the other hand, if the content exceeds 90% by weight, gas barrier properties against corrosive gas may not be sufficiently obtained.
[シルセスキオキサン(B)]
 本発明の硬化性樹脂組成物は、シルセスキオキサン(B)として、ラダー型シルセスキオキサンを少なくとも含む。上記ラダー型シルセスキオキサンは、架橋された三次元構造を有するポリシロキサンである。
[Silsesquioxane (B)]
The curable resin composition of the present invention contains at least a ladder-type silsesquioxane as the silsesquioxane (B). The ladder-type silsesquioxane is a polysiloxane having a crosslinked three-dimensional structure.
 ポリシロキサンは、シロキサン結合(Si-O-Si)で構成された主鎖を有する化合物であり、その基本構成単位としては、M単位(ケイ素原子が1個の酸素原子と結合した1価の基からなる単位)、D単位(ケイ素原子が2個の酸素原子と結合した2価の基からなる単位)、T単位(ケイ素原子が3個の酸素原子と結合した3価の基からなる単位)、Q単位(ケイ素原子が4個の酸素原子と結合した4価の基からなる単位)が挙げられる。また、Si-O-Si骨格の構造としては、ランダム構造、カゴ構造、ラダー構造が挙げられる。
 シルセスキオキサン(B)中に含まれるシルセスキオキサンは、上記T単位を基本構成単位とし、実験式(基本構造式)SiO1.5で表されるポリシロキサンであり、例えば、ランダム構造のSi-O-Si骨格の構造を有するシルセスキオキサン、カゴ構造のSi-O-Si骨格の構造を有するシルセスキオキサン、ラダー構造のSi-O-Si骨格の構造を有するシルセスキオキサン(ラダー型シルセスキオキサン)などが挙げられる。シスセスキオキサン(B)に含まれる上記シルセスキオキサン(例えば、ラダー型シスセスキオキサン)は、1種を単独で、又は2種以上を組合せて使用することができる。
Polysiloxane is a compound having a main chain composed of siloxane bonds (Si—O—Si), and the basic structural unit thereof is an M unit (a monovalent group in which a silicon atom is bonded to one oxygen atom). Unit), D unit (unit consisting of a divalent group in which a silicon atom is bonded to two oxygen atoms), T unit (unit consisting of a trivalent group in which a silicon atom is bonded to three oxygen atoms) , And Q unit (unit consisting of a tetravalent group in which a silicon atom is bonded to four oxygen atoms). Further, examples of the structure of the Si—O—Si skeleton include a random structure, a cage structure, and a ladder structure.
Silsesquioxane (B) contained in silsesquioxane is a polysiloxane represented by the empirical formula (basic structural formula) SiO 1.5 having the T unit as a basic structural unit, for example, Si having a random structure. Silsesquioxane having a structure of —O—Si skeleton, silsesquioxane having a structure of Si—O—Si skeleton of cage structure, silsesquioxane having a structure of Si—O—Si skeleton of ladder structure ( Ladder type silsesquioxane) and the like. The silsesquioxane (for example, ladder-type cissesquioxane) contained in cissesquioxane (B) can be used individually by 1 type or in combination of 2 or more types.
 上記ラダー型シルセスキオキサンの実験式(基本構造式)RSiO1.5における上記Rとしては、例えば、水素原子、ハロゲン原子、一価の有機基、一価の酸素原子含有基(炭素原子を含まない一価の酸素原子含有基)、一価の窒素原子含有基(炭素原子、酸素原子を含まない一価の窒素原子含有基)、又は一価の硫黄原子含有基(炭素原子、酸素原子を含まない一価の硫黄原子含有基)などが挙げられる。上記Rの少なくとも一部は、一価の有機基であることが好ましい。上記Rは、それぞれ同一であっても良いし、異なっていても良い。 In the empirical formula (basic structural formula) RSiO 1.5 of the ladder-type silsesquioxane, the R includes, for example, a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group (not including a carbon atom) Monovalent oxygen atom-containing group), monovalent nitrogen atom-containing group (carbon atom, monovalent nitrogen atom-containing group not containing oxygen atom), or monovalent sulfur atom-containing group (including carbon atom, oxygen atom) Non-monovalent sulfur atom-containing groups). At least a part of R is preferably a monovalent organic group. The Rs may be the same or different.
 上記Rにおける上記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。 Examples of the halogen atom in R include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 上記Rにおける上記一価の有機基としては、例えば、置換又は無置換の炭化水素基(一価の炭化水素基)、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アラルキルオキシ基、アシルオキシ基、アルキルチオ基、アルケニルチオ基、アリールチオ基、アラルキルチオ基、カルボキシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、エポキシ基、シアノ基、イソシアナート基、カルバモイル基、イソチオシアナート基などが挙げられる。 Examples of the monovalent organic group in R include a substituted or unsubstituted hydrocarbon group (monovalent hydrocarbon group), an alkoxy group, an alkenyloxy group, an aryloxy group, an aralkyloxy group, an acyloxy group, and an alkylthio group. Groups, alkenylthio groups, arylthio groups, aralkylthio groups, carboxyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, aralkyloxycarbonyl groups, epoxy groups, cyano groups, isocyanate groups, carbamoyl groups, isothiocyanate groups, etc. It is done.
 上記Rにおける上記炭化水素基としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、これらが2以上結合した基が挙げられる。 Examples of the hydrocarbon group in R include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and a group in which two or more of these are bonded.
 上記Rにおける上記脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、アルキニル基が挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基などのC1-20アルキル基(好ましくはC1-10アルキル基、さらに好ましくはC1-4アルキル基)などが挙げられる。アルケニル基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基)などが挙げられる。アルキニル基としては、例えば、エチニル基、プロピニル基などのC2-20アルキニル基(好ましくはC2-10アルキニル基、さらに好ましくはC2-4アルキニル基)などが挙げられる。 Examples of the aliphatic hydrocarbon group for R include an alkyl group, an alkenyl group, and an alkynyl group. Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group, isooctyl group, decyl group, dodecyl group (preferably C 1- 10 alkyl group, more preferably C 1-4 alkyl group). Examples of the alkenyl group include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, Examples thereof include C 2-20 alkenyl groups (preferably C 2-10 alkenyl groups, more preferably C 2-4 alkenyl groups) such as 3-pentenyl group, 4-pentenyl group, and 5-hexenyl group. Examples of the alkynyl group include C 2-20 alkynyl groups such as ethynyl group and propynyl group (preferably C 2-10 alkynyl group, more preferably C 2-4 alkynyl group).
 上記Rにおける上記脂環式炭化水素基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロドデシル基などのC3-12のシクロアルキル基;シクロヘキセニル基などのC3-12のシクロアルケニル基;ビシクロヘプタニル基、ビシクロヘプテニル基などのC4-15の架橋環式炭化水素基などが挙げられる。 Examples of the alicyclic hydrocarbon group in the R include C 3-12 cycloalkyl groups such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cyclododecyl group; and a C 3− group such as a cyclohexenyl group. 12 cycloalkenyl groups; C 4-15 bridged cyclic hydrocarbon groups such as bicycloheptanyl group and bicycloheptenyl group.
 上記Rにおける上記芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特に、C6-10アリール基)などが挙げられる。 Examples of the aromatic hydrocarbon group in R include C 6-14 aryl groups (particularly, C 6-10 aryl groups) such as phenyl group and naphthyl group.
 また、上記Rにおける上記脂肪族炭化水素基と脂環式炭化水素基とが結合した基としては、例えば、シクロへキシルメチル基、メチルシクロヘキシル基などが挙げられる。脂肪族炭化水素基と芳香族炭化水素基とが結合した基としては、例えば、ベンジル基、フェネチル基等のC7-18アラルキル基(特に、C7-10アラルキル基)、シンナミル基等のC6-10アリール-C2-6アルケニル基、トリル基等のC1-4アルキル置換アリール基、スチリル基等のC2-4アルケニル置換アリール基などが挙げられる。 In addition, examples of the group in which the aliphatic hydrocarbon group and the alicyclic hydrocarbon group in R are bonded to each other include a cyclohexylmethyl group and a methylcyclohexyl group. Examples of the group in which the aliphatic hydrocarbon group and the aromatic hydrocarbon group are bonded include, for example, C 7-18 aralkyl groups such as benzyl group and phenethyl group (particularly C 7-10 aralkyl groups), and C such as cinnamyl group. Examples thereof include C 1-4 alkyl-substituted aryl groups such as 6-10 aryl-C 2-6 alkenyl groups and tolyl groups, and C 2-4 alkenyl-substituted aryl groups such as styryl groups.
 上記Rにおける炭化水素基は置換基を有していても良い。上記炭化水素基における置換基の炭素数は0~20が好ましく、より好ましくは0~10である。該置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、オクチル基、イソオクチル基、デシル基、ドデシル基などのC1-20アルキル基(好ましくはC1-10アルキル基、さらに好ましくはC1-4アルキル基);ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基);メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等のアルコキシ基(好ましくはC1-6アルコキシ基、より好ましくはC1-4アルコキシ基);アリルオキシ基等のアルケニルオキシ基(好ましくはC2-6アルケニルオキシ基、より好ましくはC2-4アルケニルオキシ基);フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いアリールオキシ基(好ましくはC6-14アリールオキシ基);ベンジルオキシ基、フェネチルオキシ基等のアラルキルオキシ基(好ましくはC7-18アラルキルオキシ基);アセチルオキシ基、プロピオニルオキシ基、(メタ)アクリロイルオキシ基、ベンゾイルオキシ基等のアシルオキシ基(好ましくはC1-12アシルオキシ基);メルカプト基;メチルチオ基、エチルチオ基等のアルキルチオ基(好ましくはC1-6アルキルチオ基、より好ましくはC1-4アルキルチオ基);アリルチオ基等のアルケニルチオ基(好ましくはC2-6アルケニルチオ基、より好ましくはC2-4アルケニルチオ基);フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いアリールチオ基(好ましくはC6-14アリールチオ基);ベンジルチオ基、フェネチルチオ基等のアラルキルチオ基(好ましくはC7-18アラルキルチオ基);カルボキシル基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のアルコキシカルボニル基(好ましくはC1-6アルコキシ-カルボニル基);フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のアリールオキシカルボニル基(好ましくはC6-14アリールオキシ-カルボニル基);ベンジルオキシカルボニル基等のアラルキルオキシカルボニル基(好ましくはC7-18アラルキルオキシ-カルボニル基);アミノ基;メチルアミノ基、エチルアミノ基、ジメチルアミノ基、ジエチルアミノ基等のモノ又はジアルキルアミノ基(好ましくはモノ又はジ-C1-6アルキルアミノ基);アセチルアミノ基、プロピオニルアミノ基、ベンゾイルアミノ基等のアシルアミノ基(好ましくはC1-11アシルアミノ基);グリシジルオキシ基等のエポキシ基含有基;エチルオキセタニルオキシ基等のオキセタニル基含有基;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;オキソ基;これらの2以上が必要に応じてC1-6アルキレン基を介して結合した基などが挙げられる。 The hydrocarbon group in R may have a substituent. The number of carbon atoms of the substituent in the hydrocarbon group is preferably 0-20, more preferably 0-10. Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; methyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, octyl group and isooctyl group. C 1-20 alkyl group such as decyl group, dodecyl group (preferably C 1-10 alkyl group, more preferably C 1-4 alkyl group); vinyl group, allyl group, methallyl group, 1-propenyl group, iso C 2-20 alkenyl groups such as propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (Preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group); methoxy group, ethoxy group, propoxy group, isopropyloxy group, butoxy Alkoxy groups (preferably C 1-6 alkoxy groups, more preferably C 1-4 alkoxy groups) such as cis groups and isobutyloxy groups; Alkenyloxy groups such as allyloxy groups (preferably C 2-6 alkenyloxy groups, more Preferably a C 2-4 alkenyloxy group); a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, a C 1-4 alkoxy group, etc. on the aromatic ring, such as a phenoxy group, a tolyloxy group, a naphthyloxy group, etc. An aryloxy group (preferably a C 6-14 aryloxy group) which may have the following substituents; an aralkyloxy group such as a benzyloxy group or a phenethyloxy group (preferably a C 7-18 aralkyloxy group); Acyloxy groups such as oxy group, propionyloxy group, (meth) acryloyloxy group, benzoyloxy group (preferably C 1-12 acyloxy group); Luccapto group; alkylthio group such as methylthio group and ethylthio group (preferably C 1-6 alkylthio group, more preferably C 1-4 alkylthio group); alkenylthio group such as allylthio group (preferably C 2-6 alkenylthio group) More preferably a C 2-4 alkenylthio group); a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, a C 1-4 alkoxy group on the aromatic ring, such as phenylthio group, tolylthio group, naphthylthio group, etc. An arylthio group (preferably a C 6-14 arylthio group) which may have a substituent such as aralkylthio group (preferably a C 7-18 aralkylthio group) such as a benzylthio group or a phenethylthio group; a carboxyl group; Alkoxycarbonyl groups such as methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group (preferably C 1 -6 alkoxy-carbonyl group); aryloxycarbonyl group such as phenoxycarbonyl group, tolyloxycarbonyl group, naphthyloxycarbonyl group (preferably C 6-14 aryloxy-carbonyl group); aralkyloxycarbonyl such as benzyloxycarbonyl group Group (preferably C 7-18 aralkyloxy-carbonyl group); amino group; mono- or dialkylamino group such as methylamino group, ethylamino group, dimethylamino group, diethylamino group (preferably mono- or di-C 1-6 Alkylamino group); acylamino group such as acetylamino group, propionylamino group, benzoylamino group (preferably C 1-11 acylamino group); epoxy group-containing group such as glycidyloxy group; oxetanyl group such as ethyloxetanyloxy group Group; acetyl group, group Oxo group; Pioniru group, an acyl group such as benzoyl group, etc. bonded groups via a C 1-6 alkylene group, depending These demands have 2 or more thereof.
 上記Rにおける上記アルコキシ基、上記アルケニルオキシ基、上記アシルオキシ基、上記アルキルチオ基、上記アルケニルチオ基、上記アルコキシカルボニル基としては、式(6)中の上記R21~R26として例示したものが挙げられる。 Examples of the alkoxy group, the alkenyloxy group, the acyloxy group, the alkylthio group, the alkenylthio group, and the alkoxycarbonyl group in R include those exemplified as R 21 to R 26 in Formula (6). It is done.
 上記Rにおける上記アリールオキシ基としては、例えば、フェノキシ基、トリルオキシ基、ナフチルオキシ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリールオキシ基等が挙げられる。上記アラルキルオキシ基としては、例えば、ベンジルオキシ基、フェネチルオキシ基等のC7-18アラルキルオキシ基等が挙げられる。上記アリールチオ基としては、例えば、フェニルチオ基、トリルチオ基、ナフチルチオ基等の、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリールチオ基等が挙げられる。上記アラルキルチオ基としては、例えば、ベンジルチオ基、フェネチルチオ基等のC7-18アラルキルチオ基等が挙げられる。上記アリールオキシカルボニル基としては、例えば、フェノキシカルボニル基、トリルオキシカルボニル基、ナフチルオキシカルボニル基等のC6-14アリールオキシ-カルボニル基等が挙げられる。上記アラルキルオキシカルボニル基としては、例えば、ベンジルオキシカルボニル基等のC7-18アラルキルオキシ-カルボニル基等が挙げられる。 Examples of the aryloxy group in R include a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring, such as a phenoxy group, a tolyloxy group, and a naphthyloxy group. And a C 6-14 aryloxy group which may have a substituent such as Examples of the aralkyloxy group include C 7-18 aralkyloxy groups such as benzyloxy group and phenethyloxy group. Examples of the arylthio group include a phenylthio group, a tolylthio group, a naphthylthio group, and the like, and a substituent such as a C 1-4 alkyl group, a C 2-4 alkenyl group, a halogen atom, and a C 1-4 alkoxy group on the aromatic ring. Examples thereof include a C 6-14 arylthio group which may be present. Examples of the aralkylthio group include C 7-18 aralkylthio groups such as benzylthio group and phenethylthio group. Examples of the aryloxycarbonyl group include C 6-14 aryloxy-carbonyl groups such as a phenoxycarbonyl group, a tolyloxycarbonyl group, and a naphthyloxycarbonyl group. Examples of the aralkyloxycarbonyl group include C 7-18 aralkyloxy-carbonyl groups such as benzyloxycarbonyl group.
 上記Rにおける上記一価の酸素原子含有基としては、例えば、ヒドロキシル基、ヒドロパーオキシ基、スルホ基などが挙げられる。上記一価の窒素原子含有基としては、例えば、アミノ基又は置換アミノ基(モノ又はジアルキルアミノ基、アシルアミノ基等)などが挙げられる。また、上記一価の硫黄原子含有基としては、例えば、メルカプト基(チオール基)などが挙げられる。 Examples of the monovalent oxygen atom-containing group in R include a hydroxyl group, a hydroperoxy group, and a sulfo group. Examples of the monovalent nitrogen atom-containing group include an amino group or a substituted amino group (mono- or dialkylamino group, acylamino group, etc.). Moreover, as said monovalent | monohydric sulfur atom containing group, a mercapto group (thiol group) etc. are mentioned, for example.
 さらに、上記実験式(基本構造式)RSiO1.5における上記Rとしては、例えば、下記式(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記式(4)中の複数個のR´は、それぞれ同一でも良いし、異なっていても良い。式(4)中のR´としては、例えば、水素原子、ハロゲン原子、一価の有機基、一価の酸素原子含有基、一価の窒素原子含有基、又は一価の硫黄原子含有基などが挙げられる。これらの基としては、上記実験式(基本構造式)RSiO1.5におけるRとして例示したものと同様の基が挙げられる。
Furthermore, examples of R in the empirical formula (basic structural formula) RSiO 1.5 include a group represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000008
A plurality of R ′ in the above formula (4) may be the same or different. Examples of R ′ in the formula (4) include a hydrogen atom, a halogen atom, a monovalent organic group, a monovalent oxygen atom-containing group, a monovalent nitrogen atom-containing group, or a monovalent sulfur atom-containing group. Is mentioned. These groups include the same groups as those exemplified as R in the above empirical formula (Basic Structure) RSiO 1.5.
 上記式(4)で表される基において、各R´としては、それぞれ、水素原子、C1-10アルキル基(特に、C1-4アルキル基)、C2-10アルケニル基(特に、C2-4アルケニル基)、C3-12シクロアルキル基、C3-12シクロアルケニル基、芳香環にC1-4アルキル基、C2-4アルケニル基、ハロゲン原子、C1-4アルコキシ基等の置換基を有していても良いC6-14アリール基、C7-18アラルキル基、C6-10アリール-C2-6アルケニル基、ヒドロキシル基、C1-6アルコキシ基、ハロゲン原子が好ましい。 In the group represented by the above formula (4), each R ′ is a hydrogen atom, a C 1-10 alkyl group (especially a C 1-4 alkyl group), a C 2-10 alkenyl group (especially C 1 2-4 alkenyl groups), C 3-12 cycloalkyl groups, C 3-12 cycloalkenyl groups, C 1-4 alkyl groups on aromatic rings, C 2-4 alkenyl groups, halogen atoms, C 1-4 alkoxy groups, etc. A C 6-14 aryl group, a C 7-18 aralkyl group, a C 6-10 aryl-C 2-6 alkenyl group, a hydroxyl group, a C 1-6 alkoxy group, or a halogen atom, which may have a substituent of preferable.
 中でも、上記実験式(基本構造式)RSiO1.5における上記Rとしては、水素原子、又は、置換若しくは無置換の炭化水素基が好ましく、より好ましくは置換又は無置換の炭化水素基、さらに好ましくは脂肪族炭化水素基(特に、アルキル基)、芳香族炭化水素基(特に、フェニル基)である。 Among them, the R in the empirical formula (basic structural formula) RSiO 1.5 is preferably a hydrogen atom or a substituted or unsubstituted hydrocarbon group, more preferably a substituted or unsubstituted hydrocarbon group, and still more preferably a fatty acid. An aromatic hydrocarbon group (particularly an alkyl group) and an aromatic hydrocarbon group (particularly a phenyl group).
 上記ラダー型シルセスキオキサンとしては、例えば、下記式(5)で表されるラダー型シルセスキオキサンであってもよい。
Figure JPOXMLDOC01-appb-C000009
As said ladder type silsesquioxane, the ladder type silsesquioxane represented by following formula (5) may be sufficient, for example.
Figure JPOXMLDOC01-appb-C000009
 上記式(5)において、pは1以上の整数(好ましくは1~5000、より好ましくは1~2000、更に好ましくは1~1000)である。上記式(5)中のTは末端基を示す。上記式(5)中のR(以下「側鎖」と称することがある)としては、例えば、実験式RSiO1.5のRとして例示したものが挙げられる。上記式(5)中のTとしては、例えば、実験式RSiO1.5のRとして例示したものが挙げられる。中でも、上記式(5)中のR又はTとしては、水素原子、又は、置換若しくは無置換の炭化水素基、式(4)で表される基が好ましく、より好ましくは水素原子、脂肪族炭化水素基(特に、アルキル基、アルケニル基)、芳香族炭化水素基(特に、フェニル基)である。特に、上記式(5)におけるTとしては、トリメチル基を含むことが好ましく、トリメチル基とビニル基、又はトリメチル基とSiH含有基とを含むことがより好ましい。 In the above formula (5), p is an integer of 1 or more (preferably 1 to 5000, more preferably 1 to 2000, still more preferably 1 to 1000). T in the above formula (5) represents a terminal group. Examples of R in the formula (5) (hereinafter sometimes referred to as “side chain”) include those exemplified as R in the empirical formula RSiO 1.5 . The T in the above formula (5), for example, those exemplified as R of the empirical formula RSiO 1.5. Among them, R or T in the above formula (5) is preferably a hydrogen atom, a substituted or unsubstituted hydrocarbon group, or a group represented by formula (4), more preferably a hydrogen atom or aliphatic carbonization. A hydrogen group (especially an alkyl group or an alkenyl group) or an aromatic hydrocarbon group (especially a phenyl group). In particular, T in the formula (5) preferably includes a trimethyl group, and more preferably includes a trimethyl group and a vinyl group, or a trimethyl group and a SiH-containing group.
 式(5)における上記Rの全量(100モル%)に対する、置換又は無置換の炭化水素基の占める割合は、特に限定されないが、50モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上が更に好ましい。特に、式(5)における上記Rの全量(100モル%)に対する、置換又は無置換のアルキル基(好ましくは炭素数1~10のアルキル基、特にメチル基又はエチル基等の炭素数1~4のアルキル基)、置換又は無置換のアリール基(好ましくは炭素数6~10のアリール基、特にフェニル基)、置換又は無置換の炭素数7~10のアラルキル基(好ましくは炭素数7~10のアラルキル基、特にベンジル基)の合計量は、50モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上が更に好ましい。特に、硬化物の腐食性ガスに対するバリア性の観点からは、上記Rの一部又は全部が置換若しくは無置換のアリール基であることが好ましい。 The ratio of the substituted or unsubstituted hydrocarbon group to the total amount (100 mol%) of R in the formula (5) is not particularly limited, but is preferably 50 mol% or more, more preferably 80 mol% or more, 90 More preferably, it is at least mol%. In particular, a substituted or unsubstituted alkyl group (preferably an alkyl group having 1 to 10 carbon atoms, particularly a methyl group or an ethyl group, etc., having 1 to 4 carbon atoms, based on the total amount (100 mol%) of R in formula (5). Alkyl groups), substituted or unsubstituted aryl groups (preferably aryl groups having 6 to 10 carbon atoms, particularly phenyl groups), substituted or unsubstituted aralkyl groups having 7 to 10 carbon atoms (preferably 7 to 10 carbon atoms). The total amount of aralkyl groups, particularly benzyl groups, is preferably 50 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. In particular, from the viewpoint of the barrier property against the corrosive gas of the cured product, a part or all of R is preferably a substituted or unsubstituted aryl group.
[ラダー型シルセスキオキサン(B1)]
 上記ラダー型シルセスキオキサンとしては、例えば、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサン(B1)(以下、単に「ラダー型シルセスキオキサン(B1)」と称する場合がある)を含んでいてもよい。上記ラダー型シルセスキオキサンは、ラダー型シルセスキオキサン(B1)であることが好ましい。ラダー型シルセスキオキサン(B1)としては、上記側鎖又は上記末端基に脂肪族炭素-炭素二重結合を有する基を持つ化合物であれば特に限定されない。
[Ladder-type silsesquioxane (B1)]
Examples of the ladder-type silsesquioxane include a ladder-type silsesquioxane (B1) having an aliphatic carbon-carbon double bond in the molecule (hereinafter simply referred to as “ladder-type silsesquioxane (B1)”). May be included). The ladder-type silsesquioxane is preferably a ladder-type silsesquioxane (B1). The ladder-type silsesquioxane (B1) is not particularly limited as long as it is a compound having a group having an aliphatic carbon-carbon double bond in the side chain or the terminal group.
 上記脂肪族炭素-炭素二重結合を有する基としては、例えば、ビニル基、アリル基、メタリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、5-ヘキセニル基などのC2-20アルケニル基(好ましくはC2-10アルケニル基、さらに好ましくはC2-4アルケニル基);シクロヘキセニル基などのC3-12のシクロアルケニル基;ビシクロヘプテニル基などのC4-15架橋環式不飽和炭化水素基;スチリル基等のC2-4アルケニル置換アリール基;シンナミル基などが挙げられる。なお、上記脂肪族炭素-炭素二重結合を有する基には、上記式(4)で表される基において、3つのR´のうち少なくとも1つが脂肪族炭素-炭素二重結合を有する基(例えば、C2-20アルケニル基、C3-12のシクロアルケニル基、C4-15の架橋環式不飽和炭化水素基、C2-4アルケニル置換アリール基、シンナミル基など)である基も含まれる。中でも、アルケニル基が好ましく、より好ましくはC2-20アルケニル基、さらに好ましくはビニル基である。 Examples of the group having an aliphatic carbon-carbon double bond include a vinyl group, allyl group, methallyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, C 2-20 alkenyl groups such as 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group and 5-hexenyl group (preferably C 2-10 alkenyl group, more preferably C 2-4 alkenyl group) Group); C 3-12 cycloalkenyl group such as cyclohexenyl group; C 4-15 bridged cyclic unsaturated hydrocarbon group such as bicycloheptenyl group; C 2-4 alkenyl-substituted aryl group such as styryl group; cinnamyl Group and the like. In the group having an aliphatic carbon-carbon double bond, in the group represented by the above formula (4), at least one of three R ′ has an aliphatic carbon-carbon double bond ( For example, C 2-20 alkenyl group, C 3-12 cycloalkenyl group, C 4-15 bridged cyclic unsaturated hydrocarbon group, C 2-4 alkenyl substituted aryl group, cinnamyl group, etc. It is. Among them, an alkenyl group is preferable, a C 2-20 alkenyl group is more preferable, and a vinyl group is more preferable.
 ラダー型シルセスキオキサン(B1)における、分子内(一分子中)の上記脂肪族炭素-炭素二重結合の数は、特に限定されないが、2個以上(例えば、2~50個)が好ましく、2~30個がより好ましい。上述の範囲で上記脂肪族炭素-炭素二重結合を有することにより、耐熱性等の各種物性、耐クラック性、腐食性ガスに対するバリア性に優れた硬化物が得られやすい傾向がある。 In the ladder-type silsesquioxane (B1), the number of the aliphatic carbon-carbon double bonds in the molecule (in one molecule) is not particularly limited, but is preferably 2 or more (for example, 2 to 50). 2 to 30 are more preferable. By having the aliphatic carbon-carbon double bond within the above-mentioned range, a cured product excellent in various physical properties such as heat resistance, crack resistance, and barrier properties against corrosive gas tends to be obtained.
 ラダー型シルセスキオキサン(B1)中の上記脂肪族炭素-炭素二重結合の含有量は、特に限定されないが、0.7~5.5mmol/gが好ましく、1.1~4.4mmol/gがより好ましい。また、ラダー型シルセスキオキサン(B1)に含まれる上記脂肪族炭素-炭素二重結合の割合(重量基準)は、特に限定されないが、ビニル基換算で、2.0~15.0重量%が好ましく、3.0~12.0重量%がより好ましい。 The content of the aliphatic carbon-carbon double bond in the ladder-type silsesquioxane (B1) is not particularly limited, but is preferably 0.7 to 5.5 mmol / g, and 1.1 to 4.4 mmol / g is more preferable. The ratio (by weight) of the aliphatic carbon-carbon double bond contained in the ladder-type silsesquioxane (B1) is not particularly limited, but is 2.0 to 15.0% by weight in terms of vinyl group. Is preferable, and 3.0 to 12.0% by weight is more preferable.
 ラダー型シルセスキオキサン(B1)は、特に限定されないが、常温(約25℃)で液体であってもよいし、固体であってもよい、中でも、常温で液体であることが好ましい。より具体的には、ラダー型シルセスキオキサン(B1)の25℃における粘度は、100~100000mPa・sが好ましく、500~10000mPa・sがより好ましく、1000~8000mPa・sが更に好ましい。粘度が100mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が100000mPa・sを超えると、硬化性樹脂組成物の調製や取り扱いが困難となる場合がある。なお、25℃における粘度は、例えば、レオーメーター(商品名「PhysicaUDS-200」、AntonPaar社製)とコーンプレート(円錐直径:16mm、テーパ角度=0°)を用いて、温度:25℃、回転数:20rpmの条件で測定することができる。
 シルセスキオキサン(B)に、常温で固体のシルセスキオキサン(B1)が含まれると、腐食性ガスに対する耐腐食性や、強靭性(特に耐クラック性)が向上する傾向がある。
The ladder-type silsesquioxane (B1) is not particularly limited, but may be liquid at room temperature (about 25 ° C.) or may be solid. Among these, it is preferably liquid at room temperature. More specifically, the viscosity of the ladder-type silsesquioxane (B1) at 25 ° C. is preferably 100 to 100,000 mPa · s, more preferably 500 to 10,000 mPa · s, and still more preferably 1000 to 8000 mPa · s. If the viscosity is less than 100 mPa · s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa · s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 25 ° C. is, for example, a temperature: 25 ° C., rotation using a rheometer (trade name “PhysicaUDS-200”, manufactured by Anton Paar) and a cone plate (cone diameter: 16 mm, taper angle = 0 °). Number: It can be measured under the condition of 20 rpm.
When the silsesquioxane (B) contains silsesquioxane (B1) that is solid at room temperature, the corrosion resistance against corrosive gas and toughness (particularly crack resistance) tend to be improved.
[ラダー型シルセスキオキサン(B2)]
 上記ラダー型シルセスキオキサンとしては、例えば、分子内にSi-H結合を有するラダー型シルセスキオキサン(B2)(以下、単に「ラダー型シルセスキオキサン(B2)」と称する場合がある)を含んでいてもよい。上記ラダー型シルセスキオキサンは、ラダー型シルセスキオキサン(B2)であってもよい。ラダー型シルセスキオキサン(B2)としては、上記側鎖又は上記末端基に水素原子又はSi-H結合を有する基を持つ化合物であれば特に限定されない。
[Ladder-type silsesquioxane (B2)]
Examples of the ladder-type silsesquioxane include a ladder-type silsesquioxane (B2) having a Si—H bond in the molecule (hereinafter, simply referred to as “ladder-type silsesquioxane (B2)”). ) May be included. The ladder-type silsesquioxane may be a ladder-type silsesquioxane (B2). The ladder-type silsesquioxane (B2) is not particularly limited as long as it is a compound having a hydrogen atom or a group having a Si—H bond in the side chain or the terminal group.
 上記Si-H結合を有する基としては、特に限定されないが、例えば、ヒドロシリル基、上記式(4)で表される基において、3つのR´のうち少なくとも1つが水素原子である基などが挙げられる。 The group having an Si—H bond is not particularly limited, and examples thereof include a hydrosilyl group and a group represented by the above formula (4), in which at least one of three R ′ is a hydrogen atom. It is done.
 ラダー型シルセスキオキサン(B2)における、分子内(一分子中)の上記水素原子又は上記Si-H結合を有する基の数は、特に限定されないが、2個以上(例えば、2~50個)が好ましく、2~30個がより好ましい。上述の範囲で上記水素原子又は上記Si-Hを有する基を有することにより、硬化性樹脂組成物の硬化物の耐熱性が向上する傾向がある。 In the ladder-type silsesquioxane (B2), the number of the hydrogen atom or the group having the Si—H bond in the molecule (in one molecule) is not particularly limited, but two or more (for example, 2 to 50) ) Is preferred, and 2 to 30 are more preferred. By having the hydrogen atom or the group having Si-H in the above range, the heat resistance of the cured product of the curable resin composition tends to be improved.
 ラダー型シルセスキオキサン(B2)に含まれる上記水素原子又は上記SiH基の割合(重量基準)は、特に限定されないが、水素原子又はSiH基におけるH(ヒドリド)の重量換算(H換算)で、0.01~0.50重量%が好ましく、0.08~0.28重量%がより好ましい。上記水素原子又は上記SiH基の含有量が少なすぎると(例えば、H換算で0.01重量%未満の場合)、硬化性樹脂組成物の硬化が十分に進行しない場合がある。一方、上記水素原子又は上記SiH基の含有量が多すぎると(例えば、H換算で0.50重量%を超える場合)、硬化物の硬度が高くなり、割れやすくなる場合がある。なお、ラダー型シルセスキオキサン(B2)における上記水素原子又は上記SiH基の含有量は、例えば、1H-NMRなどによって測定することができる。 The ratio (weight basis) of the hydrogen atom or the SiH group contained in the ladder-type silsesquioxane (B2) is not particularly limited, but is in terms of weight (H conversion) of H (hydride) in the hydrogen atom or SiH group. 0.01 to 0.50 wt% is preferable, and 0.08 to 0.28 wt% is more preferable. When there is too little content of the said hydrogen atom or the said SiH group (for example, when less than 0.01 weight% in conversion of H), hardening of curable resin composition may not fully advance. On the other hand, when there is too much content of the said hydrogen atom or the said SiH group (for example, when exceeding 0.50 weight% in H conversion), the hardness of hardened | cured material will become high and it may become easy to crack. The content of the hydrogen atom or the SiH group in the ladder-type silsesquioxane (B2) can be measured, for example, by 1 H-NMR.
 ラダー型シルセスキオキサン(B2)中に存在するSiH基の割合は、特に限定されないが、柔軟性の観点から、例えば、本発明の硬化性樹脂組成物中に含まれる化合物中に存在する全SiH基(100モル%)に対して、0~80モル%が好ましく、より好ましくは0~50モル%である。 The proportion of SiH groups present in the ladder-type silsesquioxane (B2) is not particularly limited, but from the viewpoint of flexibility, for example, all of the compounds present in the curable resin composition of the present invention are present. The amount is preferably 0 to 80 mol%, more preferably 0 to 50 mol%, based on the SiH group (100 mol%).
 ラダー型シルセスキオキサン(B2)は、特に限定されないが、常温(約25℃)で液体であってもよいし、固体であってもよい、中でも、常温で液体であることが好ましい。より具体的には、ラダー型シルセスキオキサン(B2)の25℃における粘度は、100~100000mPa・sが好ましく、500~10000mPa・sがより好ましく、1000~8000mPa・sが更に好ましい。粘度が100mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が100000mPa・sを超えると、硬化性樹脂組成物の調製や取り扱いが困難となる場合がある。なお、25℃における粘度は、例えば、ラダー型シルセスキオキサン(B1)の粘度と同様の方法により測定することができる。
 シルセスキオキサン(B)に、常温で固体のシルセスキオキサン(B2)が含まれると、腐食性ガスに対する耐腐食性や、強靭性(特に耐クラック性)が向上する傾向がある。
The ladder-type silsesquioxane (B2) is not particularly limited, but may be liquid at normal temperature (about 25 ° C.) or may be solid. Among these, it is preferably liquid at normal temperature. More specifically, the viscosity of the ladder-type silsesquioxane (B2) at 25 ° C. is preferably 100 to 100,000 mPa · s, more preferably 500 to 10000 mPa · s, and still more preferably 1000 to 8000 mPa · s. If the viscosity is less than 100 mPa · s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 100,000 mPa · s, it may be difficult to prepare and handle the curable resin composition. The viscosity at 25 ° C. can be measured, for example, by the same method as that for ladder type silsesquioxane (B1).
When the silsesquioxane (B) contains silsesquioxane (B2) that is solid at room temperature, the corrosion resistance against corrosive gas and the toughness (particularly crack resistance) tend to be improved.
[その他のラダー型シルセスキオキサン]
 上記ラダー型シルセスキオキサンは、例えば、分子内にアリール基を有するラダー型シルセスキオキサンを含んでいてもよい。分子内にアリール基を有するラダー型シルセスキオキサンにおけるアリール基としては、例えば、フェニル基、ナフチル基等のC6-14アリール基(特にC6-10アリール基)等が挙げられる。これらアリール基は、ポリオルガノシロキサン(A)におけるケイ素原子が有する置換基(ケイ素原子に直接結合する基)であっても良い。
 また、上記ラダー型シルセスキオキサンとしては、ラダー型シルセスキオキサン(B1)、ラダー型シルセスキオキサン(B2)、分子内にアリール基を有するラダー型シルセスキオキサン以外のラダー型シルセスキオキサン(以下、「その他のラダー型シルセスキオキサン」と称する場合がある)を含んでいてもよい。特に、上記その他のラダー型シルセスキオキサンは、ラダー型シルセスキオキサン(B1)やラダー型シルセスキオキサン(B2)と併用することが好ましい。
[Other ladder-type silsesquioxanes]
The ladder-type silsesquioxane may contain, for example, a ladder-type silsesquioxane having an aryl group in the molecule. Examples of the aryl group in the ladder-type silsesquioxane having an aryl group in the molecule include a C 6-14 aryl group (particularly a C 6-10 aryl group) such as a phenyl group and a naphthyl group. These aryl groups may be substituents (groups directly bonded to silicon atoms) possessed by silicon atoms in the polyorganosiloxane (A).
The ladder-type silsesquioxane is a ladder-type silsesquioxane (B1), a ladder-type silsesquioxane (B2), or a ladder-type silsesquioxane other than a ladder-type silsesquioxane having an aryl group in the molecule. Sesquioxane (hereinafter may be referred to as “other ladder-type silsesquioxane”) may be included. In particular, the other ladder-type silsesquioxane is preferably used in combination with ladder-type silsesquioxane (B1) or ladder-type silsesquioxane (B2).
 上記ラダー型シルセスキオキサンは、特に限定されないが、例えば、ラダー型ポリオルガノシロキサン(B1)、ラダー型ポリオルガノシロキサン(B2)、及び分子内にアリール基を有するラダー型シルセスキオキサンからなる群より選ばれる少なくとも1種のシルセスキオキサンを含むが好ましく、ラダー型シルセスキオキサン(B1)及び/又はラダー型シルセスキオキサン(B2)を含むことがより好ましい。 The ladder-type silsesquioxane is not particularly limited. For example, the ladder-type silsesquioxane includes a ladder-type polyorganosiloxane (B1), a ladder-type polyorganosiloxane (B2), and a ladder-type silsesquioxane having an aryl group in the molecule. It preferably contains at least one silsesquioxane selected from the group, and more preferably contains ladder-type silsesquioxane (B1) and / or ladder-type silsesquioxane (B2).
 シルセスキオキサン(B)中の上記ラダー型シルセスキオキサンの含有量は、特に限定されないが、例えば、シルセスキオキサン(B)全量(100重量%)に対して、50重量%以上が好ましく、より好ましくは70重量%以上、さらに好ましくは90重量%以上である。中でも、シルセスキオキサン(B)は、上記ラダー型シルセスキオキサンのみであることが好ましい。即ち、シルセスキオキサン(B)は、上記ラダー型シルセスキオキサンであることが好ましい。ラダー型シルセスキオキサンの含有量が上記範囲であることにより、耐SOx腐食性に一層優れる。 The content of the ladder-type silsesquioxane in the silsesquioxane (B) is not particularly limited. For example, the content is 50% by weight or more with respect to the total amount of the silsesquioxane (B) (100% by weight). More preferably, it is 70 weight% or more, More preferably, it is 90 weight% or more. Especially, it is preferable that silsesquioxane (B) is only the said ladder type silsesquioxane. That is, the silsesquioxane (B) is preferably the ladder-type silsesquioxane. When the content of the ladder-type silsesquioxane is within the above range, more excellent in SO x corrosion.
 シルセスキオキサン(B)中のラダー型シルセスキオキサン(B1)の含有量は、特に限定されないが、例えば、シルセスキオキサン(B)全量(100重量%)に対して、20重量%以上が好ましく、より好ましくは40重量%以上、さらに好ましくは50重量%以上、特に好ましくは90重量%以上である。上限としては、例えば、100重量%が好ましく、95重量%や80重量%や60重量%であってもよい。中でも、シルセスキオキサン(B)は、上記ラダー型シルセスキオキサン(B1)のみであることが好ましい。即ち、シルセスキオキサン(B)は、上記ラダー型シルセスキオキサン(B1)であってもよい。 The content of the ladder-type silsesquioxane (B1) in the silsesquioxane (B) is not particularly limited, but is, for example, 20% by weight with respect to the total amount (100% by weight) of the silsesquioxane (B). The above is preferable, more preferably 40% by weight or more, still more preferably 50% by weight or more, and particularly preferably 90% by weight or more. As an upper limit, 100 weight% is preferable, for example, and 95 weight%, 80 weight%, and 60 weight% may be sufficient. Especially, it is preferable that silsesquioxane (B) is only the said ladder type silsesquioxane (B1). That is, the ladder-type silsesquioxane (B1) may be used as the silsesquioxane (B).
 シルセスキオキサン(B)中のラダー型シルセスキオキサン(B2)の含有量は、特に限定されないが、例えば、シルセスキオキサン(B)全量(100重量%)に対して、10重量%以上が好ましく、より好ましくは20重量%以上、さらに好ましくは40重量%以上である。上限としては、例えば、100重量%が好ましく、より好ましくは80重量%、さらに好ましくは60重量%、特に好ましくは50重量%である。シルセスキオキサン(B)は、上記ラダー型シルセスキオキサン(B2)のみであってもよい。
 シルセスキオキサン(B2)は、硬化性樹脂組成物中に含まれるSiH基の数を制御しやすいという観点から、シルセスキオキサン(B1)と併用することが好ましい。中でも、シルセスキオキサン(B1)とシルセスキオキサン(B2)の比率(シルセスキオキサン(B1):シルセスキオキサン(B2))が、2~8:8~2が好ましく、より好ましくは4~6:6~4である。
The content of the ladder-type silsesquioxane (B2) in the silsesquioxane (B) is not particularly limited. For example, the content is 10% by weight with respect to the total amount (100% by weight) of the silsesquioxane (B). The above is preferable, more preferably 20% by weight or more, and still more preferably 40% by weight or more. The upper limit is, for example, preferably 100% by weight, more preferably 80% by weight, still more preferably 60% by weight, and particularly preferably 50% by weight. The silsesquioxane (B) may be only the ladder-type silsesquioxane (B2).
Silsesquioxane (B2) is preferably used in combination with silsesquioxane (B1) from the viewpoint of easy control of the number of SiH groups contained in the curable resin composition. Among them, the ratio of silsesquioxane (B1) to silsesquioxane (B2) (silsesquioxane (B1): silsesquioxane (B2)) is preferably 2 to 8: 8 to 2, more preferably. Is 4-6: 6-4.
 上記ラダー型シルセスキオキサンは、公知の製造方法(例えば、3官能シラン化合物を原料とした加水分解縮合法)により製造することができる。 The ladder type silsesquioxane can be produced by a known production method (for example, a hydrolytic condensation method using a trifunctional silane compound as a raw material).
 シルセスキオキサン(B)中に含まれるシルセスキオキサンの数平均分子量及び/又は重量平均分子量は、特に限定されないが、100~80万が好ましく、200~10万がより好ましく、300~3万が更に好ましく、500~20000が特に好ましい。100未満であると、硬化物の耐熱性が低下する場合があり、80万を超えると、シルセスキオキサン(B)の他の成分に対する相溶性が低下する場合がある。なお、シルセスキオキサン(B)は、上記範囲の種々の分子量を有するものの混合物であっても良い。 The number average molecular weight and / or weight average molecular weight of the silsesquioxane contained in the silsesquioxane (B) is not particularly limited, but is preferably 100 to 800,000, more preferably 200 to 100,000, and 300 to 3 Is more preferable, and 500 to 20000 is particularly preferable. If it is less than 100, the heat resistance of the cured product may be reduced, and if it exceeds 800,000, the compatibility of the silsesquioxane (B) with other components may be reduced. Silsesquioxane (B) may be a mixture having various molecular weights within the above range.
 シルセスキオキサン(B)中に含まれるシルセスキオキサン(特に、ラダー型シルセスキオキサン)の分子内の脂肪族炭素-炭素二重結合の含有量(重量基準、ビニル基換算)は、特に限定されないが、柔軟性および強度に優れる硬化物が得られやすいという観点から、例えば、15.0重量%以下(例えば1.0~15.0重量%)が好ましく、より好ましくは1.2~12.0重量%である。分子内の脂肪族炭素-炭素二重結合の含有量は、例えば、1H-NMRによって測定することができる。 The content of the aliphatic carbon-carbon double bond in the molecule of silsesquioxane (particularly ladder-type silsesquioxane) contained in the silsesquioxane (B) (weight basis, in terms of vinyl group) is: Although not particularly limited, it is preferably 15.0% by weight or less (for example, 1.0 to 15.0% by weight), more preferably 1.2% from the viewpoint that a cured product excellent in flexibility and strength is easily obtained. ˜12.0% by weight. The content of the aliphatic carbon-carbon double bond in the molecule can be measured, for example, by 1 H-NMR.
 シルセスキオキサン(B)中に含まれるシルセスキオキサン(特に、ラダー型シルセスキオキサン)の分子内のSiH基の含有量(SiH基におけるH(ヒドリド)の重量換算)は、特に限定されないが、柔軟性および強度に優れる硬化物が得られやすいという観点から、例えば、0.50重量%以下(例えば0.01~0.50重量%)が好ましく、より好ましくは0.03~0.28重量%である。上記SiH基含有量は、例えば、1H-NMRなどによって測定することができる。 Content of SiH group in the molecule of silsesquioxane (particularly ladder-type silsesquioxane) contained in silsesquioxane (B) (weight conversion of H (hydride) in SiH group) is particularly limited. However, from the viewpoint of easily obtaining a cured product excellent in flexibility and strength, for example, 0.50% by weight or less (for example, 0.01 to 0.50% by weight) is preferable, and more preferably 0.03 to 0%. .28% by weight. The SiH group content can be measured, for example, by 1 H-NMR.
 シルセスキオキサン(B)中に含まれるシルセスキオキサン(特に、ラダー型シルセスキオキサン)は、特に限定されないが、オルガノシロキサン(A)との相溶性の観点から、メチル基とビニル基を含むシルセスキオキサンであって、メチル基とビニル基の比(モル比、メチル基:ビニル基)が、5:5~9.5:0.5の範囲であることが好ましく、5.5:4.5~9:1の範囲であることがより好ましい。上記メチル基、ビニル基の含有量は、例えば、1H-NMRによって測定することができる。 Silsesquioxane (particularly ladder type silsesquioxane) contained in silsesquioxane (B) is not particularly limited, but from the viewpoint of compatibility with organosiloxane (A), a methyl group and a vinyl group Preferably, the ratio of methyl group to vinyl group (molar ratio, methyl group: vinyl group) is in the range of 5: 5 to 9.5: 0.5. A range of 5: 4.5 to 9: 1 is more preferable. The contents of the methyl group and vinyl group can be measured, for example, by 1 H-NMR.
 シルセスキオキサン(B)は、特に限定されないが、例えば、無色透明であることが好ましい。具体的には、紫外可視光分光光度計で測定される400nmにおける光線透過率が90%以上であることが好ましい。 Silsesquioxane (B) is not particularly limited, but is preferably colorless and transparent, for example. Specifically, it is preferable that the light transmittance at 400 nm measured with an ultraviolet-visible light spectrophotometer is 90% or more.
 シルセスキオキサン(B)は、特に限定されないが、例えば、上記ラダー型シルセスキオキサン等を均一に混合することにより、製造することができる。 Although silsesquioxane (B) is not specifically limited, For example, it can be manufactured by mixing the said ladder type silsesquioxane etc. uniformly.
 本発明の硬化性樹脂組成物におけるシルセスキオキサン(B)の含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、5~45重量%が好ましく、7~40重量%がより好ましく、10~35重量%が更に好ましい。含有量が5重量%未満であると、SOx等の腐食性ガスに対するガスバリア性が十分得られない場合がある。一方、含有量が45重量%を超えると、硬化物の耐クラック性が低下したり、耐熱性が十分得られない場合がある。 The content (blending amount) of silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited, but is 5 to 45 wt% with respect to the total amount (100 wt%) of the curable resin composition. %, More preferably 7 to 40% by weight, still more preferably 10 to 35% by weight. When the content is less than 5 wt%, the gas barrier property to corrosive gases such as SO x is not sufficiently obtained. On the other hand, if the content exceeds 45% by weight, the crack resistance of the cured product may be lowered, or the heat resistance may not be sufficiently obtained.
 本発明の硬化性樹脂組成物におけるシルセスキオキサン(B)の含有量は、特に限定されないが、例えば、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計量(100重量部)に対して、1~50重量部が好ましく、より好ましくは5~40重量部、さらに好ましくは8~30重量部である。含有量が上記範囲であることにより、腐食性ガスに対する耐腐食性(特に耐SOx腐食性)に優れる。 Although content of silsesquioxane (B) in the curable resin composition of this invention is not specifically limited, For example, the total amount (100 weight part) of polyorganosiloxane (A) and silsesquioxane (B) The amount is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, still more preferably 8 to 30 parts by weight. When the content is in the above range, the corrosion resistance against a corrosive gas (especially SO x corrosion resistance) is excellent.
 本発明の硬化性樹脂組成物中の、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計含有量は、特に限定されないが、例えば、硬化性樹脂組成物の全量(100重量%)に対して、60.000~100重量%が好ましく、より好ましくは、70.000~99.000重量%である。ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計含有量が上記範囲であることにより、腐食性ガスに対する耐腐食性(特に耐SOx腐食性)に優れる。特に、99重量%以下であることにより、耐熱性、及び腐食性ガスに対する耐腐食性に一層優れる。 The total content of the polyorganosiloxane (A) and the silsesquioxane (B) in the curable resin composition of the present invention is not particularly limited. For example, the total amount (100% by weight) of the curable resin composition Is preferably 60.000 to 100% by weight, more preferably 70.000 to 99.000% by weight. The total content of the polyorganosiloxane (A) and silsesquioxane (B) is in the above range, excellent corrosion resistance against corrosive gas (in particular resistance to SO x corrosion). In particular, by being 99% by weight or less, the heat resistance and the corrosion resistance against corrosive gas are further improved.
[イソシアヌレート化合物(C)]
 本発明の硬化性樹脂組成物は、イソシアヌレート化合物(C)を含む。本発明の硬化性樹脂組成物はイソシアヌレート化合物(C)を含むことにより、特に、硬化により形成される硬化物の腐食性ガスに対するバリア性が向上し、さらに、被着体に対する密着性が向上する傾向がある。
[Isocyanurate Compound (C)]
The curable resin composition of the present invention contains an isocyanurate compound (C). By including the isocyanurate compound (C), the curable resin composition of the present invention particularly improves the barrier property against a corrosive gas of a cured product formed by curing, and further improves the adhesion to an adherend. Tend to.
 イソシアヌレート化合物(C)は、式(1)で表されるイソシアヌレート化合物を含むことが好ましい。特に、イソシアヌレート化合物(C)は、式(1)で表されるイソシアヌレート化合物のみであることが好ましい。
Figure JPOXMLDOC01-appb-C000010
The isocyanurate compound (C) preferably includes an isocyanurate compound represented by the formula (1). In particular, the isocyanurate compound (C) is preferably only the isocyanurate compound represented by the formula (1).
Figure JPOXMLDOC01-appb-C000010
 上記式(1)中、Rx、Ry、Rzは、同一又は異なって、上記式(2)で表される基、又は上記式(3)で表される基を示す。中でも、上記式(1)におけるRx、Ry、Rzのうち、いずれかひとつ以上(好ましくは1つ又は2つ、より好ましくは1つ)が上記式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
In the above formula (1), R x , R y and R z are the same or different and represent a group represented by the above formula (2) or a group represented by the above formula (3). Among them, any one or more (preferably one or two, more preferably one) of R x , R y and R z in the above formula (1) is a group represented by the above formula (3). Preferably there is.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 上記式(2)及び上記式(3)中、R1、R2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を表す。炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、エチルヘキシル基などが挙げられる。上記アルキル基の中でも、メチル基、エチル基、プロピル基、イソプロピル基などの炭素数1~3の直鎖状若しくは分岐鎖状のアルキル基が好ましい。上記式(2)及び上記式(3)におけるR1、R2は、それぞれ水素原子であることが特に好ましい。 In the above formulas (2) and (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. Examples of the linear or branched alkyl group having 1 to 8 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a pentyl group, a hexyl group, A heptyl group, an octyl group, an ethylhexyl group, etc. are mentioned. Among the above alkyl groups, linear or branched alkyl groups having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group are preferable. In the above formula (2) and the above formula (3), R 1 and R 2 are each particularly preferably a hydrogen atom.
 イソシアヌレート化合物(C)に含まれるイソシアヌレート化合物としては、特に限定されないが、例えば、モノアリルジメチルイソシアヌレート、ジアリルモノメチルイソシアヌレート、トリアリルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、トリグリシジルイソシアヌレート、モノメチルジグリシジルイソシアヌレート、ジメチルモノグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1,3-ジアリル-5-(2-メチルエポキシプロピル)イソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-グリシジルイソシアヌレート、1,3-ビス(2-メチルプロペニル)-5-(2-メチルエポキシプロピル)イソシアヌレート、トリス(2-メチルプロペニル)イソシアヌレートなどが挙げられる。中でも、モノアリルジグリシジルイソシアヌレートが好ましい。なお、イソシアヌレート化合物(C)中のイソシアヌレート化合物は、1種を単独で、又は2種以上を組合せて使用することができる。 The isocyanurate compound contained in the isocyanurate compound (C) is not particularly limited. For example, monoallyl dimethyl isocyanurate, diallyl monomethyl isocyanurate, triallyl isocyanurate, monoallyl diglycidyl isocyanurate, diallyl monoglycidyl isocyanurate , Triglycidyl isocyanurate, monomethyl diglycidyl isocyanurate, dimethyl monoglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methylpropenyl) -3,5- Diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, 1,3-diallyl-5- (2-methylepoxy Pyr) isocyanurate, 1,3-bis (2-methylpropenyl) -5-glycidyl isocyanurate, 1,3-bis (2-methylpropenyl) -5- (2-methylepoxypropyl) isocyanurate, tris (2 -Methylpropenyl) isocyanurate and the like. Of these, monoallyl diglycidyl isocyanurate is preferable. In addition, the isocyanurate compound in an isocyanurate compound (C) can be used individually by 1 type or in combination of 2 or more types.
 イソシアヌレート化合物(C)は、他の成分との相溶性を向上させる観点から、後述のように、シランカップリング剤とあらかじめ混合してから他の成分と配合しても良い。 From the viewpoint of improving compatibility with other components, the isocyanurate compound (C) may be blended with other components after previously mixed with a silane coupling agent as described later.
 イソシアヌレート化合物(C)の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~10重量%が好ましく、0.05~5重量%がより好ましく、0.1~3重量%が更に好ましい。上記イソシアヌレート化合物の含有量が0.01重量%未満であると、腐食性ガスに対するバリア性、被着体に対する密着性が低下する場合がある。一方、上記イソシアヌレート化合物の含有量が10重量%を超えると、硬化性樹脂組成物において固体が析出したり、硬化物が白濁する場合がある。 The content of the isocyanurate compound (C) is not particularly limited, but is preferably 0.01 to 10% by weight, and 0.05 to 5% by weight with respect to the total amount (100% by weight) of the curable resin composition. More preferred is 0.1 to 3% by weight. If the content of the isocyanurate compound is less than 0.01% by weight, the barrier property against corrosive gas and the adhesion to the adherend may be lowered. On the other hand, when the content of the isocyanurate compound exceeds 10% by weight, solids may precipitate in the curable resin composition or the cured product may become cloudy.
[シランカップリング剤(D)]
 本発明の硬化性樹脂組成物は、シランカップリング剤(D)を含んでも良い。シランカップリング剤(D)を含むことにより、被着体に対する密着性が向上する傾向がある。
[Silane coupling agent (D)]
The curable resin composition of the present invention may contain a silane coupling agent (D). By including a silane coupling agent (D), there exists a tendency for the adhesiveness with respect to a to-be-adhered body to improve.
 シランカップリング剤(D)は、上記シルセスキオキサン(B)やイソシアヌレート化合物(C)等との相溶性が良好であるため、例えば、イソシアヌレート化合物のその他成分に対する相溶性を向上させるために、あらかじめイソシアヌレート化合物(C)とシランカップリング剤(D)の組成物を形成した上で、その他成分と配合すると、均一な硬化性樹脂組成物が得られやすい。 Since the silane coupling agent (D) has good compatibility with the silsesquioxane (B), the isocyanurate compound (C) and the like, for example, to improve the compatibility of the isocyanurate compound with other components. When a composition of the isocyanurate compound (C) and the silane coupling agent (D) is previously formed and then blended with other components, a uniform curable resin composition is easily obtained.
 シランカップリング剤(D)としては、公知乃至慣用のシランカップリング剤を使用することができ、特に限定されないが、例えば、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのエポキシ基含有シランカップリング剤;N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシランなどのアミノ基含有シランカップリング剤;テトラメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリス(メトキシエトキシシラン)、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ビニルトリアセトキシシラン、γ-(メタ)アクリロキシプロピルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジメトキシシラン、γ-(メタ)アクリロキシプロピルメチルジエトキシシラン、メルカプトプロピレントリメトキシシラン、メルカプトプロピレントリエトキシシランなどが挙げられる。中でも、エポキシ基含有シランカップリング剤(特に、3-グリシドキシプロピルトリメトキシシラン)が好ましい。なお、シランカップリング剤(D)は1種を単独で、又は2種以上を組合せて使用することができる。 As the silane coupling agent (D), a known or conventional silane coupling agent can be used, and is not particularly limited. For example, 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxy) (Cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, epoxy group-containing silane coupling agents such as 3-glycidoxypropyltriethoxysilane; N-2- (aminoethyl) -3-aminopropyl Methyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl Triethoxysilane, 3-triethoxysilyl-N- (1 3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, N- (β-amino Amino group-containing silane coupling agents such as ethyl) -γ-aminopropylmethyldiethoxysilane; tetramethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (Methoxyethoxysilane), phenyltrimethoxysilane, diphenyldimethoxysilane, vinyltriacetoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- Meth) acryloxypropylmethyldimethoxysilane, .gamma. (meth) acryloxy propyl methyl diethoxy silane, mercapto propylene trimethoxysilane, and the like mercapto propylene triethoxysilane. Among them, an epoxy group-containing silane coupling agent (particularly 3-glycidoxypropyltrimethoxysilane) is preferable. In addition, a silane coupling agent (D) can be used individually by 1 type or in combination of 2 or more types.
 シランカップリング剤(D)の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~15重量%が好ましく、0.1~10重量%がより好ましく、0.5~5重量%が更に好ましい。上記シランカップリング剤の含有量が0.01重量%未満であると、被着体に対する密着性が低下し、特に、イソシアヌレート化合物(C)を相溶させて使用する際に、十分な硬化が得られない場合がある。一方、シランカップリング剤(D)の含有量が15重量%を超えると、硬化が不十分になり、硬化物の靭性、耐熱性、バリア性が低下する場合がある。 The content of the silane coupling agent (D) is not particularly limited, but is preferably 0.01 to 15% by weight, preferably 0.1 to 10% by weight with respect to the total amount (100% by weight) of the curable resin composition. Is more preferable, and 0.5 to 5% by weight is still more preferable. When the content of the silane coupling agent is less than 0.01% by weight, the adhesion to the adherend is lowered, and particularly when the isocyanurate compound (C) is used in a compatible state, sufficient curing is achieved. May not be obtained. On the other hand, when content of a silane coupling agent (D) exceeds 15 weight%, hardening will become inadequate and the toughness of a hardened | cured material, heat resistance, and barrier property may fall.
[希土類金属原子のカルボン酸塩(E)]
 本発明の硬化性樹脂組成物は、希土類金属原子のカルボン酸塩(E)を含む。希土類金属原子のカルボン酸塩(E)を含むことにより、耐H2S腐食性と耐熱性が向上する傾向がある。希土類金属原子のカルボン酸塩中に含まれる希土類金属原子は、1種であってもよいし、2種以上であってもよい。
 本明細書において、希土類金属原子のカルボン酸塩を、カルボン酸希土類と称する場合がある。
[Carboxylate of rare earth metal atom (E)]
The curable resin composition of the present invention contains a carboxylate (E) of a rare earth metal atom. By including the carboxylate (E) of the rare earth metal atom, the H 2 S corrosion resistance and the heat resistance tend to be improved. 1 type may be sufficient as the rare earth metal atom contained in the carboxylate of a rare earth metal atom, and 2 or more types may be sufficient as it.
In the present specification, a carboxylate of a rare earth metal atom is sometimes referred to as a rare earth carboxylate.
 希土類金属原子のカルボン酸塩(E)に含まれる希土類金属原子のカルボン酸塩における希土類金属原子としては、例えば、イットリウム、セリウム、ランタン、プラセオジム、ネオジムなどが挙げられる。上記希土類金属原子のカルボン酸塩におけるカルボン酸塩としては、例えば、炭素数1~20(好ましくは2~12、より好ましくは4~10、さらに好ましくは5~7)のカルボン酸のカルボン酸塩が好ましく、より好ましくは、2-エチルヘキサン酸塩などのヘキサン酸塩である。中でも、上記希土類金属原子のカルボン酸塩としては、カルボン酸イットリウム、カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、カルボン酸ネオジム(特に、炭素数1~20のカルボン酸イットリウム、炭素数1~20のカルボン酸セリウム、炭素数1~20のカルボン酸ランタン、炭素数1~20のカルボン酸プラセオジム、炭素数1~20のカルボン酸ネオジムが好ましく、より好ましくは2-エチルヘキサン酸イットリウム、2-エチルヘキサン酸セリウム、2-エチルヘキサン酸ランタン、2-エチルヘキサン酸プラセオジム、2-エチルヘキサン酸ネオジム)が好ましい。
 希土類金属原子のカルボン酸塩(E)中の希土類金属原子のカルボン酸塩は、1種を単独で、又は2種以上を組合せて使用することができる。
Examples of the rare earth metal atom in the carboxylate of the rare earth metal atom contained in the carboxylate (E) of the rare earth metal atom include yttrium, cerium, lanthanum, praseodymium, neodymium and the like. Examples of the carboxylate in the carboxylate of the rare earth metal atom include a carboxylate of a carboxylic acid having 1 to 20 carbon atoms (preferably 2 to 12, more preferably 4 to 10, more preferably 5 to 7). And more preferably hexanoate such as 2-ethylhexanoate. Among them, the rare earth metal atom carboxylates include yttrium carboxylate, cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, neodymium carboxylate (particularly yttrium carboxylate having 1 to 20 carbon atoms, 1 to 20 carbon atoms). Cerium carboxylate, lanthanum carboxylate having 1 to 20 carbon atoms, praseodymium carboxylate having 1 to 20 carbon atoms, neodymium carboxylate having 1 to 20 carbon atoms, more preferably yttrium 2-ethylhexanoate, 2-ethyl (Cerium hexanoate, lanthanum 2-ethylhexanoate, praseodymium 2-ethylhexanoate, neodymium 2-ethylhexanoate) are preferred.
The rare earth metal atom carboxylates in the rare earth metal atom carboxylates (E) can be used alone or in combination of two or more.
 希土類金属原子のカルボン酸塩(E)は、例えば、セリウムを含む希土類金属原子のカルボン酸塩(例えば、カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、及びカルボン酸ネオジムからなる群より選ばれる少なくとも2種以上の希土類金属原子のカルボン酸塩の混合物(カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、及びカルボン酸ネオジムの混合物など)、若しくはカルボン酸セリウムのみ(単一化合物)など)、又はカルボン酸イットリウムを含む希土類金属原子のカルボン酸塩(例えば、カルボン酸イットリウムのみなど)であることが好ましく、セリウムを含む希土類金属原子の2-エチルヘキサン酸塩(例えば、2-エチルヘキサン酸セリウム、2-エチルヘキサン酸ランタン、2-エチルヘキサン酸プラセオジム、及び2-エチルヘキサン酸ネオジムからなる群より選ばれる少なくとも2種以上の希土類金属原子の2-エチルヘキサン酸塩の混合物(2-エチルヘキサン酸セリウム、2-エチルヘキサン酸ランタン、2-エチルヘキサン酸プラセオジム、及び2-エチルヘキサン酸ネオジムの混合物など)、又は2-エチルヘキサン酸セリウムのみ(単一化合物)など)、又は2-エチルヘキサン酸イットリウムであることがより好ましい。
 希土類金属原子のカルボン酸塩(E)としては、例えば、商品名「オクトープR」(ホープ製薬株式会社製)などの市販品を用いてもよい。
The carboxylate (E) of the rare earth metal atom is, for example, a carboxylate of the rare earth metal atom containing cerium (for example, at least selected from the group consisting of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate) A mixture of carboxylates of two or more rare earth metal atoms (such as a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate), or only cerium carboxylate (single compound)), or carboxyl It is preferably a carboxylate of a rare earth metal atom containing yttrium acid (for example, yttrium carboxylate alone), and a 2-ethylhexanoate of a rare earth metal atom containing cerium (eg, cerium 2-ethylhexanoate, 2 -Lanthanum ethylhexanoate, 2 A mixture of 2-ethylhexanoate of at least two rare earth metal atoms selected from the group consisting of praseodymium ethylhexanoate and neodymium 2-ethylhexanoate (cerium 2-ethylhexanoate, lanthanum 2-ethylhexanoate, A mixture of praseodymium 2-ethylhexanoate and neodymium 2-ethylhexanoate), or only cerium 2-ethylhexanoate (single compound), or yttrium 2-ethylhexanoate is more preferable.
As the carboxylate (E) of the rare earth metal atom, for example, a commercial product such as a trade name “Octop® R” (manufactured by Hope Pharmaceutical Co., Ltd.) may be used.
 本発明の硬化性樹脂組成物中の希土類金属原子の含有量は、特に限定されないが、例えば、硬化性樹脂組成物全量(100重量%)に対して、5ppm以上5000ppm未満が好ましく、7ppm以上1000ppm未満がより好ましく、10ppm以上300ppm未満が更に好ましい。希土類金属原子の含有量が5ppm未満であると、希土類金属原子のカルボン酸塩(E)の効果が十分に発揮されず、H2Sガスに対するバリア性の低下または耐熱性が低下する場合がある。一方、5000ppm以上であると、硬化物の透過率が低下する場合がある。
 硬化性樹脂組成物中の上記希土類金属原子の含有量は、後述の評価の(希土類金属原子含有量(ppm))に記載の方法で測定することができる。
The content of the rare earth metal atom in the curable resin composition of the present invention is not particularly limited, but is preferably 5 ppm or more and less than 5000 ppm, for example, 7 ppm or more and 1000 ppm with respect to the total amount of the curable resin composition (100 wt%). Is more preferably 10 ppm or more and less than 300 ppm. When the content of the rare earth metal atom is less than 5 ppm, the effect of the carboxylate (E) of the rare earth metal atom is not sufficiently exhibited, and the barrier property against the H 2 S gas or the heat resistance may be lowered. . On the other hand, the transmittance | permeability of hardened | cured material may fall that it is 5000 ppm or more.
Content of the said rare earth metal atom in curable resin composition can be measured by the method as described in the below-mentioned evaluation (rare earth metal atom content (ppm)).
 本発明の硬化性樹脂組成物中の希土類金属原子の含有量は、特に限定されないが、例えば、ポリオルガノシロキサン(A)及びシルセスキオキサン(B)の合計含有量(100重量%)に対して、5ppm以上5000ppm未満が好ましく、7ppm以上1000ppm未満がより好ましく、10ppm以上300ppm未満が更に好ましい。希土類金属原子の含有量が、上記範囲であることにより、耐熱性、及び腐食性ガスに対する耐腐食性(特に、耐H2S腐食性)が一層優れる。 The content of the rare earth metal atom in the curable resin composition of the present invention is not particularly limited. For example, relative to the total content (100% by weight) of polyorganosiloxane (A) and silsesquioxane (B). 5 ppm or more and less than 5000 ppm is preferable, 7 ppm or more and less than 1000 ppm is more preferable, and 10 ppm or more and less than 300 ppm is still more preferable. When the content of the rare earth metal atoms is in the above range, the heat resistance and the corrosion resistance against a corrosive gas (particularly, the H 2 S corrosion resistance) are further improved.
 希土類金属原子のカルボン酸塩(E)の含有量は、特に限定されないが、例えば、硬化性樹脂組成物全量(100重量%)に対して、0.008~1.000重量%が好ましく、より好ましくは0.010~0.500重量%、さらに好ましくは0.015~0.400重量%である。特に、希土類金属原子の含有量が上記範囲であり、且つ希土類金属原子のカルボン酸塩の含有量が上記範囲であることにより、耐熱性、腐食性ガスに対する耐腐食性に一層優れる。 The content of the carboxylate (E) of the rare earth metal atom is not particularly limited, but is preferably 0.008 to 1.000% by weight with respect to the total amount (100% by weight) of the curable resin composition, for example. The amount is preferably 0.010 to 0.500% by weight, more preferably 0.015 to 0.400% by weight. Particularly, when the content of the rare earth metal atom is in the above range and the content of the carboxylate of the rare earth metal atom is in the above range, the heat resistance and the corrosion resistance against corrosive gas are further improved.
[ヒドロシリル化触媒]
 本発明の硬化性樹脂組成物は、更に、ヒドロシリル化触媒を含んでいても良い。本発明の硬化性樹脂組成物は、ヒドロシリル化触媒を含むことにより、硬化反応(ヒドロシリル化反応)を効率的に進行させることができる。上記ヒドロシリル化触媒としては、白金系触媒、ロジウム系触媒、パラジウム系触媒等の周知のヒドロシリル化反応用触媒が例示される。具体的には、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金のオレフィン錯体、白金-カルボニルビニルメチル錯体などの白金のカルボニル錯体、白金-ジビニルテトラメチルジシロキサン錯体や白金-シクロビニルメチルシロキサン錯体などの白金ビニルメチルシロキサン錯体、白金-ホスフィン錯体、白金-ホスファイト錯体等の白金系触媒、ならびに上記白金系触媒において白金原子の代わりにパラジウム原子又はロジウム原子を含有するパラジウム系触媒又はロジウム系触媒が挙げられる。なお、上記ヒドロシリル化触媒は1種を単独で、又は2種以上を組合せて使用することができる。
[Hydrosilylation catalyst]
The curable resin composition of the present invention may further contain a hydrosilylation catalyst. By including the hydrosilylation catalyst, the curable resin composition of the present invention can efficiently advance the curing reaction (hydrosilylation reaction). Examples of the hydrosilylation catalyst include well-known hydrosilylation catalysts such as platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts. Specifically, platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, complexes of chloroplatinic acid and alcohols, aldehydes, ketones, etc., platinum olefin complexes, platinum-carbonylvinylmethyl Platinum-based catalysts such as platinum carbonyl complexes such as complexes, platinum-vinylmethylsiloxane complexes such as platinum-divinyltetramethyldisiloxane complexes and platinum-cyclovinylmethylsiloxane complexes, platinum-phosphine complexes, platinum-phosphite complexes, and the like Examples of the platinum catalyst include a palladium catalyst or a rhodium catalyst containing a palladium atom or a rhodium atom instead of a platinum atom. In addition, the said hydrosilylation catalyst can be used individually by 1 type or in combination of 2 or more types.
 本発明の硬化性樹脂組成物における上記ヒドロシリル化触媒の含有量は、特に限定されないが、例えば、ヒドロシリル化触媒中の白金、パラジウム、又はロジウムが重量単位で、0.01~1,000ppmの範囲内となる量が好ましく、0.1~500ppmの範囲内となる量がさらに好ましい。ヒドロシリル化触媒の含有量がこのような範囲にあると、架橋速度が著しく遅くなることがなく、硬化物に着色等の問題を生じるおそれが少ないため好ましい。 The content of the hydrosilylation catalyst in the curable resin composition of the present invention is not particularly limited. For example, platinum, palladium, or rhodium in the hydrosilylation catalyst is in a range of 0.01 to 1,000 ppm by weight. The amount is preferably within the range of 0.1 to 500 ppm. It is preferable for the content of the hydrosilylation catalyst to be in such a range because the crosslinking rate will not be remarkably slowed and the cured product is less likely to cause problems such as coloring.
[ヒドロシリル化反応抑制剤]
 本発明の硬化性樹脂組成物は、硬化反応(ヒドロシリル化反応)の速度を調整するために、ヒドロシリル化反応抑制剤を含んでいても良い。上記ヒドロシリル化反応抑制剤としては、例えば、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、フェニルブチノール等のアルキンアルコール;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;チアゾール、ベンゾチアゾール、ベンゾトリアゾールなどが挙げられる。上記ヒドロシリル化反応抑制剤は1種を単独で、又は2種以上を組合せて使用することができる。上記ヒドロシリル化反応抑制剤の含有量としては、硬化性樹脂組成物の架橋条件により異なるが、実用上、硬化性樹脂組成物中の含有量として、0.00001~5重量%の範囲内が好ましい。
[Hydrosilylation reaction inhibitor]
The curable resin composition of the present invention may contain a hydrosilylation reaction inhibitor in order to adjust the speed of the curing reaction (hydrosilylation reaction). Examples of the hydrosilylation reaction inhibitor include alkyne alcohols such as 3-methyl-1-butyn-3-ol, 3,5-dimethyl-1-hexyn-3-ol, and phenylbutynol; 3-methyl-3 -Enyne compounds such as pentene-1-yne and 3,5-dimethyl-3-hexen-1-yne; and thiazole, benzothiazole, benzotriazole and the like. The said hydrosilylation reaction inhibitor can be used individually by 1 type or in combination of 2 or more types. The content of the hydrosilylation reaction inhibitor varies depending on the crosslinking conditions of the curable resin composition, but practically, the content in the curable resin composition is preferably in the range of 0.00001 to 5% by weight. .
[その他のシロキサン化合物]
 本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上の脂肪族炭素-炭素二重結合を有する環状シロキサンを含んでいても良い。また、本発明の硬化性樹脂組成物は、その他のシロキサン化合物として、更に、分子内(一分子中)に2個以上のSiH基を有する環状シロキサンを含んでいても良い。上記環状シロキサンは1種を単独で、又は2種以上を組合せて使用することができる。本発明の硬化性樹脂組成物における環状シロキサンの含有量(配合量)は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0.01~30重量%が好ましく、0.1~20重量%がより好ましく、0.5~10重量%が更に好ましい。
[Other siloxane compounds]
The curable resin composition of the present invention may further contain a cyclic siloxane having two or more aliphatic carbon-carbon double bonds in the molecule (in one molecule) as another siloxane compound. The curable resin composition of the present invention may further contain a cyclic siloxane having two or more SiH groups in the molecule (in one molecule) as the other siloxane compound. The said cyclic siloxane can be used individually by 1 type or in combination of 2 or more types. The content (blending amount) of the cyclic siloxane in the curable resin composition of the present invention is not particularly limited, but is preferably 0.01 to 30% by weight with respect to the total amount (100% by weight) of the curable resin composition. 0.1 to 20% by weight is more preferable, and 0.5 to 10% by weight is still more preferable.
[その他のシラン化合物]
 本発明の硬化性樹脂組成物は、その他のシラン化合物(例えば、ヒドロシリル基を有する化合物)を含んでいても良い。上記その他のシラン化合物としては、例えば、メチル(トリスジメチルシロキシ)シラン、テトラキス(ジメチルシロキシ)シラン、1,1,3,3-テトラメチルジシロキサン、1,1,3,3,5,5-ヘキサメチルトリシロキサン、1,1,1,3,5,5,5-へプタメチルトリシロキサン、1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン、1,1,1,3,5,5,7,7,7-ノナメチルテトラシロキサン、1,1,3,3,5,5,7,7,9,9-デカメチルペンタシロキサン、1,1,1,3,5,5,7,7,9,9,9-ウンデカメチルペンタシロキサンなどのSiH基を有する直鎖状又は分岐鎖状シロキサンなどが挙げられる。なお、上記シラン化合物は1種を単独で、又は2種以上を組合せて使用することができる。上記シラン化合物の含有量は、特に限定されないが、硬化性樹脂組成物の全量(100重量%)に対して、0~5重量%が好ましく、0~1.5重量%がより好ましい。
[Other silane compounds]
The curable resin composition of the present invention may contain other silane compounds (for example, compounds having a hydrosilyl group). Examples of the other silane compounds include methyl (trisdimethylsiloxy) silane, tetrakis (dimethylsiloxy) silane, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3,5,5- Hexamethyltrisiloxane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, 1,1,3,3,5,5,7,7-octamethyltetrasiloxane, 1,1, 1,3,5,5,7,7,7-nonamethyltetrasiloxane, 1,1,3,3,5,5,7,7,9,9-decamethylpentasiloxane, 1,1,1, Examples thereof include linear or branched siloxanes having SiH groups such as 3,5,5,7,7,9,9,9-undecamethylpentasiloxane. In addition, the said silane compound can be used individually by 1 type or in combination of 2 or more types. The content of the silane compound is not particularly limited, but is preferably 0 to 5% by weight and more preferably 0 to 1.5% by weight with respect to the total amount (100% by weight) of the curable resin composition.
[溶媒]
 本発明の硬化性樹脂組成物は、溶媒を含んでいても良い。上記溶媒としては、例えば、トルエン、ヘキサン、イソプロパノール、メチルイソブチルケトン、シクロペンタノン、プロピレングリコールモノメチルエーテルアセテート等の従来公知の溶媒が挙げられる。上記溶媒は1種を単独で、又は2種以上を組合せて使用することができる。
[solvent]
The curable resin composition of the present invention may contain a solvent. Examples of the solvent include conventionally known solvents such as toluene, hexane, isopropanol, methyl isobutyl ketone, cyclopentanone, and propylene glycol monomethyl ether acetate. The said solvent can be used individually by 1 type or in combination of 2 or more types.
[添加剤]
 本発明の硬化性樹脂組成物は、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、流動性改良剤、着色剤(染料、顔料など)、分散剤、消泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤などの慣用の添加剤を含んでいても良い。これらの添加剤は単独で、又は2種以上を組合せて使用できる。
[Additive]
The curable resin composition of the present invention includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, Inorganic fillers such as carbon black, silicon carbide, silicon nitride, boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes, organosilazanes; silicone resins, epoxy resins, Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, stabilizers (antioxidants, ultraviolet absorbers, light stabilizers, heat stabilizers, etc.), flame retardants (phosphorus) Flame retardants, halogen flame retardants, inorganic flame retardants, etc.), flame retardant aids, reinforcing materials (other fillers, etc.), nucleating agents, coupling agents Lubricant, wax, plasticizer, release agent, impact resistance improver, hue improver, fluidity improver, colorant (dye, pigment, etc.), dispersant, defoamer, defoamer, antibacterial agent, preservative Conventional additives such as a viscosity modifier and a thickener may be included. These additives can be used alone or in combination of two or more.
[硬化性樹脂組成物]
 本発明の硬化性樹脂組成物は、特に限定されないが、硬化性樹脂組成物中に含まれる化合物中に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の総数に対する、硬化性樹脂組成物中に含まれる化合物に存在するヒドロシリル基の総数の比(モル比でもある)が、1未満(好ましくは0.20以上1.00未満、より好ましくは0.50~0.98、さらに好ましくは0.70~0.95)となるような組成(配合組成)であることが好ましい。ヒドロシリル基と脂肪族炭素-炭素二重結合との割合を上記範囲とすることにより、硬化物の硬度が低下するためLED封止材としたときのワイヤーへかかる負荷が小さくなり、熱衝撃に対する信頼性が向上する傾向にある。
 なお、本明細書において、ケイ素原子に結合する脂肪族炭素-炭素二重結合とは、ケイ素原子が有する置換基中に含まれる脂肪族炭素-炭素二重結合をいう。また、ケイ素原子に結合する脂肪族炭素-炭素二重結合は、ケイ素原子が有する置換基の末端、及び末端以外の脂肪族炭素-炭素二重結合を含む。
[Curable resin composition]
Although the curable resin composition of the present invention is not particularly limited, the curable resin composition with respect to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition. The ratio of the total number of hydrosilyl groups present in the compound contained in the product (also the molar ratio) is less than 1 (preferably 0.20 or more and less than 1.00, more preferably 0.50 to 0.98, even more preferably Is preferably 0.70 to 0.95) (formulation composition). By setting the ratio of the hydrosilyl group and the aliphatic carbon-carbon double bond within the above range, the hardness of the cured product decreases, so the load on the wire when used as an LED sealing material is reduced, and the reliability against thermal shock is reduced. Tend to improve.
In this specification, an aliphatic carbon-carbon double bond bonded to a silicon atom means an aliphatic carbon-carbon double bond contained in a substituent of the silicon atom. The aliphatic carbon-carbon double bond bonded to the silicon atom includes the terminal of the substituent of the silicon atom and the aliphatic carbon-carbon double bond other than the terminal.
 本発明の硬化性樹脂組成物は、特に限定されないが、例えば、上記の各成分を室温で攪拌・混合することにより調製することができる。なお、本発明の硬化性樹脂組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。 The curable resin composition of the present invention is not particularly limited, but can be prepared, for example, by stirring and mixing the above components at room temperature. In addition, the curable resin composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more stored separately. It can also be used as a multi-component (for example, two-component) composition in which the components are mixed at a predetermined ratio before use.
 本発明の硬化性樹脂組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本発明の硬化性樹脂組成物は、25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。粘度が300mPa・s未満であると、硬化物の耐熱性が低下する場合がある。一方、粘度が20000mPa・sを超えると、硬化性樹脂組成物の調製や取り扱いが困難となり、硬化物に気泡が残存しやすくなる場合がある。なお、硬化性樹脂組成物の粘度は、例えば、上述のラダー型シルセスキオキサン(B1)の粘度と同様の方法で測定できる。 The curable resin composition of the present invention is not particularly limited, but is preferably liquid at room temperature (about 25 ° C.). More specifically, the curable resin composition of the present invention has a viscosity at 25 ° C. of preferably 300 to 20000 mPa · s, more preferably 500 to 10000 mPa · s, and still more preferably 1000 to 8000 mPa · s. If the viscosity is less than 300 mPa · s, the heat resistance of the cured product may decrease. On the other hand, when the viscosity exceeds 20000 mPa · s, it is difficult to prepare and handle the curable resin composition, and bubbles may remain in the cured product. In addition, the viscosity of curable resin composition can be measured by the method similar to the viscosity of the above-mentioned ladder type silsesquioxane (B1), for example.
[硬化物]
 本発明の硬化性樹脂組成物を硬化反応(ヒドロシリル化反応)により硬化させることにより、硬化物(以下、「本発明の硬化物」と称する場合がある)を得ることができる。硬化反応の条件は、特に限定されず、従来公知の条件より適宜選択することができるが、例えば、反応速度の点から、温度(硬化温度)は25~180℃(より好ましくは60℃~150℃)が好ましく、時間(硬化時間)は5~720分が好ましい。本発明の硬化物は、耐熱性、透明性、柔軟性等の各種物性に優れ、さらに、リフロー工程における耐クラック性、パッケージに対する密着性等の耐リフロー性に優れ、腐食性ガスに対するバリア性にも優れる。
[Cured product]
By curing the curable resin composition of the present invention by a curing reaction (hydrosilylation reaction), a cured product (hereinafter sometimes referred to as “cured product of the present invention”) can be obtained. The conditions for the curing reaction are not particularly limited and can be appropriately selected from conventionally known conditions. For example, from the viewpoint of reaction rate, the temperature (curing temperature) is 25 to 180 ° C. (more preferably 60 ° C. to 150 ° C.). ° C), and the time (curing time) is preferably 5 to 720 minutes. The cured product of the present invention is excellent in various physical properties such as heat resistance, transparency, flexibility and the like, and further excellent in reflow resistance such as crack resistance in a reflow process and adhesion to a package, and in barrier properties against corrosive gas. Also excellent.
 本発明の硬化物のエージング前のA硬度は、特に限定されないが、例えば、70未満が好ましく、より好ましくは30~69、さらに好ましくは40~68、特に好ましくは45以上60未満である。エージング前のA硬度が上記範囲であることにより、加熱後(例えば200℃500時間の加熱後)でも、硬度が上がりにくい傾向がある。特にA硬度が60未満であることにより、加熱後の硬度上昇が一層抑えられる傾向がある。上記エージング前のA硬度は、具体的には、後述の(評価)の「(エージング前のA硬度、エージング後のA硬度)」に記載の方法により測定される値をいう。
 上記エージング前のA硬度は、例えば、硬化前の硬化性樹脂組成物中に含まれる全化合物に存在するヒドロシリル基に対する、硬化性樹脂組成物中に含まれる全化合物に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の比率、ポリオルガノシロキサン(A)やシルセスキオキサン(B)のビニル重量率、もしくはSi-H重量率、シルセスキオキサン(B)の配合量などにより調節することができる。
The A hardness before aging of the cured product of the present invention is not particularly limited, but is preferably less than 70, more preferably 30 to 69, still more preferably 40 to 68, and particularly preferably 45 or more and less than 60. When the A hardness before aging is within the above range, the hardness tends to hardly increase even after heating (for example, after heating at 200 ° C. for 500 hours). In particular, when the A hardness is less than 60, an increase in hardness after heating tends to be further suppressed. The A hardness before aging specifically refers to a value measured by the method described in “(A hardness before aging, A hardness after aging)” in (Evaluation) described later.
The A hardness before aging is bonded to, for example, silicon atoms present in all compounds contained in the curable resin composition with respect to hydrosilyl groups present in all compounds contained in the curable resin composition before curing. Adjusted by the ratio of aliphatic carbon-carbon double bond, vinyl weight ratio of polyorganosiloxane (A) and silsesquioxane (B), Si-H weight ratio, and blend amount of silsesquioxane (B) can do.
 本発明の硬化物のエージング後(200℃500時間のエージング後)のA硬度は、特に限定されないが、例えば、90未満が好ましく、より好ましくは50~89、さらに好ましくは60~85、特に好ましくは65~75である。エージング後のA硬度が上記範囲であることにより、耐熱性、熱衝撃に対する信頼性に優れる。特に85以下であることにより、耐熱性及び熱衝撃に対する信頼性に一層優れる。上記エージング後のA硬度は、具体的には、後述の(評価)の「エージング前のA硬度、エージング後のA硬度)」に記載の方法により測定される値をいう。
 上記エージング後のA硬度は、例えば、硬化前の硬化性樹脂組成物中に含まれる全化合物に存在するヒドロシリル基に対する、硬化性樹脂組成物中に含まれる全化合物に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の比率、ポリオルガノシロキサン(A)やシルセスキオキサン(B)に含まれるビニル重量率、SiH重量率、ヒドロシリル化触媒量などにより調節することができる。
The A hardness after aging of the cured product of the present invention (after aging at 200 ° C. for 500 hours) is not particularly limited, but is preferably, for example, less than 90, more preferably 50 to 89, still more preferably 60 to 85, and particularly preferably. Is 65-75. When the A hardness after aging is in the above range, the heat resistance and the reliability against thermal shock are excellent. In particular, by being 85 or less, the heat resistance and the reliability against thermal shock are further improved. The A hardness after aging specifically refers to a value measured by the method described in “A hardness before aging, A hardness after aging” in (Evaluation) described later.
The A hardness after the aging is bonded to, for example, silicon atoms present in all compounds contained in the curable resin composition with respect to hydrosilyl groups present in all compounds contained in the curable resin composition before curing. It can be adjusted by the ratio of the aliphatic carbon-carbon double bond, the vinyl weight percentage contained in the polyorganosiloxane (A) or silsesquioxane (B), the SiH weight percentage, the amount of hydrosilylation catalyst, and the like.
[封止材及び半導体装置]
 本発明の封止材は、本発明の硬化性樹脂組成物を必須成分として含む封止材である。本発明の封止材を用いて(例えば、硬化させて)得られる封止材(硬化物)は、耐熱性、透明性、柔軟性等の各種物性に優れ、さらに、耐リフロー性、腐食性ガスに対するバリア性に優れる。このため、本発明の封止材は、半導体装置における半導体素子の封止材、特に、光半導体装置における光半導体素子(特に、高輝度、短波長の光半導体素子)の封止材等として好ましく使用できる。本発明の封止材を用いて半導体素子(特に、光半導体素子)を封止することによって、耐久性及び品質に優れた半導体装置(特に、光半導体装置)が得られる。
[Encapsulant and semiconductor device]
The sealing material of the present invention is a sealing material containing the curable resin composition of the present invention as an essential component. The sealing material (cured product) obtained by using (for example, curing) the sealing material of the present invention is excellent in various physical properties such as heat resistance, transparency and flexibility, and further, reflow resistance and corrosion resistance. Excellent barrier to gas. Therefore, the sealing material of the present invention is preferably used as a sealing material for a semiconductor element in a semiconductor device, particularly as a sealing material for an optical semiconductor element (particularly, a high-luminance, short-wavelength optical semiconductor element) in an optical semiconductor device. Can be used. By sealing a semiconductor element (especially an optical semiconductor element) using the sealing material of the present invention, a semiconductor device (particularly an optical semiconductor device) excellent in durability and quality can be obtained.
 以下、本発明について実施例及び比較例を挙げてさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these.
 反応生成物及び製品の1H-NMR分析は、JEOL ECA500(500MHz)により行った。
 また、反応生成物及び製品の数平均分子量及び重量平均分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃、ポリスチレン換算、により行った。
1 H-NMR analysis of the reaction product and product was performed by JEOL ECA500 (500 MHz).
In addition, the number average molecular weight and the weight average molecular weight of the reaction product and the product are measured by Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), column: Tskel GMH HR -M × 2 (Tosoh Corporation) )), Guard column: Tskel guard column H HR L (manufactured by Tosoh Corp.), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF, measurement conditions: 40 ° C., polystyrene conversion .
[ポリオルガノシロキサン(A)]
 ポリオルガノシロキサン(A)として、以下の製品を使用した。
 GD-1012A:長興化学工業社製、ビニル基含有量1.33重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0重量%、数平均分子量5108、重量平均分子量23385
 GD-1012B:長興化学工業社製、ビニル基含有量1.65重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.19重量%、数平均分子量4563、重量平均分子量21873
 KER-2500A:信越化学工業(株)製、ビニル基含有量1.53重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.03重量%、数平均分子量4453、重量平均分子量19355
 KER-2500B:信越化学工業(株)製、ビニル基含有量1.08重量%、フェニル基含有量0重量%、SiH基(ヒドリド換算)含有量0.13重量%、数平均分子量4636、重量平均分子量18814
[Polyorganosiloxane (A)]
The following products were used as the polyorganosiloxane (A).
GD-1012A: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.33% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0% by weight, number average molecular weight 5108, weight average molecular weight 23385
GD-1012B: manufactured by Changxing Chemical Industry Co., Ltd., vinyl group content 1.65% by weight, phenyl group content 0% by weight, SiH group (in terms of hydride) content 0.19% by weight, number average molecular weight 4563, weight average molecular weight 21873
KER-2500A: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.53% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0.03% by weight, number average molecular weight 4453, weight Average molecular weight 19355
KER-2500B: manufactured by Shin-Etsu Chemical Co., Ltd., vinyl group content 1.08% by weight, phenyl group content 0% by weight, SiH group (hydride conversion) content 0.13% by weight, number average molecular weight 4636, weight Average molecular weight 18814
[シルセスキオキサン(B)の合成]
<合成例1>
 反応容器に、メチルトリエトキシシラン(信越化学工業(株)製)30.06g、ビニルトリエトキシシラン(東京化成工業(株)製)21.39g及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水281ミリモル(5.06g)及び5Nの塩酸0.48g(塩化水素として2.4ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水703ミリモル(12.64g)を添加し、重縮合反応を窒素下で12時間行った。
 続いて、上記重縮合反応後の反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で3時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、上記上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にトリメチルシリル基を有するラダー型シルセスキオキサンを無色透明の固体状の生成物として22.0g得た。
 上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は5000、1分子当たりのビニル基の含有量(平均含有量)は11.68重量%であり、メチル基/ビニル基(モル比)は60/40であった。
 上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
 1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:0-0.3ppm(br)、5.8-6.1ppm(br)
[Synthesis of Silsesquioxane (B)]
<Synthesis Example 1>
In a reaction vessel, 30.06 g of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 21.39 g of vinyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) and 17.69 g of methyl isobutyl ketone (MIBK) are charged. These mixtures were cooled to 10 ° C. To the above mixture, 281 mmol (5.06 g) of water and 0.48 g of 5N hydrochloric acid (2.4 mmol as hydrogen chloride) were added dropwise over 1 hour. After the addition, these mixtures were kept at 10 ° C. for 1 hour. Thereafter, 80.0 g of MIBK was added to dilute the reaction solution.
Next, the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 703 mmol (12.64 g) of water was added, and the polycondensation reaction was performed under nitrogen for 12 hours.
Subsequently, 15.0 g of hexamethyldisiloxane was added to the reaction solution after the polycondensation reaction, and a silylation reaction was performed at 70 ° C. for 3 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected. Next, the solvent was distilled off from the upper layer solution under the conditions of 1 mmHg and 60 ° C. to obtain 22.0 g of ladder-type silsesquioxane having a trimethylsilyl group at the terminal as a colorless and transparent solid product.
The ladder-type silsesquioxane has a weight average molecular weight (Mw) of 5000, a vinyl group content (average content) per molecule of 11.68% by weight, and a methyl group / vinyl group (molar ratio) is 60/40.
The 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows.
1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) δ: 0 to 0.3 ppm (br), 5.8 to 6.1 ppm (br)
<合成例2>
 反応容器に、メチルトリエトキシシラン(信越化学工業(株)製)34.07g、フェニルトリエトキシシラン(信越化学工業(株)製)11.49g、及びメチルイソブチルケトン(MIBK)17.69gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水240ミリモル(4.33g)及び5Nの塩酸0.48g(塩化水素として2.4ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。その後、MIBKを80.0g添加して、反応溶液を希釈した。
 次に、反応容器の温度を70℃まで昇温し、70℃になった時点で水606ミリモル(10.91g)を添加し、重縮合反応を窒素下で9時間行った。さらに、ビニルトリエトキシシラン(東京化成工業(株)製)6.25gを添加し、3時間反応を行った。
 続いて、上記重縮合反応後の反応溶液にヘキサメチルジシロキサン15.0gを添加して、シリル化反応を70℃で3時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、上記上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B1)に相当)を無色透明の液状の生成物として得た。
 上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は3400、1分子当たりのビニル基の含有量(平均含有量)は3.96重量%であり、フェニル基/メチル基/ビニル基(モル比)は17/68/15であった。
 上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
 1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:-0.3-0.3ppm(br)、5.7-6.2ppm(br)、7.1-7.7ppm(br)
<Synthesis Example 2>
A reaction vessel was charged with 34.07 g of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), 11.49 g of phenyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.), and 17.69 g of methyl isobutyl ketone (MIBK). The mixture was cooled to 10 ° C. To the above mixture, 240 mmol (4.33 g) of water and 0.48 g of 5N hydrochloric acid (2.4 mmol as hydrogen chloride) were added dropwise over 1 hour. After the addition, these mixtures were kept at 10 ° C. for 1 hour. Thereafter, 80.0 g of MIBK was added to dilute the reaction solution.
Next, the temperature of the reaction vessel was raised to 70 ° C., and when the temperature reached 70 ° C., 606 mmol (10.91 g) of water was added, and the polycondensation reaction was performed under nitrogen for 9 hours. Furthermore, 6.25 g of vinyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and reacted for 3 hours.
Subsequently, 15.0 g of hexamethyldisiloxane was added to the reaction solution after the polycondensation reaction, and a silylation reaction was performed at 70 ° C. for 3 hours. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected. Next, the solvent is distilled off from the upper layer solution under conditions of 1 mmHg and 60 ° C., and a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used. Was obtained as a colorless and transparent liquid product.
The ladder type silsesquioxane has a weight average molecular weight (Mw) of 3400, a vinyl group content per molecule (average content) of 3.96% by weight, and a phenyl group / methyl group / vinyl group (moles). Ratio) was 17/68/15.
The 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows.
1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) δ: -0.3-0.3 ppm (br), 5.7-6.2 ppm (br), 7.1-7.7 ppm (br)
<合成例3>
 反応容器に、メチルトリエトキシシラン(信越化学工業(株)製)31.06g、フェニルトリエトキシシラン(信越化学工業(株)製)2.38g、及びメチルイソブチルケトン(MIBK)93.00gを仕込み、これらの混合物を10℃まで冷却した。上記混合物に水240ミリモル(4.33g)及び5Nの塩酸0.24g(塩化水素として1.2ミリモル)を1時間かけて滴下した。滴下後、これらの混合物を10℃で1時間保持した。
 次に、反応容器の温度を50℃まで昇温し、50℃になった時点で水120ミリモル(2.16g)を添加し、重縮合反応を窒素下で4時間行った。さらに、ビニルトリエトキシシラン(東京化成工業(株)製)11.18gを添加し、4時間反応を行った。
 続いて、上記重縮合反応後の反応溶液にヘキサメチルジシロキサン19.5gを添加して、シリル化反応を50℃で1時間行った。その後、反応溶液を冷却し、下層液が中性になるまで水洗を行い、その後、上層液を分取した。次に、上記上層液から、1mmHg、60℃の条件で溶媒を留去し、末端にビニル基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B1)に相当)を無色透明の液状の生成物として得た。
 上記ラダー型シルセスキオキサンの数平均分子量(Mn)は879、重量平均分子量(Mw)は1116であった。
<Synthesis Example 3>
A reaction vessel was charged with 31.06 g of methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.), 2.38 g of phenyltriethoxysilane (Shin-Etsu Chemical Co., Ltd.), and 93.00 g of methyl isobutyl ketone (MIBK). The mixture was cooled to 10 ° C. To the above mixture, 240 mmol (4.33 g) of water and 0.24 g of 5N hydrochloric acid (1.2 mmol as hydrogen chloride) were added dropwise over 1 hour. After the addition, these mixtures were kept at 10 ° C. for 1 hour.
Next, the temperature of the reaction vessel was raised to 50 ° C., and when the temperature reached 50 ° C., 120 mmol (2.16 g) of water was added, and the polycondensation reaction was performed under nitrogen for 4 hours. Furthermore, 11.18 g of vinyltriethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and reacted for 4 hours.
Subsequently, 19.5 g of hexamethyldisiloxane was added to the reaction solution after the polycondensation reaction, and the silylation reaction was performed at 50 ° C. for 1 hour. Thereafter, the reaction solution was cooled, washed with water until the lower layer solution became neutral, and then the upper layer solution was collected. Next, the solvent is distilled off from the upper layer solution under conditions of 1 mmHg and 60 ° C., and a ladder-type silsesquioxane having a vinyl group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane (B1) is used. Was obtained as a colorless and transparent liquid product.
The ladder type silsesquioxane had a number average molecular weight (Mn) of 879 and a weight average molecular weight (Mw) of 1116.
<合成例4>
 反応容器に、合成例2で得られたラダー型シルセスキオキサン12gと、1,1,3,3-テトラメチルジシロキサン(東京化成工業(株)製)24gと、2.0%白金-シクロビニルシロキサン錯体ビニルシクロシロキサン溶液(和光純薬工業(株)製)10μlとを仕込んだ。次いで、70℃で8時間加熱して、反応終了とした。続いて、エバポレータで濃縮した後、真空ポンプを用いて0.2Torrで3時間減圧し、末端にSiH含有基とトリメチルシリル基とを有するラダー型シルセスキオキサン(上述のラダー型シルセスキオキサン(B2)に相当)を液状の生成物として得た。
 上記ラダー型シルセスキオキサンの重量平均分子量(Mw)は3700、1分子当たりのSiH基の含有量(平均含有量)は、SiH基におけるH(ヒドリド)の重量換算で0.11重量%であった。
 上記ラダー型シルセスキオキサンの1H-NMRスペクトルは、以下の通りであった。
 1H-NMR(JEOL ECA500(500MHz、CDCl3))δ:-0.3-0.3ppm(br)、4.7ppm(s)、7.1-7.7ppm(br)
<Synthesis Example 4>
In a reaction vessel, 12 g of ladder-type silsesquioxane obtained in Synthesis Example 2, 24 g of 1,1,3,3-tetramethyldisiloxane (manufactured by Tokyo Chemical Industry Co., Ltd.), 2.0% platinum- 10 μl of a cyclovinylsiloxane complex vinylcyclosiloxane solution (manufactured by Wako Pure Chemical Industries, Ltd.) was charged. Subsequently, the reaction was completed by heating at 70 ° C. for 8 hours. Subsequently, after concentrating with an evaporator, the pressure is reduced at 0.2 Torr for 3 hours using a vacuum pump, and a ladder-type silsesquioxane having a SiH-containing group and a trimethylsilyl group at the terminal (the above-described ladder-type silsesquioxane ( Equivalent to B2) was obtained as a liquid product.
The ladder-type silsesquioxane has a weight average molecular weight (Mw) of 3700, and the SiH group content (average content) per molecule is 0.11% by weight in terms of the weight of H (hydride) in the SiH group. there were.
The 1 H-NMR spectrum of the ladder-type silsesquioxane was as follows.
1 H-NMR (JEOL ECA500 (500 MHz, CDCl 3 )) δ: -0.3-0.3 ppm (br), 4.7 ppm (s), 7.1-7.7 ppm (br)
[イソシアヌレート化合物(C)]
 イソシアヌレート化合物(C)として、以下の製品を使用した。
 モノアリルジグリシジルイソシアヌレート:四国化成工業(株)製
[Isocyanurate Compound (C)]
The following products were used as the isocyanurate compound (C).
Monoallyl diglycidyl isocyanurate: manufactured by Shikoku Chemicals Co., Ltd.
[シランカップリング剤(D)]
 シランカップリング剤(D)として、以下の製品を使用した。
 3-グリシジルオキシプロピルトリメトキシシラン:東レ・ダウ・コーニング(株)製
[Silane coupling agent (D)]
The following products were used as the silane coupling agent (D).
3-Glycidyloxypropyltrimethoxysilane: manufactured by Toray Dow Corning
[希土類金属原子のカルボン酸塩(E)]
 希土類金属原子のカルボン酸塩(E)として、以下の製品を使用した。
オクトープR:2-エチルヘキサン酸レア・アース(ホープ製薬(株)製;レア・アース類としてセリウム、ランタン、ネオジム、プラセオジムを含む。溶剤として、2-エチルヘキサン酸:8wt%、ミネラルスピリット68%含む)
2-エチルヘキサン酸イットリウム(和光純薬工業(株)製;2-エチルヘキサン酸イットリウム(III), 49% トルエン溶液)
2-エチルヘキサン酸セリウム(和光純薬工業(株)製;2-エチルヘキサン酸セリウム(III), 49% 2-エチルヘキサン酸溶液)
[Carboxylate of rare earth metal atom (E)]
The following products were used as carboxylate (E) of rare earth metal atoms.
Octope R: 2-ethylhexanoic acid rare earth (manufactured by Hope Pharmaceutical Co., Ltd .; rare earths include cerium, lanthanum, neodymium, praseodymium. As solvent, 2-ethylhexanoic acid: 8 wt%, mineral spirit 68% Including)
Yttrium 2-ethylhexanoate (Wako Pure Chemical Industries, Ltd .; Yttrium 2-ethylhexanoate (III), 49% toluene solution)
Cerium 2-ethylhexanoate (Wako Pure Chemical Industries, Ltd .; cerium (III) 2-ethylhexanoate, 49% 2-ethylhexanoic acid solution)
<実施例及び比較例>
 実施例1~9及び比較例1~4を、以下の手順に従って実施した。
 表1に従って、イソシアヌレート化合物(C)及びシランカップリング剤(D)を所定重量比率で混合した後、希土類金属原子のカルボン酸塩(E)及びシルセスキオキサン(B)を混合し、70℃で2時間攪拌した。その後、室温まで冷却し、ポリオルガノシロキサン(A)を混合し、室温で10分間攪拌して、硬化性樹脂組成物を得た。
<Examples and Comparative Examples>
Examples 1 to 9 and Comparative Examples 1 to 4 were carried out according to the following procedure.
According to Table 1, the isocyanurate compound (C) and the silane coupling agent (D) were mixed at a predetermined weight ratio, and then the rare earth metal atom carboxylate (E) and silsesquioxane (B) were mixed. Stir for 2 hours at ° C. Then, it cooled to room temperature, mixed polyorganosiloxane (A), and stirred for 10 minutes at room temperature, and obtained curable resin composition.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[評価]
 実施例および比較例で得られたサンプルについて、下記の測定方法又は評価方法により評価を行った。
[Evaluation]
About the sample obtained by the Example and the comparative example, it evaluated by the following measuring method or evaluation method.
(希土類金属原子含有量(ppm))
 実施例1~9、比較例1~4で得られた硬化性樹脂組成物(100重量%)に対する、希土類金属原子の含有量は、ICP-MSを用いた、試料中に含まれる希土類金属原子の定量分析により測定した。
装置:商品名「Agilent7500cs」(横河アナリティカルシステムズ製)
試料を溶媒にて希釈調製したものをICP-MS測定用検液とした。検量線用標準液は、上記検液に各元素の原子吸光用標準液を適宜希釈したものを添加して用いた。
(Rare earth metal atom content (ppm))
The content of rare earth metal atoms relative to the curable resin compositions (100% by weight) obtained in Examples 1 to 9 and Comparative Examples 1 to 4 was determined using the rare earth metal atoms contained in the sample using ICP-MS. It was measured by quantitative analysis.
Device: Product name “Agilent 7500cs” (manufactured by Yokogawa Analytical Systems)
A sample prepared by diluting with a solvent was used as a test solution for ICP-MS measurement. The standard solution for the calibration curve was used by adding a solution obtained by appropriately diluting the standard solution for atomic absorption of each element to the above test solution.
(SiH/Vinyl(モル比))
 実施例1~9、比較例1~4で得られた硬化性樹脂組成物中に含まれる化合物中に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合1モルに対する、硬化性樹脂組成物中に含まれる化合物中に存在するヒドロシリル基のモル数の比(モル比)を、1H-NMRにより以下の条件で測定した。
 なお、ヒドロシリル基の割合(重量基準)は、SiH基におけるH(ヒドリド)の重量換算(H換算)により求めた。
測定条件
装置:JEOL ECA500(500MHz、溶媒:CDCl3)δ:5.7-6.2ppm、δ:4.6-4.8ppm
(SiH / Vinyl (molar ratio))
Curable resin composition with respect to 1 mol of an aliphatic carbon-carbon double bond bonded to a silicon atom present in the compounds contained in the curable resin compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 4. The ratio (molar ratio) of the number of moles of hydrosilyl groups present in the compound contained in the product was measured by 1 H-NMR under the following conditions.
In addition, the ratio (weight basis) of the hydrosilyl group was calculated | required by the weight conversion (H conversion) of H (hydride) in SiH group.
Measuring condition apparatus: JEOL ECA500 (500 MHz, solvent: CDCl 3 ) δ: 5.7-6.2 ppm, δ: 4.6-4.8 ppm
(エージング前のA硬度、エージング後のA硬度)
 直径6cmのアルミカップへ実施例1~9、比較例1~4で得られた硬化性樹脂組成物をそれぞれ注入し、100℃で1時間、続いて、150℃で5時間加熱した。得られた硬化物をアルミカップから取り出し、これを200℃エージング試験用の試料とした。得られた試料の厚さは6mmであった。
 JIS K6253に準拠して、得られた試料のA硬度(エージング前のA硬度)を測定した。
 得られた試料を温度200℃のオーブン(ヤマト科学株式会社製、型番「DN4101」)に入れ500時間後に取り出し、JIS K6253に準拠して、200℃500時間エージング後のA硬度(エージング後のA硬度)を測定した。
(A hardness before aging, A hardness after aging)
The curable resin compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were each poured into an aluminum cup having a diameter of 6 cm, and heated at 100 ° C. for 1 hour and then at 150 ° C. for 5 hours. The obtained cured product was taken out from the aluminum cup and used as a sample for a 200 ° C. aging test. The thickness of the obtained sample was 6 mm.
Based on JIS K6253, A hardness (A hardness before aging) of the obtained sample was measured.
The obtained sample was put in an oven (model number “DN4101” manufactured by Yamato Scientific Co., Ltd.) at a temperature of 200 ° C. and taken out after 500 hours. According to JIS K6253, A hardness after aging at 200 ° C. for 500 hours (A after aging) Hardness).
(H2S腐食性試験)
 LEDパッケージ(商品名「SMD LED(Top View Type 3528 Pre Mold Lead Frame)」、SDI Corporation製)に、実施例1~9、比較例1~4で得られた硬化性樹脂組成物を注入し、100℃で1時間、続いて、150℃で5時間加熱して、試料を作成した。
 上記試料を硫化水素濃度12ppm、温度40℃、湿度80%RHに調整したガス腐食試験機(スガ試験機(株)製、型番「GS-UV」)に入れ、24時間後に、LEDパッケージにおける銀製電極の腐食状況を観察した。上記電極の色は、試験前は銀白色であるが、腐食が進むに従って、茶褐色、黒色へと変化する。
 腐食性試験の評価基準については、銀製電極にほとんど変色が見られなかった場合は「A」、僅かに茶褐色あるいは黒色へ変色した場合は「B」、完全に茶褐色若しくは黒色に変色した場合は「C」とした。
(H 2 S corrosion test)
The curable resin compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were injected into an LED package (trade name “SMD LED (Top View Type 3528 Pre Mold Lead Frame)” manufactured by SDI Corporation). Samples were prepared by heating at 100 ° C. for 1 hour, followed by heating at 150 ° C. for 5 hours.
The above sample was put in a gas corrosion tester (model number “GS-UV” manufactured by Suga Test Instruments Co., Ltd.) adjusted to a hydrogen sulfide concentration of 12 ppm, a temperature of 40 ° C., and a humidity of 80% RH. The state of electrode corrosion was observed. The color of the electrode is silver white before the test, but changes to brown and black as corrosion progresses.
The evaluation criteria for the corrosivity test are “A” when the silver electrode shows almost no discoloration, “B” when the discoloration is slightly brown or black, and “B” when the discoloration is completely brown or black. C ”.
(SOx腐食性試験)
 LEDパッケージ(商品名「SMD LED(Top View Type 3528 Pre Mold Lead Frame)」、SDI Corporation製)に、実施例1~9、比較例1~4で得られた硬化性樹脂組成物を注入し、100℃で1時間、続いて、150℃で5時間加熱して、試料を作成した。
 上記試料と硫黄粉末(キシダ化学(株)製)0.3gとを450mlのガラス瓶に入れ、さらに上記ガラス瓶をアルミ製の箱の中に入れた。続いて、上記アルミ製の箱をオーブン(ヤマト科学(株)製、型番「DN-64」)に入れ、温度80℃で24時間経過後に、LEDパッケージにおける銀製電極の腐食状況を観察した。上記電極の色は、試験前は銀白色であるが、腐食が進むに従って、茶褐色、更に黒色へと変化する。
 腐食性試験の評価基準については、上記H2S腐食試験方法と同様とした。
(SO x corrosion test)
The curable resin compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were injected into an LED package (trade name “SMD LED (Top View Type 3528 Pre Mold Lead Frame)” manufactured by SDI Corporation). Samples were prepared by heating at 100 ° C. for 1 hour, followed by heating at 150 ° C. for 5 hours.
The sample and 0.3 g of sulfur powder (manufactured by Kishida Chemical Co., Ltd.) were placed in a 450 ml glass bottle, and the glass bottle was further placed in an aluminum box. Subsequently, the aluminum box was put in an oven (manufactured by Yamato Scientific Co., Ltd., model number “DN-64”), and after 24 hours at 80 ° C., the corrosion state of the silver electrode in the LED package was observed. The color of the electrode is silver white before the test, but changes to brown and further black as corrosion progresses.
The evaluation standard of the corrosivity test was the same as that of the above H 2 S corrosion test method.
[試験結果]
 比較例1では、希土類金属原子のカルボン酸塩(E)を添加しなかったため、熱エージング後に硬度が大幅に上昇し、硬化物の耐熱性は認められなかった。また、耐H2S腐食性も認められなかった。
 比較例2では少量の希土類金属原子のカルボン酸塩(E)を添加したが、熱エージング後に硬度が大幅に上昇し、硬化物の耐熱性は認められなかった。また、耐H2S腐食性も認められなかった。
比較例3及び比較例4では、希土類金属原子のカルボン酸塩(E)を添加しなかったため、熱エージング後に硬度が大幅に上昇し、硬化物の耐熱性は認められなかった。また、耐H2S腐食性の効果も認められなかった。さらに、シルセスキオキサン(B)およびイソシアヌレート化合物(C)を添加しなかったため、耐SOx腐食性も認められなかった。
[Test results]
In Comparative Example 1, since the rare earth metal atom carboxylate (E) was not added, the hardness increased significantly after thermal aging, and the heat resistance of the cured product was not recognized. Further, no H 2 S corrosion resistance was observed.
In Comparative Example 2, a small amount of a rare earth metal atom carboxylate (E) was added, but the hardness increased significantly after thermal aging, and the heat resistance of the cured product was not recognized. Further, no H 2 S corrosion resistance was observed.
In Comparative Example 3 and Comparative Example 4, since the rare earth metal atom carboxylate (E) was not added, the hardness significantly increased after thermal aging, and the heat resistance of the cured product was not recognized. Moreover, the effect of H 2 S corrosion resistance was not recognized. Furthermore, since no silsesquioxane (B) and isocyanurate compound (C) were added, no SO x corrosion resistance was observed.
 実施例1~9では、比較例1~2に対して、十分な量の希土類金属原子のカルボン酸塩(E)を添加することにより、200℃500時間エージング後でも硬度の上昇幅が小さく、耐熱性が向上した。さらに、耐H2S腐食性も向上することが認められた。
実施例4~5と他の実施例との対比より、希土類金属原子のカルボン酸塩(E)として、オクトープRと2-エチルヘキサン酸イットリウム及び2-エチルヘキサン酸セリウムとでは同等の耐熱性、耐H2S腐食性を示すことが認められた。
In Examples 1 to 9, by adding a sufficient amount of the carboxylate (E) of a rare earth metal atom to Comparative Examples 1 and 2, the increase in hardness is small even after aging at 200 ° C. for 500 hours. Improved heat resistance. Furthermore, it was recognized that the H 2 S corrosion resistance was also improved.
From comparison between Examples 4 to 5 and other examples, as the rare earth metal carboxylate (E), Octopo R, yttrium 2-ethylhexanoate and cerium 2-ethylhexanoate had the same heat resistance, It was found to exhibit resistance to H 2 S corrosion.
(SiH/Vinylについて)
 比較例1及び比較例2では、硬化性樹脂組成物中に含まれる化合物に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合1モルに対する、硬化性樹脂組成物中に含まれる化合物に存在するヒドロシリル基のモル数(モル比)が、1未満であるため、エージング前のA硬度が低く、60未満であった。しかし、200℃500時間のエージングによるA硬度の上昇幅が、比較例3及び比較例4よりも比較的大きく、硬化物の耐熱性は認められなかった。
 一方、実施例1~7では、硬化性樹脂組成物中に含まれる化合物に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合1モルに対する、硬化性樹脂組成物中に含まれる全化合物に存在するヒドロシリル基のモル数(モル比)が、1未満であるため、エージング前のA硬度が低く、60未満であった。実施例1~7では、十分な量の希土類金属原子のカルボン酸塩(E)を添加することにより、実施例8~9に対して、200℃500時間のエージングによるA硬度の上昇幅は同程度であった。
 以上より、シリコーン樹脂に対して十分な量の希土類金属原子のカルボン酸塩(E)を添加することにより、耐熱性および耐H2S腐食性を有した組成物が得られることが認められた。さらに、シルセスキオキサン(B)およびイソシアヌレート化合物(C)を添加することにより、耐SOx腐食性を有した組成物が得られることが認められた。
(About SiH / Vinyl)
In Comparative Example 1 and Comparative Example 2, the compound contained in the curable resin composition with respect to 1 mol of an aliphatic carbon-carbon double bond bonded to the silicon atom present in the compound contained in the curable resin composition Since the number of moles (molar ratio) of hydrosilyl groups present was less than 1, the A hardness before aging was low and less than 60. However, the increase in the A hardness due to aging at 200 ° C. for 500 hours was relatively larger than those in Comparative Examples 3 and 4, and the heat resistance of the cured product was not recognized.
On the other hand, in Examples 1 to 7, all compounds contained in the curable resin composition with respect to 1 mol of an aliphatic carbon-carbon double bond bonded to a silicon atom present in the compound contained in the curable resin composition. Since the number of moles (molar ratio) of the hydrosilyl group present in is less than 1, the A hardness before aging was low and less than 60. In Examples 1 to 7, by adding a sufficient amount of the carboxylate (E) of a rare earth metal atom, the increase in A hardness by aging at 200 ° C. for 500 hours is the same as in Examples 8 to 9. It was about.
From the above, it was confirmed that a composition having heat resistance and H 2 S corrosion resistance can be obtained by adding a sufficient amount of the carboxylate (E) of the rare earth metal atom to the silicone resin. . Further, by adding silsesquioxane (B), and isocyanurate compound (C), the composition having a resistance to SO x corrosion was observed that the obtained.
 本発明の硬化性樹脂組成物及び硬化物は、耐熱性、透明性、柔軟性、腐食性ガスに対するバリア性が求められる接着剤、コーティング剤、封止材などの用途に有用である。特に、本発明の硬化性樹脂組成物及び硬化物は、光半導体素子(LED素子)の封止材として好適である。 The curable resin composition and cured product of the present invention are useful for applications such as adhesives, coating agents, and sealing materials that are required to have heat resistance, transparency, flexibility, and barrier properties against corrosive gases. In particular, the curable resin composition and the cured product of the present invention are suitable as a sealing material for an optical semiconductor element (LED element).

Claims (13)

  1.  ポリオルガノシロキサン(A)、シルセスキオキサン(B)、イソシアヌレート化合物(C)、及び希土類金属原子のカルボン酸塩(E)を含み、ポリオルガノシロキサン(A)としてアリール基を有しないポリオルガノシロキサンを含み、シルセスキオキサン(B)としてラダー型シルセスキオキサンを含むことを特徴とする硬化性樹脂組成物。 A polyorganosiloxane containing polyorganosiloxane (A), silsesquioxane (B), isocyanurate compound (C), and carboxylate (E) of a rare earth metal atom, and having no aryl group as polyorganosiloxane (A) A curable resin composition comprising siloxane and ladder-type silsesquioxane as silsesquioxane (B).
  2.  前記ラダー型シルセスキオキサンとして、分子内に脂肪族炭素-炭素二重結合を有するラダー型シルセスキオキサンを含む請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aliphatic carbon-carbon double bond in the molecule.
  3.  前記ラダー型シルセスキオキサンとして、分子内にSi-H結合を有するラダー型シルセスキオキサンを含む請求項1又は2に記載の硬化性樹脂組成物。 3. The curable resin composition according to claim 1, wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having a Si—H bond in the molecule.
  4.  前記ラダー型シルセスキオキサンとして、分子内にアリール基を有するラダー型シルセスキオキサンを含む請求項1~3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the ladder-type silsesquioxane includes a ladder-type silsesquioxane having an aryl group in a molecule.
  5.  イソシアヌレート化合物(C)として、式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rx、Ry、Rzは、同一又は異なって、式(2)で表される基、又は式(3)で表される基を示す。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式(2)及び式(3)中、R1及びR2は、同一又は異なって、水素原子又は炭素数1~8の直鎖状若しくは分岐鎖状のアルキル基を示す。]]
    で表されるイソシアヌレート化合物を含む、請求項1~4のいずれか一項に記載の硬化性樹脂組成物。
    As the isocyanurate compound (C), the formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [In the formula (1), R x , R y and R z are the same or different and represent a group represented by the formula (2) or a group represented by the formula (3).
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [In Formula (2) and Formula (3), R 1 and R 2 are the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 8 carbon atoms. ]]
    The curable resin composition according to any one of claims 1 to 4, comprising an isocyanurate compound represented by the formula:
  6.  式(1)で表される前記イソシアヌレート化合物が、Rx、Ry、Rzのうち、ひとつ以上が式(3)で表される基であるイソシアヌレート化合物である請求項5に記載の硬化性樹脂組成物。 The isocyanurate compound represented by the formula (1) is an isocyanurate compound in which one or more of R x , R y , and R z are groups represented by the formula (3). Curable resin composition.
  7.  希土類金属原子のカルボン酸塩(E)として、カルボン酸イットリウムを含む請求項1~6のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, comprising yttrium carboxylate as the rare earth metal atom carboxylate (E).
  8.  希土類金属原子のカルボン酸塩(E)が、カルボン酸セリウム、カルボン酸ランタン、カルボン酸プラセオジム、及びカルボン酸ネオジムの混合物である請求項1~6のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 6, wherein the rare-earth metal atom carboxylate (E) is a mixture of cerium carboxylate, lanthanum carboxylate, praseodymium carboxylate, and neodymium carboxylate. .
  9.  硬化性樹脂組成物中に含まれる化合物中に存在するケイ素原子に結合する脂肪族炭素-炭素二重結合の総数に対する、硬化性樹脂組成物中に含まれる化合物中に存在するSi-H基の総数の比が、1未満である請求項1~8のいずれか一項に記載の硬化性樹脂組成物。 Of Si—H groups present in the compound contained in the curable resin composition relative to the total number of aliphatic carbon-carbon double bonds bonded to silicon atoms present in the compound contained in the curable resin composition The curable resin composition according to any one of claims 1 to 8, wherein the ratio of the total number is less than 1.
  10.  更に、シランカップリング剤(D)を含む請求項1~9のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 9, further comprising a silane coupling agent (D).
  11.  請求項1~10のいずれか一項に記載の硬化性樹脂組成物を硬化して得られる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか一項に記載の硬化性樹脂組成物を用いて得られる封止材。 A sealing material obtained using the curable resin composition according to any one of claims 1 to 10.
  13.  請求項12に記載の封止材を用いて得られる半導体装置。 A semiconductor device obtained using the sealing material according to claim 12.
PCT/JP2015/065989 2014-06-06 2015-06-03 Curable resin composition, cured product, sealing material, and semiconductor device WO2015186722A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016525196A JP6474801B2 (en) 2014-06-06 2015-06-03 Curable resin composition, cured product, sealing material, and semiconductor device
CN201580029165.4A CN106459584A (en) 2014-06-06 2015-06-03 Curable resin composition, cured product, sealing material, and semiconductor device
KR1020177000106A KR20170016432A (en) 2014-06-06 2015-06-03 Curable resin composition, cured product, sealing material, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014117841 2014-06-06
JP2014-117841 2014-06-06

Publications (1)

Publication Number Publication Date
WO2015186722A1 true WO2015186722A1 (en) 2015-12-10

Family

ID=54766791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065989 WO2015186722A1 (en) 2014-06-06 2015-06-03 Curable resin composition, cured product, sealing material, and semiconductor device

Country Status (5)

Country Link
JP (1) JP6474801B2 (en)
KR (1) KR20170016432A (en)
CN (1) CN106459584A (en)
TW (1) TW201604240A (en)
WO (1) WO2015186722A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222850A (en) * 2015-06-02 2016-12-28 株式会社ダイセル Curable silicone resin composition, cured product thereof, and optical semiconductor device
WO2017122712A1 (en) * 2016-01-15 2017-07-20 株式会社ダイセル Curable resin composition, cured object, encapsulation material, and semiconductor device
WO2018047633A1 (en) * 2016-09-07 2018-03-15 株式会社ダイセル Curable resin composition, cured product thereof, and semiconductor device
JP2020111657A (en) * 2019-01-10 2020-07-27 信越化学工業株式会社 Method for producing polysiloxane
WO2022215759A3 (en) * 2021-08-11 2022-12-15 Jnc株式会社 Siloxane polymer composition, cured product, electronic component, optical component, and composite member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202154A (en) * 2010-03-01 2011-10-13 Yokohama Rubber Co Ltd:The Heat-curable optical semiconductor-encapsulating silicone resin composition and optical semiconductor-encapsulated product using the same
WO2012039322A1 (en) * 2010-09-22 2012-03-29 株式会社カネカ Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
WO2013005633A1 (en) * 2011-07-04 2013-01-10 Jnc株式会社 Compound comprising isocyanuric skeleton, epoxy groups, and organopolysiloxane or silsesquioxane skeleton having sih groups, thermosetting resin composition comprising compound as agent for imparting adhesion, cured product, and sealing member for optical semiconductor
WO2013094625A1 (en) * 2011-12-22 2013-06-27 株式会社ダイセル Curable resin composition and curable product thereof
WO2015016001A1 (en) * 2013-08-02 2015-02-05 株式会社ダイセル Curable resin composition and semiconductor device using same
WO2015016000A1 (en) * 2013-08-01 2015-02-05 株式会社ダイセル Curable resin composition and semiconductor device obtained using same
WO2015019767A1 (en) * 2013-08-06 2015-02-12 株式会社ダイセル Curing resin composition and semiconductor device employing same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287034B (en) * 1994-03-04 1997-12-17 Gen Electric Silicone compositions
JP4275889B2 (en) 2001-02-09 2009-06-10 株式会社カネカ Light emitting diode and manufacturing method thereof
JP2006206721A (en) 2005-01-27 2006-08-10 Kansai Electric Power Co Inc:The Highly heat-resistant synthetic polymer compound and semiconductor device of high dielectric strength coated with the same
JP4826160B2 (en) 2005-07-28 2011-11-30 ナガセケムテックス株式会社 Optical element sealing resin composition
JP4788837B2 (en) 2010-01-26 2011-10-05 横浜ゴム株式会社 Silicone resin composition and method for using the same, silicone resin, silicone resin-containing structure, and optical semiconductor element sealing body
CN103221486B (en) * 2010-11-18 2015-10-14 横滨橡胶株式会社 Thermohardening type organosilicon resin composition, structure, optical semiconductor sealing member and silanol condensation catalyst containing silicone resin
TWI523914B (en) * 2013-01-09 2016-03-01 Daicel Corp Hardened resin composition and hardened product thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202154A (en) * 2010-03-01 2011-10-13 Yokohama Rubber Co Ltd:The Heat-curable optical semiconductor-encapsulating silicone resin composition and optical semiconductor-encapsulated product using the same
WO2012039322A1 (en) * 2010-09-22 2012-03-29 株式会社カネカ Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
WO2012070525A1 (en) * 2010-11-25 2012-05-31 株式会社ダイセル Curable resin composition and cured article
WO2013005633A1 (en) * 2011-07-04 2013-01-10 Jnc株式会社 Compound comprising isocyanuric skeleton, epoxy groups, and organopolysiloxane or silsesquioxane skeleton having sih groups, thermosetting resin composition comprising compound as agent for imparting adhesion, cured product, and sealing member for optical semiconductor
WO2013094625A1 (en) * 2011-12-22 2013-06-27 株式会社ダイセル Curable resin composition and curable product thereof
WO2015016000A1 (en) * 2013-08-01 2015-02-05 株式会社ダイセル Curable resin composition and semiconductor device obtained using same
WO2015016001A1 (en) * 2013-08-02 2015-02-05 株式会社ダイセル Curable resin composition and semiconductor device using same
WO2015019767A1 (en) * 2013-08-06 2015-02-12 株式会社ダイセル Curing resin composition and semiconductor device employing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222850A (en) * 2015-06-02 2016-12-28 株式会社ダイセル Curable silicone resin composition, cured product thereof, and optical semiconductor device
WO2017122712A1 (en) * 2016-01-15 2017-07-20 株式会社ダイセル Curable resin composition, cured object, encapsulation material, and semiconductor device
WO2018047633A1 (en) * 2016-09-07 2018-03-15 株式会社ダイセル Curable resin composition, cured product thereof, and semiconductor device
CN109661435A (en) * 2016-09-07 2019-04-19 株式会社大赛璐 Hardening resin composition, its solidfied material and semiconductor device
CN109661435B (en) * 2016-09-07 2022-04-12 日亚化学工业株式会社 Curable resin composition, cured product thereof, and semiconductor device
JP2020111657A (en) * 2019-01-10 2020-07-27 信越化学工業株式会社 Method for producing polysiloxane
WO2022215759A3 (en) * 2021-08-11 2022-12-15 Jnc株式会社 Siloxane polymer composition, cured product, electronic component, optical component, and composite member

Also Published As

Publication number Publication date
CN106459584A (en) 2017-02-22
JPWO2015186722A1 (en) 2017-04-20
JP6474801B2 (en) 2019-02-27
KR20170016432A (en) 2017-02-13
TW201604240A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
JP5778875B2 (en) Curable resin composition and cured product thereof
JP6027209B2 (en) Curable resin composition, cured product, sealing material, and semiconductor device
JP5736524B1 (en) Curable resin composition and semiconductor device using the same
JP5830201B2 (en) Curable resin composition and semiconductor device using the same
JP5736525B1 (en) Curable resin composition and semiconductor device using the same
JP6474801B2 (en) Curable resin composition, cured product, sealing material, and semiconductor device
JP6502658B2 (en) Curable silicone resin composition and cured product thereof
WO2015178475A1 (en) Branched-chain polyorganosiloxycyl alkylene, method for producing same, curable resin composition, and semiconductor device
JP6496185B2 (en) Curable silicone resin composition and cured product thereof
JP6452545B2 (en) Curable silicone resin composition and cured product thereof
JP2017002172A (en) Curable resin composition providing high hardness polysiloxane cured article and cured article thereof
JP2016216642A (en) Curable resin composition, cured article thereof, encapsulation agent and semiconductor device
WO2018235811A1 (en) Curable silicone resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016525196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000106

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15802374

Country of ref document: EP

Kind code of ref document: A1