WO2015018965A1 - Sistema dispensador de bebidas y proceso de limpieza integrado - Google Patents

Sistema dispensador de bebidas y proceso de limpieza integrado Download PDF

Info

Publication number
WO2015018965A1
WO2015018965A1 PCT/ES2014/070648 ES2014070648W WO2015018965A1 WO 2015018965 A1 WO2015018965 A1 WO 2015018965A1 ES 2014070648 W ES2014070648 W ES 2014070648W WO 2015018965 A1 WO2015018965 A1 WO 2015018965A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
line
barrel
solenoid valve
lines
Prior art date
Application number
PCT/ES2014/070648
Other languages
English (en)
French (fr)
Inventor
Juan Angel TORRAS HERNANDEZ
Original Assignee
Torras Hernandez Juan Angel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torras Hernandez Juan Angel filed Critical Torras Hernandez Juan Angel
Publication of WO2015018965A1 publication Critical patent/WO2015018965A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/0804Cleaning containers having tubular shape, e.g. casks, barrels, drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/0321Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing using pressurised, pulsating or purging fluid
    • B08B9/0325Control mechanisms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • B08B9/032Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing
    • B08B9/035Cleaning the internal surfaces; Removal of blockages by the mechanical action of a moving fluid, e.g. by flushing by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/07Cleaning beverage-dispensing apparatus

Definitions

  • the invention is intended to supply different types of beverages at very low temperatures by means of a defined system, which also incorporates a cleaning device that, through the achievement of certain stages, creates a periodic and automatic disinfection process of all equipment lines.
  • the invention is integrated by a supply equipment and a cleaning device both automated and programmable.
  • the supply equipment is composed of a condensing unit, an ice bank vat, a central refrigerant unit, a barrel or barrels of product, a C02 bottle and all connected by means of a series of tubes, solenoid valves, sensors, connectors, pressure switches or similar, established and located as appropriate;
  • the integrated cleaning device consists of certain solenoid valves, a suction line of a disinfectant component, non-return valves, a metering pump and a recirculation pump.
  • this cleaning device that acts under the order of a program, it performs a cleaning and disinfection process by a line called auxiliary and some product lines, a certain number of times and following defined stages.
  • beverage dispensers such as the ES2037383 T3 patent called “Drink dispensing system”, a PCT / NL2008 / 050223 patent called “Drink dispensing apparatus and method for coldly dispensing a beverage ", an ES2317870 T3 Patent” Beverage Dispenser “and an ES2273938 T3 Patent also referred to as a" Beverage Dispenser.
  • Patent ES2313239 T3 Another difference that exists between the registration of Patent ES2313239 T3 and the dispensing system of the invention is that the registration of Patent ES2313239 T3 by having two condensing units and two ice banks, in addition to the fact that consumption is high because of having these four elements, the space necessary for the installation location must be of considerable dimensions.
  • the dispensing system of the invention has an easily adaptable structure since with a condensing unit, an ice bank and a refrigeration plant the optimum cooling of the product is achieved, so that its location can be established close to the columns , in addition to assuming considerable energy savings by having less consumption because there is less infrastructure.
  • the condensing unit in the lower part and the cooling tank on top without precise insulation and without a closure, therefore the heat tends to climb to the ice cube that is open. This brings the consequences that a large amount of cooling is lost, and that the device is running longer than necessary with the consequent energy consumption.
  • the temperature obtained to cool a product is 0 ° C. and to ensure that the product is pleasant on the palate, the glasses must be frosted and the aforementioned product must be reduced, reducing its quality.
  • the freezing point of 25% propylene glycol is -9.72C. and the usual machines that are on the market according to the powers they have, their evaporation point is at -10 ° C. This means that if the temperature of the machine moves between -3 ° C and -4 ° C the machine does not make ice and it is impossible to have a remnant of this style.
  • a 25% glycol mixture machine lowers the yield a lot and would not cool in the plate exchangers unless they had unthinkable volumes. Likewise, the electrical consumption would be exaggerated and possibly it would never stop the condensing unit and it would end up burning.
  • the system is programmed to proceed with the least start-up of the condensing unit, which is when the equipment consumes the most, and when it starts it is prolonged to a small excess of cold to support the loss that could have and thus perform fewer starts with controlled temperature.
  • the consumption of a current market equipment working at 0 ° C 24 hours has the same consumption as the dispensing system of the invention at -5.5 ° C for 50 hours. This indicates colder and less consumption for any equipment in the current market.
  • the present invention goes a step further, improving the existing and manufactured beverage dispensing systems to date, since the beverage dispenser object of the invention does not need to be in operation at non-working hours because it does not need to be working for the lines, since these are empty, disinfected and pressurized with C02, resulting in considerable energy savings.
  • the invention is integrated by a supply team and a cleaning device both automated.
  • the supply equipment is composed of an established condensing unit, a defined ice bank vat, a specific refrigerating central unit, a pre-established barrel or barrels containing product or beverage, a C02 bottle and all connected by a series of tubes, solenoid valves, sensors, connectors, pressure switches or similar, established and located as appropriate; and the cleaning device consists of certain solenoid valves, a suction line of a disinfectant component, non-return valves, a metering pump and a recirculation pump.
  • the condensing unit is the equipment that is responsible for producing cold using as a medium a refrigerant gas and an engine of different powers according to needs. This unit is protected with a cover and grilles on its perimeter, in order to avoid possible accidents with the fan and the presence of bugs.
  • a filter In front of the evaporator of the condensing unit there is a filter, with the purpose of retaining all the dirt that the fan aspirates, not saturating the evaporator, not losing cooling power, avoiding overheating of the engine, and also reducing energy consumption.
  • an anemometer is installed, which for any change in the passage of refrigerant air gives an alarm signal to clean the filter and consequently, the unit gets better performance condenser at lower electric cost.
  • Two pressure hoses or insulated pipes leave the condensing unit that are connected to an ice bank, from which in one direction the refrigerant gas goes from the condensing unit to the ice bank. while the other line performs the opposite effect, that is, it introduces the refrigerant gas back to the condensing unit.
  • electrovalves and a bypass are installed to the corresponding refrigerant gas lines to the outlet of a compressor, in order to send the refrigerant gas to one or both coils of the corresponding ice bank vats.
  • the ice bank vat is composed of two buckets of polyester and stratified glass fiber and gelcoat painted; these are tucked into each other separated by a 3mm insulator. thick throughout its perimeter.
  • a thermal probe and an agitator motor with a marine propeller on its stem which agitates a water / glycol cooling fluid and helps its cooling.
  • This tank also incorporates a coolant recirculation pump and a tight-fitting lid that pressurizes and seals the entire assembly, avoiding temperature losses and the proliferation of algae and other living things that grow in the water due to their tightness.
  • the refrigerant fluid that contains the ice bank vat may be constituted by the 10% glycol water / glycol mixture with which a temperature of -3.3 ° C is obtained; or if the drink has a higher graduation and withstands more cold, the water / glycol mixture is 12% glycol, achieving a temperature of - 5.5 ° C. So the range of temperatures that the refrigerant fluid can work in the beverage dispensing system is between [-3.3 ° C and -5.5 ° C], in a percentage of glycol that ranges between [10% and 12%] in the mixture, and with an ice bank around the perimeter of 50% of the volume of the tank for a remnant of cold, of possible cold consumption blows due to higher product consumption.
  • the central unit is where the product or beverage is refrigerated and is located under a bar or similar bar. It consists of a box that contains inside plate exchangers, PPR tubes, solenoid valves, pressure switches, temperature sensors, and connectors. This box is closed, sealed and isolated, and on it there is a tray for the possible dripping of faucets, some columns containing the aforementioned taps, and a wet cup. As previously mentioned, this box is located under the bar and is fixed to it by certain means, such that a small structure or support, constituted by easily removable plates.
  • the box is made of polyester and stratified fiberglass and painted with gelcoat, in addition to having a thermal insulator around its perimeter of 2mm. of expanded polyurethane.
  • a thermal insulator around its perimeter of 2mm. of expanded polyurethane.
  • each of these exchangers is intended to cool different types of drinks with different graduation. So, the exchangers whose function is to cool drinks with high graduation, do not contain solenoid valves at the inlet of the cooling fluid. On the contrary the exchangers that have As a function to cool drinks with no or low graduation that are susceptible to freezing, they have an electrovalve at the entrance.
  • Each of the exchangers also has an outlet, that is, they have an outlet connection of the refrigerant fluid to the general outlet line of the box that redirects the refrigerant fluid to the ice bank vat, previously mentioned.
  • this outlet connection and depending on the graduation of the drink there are two options, that is, the exchangers whose function is to cool drinks with high graduation do not contain a non-return valve; and on the contrary the exchangers whose function is to cool drinks with no or low graduation that are susceptible to freezing, have a non-return valve and also a temperature sensor.
  • the temperature sensor is activated detecting that the beverage is near the freezing point, and activates the solenoid valve located in the connection of entry to the exchanger previously mentioned, cutting off the passage of more refrigerant fluid.
  • a tube is connected to each of the columns.
  • This tube through which the coolant enters the column is called the column's cooling line, it is not connected to anything, that is, it has a free end. For this reason when the coolant enters the column, this column is almost completely internally flooded by the coolant.
  • a temperature sensor that integrated into the column, it sends a signal to a solenoid valve that is in the general inlet line of the central unit box, previously mentioned, cutting the inlet passage of the cooling fluid to the tap column and to the entire line until the barrel.
  • the coolant that floods the tap column is evacuated by gravity through an insulated tube that is contained in the column, this tube being at its other end connected inside the central unit box to a tube or conduit called a python.
  • a tube or conduit called a python.
  • the so-called python ducts are the ducts that connect the central unit with the barrels of the different products or beverages, and each one is made up of three lines that are contained in an insulated hose.
  • One of the lines contain the product or beverage, another is a refrigeration line and another is an auxiliary line, all of which is flooded with coolant.
  • the coolant that comes from the gravity evacuation of the tube contained in the column being this tube connected by its other end (inside the central unit box) to the python conduit implies that the water / glycol refrigerant fluid is introduced into the python duct through a line called the python's cooling line, which reaches the barrel inlet, and in no case enters it because at the end of the python duct there is a plug rubber that prevents the loss of refrigerant.
  • a head with hydraulic equipment has been installed, so that it is automatically disconnected when it detects that the cleaning process begins at its different stages and when Detects barrel depletion.
  • the head is hydraulic provides comfort to a user without having to make any effort to connect or disconnect said barrel.
  • the hydraulic previously mentioned connects and disconnects the barrel according to the process that is being carried out, that is, when the drink leaves the barrel through the product line that contains the python conduit, a sensor located in the line detects the depletion of the product so that an electrovalve closes at the entrance of the aforementioned barrel, disconnecting the hydraulic so that the product line is not discharged avoiding a pressure stroke.
  • the product line joins with a tube that enters the exchanger, as a result the product or beverage cools to its optimum temperature, subsequently ascending to the product line containing the tap in the column, so that after go through a "Y" connection the drink comes out of the tap.
  • the beverage dispensing system with automated and programmable cleaning device, cleans and disinfects by means of the recirculation of a special product that mixes with water in certain proportions. This recirculation is done daily at a specific time, through a program to each and every one of the faucets that make up the system.
  • the cleaning device uses all the product lines, that is, the product lines that the faucet column has, the product lines that contain the central unit housing and the python conduit to the vicinity of the barrel; and also consists of certain solenoid valves; a suction line of a disinfectant component; non-return valves; a dosing pump and a recirculation pump.
  • the suction line is the line through which the disinfection product reaches the dosing pump. There is a non-return valve in it so that the product or disinfectant component does not return to its container or tank.
  • This dosing pump acts under the order of a program that sends a signal to dose the amount of disinfectant product appropriate for each case.
  • the program also sends an order to an electrovalve to enter water from the general network through another line, in certain proportions, this line also has a non-return valve.
  • This order will be different for the different stages of the cleaning process, that is, for the rinse stage and the disinfection stage.
  • Another detail of the cleaning device is a recirculation pump, which allows the mixing of water with the disinfectant product to travel the lines repeatedly a certain number of times.
  • the product or beverage emptying stage of the lines consists of opening the different solenoid valves that make up the product lines or dispensing lines, and introducing C02 through auxiliary lines so that this gas pushes the product or beverage towards the barrel.
  • the C02 that has the barrel leaves through the auxiliary lines and goes towards the tap column in the opposite direction to the exit of the drink, recirculating all the product or drink in the opposite direction to the one of its exit doing the backward movement until the barrel from which it came.
  • the rinse stage begins.
  • This stage consists of introducing water from the general network by means of a signal that receives the solenoid valve located at the outlet of the network, and successively the rest of the solenoid valves that make up the auxiliary lines are opened in an orderly manner, until reaching a connection in " And "that it has (in the auxiliary line) a non-return valve before reaching the tap, so that the water flows down the product line through the exchanger until it reaches the barrel head, which is disconnected for safety as well as the solenoid valve at its inlet that is closed, and the only outlet there is for the eviction of water is an electrovalve that is located at the entrance to the drain of the general network. Then the disinfection stage begins.
  • the disinfectant product absorbed by the suction line passes through the metering pump, this is responsible for distributing or regulating the amount of disinfectant product to each of the product lines of each of the barrels.
  • water from the general network is introduced in the quantities that have previously been established to carry out the mixing.
  • the mixture of the disinfectant product reaches the "Y" connection of the tap column, it follows the route of the product line to the central unit box through the exchangers, and continues until it reaches the barrel head, which is disconnected for safety as well as the solenoid valve at its entrance that is closed.
  • the solenoid valve that outputs the disinfection product to the general network is closed, on the contrary the solenoid valve that connects to the auxiliary line is open in order to produce a recirculation of the disinfectant product through the dispensing lines. the times defined in the program of the system control processor.
  • the drain solenoid valve that connects to the general network is opened, thus emptying all the lines that make up the product lines.
  • the C02 injection stage is carried out, which, as indicated above, consists of filling all the lines of said gas so as not to allow the proliferation of germs and bacteria.
  • the C02 solenoid valve is opened so that when both the solenoid valve that connects to the barrel and the drain solenoid valve are closed, the gas passes through the auxiliary line (which has all its solenoid valves open), so that both Auxiliary lines, such as product lines, are filled with CO2 so that each and every one of them is filled with this gas, preventing the proliferation of germs and bacteria within the entire system. of supply of beverages, since once this stage of pressurization is finished, all the solenoid valves that make up the system are automatically closed.
  • Figure 1 is a representation of the whole beverage dispensing system.
  • Figure 2 is a flat representation of the condensing unit of Figure 1.
  • Figure 3 is a flat representation of the ice bank vat of Figure
  • Figure 4 is a flat representation of the central unit of Figure 1.
  • Figure 5 is a flat representation of the column and tap of Figure 1.
  • Figure 6 is a representation of the connection through the barrel head of Figure 1.
  • Figure 7 is a perspective representation of the whole beverage dispensing system fixed on the bar of a bar or the like.
  • Figure 8 is a diagram of the emptying stage in the integrated cleaning process of the beverage dispensing system.
  • Figure 9 is a diagram of the rinsing stage in the integrated cleaning process of the beverage dispensing system.
  • Figure 10 is a diagram of the disinfection stage in the integrated cleaning process of the beverage dispensing system.
  • Figure 11 is a diagram of the pressurization stage with C02 in the integrated cleaning process of the beverage dispensing system. DESCRIPTION OF THE DRAWINGS
  • the invention is integrated by a supply team and a cleaning device both automated.
  • the supply equipment is composed of a set consisting of a condensing unit (1), an ice bank vat (2), a central refrigerant unit (3), a column (4) with tap / os (5), a barrel or barrels (6) containing product or beverage, a bottle of C02 (7) and all connected by a series of tubes, solenoid valves, sensors, connectors, pressure switches or similar, established and located as appropriate ; and the cleaning device is composed of certain solenoid valves (93), a suction line (91) of a disinfectant component, non-return valves (92 and 95), a metering pump (9) and a recirculation pump (94 ).
  • the condensing unit (1) (Fig. 2), is the equipment that is responsible for producing cold using as a medium a cooling gas and an engine of different powers according to needs. This unit is protected with a cover and grilles (12) on its perimeter, which prevents possible accidents with the fan (13). In front of this fan (13) there is a filter (14) that retains all dirt not saturating the evaporator and not losing cooling power, prevents overheating of the engine, and also reduces energy consumption; on the other hand there are also installed an anemometer (15) which gives an alarm signal to clean the filter (14) when it detects any change in the passage of cooling air.
  • two pressure hoses (16 and 161) or insulated pipes are connected to an ice bank (2), of which in a line (16) the direction of the refrigerant gas goes from the condensing unit (1) to the ice bank tank (2); while the other line (161) performs the opposite effect, that is, introduces the refrigerant gas back to the condensing unit (1).
  • the beverage dispensing system has a double ice bank tank (2)
  • electrovalves and a bypass (18) are installed at the outlet of a compressor to the corresponding lines (16 and 161) of the refrigerant gas (17).
  • the ice bank vat (2) (Fig. 3), is composed of two buckets (21 and 22) of polyester and stratified glass fiber and painted gelcoat; these are tucked into each other separated by a 3mm insulator. thick throughout its perimeter.
  • This tank (2) also incorporates a recirculation pump (29) of refrigerant and a tight-fitting lid (26) that pressurizes and stagnates the entire assembly, avoiding temperature losses and the proliferation of algae and other living things that grow in the Water for its tightness.
  • the refrigerant fluid that contains the ice bank tank (2) can be constituted by the 10% glycol water / glycol mixture with which a temperature of -3.3 ° C is obtained; or if the drink has a higher graduation and withstands more cold, the water / glycol mixture is 12% glycol, achieving a temperature of - 5.5 ° C. So the range of temperatures that the refrigerant fluid can work in the beverage dispensing system is between [-3.3 ° C and -5.5 ° C], in a percentage of glycol that ranges between [10% and 12%] in the mixture, and with an ice bank (2) around the perimeter of 50% of the volume of the tank for a remnant of cold, of possible blows of Cold consumption due to higher product consumption.
  • Two lines (27 and 271) or insulated pipes that connect to a central unit (3) leave the ice bank tank (2), of which in a line (27) the coolant leaves the bank tank of ice (2) to the central unit (3) and the other line (271) is for the opposite route, that is, the coolant goes from the central unit (3) to the ice bank vat (2).
  • the central unit (3) (Fig. 4) is where the product or beverage is refrigerated and is located under a bar (10) or similar (Fig. 7). It consists of a box (325) that contains inside plate exchangers (321 and 322), PPR tubes, solenoid valves, pressure switches, temperature sensors, and connectors. This box (325) is closed, insulated and sealed; and on it there is fixed a tray (101) for the possible dripping of taps, some columns (4) that contain the referred taps (5), and a wet cup. As previously mentioned, this box (325) is located under the bar (10) and is fixed to it by certain means, such that a small structure or support (102), consisting of easily removable plates (103) (Fig. 7).
  • the box (325) is made of polyester and stratified fiberglass and painted with gelcoat, in addition to having a thermal insulator around its 2mm perimeter. of expanded polyurethane.
  • both this material and the thermal insulator provide the housing (1) that makes up the housing of the central unit (3), medium fire resistance, low thermal conductivity and no electrical, that is, factors for considerable energy savings .
  • One of these lines (27) is where The refrigerant fluid leaves the ice cube (2) at an estimated fixed temperature between [-3 ° C and -5.5 ° C] and is introduced into a PPR tube inside the central unit box (3) called general input line (33); and the other line called the general outlet line (331), which is where the refrigerant flows from the central unit box (3), by means of a PPR tube, to the ice bank vat (2 ).
  • Each of the exchangers (321 and 322) also has an outlet, that is, they have an outlet connection (35) of the refrigerant fluid to the general outlet line (331) of the housing (3) that redirects the refrigerant fluid to the ice bank vat (2), previously cited.
  • the temperature sensor (352) is activated detecting that the The beverage is near the freezing point, and activates the solenoid valve (341) that was located in the inlet connection (34) to the exchanger (322), cutting off the passage of more cooling fluid.
  • the exchangers (321) of the drinks that have a high graduation do not have solenoid valves (341) in the inlet connection (34) of the refrigerant because they do not need to cut the passage of the same, since the temperature of the coolant is the optimum for cooling and this is not less than its freezing point, (it only depends on the constant temperature of the water / glycol mixture that can range between [-3 ° C and -5.5 ° C] ).
  • a tube is connected to it at a connection point (36 ) (Fig. 4) that reaches each of the columns (4).
  • This tube through which the coolant enters the column (4) (Fig. 5) is called the refrigeration line (41) of the column (4), it is not connected to anything, that is, it has a free end. For this reason when the liquid refrigerant enters the column (4), this column (4) is internally almost completely flooded by the liquid refrigerant.
  • a temperature sensor (43) that is integrated into the column (4), sends a signal to a solenoid valve (37) (Fig. 4) that is in the general input line (33) of the box (3) of the central unit (3), previously mentioned, by cutting the passage of cooling fluid inlet to the column (4) of the tap (5) and to the entire line to the barrel (6).
  • the coolant that floods the column (4) of the tap (5) is evacuated by gravity through an insulated tube (411) that is contained in the column (4), this tube (411) being at its other end connected within the box (325) of the central unit (3) to a tube or conduit called python (8).
  • python ducts (8) are the ducts that connect the central unit (3) with the barrels (6) of the different products or beverages, and each one is made up of three lines that are contained in an insulated hose.
  • One of the lines contains the product or beverage, another is a refrigeration line and another is an auxiliary line, all of which is flooded with coolant.
  • a head with hydraulic equipment (61) When connecting the python (8) with the barrel (6) that contains the product or beverage (Fig. 6), a head with hydraulic equipment (61) has been installed that automatically disconnects the barrel (6) when it detects that The cleaning process begins at its different stages, and when it detects the depletion of the barrel (6).
  • the hydraulic head (61) connects and disconnects the barrel (6) according to the process that is being carried out, that is, when the beverage leaves the barrel (6) through the product line that contains the Python conduit (8), a sensor (81) located in the line detects the depletion of the product by closing a solenoid valve (82) at the barrel inlet (6), disconnecting the hydraulic head (61) so that no the product line is discharged avoiding a pressure stroke.
  • the beverage dispensing system with automated and programmable cleaning device cleans and disinfects by means of the recirculation of a special product that mixes with water in certain proportions.
  • This recirculation is performed daily at a specific time, through a program to each and every one of the taps (5) that make up the system. During this period the equipment is completely stopped with the consequent energy saving, and the hydraulic head (61) of the barrel (6) is disconnected.
  • the cleaning device uses all the product lines (Fig. 8 to Fig. 11), that is, the product lines (42) that the tap column (4) has (5), the product lines (39) containing the housing (325) of the central unit (3) and the python duct (8) to the vicinity of the barrel (6); and also consists of certain solenoid valves (93); a suction line (91) of a component disinfectant; non-return valves (92 and 98); a metering pump (9) and a recirculation pump (94).
  • the suction line (91) is the line where the disinfection product reaches the dosing pump (9) and there is a non-return valve (92).
  • This dosing pump (9) acts under the order of a program that sends a signal to dose the amount of disinfectant product (B) appropriate for each case.
  • the program also sends an order to an electrovalve (95) to enter water (A) from the general network through another line, in certain proportions, this line also has a non-return valve (98). This order will be different for the different stages of the cleaning process, that is, for the rinsing stage (Fig. 10) and the disinfection stage (Fig. 1).
  • a recirculation pump which allows the mixture of water (A) with the disinfectant product (B) to travel the lines repeatedly a certain number of times.
  • a recirculation pump which allows the mixture of water (A) with the disinfectant product (B) to travel the lines repeatedly a certain number of times.
  • a rinse of the lines is performed to clean the walls of the ducts of the greatest amount of remains that have been left, this stage is called rinsing (Fig. 9); then the disinfection step is continued (Fig. 10), which is where a recirculation of the disinfectant product occurs by purifying the lines; then the rinsing step is performed again (Fig.
  • the C02 injection or pressurization stage is carried out (Fig. ll), which consists of filling all the lines of said gas to prevent the proliferation of germs and bacteria.
  • the stage of emptying (Fig. 8) of product or beverage of the lines consists of opening the different solenoid valves from the auxiliary lines (Ll) to the product lines (L2) or dispensing lines, and introducing C02 through them in order that this gas pushes the product or drink into the barrel (6).
  • the C02 that has the barrel (6) exits the auxiliary lines (Ll) and goes to the column (4) recirculating the entire product or drink in the opposite direction to its exit through the product line (L2) doing it back to the barrel (6) from which it came.
  • This stage consists of introducing water (A) from the general network by means of a signal that receives the solenoid valve (95) located at the outlet of the network, and successively the rest of the solenoid valves (93) that make up the line are opened in an orderly manner.
  • auxiliary (Ll) until reaching a "Y" connection (51) which in turn has (on the auxiliary line (Ll)) a non-return valve (511) before reaching the tap (5).
  • the disinfection stage begins (Fig. 10).
  • the disinfectant product (B) absorbed by the suction line (91) passes through the metering pump (9), this is responsible for distributing or regulating the amount of disinfectant product to each of the solenoid valves (93) that are directed to product lines of each of the barrels.
  • water (A) from the general network is also introduced in the quantities that have previously been established to perform the mixing.
  • the C02 injection or pressurization stage is carried out (Fig. Ll), which, as indicated above, consists of filling all the lines of the system with said gas so as not to allow the proliferation of germs and bacteria.
  • the solenoid valve (71) of C02 is opened so that both the solenoid valve (72) connecting with the barrel and the cylinder are closed drain solenoid valve (96), the gas passes through the auxiliary line (Ll) so that both the auxiliary line (Ll) and the product line (L2) are filled with C02 so that each and every one of the lines They are filled with this gas, to subsequently automatically close all the solenoid valves that make up the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Dispensing Beverages (AREA)

Abstract

Sistema dispensador de bebidas y proceso de limpieza integrado en el que el sistema está constituido por un conjunto formado por un equipo suministrador y un dispositivo de limpieza, ambos automatizados y programables. En el que el equipo suministrador está compuesto por una unidad condensadora, una cuba de banco de hielo, una unidad central refrigerante, un barril o barriles de producto, una botella de CO2 y todo ello conectado mediante una serie de tubos, electroválvulas, sensores, conectores, presostatos o similar, establecidos y ubicados según el caso; y el dispositivo de limpieza integrado, está compuesto por unas determinadas electroválvulas, una línea de aspiración de un componente desinfectante, unas válvulas antirretorno, una bomba dosificadora y una bomba de recirculación. De manera que mediante este dispositivo de limpieza que actúa bajo la orden de un programa, realiza un proceso de limpieza y desinfección por una línea denominada auxiliar y unas líneas de producto, un número determinado de veces y siguiendo unas etapas definidas.

Description

"SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO"
OBJETO DEL INVENTO
El invento está pensado para suministrar distintos tipos de bebidas a muy bajas temperaturas mediante un sistema definido, que además incorpora un dispositivo de limpieza que mediante la consecución de unas determinadas etapas, crea un proceso de desinfección periódico y automático de todas las líneas del equipo.
El invento está integrado por un equipo suministrador y un dispositivo de limpieza ambos automatizados y programables. En el que el equipo suministrador está compuesto por una unidad condensadora, una cuba de banco de hielo, una unidad central refrigerante, un barril o barriles de producto, una botella de C02 y todo ello conectado mediante una serie de tubos, electroválvulas, sensores, conectores, presostatos o similar, establecidos y ubicados según el caso; y el dispositivo de limpieza integrado, está compuesto por unas determinadas electroválvulas, una línea de aspiración de un componente desinfectante, unas válvulas antirretorno, una bomba dosificadora y una bomba de recirculación.
De manera que mediante este dispositivo de limpieza que actúa bajo la orden de un programa, realiza un proceso de limpieza y desinfección por una línea denominada auxiliar y unas líneas de producto, un número determinado de veces y siguiendo unas etapas definidas.
ANTECEDENTES DE LA INVENCIÓN
En la actualidad hay múltiples registros de dispensadores de bebidas como es el caso de la Patente ES2037383 T3 denominada "Sistema dispensador de bebidas", una Patente PCT/NL2008/050223 denominada "Aparato dispensador de bebida y método para dispensar de manera fría una bebida", una Patente ES2317870 T3 "Dispensador de bebidas" y una Patente ES2273938 T3 también denominada "Dispensador de bebidas". Todas ellas tienen en común que se trata de un aparato para la extracción automática de líquidos, particularmente de bebidas carbonatadas que se componen de un grifo para dispensar el fluido, unos intercambiadores, pero en ningún caso los citados registros tienen, un cajón aislado para los intercambiadores con sus conexiones debajo de un mostrador compacto con las columnas, ni un sistema o dispositivo automático de limpieza que se activa cada vez que se reinicia el sistema y en horas programadas.
Entre los registros encontrados se destaca la Patente ES2313239 T3 "Sistema de dispensación de bebidas", este sistema se compone de dos enfriadores y un control de la mezcla glicol por variaciones constantes. El sistema dispensador de bebidas objeto del invento por el contrario, no necesita realizar ningún control sobre su mantenimiento de porcentaje de glicol, porque una vez realizada la instalación y controlados los parámetros no tienen variación.
Otra diferencia que existe entre el registro de la Patente ES2313239 T3 y el sistema dispensador del invento, es que el registro de la Patente ES2313239 T3 al tener dos unidades condensadoras y dos bancos de hielo, además de que el consumo es elevado por tener estos cuatro elementos, el espacio necesario para la ubicación de la instalación ha de ser de unas considerables dimensiones.
Por el contrario, el sistema dispensador del invento tiene una estructura fácilmente adaptable puesto que con una unidad condensadora, un banco de hielo y una central de refrigeración se consigue el enfriamiento óptimo del producto, por lo que su ubicación se puede establecer próxima a las columnas, además de suponer un considerable ahorro energético por tener menos consumo porque hay menos infraestructura. Así pues, tanto en el registro de la patente ES2313239 T3, como en otros equipos compactos existentes en el mercado llevan la unidad condensadora en la parte baja y la cuba de refrigeración encima sin un aislamiento preciso y sin un cierre, por tanto el calor tiende a subir a la cuba de hielo que está abierta. Esto trae las consecuencias de que se pierde gran cantidad de refrigeración, y que el aparato está funcionando más tiempo de lo preciso con el consiguiente consumo energético. En estos casos la temperatura que se obtiene para enfriar un producto es de 0°C. y para conseguir que sea agradable el producto al paladar hay que escarchar los vasos y engualichar el citado producto mermando su calidad.
Es también de tener en cuenta que al tener una temperatura sobre 0°C. los gérmenes y bacterias proliferan a sus anchas y en consecuencia el producto sabe mal. Estos aparatos están fabricados en acero inoxidable y hierro y al estar en contacto constante con humedad y agua suelen producir descargas eléctricas con su correspondiente riesgo para las personas.
El punto de congelación del propilenglicol al 25% es de -9,72C. y las maquinas habituales que hay en el mercado según las potencias que tienen, su punto de evaporación es a -10°C. esto quiere decir, que si la temperatura de la maquina se mueve entre -3°C y -4°C la máquina no hace hielo y es imposible tener un remanente de este estilo. Una máquina al 25% de mezcla de glicol baja mucho el rendimiento y no llegaría a refrigerar en los intercambiadores de placas a no ser que tuvieran unos volúmenes impensables. Así mismo el consumo eléctrico sería exagerado y posiblemente no pararía nunca la unidad condensadora y acabaría quemándose.
Con el sistema dispensador de bebidas objeto del invento, el sistema está programado para que proceda hacer los menos arranques de la unidad condensadora que es cuando mayor consumen estos equipos, y cuando arranque sea prolongado hasta un pequeño excedente de frío para soportar la perdida que pudiera tener y así realizar menos arranques con temperatura controlada. En un establecimiento que está abierto 10 horas al día con un solo producto el consumo de un equipo del mercado actual trabajando a 0°C 24 horas tiene el mismo consumo que el sistema dispensador del invento a -5,5°C durante 50 horas. Esto indica más frío y menos consumo para cualquier equipo del mercado actual.
Por otra parte, hasta la fecha la limpieza y desinfección de un sistema dispensador de bebidas lo ha realizado un técnico, el cual tiene que conectar al sistema un equipo de limpieza. Estas limpiezas se hacen anualmente y ello supone una proliferación importante de gérmenes y bacteria, así mismo el producto tiene mal sabor y amarga por esta proliferación. Con el sistema dispensador de bebidas y procedimiento de limpieza integrado los problemas presentados hasta la fecha se superan, puesto que mediante una recirculación con un producto especial mezclado con agua que se realiza todos los días a una hora determinada y para todos los grifos, las perdidas frigoríficas son mínimas, no es necesario tener el aparato en funcionamiento los 365 días 24 horas, además que la calidad del producto aumenta considerablemente al estar libre de gérmenes y bacterias, que sí se creaban cuando el sistema se limpiaba una vez al año. Como consecuencia la presente invención va un paso más allá, mejorando los sistemas dispensadores de bebidas existentes y fabricados hasta la fecha, puesto que el dispensador de bebidas objeto del invento no tiene necesidad de estar en funcionamiento en horas no hábiles porque no necesita estar trabajando por las líneas, ya que estas están vacías, desinfectadas y presurizadas con C02 por lo que supone un considerable ahorro energético. DESCRIPCIÓN DEL INVENTO
El invento está integrado por un equipo suministrador y un dispositivo de limpieza ambos automatizados. En el que el equipo suministrador está compuesto por una unidad condensadora establecida, una cuba de banco de hielo definida, una unidad central refrigerante determinada, un barril o barriles preestablecidos que contienen producto o bebida, una botella de C02 y todo ello conectado mediante una serie de tubos, electroválvulas, sensores, conectares, presostatos o similar, establecidos y ubicados según el caso; y el dispositivo de limpieza está compuesto por unas determinadas electroválvulas, una línea de aspiración de un componente desinfectante, unas válvulas antirretorno, una bomba dosificadora y una bomba de recirculación.
La unidad condensadora es el equipo que se encarga de producir frió utilizando como medio un gas refrigerante y un motor de diferentes potencias según necesidades. Esta unidad va protegida con una tapa y unas rejillas en su perímetro, con el objeto de evitar posibles accidentes con el ventilador y la presencia de bichos.
Delante del evaporador de la unidad condensadora hay un filtro, con la finalidad de retener toda la suciedad que aspira el ventilador, no saturar el evaporador, no perder potencia frigorífica, evitar el sobrecalentamiento del motor, y además disminuir el consumo energético.
Para medir si el equipo está en óptimas condiciones de trabajo y refrigeración del evaporador se le instala un anemómetro, el cual para cualquier cambio de paso de aire refrigerante da una señal de alarma para limpiar el filtro y en consecuencia se obtiene mayor rendimiento a la unidad condensadora a menor coste eléctrico.
De la unidad condensadora salen dos latiguillos de presión o tubos aislados que se conectan a una cuba de banco de hielo, de las cuales en una dirección el gas refrigerante va de la unidad condensadora hasta la cuba del banco de hielo; mientras que la otra línea realiza el efecto contrario, es decir, introduce el gas refrigerante nuevamente a la unidad condensadora.
En el caso de que el sistema dispensador de bebidas tenga doble cuba de banco de hielo, se le instala a las correspondientes líneas del gas refrigerante unas electroválvulas y un bypass a la salida de un compresor, con el fin de mandar el gas refrigerante a uno o a ambos serpentines de las correspondientes cubas de banco de hielo.
La cuba de banco de hielo está integrada por dos cubetas de polyester y fibra de vidrio estratificado y pintado de gelcoat; estas están metidas una dentro de la otra separadas por un aislante de 3mm. de espesor en todo su perímetro. Dentro del espacio hueco de la cubeta interior hay un serpentín, una sonda térmica y un motor agitador con una hélice marina en su vástago, que agita un fluido refrigerante agua/glicol y ayuda a su enfriamiento. Esta cuba además incorpora una bomba de recirculación de refrigerante y una tapa de cierre hermético que presuriza y estanca todo el conjunto, evitando pérdidas de temperatura y la proliferación de algas y otros seres vivos que crecen en el agua por su estanqueidad. El fluido refrigerante que contiene la cuba del banco de hielo puede estar constituido por la mezcla agua/glicol al 10% de glicol con la que se obtiene una temperatura de -3,3°C; o si la bebida tiene mayor graduación y aguanta más el frió, la mezcla agua/glicol es del 12% de glicol consiguiendo una temperatura de - 5,5°C. Por lo que el rango de temperaturas que puede trabajar el fluido refrigerante en el sistema dispensador de bebidas está entre [-3,3°C y -5,5°C], en un porcentaje de glicol que oscila entre el [10% y 12%] en la mezcla, y con un banco de hielo en todo el perímetro del 50% del volumen de la cuba para un remanente de frío, de posibles golpes de consumo de frió por mayor consumo de producto.
De la cuba de banco de hielo salen dos líneas o tubos aislados que se conectan a una unidad central, de las cuales en una línea el líquido refrigerante sale de la cuba del banco de hielo hasta la unidad central y la otra línea es para el recorrido contrario, es decir, el líquido refrigerante va de la unidad central a la cuba del banco de hielo. La unidad central es donde se refrigera el producto o bebida y se ubica debajo de una barra de bar o similar. Está constituida por una caja que contiene en su interior unos intercambiadores de placas, unos tubos de PPR, unas electroválvulas, presostatos, sensores de temperatura, y unos conectores. Esta caja va cerrada, estanca y aislada, y sobre ella hay fijada una bandeja para el posible goteo de grifos, unas columnas que contienen los referidos grifos, y un moja copas. Como se ha citado previamente, esta caja se ubicada bajo la barra y va fijada a ella mediante unos medios determinados, tal que una pequeña estructura o soporte, constituido por unas pletinas de fácil desmontaje.
La caja está fabricada con polyester y fibra de vidrio estratificado y pintado con gelcoat, además de tener un aislante térmico en todo su perímetro de 2mm. de poliuretano expandido. Así pues, tanto este material como el aislante térmico proporcionan a la caja que compone la carcasa de la unidad central, media resistencia al fuego, poca conductividad térmica y ninguna eléctrica, es decir, factores para un considerable ahorro energético.
Anteriormente se ha citado que hay dos líneas que salen de la cuba de hielo y conectan a la unidad central. Una de estas líneas es por donde el fluido refrigerante sale de la cuba de hielo a una temperatura fija estimada entre [-3°C y -
5,5°C] y se introduce en un tubo de PPR dentro de la caja de la unidad central denominado línea general de entrada; y la otra línea denominada línea general de salida, es por donde sale el fluido refrigerante desde la caja de la unidad central, por medio de un tubo también de PPR, hasta la cuba del banco de hielo.
En la línea general de entrada de la caja de la unidad central, hay distintos conectores que hacen pasar el fluido refrigerante a distintos intercambiadores. Cada uno de estos intercambiadores está destinado a enfriar distintos tipos de bebidas con distinta graduación. De manera que, los intercambiadores que tengan como función enfriar bebidas con alta graduación, no contienen electroválvulas en la entrada del fluido refrigerante. Por el contrario los intercambiadores que tengan como función enfriar bebidas con ninguna o baja graduación que sean susceptibles de congelarse, poseen en la entrada una electroválvula.
Cada uno de los intercambiadores además tiene una salida, es decir, tienen una conexión de salida del fluido refrigerante a la línea general de salida de la caja que redirige el fluido refrigerante a la cuba del banco de hielo, citada previamente. En esta conexión de salida y dependiendo de la graduación que posea la bebida hay dos opciones, es decir, los intercambiadores que tengan como función enfriar bebidas con alta graduación no contienen válvula antirretorno; y por el contrario los intercambiadores que tengan como función enfriar bebidas con ninguna o baja graduación que sean susceptibles de congelarse, poseen a la salida una válvula antirretorno y además un sensor de temperatura. De esta manera si la entrada del fluido refrigerante baja excesivamente la temperatura de la bebida que contiene uno de estos intercambiadores, se activa el sensor de temperatura detectando que la bebida está cerca del punto de congelación, y activa la electroválvula que se ubica en la conexión de entrada al intercambiador citada previamente, cortando el paso de más fluido refrigerante.
Por este motivo, las bebidas que tengan una alta graduación no tienen electroválvulas a la entrada del refrigerante por que no necesitan cortar el paso del mismo, puesto que la temperatura que posee el líquido refrigerante es la óptima para su enfriamiento y esta no es inferior a su punto de congelación, (solo depende de la temperatura constante que posea la mezcla agua/glicol que puede oscilar entre [-3°C y -5,5°C]).
Por otro lado, en la salida de la línea de producto de un intercambiador (que tengan como función enfriar bebidas con ninguna o baja graduación), hay un presostato que se activa cuando se abre el grifo de la columna, de manera que la electroválvula (citada previamente) ubicada a la entrada de fluido refrigerante en el intercambiador, se abre permitiendo que el fluido refrigerante entre. Las columnas que contienen los grifos que están fijadas encima de la caja de la unidad central, citadas previamente, también contienen líquido refrigerante.
En la línea general de entrada por la que se introduce el líquido refrigerante dentro de la unidad central, además de estar conectados los intercambiadores, se le conecta un tubo que llega hasta cada una de las columnas.
Este tubo por el que entra el líquido refrigerante a la columna se le denomina línea de refrigeración de la columna, este no está conectado con nada es decir, tiene un extremo libre. Por este motivo cuando el líquido refrigerante entra en la columna, esta columna se inunda interiormente prácticamente en toda su totalidad por el líquido refrigerante.
Cuando la bebida que está contenida en una línea de producto dentro de la columna, es de baja graduación y tiene peligro de congelarse dentro de la misma (porque el entorno del tubo que la contiene está inundado de líquido refrigerante), un sensor de temperatura que hay integrado dentro de la columna, manda una señal a una electroválvula que hay en la línea general de entrada de la caja de la unidad central, citada previamente, cortando el paso de entrada del fluido refrigerante a la columna del grifo y a toda la línea hasta el barril.
El líquido refrigerante que inunda la columna del grifo, se evacúa por gravedad mediante un tubo aislado que está contenido en la columna, estando este tubo por su otro extremo conectado dentro de la caja de la unidad central a un tubo o conducto denominado pitón. De este modo, cada una de las columnas que contiene el sistema dispensador actúa de la misma forma.
Los conductos denominados pitón son los conductos que unen la unidad central con los barriles de los distintos productos o bebidas, y se componen cada uno de ellos de tres líneas que están contenidas en una manguera aislada. Una de las líneas contiene el producto o bebida, otra es una línea de refrigeración y otra es una línea auxiliar, estando todo ello inundado por líquido refrigerante.
De manera que, el líquido refrigerante que proviene de la evacuación por gravedad del tubo contenido en la columna estando este tubo conectado por su otro extremo (dentro de la caja de la unidad central) al conducto pitón, todo ello citado previamente, implica que el fluido refrigerante agua/glicol se introduce en el conducto pitón a través de una línea denominada de refrigeración de la pitón, que llega hasta la entrada del barril, no entrando en ningún caso dentro de este porque en el extremo del conducto pitón hay un tapón de goma que evita que se pierda producto refrigerante. Así pues, cuando el líquido refrigerante llega al citado extremo, puesto que la línea de refrigeración de la pitón es ligeramente más corta que la longitud del conducto pitón, el líquido refrigerante sube por el citado conducto pitón inundando las tres líneas referidas retornando al sistema central nuevamente. En la unión del conducto pitón con la caja de la unidad central sale un tubo aislante que reconduce el fluido refrigerante a una conexión ubicada en la línea general de salida que contiene la unidad central, de manera que el citado fluido refrigerante agua/glicol regresa a la cuba del banco de hielo.
En la conexión del conducto pitón con el barril que contiene el producto o bebida, se ha instalado un cabezal con un equipo hidráulico, con el objeto de que este se desconecte automáticamente cuando detecta que se inicia el proceso de limpieza en sus diferentes etapas y cuando detecta el agotamiento del barril. Además, que el cabezal sea hidráulico aporta comodidad a un usuario no teniendo que realizar ningún esfuerzo para conectar o desconectar el citado barril.
Por otro lado, para que salga la bebida a través de la conexión hidráulica es necesario una serie de componentes que permitan la entrada de C02 desde una botella hasta el barril. A la salida de la botella de C02 hay un regulador de presión y una electroválvula, la cual posibilita el paso o cierre del gas según el proceso. De la electroválvula sale una línea que se distribuye en un bypass que por un lado una línea va al barril y por el otro lado hay una línea auxiliar con una electroválvula y una válvula antirretorno, por donde se inicia la inyección de C02 al sistema de limpieza que se expondrá posteriormente. En dirección al barril tenemos otra electroválvula la cual actúa para dar salida al C02 que entra al barril y por el cual sale el producto o bebida del mismo. De esta manera el hidráulico citado previamente, conecta y desconecta el barril según el proceso que se esté realizando, es decir, cuando la bebida sale del barril a través de la línea de producto que contiene el conducto pitón, un sensor ubicado en la línea detecta el agotamiento del producto por lo que cierra una electroválvula a la entrada del barril citado, desconectando el hidráulico a fin de que no se descargue la línea de producto evitando un golpe de presión.
Sin embargo cuando la salida del producto que contiene el barril sale de él con normalidad, este asciende por la línea del producto ubicada dentro del conducto pitón y llega hasta la unidad central. En la unidad central la línea de producto se une con un tubo que entra al intercambiador, como consecuencia el producto o bebida se enfría a su temperatura óptima, ascendiendo posteriormente a la línea de producto que contienen el grifo en la columna, de manera que tras pasar por una conexión en "Y" sale la bebida por el referido grifo. El sistema dispensador de bebidas con dispositivo de limpieza automatizado y programable, limpia y desinfecta por medio de la recirculación de un producto especial que se mezcla con agua en unas proporciones determinadas. Esta recirculación la realiza diariamente a una hora determinada, por medio de un programa a todos y cada uno de los grifos que componga el sistema. Durante este periodo el equipo está parado totalmente con el consiguiente ahorro energético, y el cabezal hidráulico del barril está desconectado. El dispositivo de limpieza utiliza todas las líneas de producto, es decir, las líneas de producto que tiene la columna del grifo, las líneas de producto que contiene la caja de la unidad central y el conducto pitón hasta las proximidades del barril; y además se compone de unas determinadas electroválvulas; una línea de aspiración de un componente desinfectante; unas válvulas antirretorno; una bomba dosificadora y una bomba de recirculación.
La línea de aspiración, es la línea por donde el producto de desinfección llega a la bomba dosificadora. En ella hay una válvula antirretorno con el objeto de que el producto o componente desinfectante no vuelva a su garrafa o depósito. Esta bomba dosificadora actúa bajo la orden de un programa que le manda una señal para dosificar la cantidad de producto desinfectante oportuno para cada caso.
Simultáneamente el programa también manda una orden a una electroválvula para que entre agua de la red general por otra línea, en unas proporciones determinadas, esta línea además posee una válvula antirretorno. Esta orden será diferente para las distintas etapas del proceso de limpieza, es decir, para la etapa de aclarado y la etapa de desinfección. Otro detalle del dispositivo de limpieza es una bomba de recirculación, que permite que la mezcla de agua con el producto desinfectante recorra las líneas repetidamente un número determinado de veces.
Para iniciar con el proceso de limpieza, primeramente todas las líneas han de estar vacías de producto o bebida que se consigue con la etapa de vaciado retornando el producto al barril; seguidamente se realiza un aclarado de las líneas para limpiar las paredes de los conductos de la mayor cantidad de restos que han podido quedar, a esta etapa se la denomina de aclarado; a continuación se prosigue con la etapa de desinfección, que es donde se produce una recirculación del producto desinfectante purificando las líneas; seguidamente se vuelve a realizar la etapa de aclarado, para eliminar posibles restos de producto desinfectante; y en último lugar se realiza la etapa de inyección de C02, que consiste en llenar todas las líneas del citado gas para evitar la proliferación de gérmenes y bacterias.
La etapa de vaciado de producto o bebida de las líneas consiste en abrir las distintas electroválvulas que componen las líneas de producto o líneas de dispensación, e introducir C02 a través de unas líneas auxiliares con el fin de que este gas empuje al producto o bebida hacia el barril.
Así pues, el C02 que posee el barril sale por las líneas auxiliares y se dirige hacia la columna del grifo en sentido opuesto a la salida de la bebida, recirculando todo el producto o bebida en sentido inverso al de su salida haciendo lo retroceder hasta el barril del que procedía.
Una vez que quedan las líneas vacías de bebida, se inicia la etapa de aclarado. Esta etapa consiste en introducir agua de la red general mediante una señal que recibe la electroválvula situada a la salida de la red, y sucesivamente se van abriendo de forma ordenada el resto de electroválvulas que componen las líneas auxiliares, hasta llegar a una conexión en "Y" que posee (en la línea auxiliar) una válvula antirretorno antes de llegar al grifo, de manera que el agua baja por la línea de producto pasando por el intercambiador hasta llegar al cabezal del barril, el cual está desconectado por seguridad al igual que la electroválvula a su entrada que está cerrada, y la única salida que hay para el desalojo del agua es una electroválvula que está situada a la entrada al desagüe de la red general. A continuación se inicia la etapa de desinfección. El producto desinfectante absorbido por la línea de aspiración pasa por la bomba dosificadora, esta es la encargada de distribuir o regular la cantidad de producto desinfectante a cada una de las líneas de producto de cada uno de los barriles. Simultáneamente se introduce agua proveniente de la red general en las cantidades que previamente se han establecido para realizar la mezcla. Seguidamente y en dirección contraria al sentido de dispensación de la bebida, cuando la mezcla del producto desinfectante llega a la conexión en "Y" de la columna del grifo, sigue el recorrido de la línea de producto hasta la caja de la unidad central pasando por los intercambiadores, y continua hasta llegar al cabezal del barril, el cual está desconectado por seguridad al igual que la electroválvula a su entrada que está cerrada. En este punto la electroválvula que da salida al producto de desinfección a la red general está cerrada, por el contrario la electroválvula que conecta con la línea auxiliar está abierta con el objeto de que se produzca una recirculación del producto desinfectante por las líneas de dispensación todas las veces que se haya definido en el programa del procesador de control del sistema.
Una vez que la bomba de recirculación ha terminado por indicación del proceso programado, la electroválvula de desagüe que conecta con la red general se abre procediendo por tanto al vaciado de todas las líneas que componen las líneas de producto.
Una vez que quedan las líneas vacías de producto desinfectante, se inicia nuevamente el proceso automático de aclarado, que elimina posibles restos de producto desinfectante
En último lugar se realiza la etapa de inyección de C02, que como se ha señalado anteriormente consiste en llenar todas las líneas del citado gas para no permitir la proliferación de gérmenes y bacterias. En esta etapa, se abre la electroválvula de C02 de manera que estando cerradas tanto la electroválvula que conexiona con el barril como la electroválvula de desagüe, el gas pasa por la línea auxiliar (que tiene todas sus electroválvulas abiertas), de forma que tanto las líneas auxiliares como las líneas de producto, se llenan de C02 con el objeto de que todas y cada una de ellas quedan llenas de este gas impidiendo la proliferación de gérmenes y bacterias dentro de todo el sistema de suministro de bebidas, puesto que una vez terminada esta etapa de presurizado se cierran automáticamente todas las electroválvulas que componen el sistema.
Una idea más amplia de las características del invento etc. en las que se han respetado las mismas referencias que en la patente principal para definir las partes de estas que son comunes en este caso, dándole referencias complementarias para seguir con la misma tónica identificativa.
En los dibujos:
La figura 1 es una representación del conjunto del sistema dispensador de bebidas.
La figura 2 es una representación plana de la unidad condensadora de la figura 1. La figura 3 es una representación plana de la cuba del banco de hielo de la figura
1.
La figura 4 es una representación plana de la unidad central de la figura 1. La figura 5 es una representación plana de la columna y grifo de la figura 1.
La figura 6 es una representación de la conexión a través del cabezal del barril de la figura 1. La figura 7 es una representación en perspectiva del conjunto del sistema dispensador de bebidas fijado en la barra de un bar o similar.
La figura 8 es un esquema de la etapa de vaciado en el proceso de limpieza integrado del sistema dispensador de bebidas. La figura 9 es un esquema de la etapa de aclarado en el proceso de limpieza integrado del sistema dispensador de bebidas.
La figura 10 es un esquema de la etapa de desinfección en el proceso de limpieza integrado del sistema dispensador de bebidas.
La figura 11 es un esquema de la etapa de presurización con C02 en el proceso de limpieza integrado del sistema dispensador de bebidas. DESCRIPCIÓN DE LOS DIBUJOS
El invento está integrado por un equipo suministrador y un dispositivo de limpieza ambos automatizados. En el que el equipo suministrador está compuesto por un conjunto formado por una unidad condensadora (1), una cuba de banco de hielo (2), una unidad central (3) refrigerante determinada, una columna/as (4) con grifo/os (5), un barril o barriles (6) que contienen producto o bebida, una botella de C02 (7) y todo ello conectado mediante una serie de tubos, electroválvulas, sensores, conectores, presostatos o similar, establecidos y ubicados según el caso; y el dispositivo de limpieza, está compuesto por unas determinadas electroválvulas (93), una línea de aspiración (91) de un componente desinfectante, unas válvulas antirretorno (92 y 95), una bomba dosificadora (9) y una bomba de recirculación (94).
La unidad condensadora (1) (Fig.2), es el equipo que se encarga de producir frío utilizando como medio un gas refrigerante y un motor de diferentes potencias según necesidades. Esta unidad va protegida con una tapa y unas rejillas (12) en su perímetro, que evita posibles accidentes con el ventilador (13). Delante de este ventilador (13) hay un filtro (14) que retiene toda la suciedad no saturando al evaporador y no perdiendo potencia frigorífica, evita el sobrecalentamiento del motor, y además disminuye el consumo energético; por otra parte también hay instalado un anemómetro (15) el cual da una señal de alarma para limpiar el filtro (14) cuando detecta cualquier cambio de paso de aire refrigerante.
De la unidad condensadora (1) salen dos latiguillos de presión (16 y 161) o tubos aislados que se conectan a una cuba de banco de hielo (2), de las cuales en una línea (16) la dirección del gas refrigerante va de la unidad condensadora (1) hasta la cuba del banco de hielo (2); mientras que la otra línea (161) realiza el efecto contrario, es decir, introduce el gas refrigerante nuevamente a la unidad condensadora (1).
En el caso de que el sistema dispensador de bebidas tenga doble cuba de banco de hielo (2), se le instala a las correspondientes líneas (16 y 161) del gas refrigerante unas electroválvulas y un bypass (18) a la salida de un compresor (17). La cuba de banco de hielo (2) (Fig.3), está integrada por dos cubetas (21 y 22) de polyester y fibra de vidrio estratificado y pintado de gelcoat; estas están metidas una dentro de la otra separadas por un aislante de 3mm. de espesor en todo su perímetro. Dentro del espacio hueco de la cubeta interior (22) hay un serpentín (23), una sonda térmica (28) y un motor agitador (24) con una hélice marina (25) en su vástago, que agita un fluido refrigerante agua/glicol y ayuda a su enfriamiento. Esta cuba (2) además incorpora una bomba de recirculación (29) de refrigerante y una tapa de cierre hermético (26) que presuriza y estanca todo el conjunto, evitando pérdidas de temperatura y la proliferación de algas y otros seres vivos que crecen en el agua por su estanqueidad.
El fluido refrigerante que contiene la cuba del banco de hielo (2) puede estar constituido por la mezcla agua/glicol al 10% de glicol con la que se obtiene una temperatura de -3,3°C; o si la bebida tiene mayor graduación y aguanta más el frió, la mezcla agua/glicol es del 12% de glicol consiguiendo una temperatura de - 5,5°C. Por lo que el rango de temperaturas que puede trabajar el fluido refrigerante en el sistema dispensador de bebidas está entre [-3,3°C y -5,5°C], en un porcentaje de glicol que oscila entre el [10% y 12%] en la mezcla, y con un banco de hielo (2) en todo el perímetro del 50% del volumen de la cuba para un remanente de frió, de posibles golpes de consumo de frió por mayor consumo de producto.
De la cuba de banco de hielo (2) salen dos líneas (27 y 271) o tubos aislados que se conectan a una unidad central (3), de las cuales en una línea (27) el líquido refrigerante sale de la cuba del banco de hielo (2) hasta la unidad central (3) y la otra línea (271) es para el recorrido contrario, es decir, el líquido refrigerante va de la unidad central (3) a la cuba del banco de hielo (2).
La unidad central (3) (Fig.4) es donde se refrigera el producto o bebida y se ubica debajo de una barra de bar (10) o similar (Fig.7). Está constituida por una caja (325) que contiene en su interior unos intercambiadores de placas (321 y 322), unos tubos de PPR, unas electroválvulas, presostatos, sensores de temperatura, y unos conectores. Esta caja (325) va cerrada, aislada y estanca; y sobre ella hay fijada una bandeja (101) para el posible goteo de grifos, unas columnas (4) que contienen los referidos grifos (5), y un moja copas. Como se ha citado previamente, esta caja (325) se ubicada bajo la barra (10) y va fijada a ella mediante unos medios determinados, tal que una pequeña estructura o soporte (102), constituido por unas pletinas (103) de fácil desmontaje (Fig.7).
La caja (325) está fabricada con polyester y fibra de vidrio estratificado y pintado con gelcoat, además de tener un aislante térmico en todo su perímetro de 2mm. de poliuretano expandido. Así pues, tanto este material como el aislante térmico proporcionan a la caja (1) que compone la carcasa de la unidad central (3), media resistencia al fuego, poca conductividad térmica y ninguna eléctrica, es decir, factores para un considerable ahorro energético. Anteriormente se ha citado que hay dos líneas (27 y 271) que salen de la cuba de hielo (2) y conectan a la unidad central (3). Una de estas líneas (27) es por donde el fluido refrigerante sale de la cuba de hielo (2) a una temperatura fija estimada entre [-3°C y -5,5°C] y se introduce en un tubo de PPR dentro de la caja de la unidad central (3) denominado línea general de entrada (33); y la otra línea denominada línea general de salida (331), que es por donde sale el fluido refrigerante desde la caja de la unidad central (3), por medio de un tubo también de PPR, hasta la cuba del banco de hielo (2).
En la línea general de entrada (33) de la caja de la unidad central (3), hay distintos conectores (34) que hacen pasar el fluido refrigerante a distintos intercambiadores (321 y 322). Cada uno de estos intercambiadores está destinado a enfriar distintos tipos de bebidas con distinta graduación. De manera que, los intercambiadores (321) que tengan como función enfriar bebidas con alta graduación, no contienen electroválvulas en la entrada del fluido refrigerante. Por el contrario los intercambiadores (322) que tengan como función enfriar bebidas con ninguna o baja graduación que sean susceptibles de congelarse, poseen en la entrada una electroválvula (341).
Cada uno de los intercambiadores (321 y 322) además tiene una salida, es decir, tienen una conexión de salida (35) del fluido refrigerante a la línea general de salida (331) de la caja (3) que redirige el fluido refrigerante a la cuba del banco de hielo (2), citada previamente.
En esta conexión de salida (35) y dependiendo de la graduación que posea la bebida hay dos opciones, es decir, los intercambiadores (321) que tengan como función enfriar bebidas con alta graduación no contienen válvula antirretorno; y por el contrario los intercambiadores (322) que tengan como función enfriar bebidas con ninguna o baja graduación que sean susceptibles de congelarse, poseen en la conexión de salida (35) una válvula antirretorno (351) y además un sensor de temperatura (352). De esta manera si la entrada del fluido refrigerante baja excesivamente la temperatura de la bebida que contiene uno de estos intercambiadores (322), se activa el sensor de temperatura (352) detectando que la bebida está cerca del punto de congelación, y activa la electroválvula (341) que se ubicaba en la conexión de entrada (34) al intercambiador (322), cortando el paso de más fluido refrigerante.
Por este motivo, los intercambiadores (321) de las bebidas que tengan una alta graduación no tienen electroválvulas (341) en la conexión de entrada (34) del refrigerante por que no necesitan cortar el paso del mismo, ya que la temperatura que posee el líquido refrigerante es la óptima para su enfriamiento y esta no es inferior a su punto de congelación, (solo depende de la temperatura constante que posea la mezcla agua/glicol que puede oscilar entre [-3°C y -5,5°C]).
Por otro lado, en la salida de la línea de producto de cada intercambiador (322) que tengan como función enfriar bebidas con ninguna o baja graduación, hay un presostato que se activa cuando se abre el grifo (5) de la columna (4), de manera que la electroválvula (341) ubicada en la conexión de entrada (34) de fluido refrigerante en el intercambiador (322), se abre permitiendo que el fluido refrigerante entre.
Las columnas (4) (Fig.5) que contienen los grifos (5) que están fijadas encima de la caja (325) de la unidad central (3), citadas previamente, también contienen líquido refrigerante.
En la línea general de entrada (33) por la que se introduce el líquido refrigerante dentro de la unidad central (3), además de estar conectados los intercambiadores (321 y 322), se le conecta un tubo en un punto de conexión (36) (Fig.4) que llega hasta cada una de las columnas (4).
Este tubo por el que entra el líquido refrigerante a la columna (4) (Fig.5) se le denomina línea de refrigeración (41) de la columna (4), esta no está conectada con nada es decir, tiene un extremo libre. Por este motivo cuando el líquido refrigerante entra en la columna (4), esta columna (4) se inunda interiormente prácticamente en toda su totalidad por el líquido refrigerante.
Cuando la bebida que está contenida en una línea de producto (42) dentro de la columna (4) , es de baja graduación y tiene peligro de congelarse dentro de la misma (porque el entorno del tubo que la contiene está inundado de líquido refrigerante), un sensor de temperatura (43) que hay integrado dentro de la columna (4), manda una señal a una electroválvula (37) (Fig.4) que hay en la línea general de entrada (33) de la caja (3) de la unidad central (3), citada previamente, cortando el paso de entrada del fluido refrigerante a la columna (4) del grifo (5) y a toda la línea hasta el barril (6).
El líquido refrigerante que inunda la columna (4) del grifo (5), se evacúa por gravedad mediante un tubo aislado (411) que está contenido en la columna (4), estando este tubo (411) por su otro extremo conectado dentro de la caja (325) de la unidad central (3) a un tubo o conducto denominado pitón (8). De este modo, cada una de las columnas (4) que contiene el sistema dispensador actúa de la misma forma. Los conductos denominados pitón (8) son los conductos que unen la unidad central (3) con los barriles (6) de los distintos productos o bebidas, y se compone cada uno de ellos de tres líneas que están contenidas en una manguera aislada. Una de las líneas contiene el producto o bebida, otra es una línea de refrigeración y otra es una línea auxiliar, estando todo ello inundado por líquido refrigerante.
De manera que, el líquido refrigerante que proviene de la evacuación por gravedad del tubo (411) contenido en la columna (4) estando este tubo conectado por su otro extremo y dentro de la caja (325) de la unidad central (3), al conducto pitón (8), todo ello citado previamente; implica que el fluido refrigerante agua/glicol se introduce en el conducto pitón (8) a través de una línea denominada de refrigeración de la pitón (8), que llega hasta la entrada del barril (6), no entrando en ningún caso dentro de este barril (6) porque en el extremo del conducto pitón (8) hay un tapón de goma que evita que se pierda producto refrigerante. Así pues, cuando el líquido refrigerante llega al citado extremo, puesto que la línea de refrigeración de la pitón (8) es ligeramente más corta que la longitud del conducto pitón (8), el líquido refrigerante sube por el citado conducto pitón (8) inundando las tres líneas referidas retornando al sistema central (3) nuevamente. En la unión del conducto pitón (8) con la caja (325) de la unidad central (3) sale un tubo aislante que reconduce el fluido refrigerante a una conexión (38) (Fig.4) ubicada en la línea general de salida (331) que contiene la unidad central (3), de manera que el citado fluido refrigerante agua/glicol regresa a la cuba del banco de hielo (2).
En la conexión del conducto pitón (8) con el barril (6) que contiene el producto o bebida (Fig.6), se ha instalado un cabezal con un equipo hidráulico (61) que desconecte automáticamente el barril (6) cuando detecta que se inicia el proceso de limpieza en sus diferentes etapas, y cuando detecta el agotamiento del barril (6).
Por otro lado, para que salga la bebida a través de la conexión hidráulica (61) es necesario una serie de componentes que permitan la entrada de C02 desde una botella (7) hasta el barril (6).
A la salida de la botella de C02 (7) hay un regulador de presión y una electroválvula (71), la cual posibilita el paso o cierre del gas según el proceso. De la electroválvula (71) sale una línea que se distribuye en un bypass que por un lado una línea va al barril (6) y por el otro lado hay una línea auxiliar con una electroválvula (73) y una válvula antirretorno (74), por donde se inicia la inyección de C02 al sistema de limpieza que se expondrá posteriormente. En dirección al barril tenemos otra electroválvula (72) que actúa para dar salida al C02 que entra al barril (6) y por el cual sale el producto o bebida del mismo. De esta manera el cabezal hidráulico (61) citado previamente, conecta y desconecta el barril (6) según el proceso que se esté realizando, es decir, cuando la bebida sale del barril (6) a través de la línea de producto que contiene el conducto pitón (8), un sensor (81) ubicado en la línea detecta el agotamiento del producto por lo que cierra una electroválvula (82) a la entrada del barril (6), desconectando el cabezal hidráulico (61) a fin de que no se descargue la línea de producto evitando un golpe de presión.
Sin embargo cuando la salida del producto que contiene el barril (6) sale de él con normalidad, este asciende por la línea del producto ubicada dentro del conducto pitón (8) y llega hasta la unidad central (3). En la unidad central (3) la línea de producto se une con un tubo que entra al intercambiador (321, 322), como consecuencia el producto o bebida se enfría a su temperatura óptima, ascendiendo posteriormente a la línea de producto (42) que contienen el grifo (5) en la columna (4), de manera que tras pasar por una conexión en "Y" (51) sale la bebida por el referido grifo (5) (Fig.5).
El sistema dispensador de bebidas con dispositivo de limpieza automatizado y programable, limpia y desinfecta por medio de la recirculación de un producto especial que se mezcla con agua en unas proporciones determinadas. Esta recirculación la realiza diariamente a una hora determinada, por medio de un programa a todos y cada uno de los grifos (5) que componga el sistema. Durante este periodo el equipo está parado totalmente con el consiguiente ahorro energético, y el cabezal hidráulico (61) del barril (6) está desconectado.
El dispositivo de limpieza utiliza todas las líneas de producto (Fig.8 a Fig.11), es decir, las líneas de producto (42) que tiene la columna (4) del grifo (5), las líneas de producto (39) que contiene la caja (325) de la unidad central (3) y el conducto pitón (8) hasta las proximidades del barril (6); y además se compone de unas determinadas electroválvulas (93); una línea de aspiración (91) de un componente desinfectante; unas válvulas antirretorno (92 y 98); una bomba dosificadora (9) y una bomba de recirculación (94).
La línea de aspiración (91), es la línea por donde el producto de desinfección llega a la bomba dosificadora (9) y en ella hay una válvula antirretorno (92). Esta bomba dosificadora (9) actúa bajo la orden de un programa que le manda una señal para dosificar la cantidad de producto desinfectante (B) oportuno para cada caso. Simultáneamente el programa también manda una orden a una electroválvula (95) para que entre agua (A) de la red general por otra línea, en unas proporciones determinadas, esta línea además posee una válvula antirretorno (98). Esta orden será diferente para las distintas etapas del proceso de limpieza, es decir, para la etapa de aclarado (Fig.10) y la etapa de desinfección (Fig.l l).
Otro detalle del sistema de limpieza es una bomba de recirculación (94), que permite que la mezcla de agua (A) con el producto desinfectante (B) recorra las líneas repetidamente un número determinado de veces. Para iniciar con el proceso de limpieza, primeramente todas las líneas han de estar vacías de producto o bebida que se consigue con la etapa de vaciado retornando el producto al barril (Fig.8); seguidamente se realiza un aclarado de las líneas para limpiar las paredes de los conductos de la mayor cantidad de restos que han podido quedar, a esta etapa se la denomina de aclarado (Fig.9); a continuación se prosigue con la etapa de desinfección (Fig.10), que es donde se produce una recirculación del producto desinfectante purificando las líneas; seguidamente se vuelve a realizar la etapa de aclarado (Fig.9), para eliminar posibles restos de producto desinfectante; y en último lugar se realiza la etapa de inyección de C02 o presurización (Fig. l l), que consiste en llenar todas las líneas del citado gas para evitar la proliferación de gérmenes y bacterias. La etapa de vaciado (Fig.8) de producto o bebida de las líneas consiste en abrir las distintas electroválvulas desde las líneas auxiliares (Ll) hasta las líneas de producto (L2) o líneas de dispensación, e introducir C02 por ellas con el fin de que este gas empuje al producto o bebida hacia el barril (6).
Así pues, el C02 que posee el barril (6) sale por las líneas auxiliares (Ll) y se dirige hacia la columna (4) recirculando todo el producto o bebida en sentido inverso al de su salida por la línea de producto (L2) haciendo lo retroceder hasta el barril (6) del que procedía.
Una vez que quedan las líneas de producto (L2) vacías de bebida, se inicia la etapa de aclarado (Fig.9).
Esta etapa consiste en introducir agua (A) de la red general mediante una señal que recibe la electroválvula (95) situada a la salida de la red, y sucesivamente se van abriendo de forma ordenada el resto de electroválvulas (93) que componen la línea auxiliar (Ll), hasta llegar a una conexión en "Y" (51) que a su vez posee (en la línea auxiliar (Ll)) una válvula antirretorno (511) antes de llegar al grifo (5). De esta manera el agua (A) baja por la línea de producto (L2) pasando por el intercambiador (321, 322) hasta llegar al cabezal hidráulico (61) del barril (6), el cual está desconectado por seguridad al igual que la electroválvula (82) a su entrada que está cerrada, y la única salida que hay para el desalojo del agua (A) es una electroválvula (96) que está situada a la entrada al desagüe (D) de la red general.
A continuación se inicia la etapa de desinfección (Fig.10). El producto desinfectante (B) absorbido por la línea de aspiración (91) pasa por la bomba dosificadora (9), esta es la encargada de distribuir o regular la cantidad de producto desinfectante a cada una de las electroválvulas (93) que se dirigen a líneas de producto de cada uno de los barriles. Simultáneamente también se introduce agua (A) proveniente de la red general en las cantidades que previamente se han establecido para realizar la mezcla. Seguidamente y en dirección contraria al sentido de dispensación de la bebida, cuando la mezcla del producto desinfectante llega a la conexión en "Y" (51) de la columna del grifo sigue el recorrido por la línea de producto (L2) pasando por los intercambiadores (321, 322), y continua hasta llegar al cabezal hidráulico (61) del barril (6), el cual está desconectado por seguridad al igual que la electroválvula (82) a su entrada que está cerrada.
En este punto la electroválvula (96) que da salida al producto de desinfección a la red de desagüe general (D) está cerrada, por el contrario la electroválvula (97) que conecta con la línea auxiliar (Ll) está abierta por lo que se genera una recirculación del producto desinfectante por las líneas de producto (L2) todas las veces que se haya definido en el programa del procesador de control del sistema.
Una vez que la bomba de recirculación (94) ha terminado por indicación del proceso programado, la electroválvula (96) que conecta con la red general de desagüe (D), se abre procediendo por tanto al vaciado de todas las líneas que componen las líneas del sistema.
Una vez que quedan las líneas vacías de producto desinfectante, se inicia nuevamente el proceso automático de aclarado (Fig.9), que elimina posibles restos de producto desinfectante.
En último lugar se realiza la etapa de inyección de C02 o presurización (Fig. l l), que como se ha señalado anteriormente consiste en llenar todas las líneas del sistema con el citado gas para no permitir la proliferación de gérmenes y bacterias. En esta etapa, se abre la electroválvula (71) de C02 de manera que estando cerradas tanto la electroválvula (72) que conexiona con el barril como la electroválvula de desagüe (96), el gas pasa por la línea auxiliar (Ll) de forma que tanto la línea auxiliar (Ll) como la línea de producto (L2) se llenan de C02 de tal manera que todas y cada una de las líneas quedan llenas de este gas, para cerrarse posteriormente automáticamente todas las electroválvulas que componen el sistema.

Claims

REIVINDICACIONES
1.- SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que el sistema está constituido por un equipo suministrador y un dispositivo de limpieza, en el que el equipo suministrador a su vez está compuesto por un conjunto formado por una unidad condensadora (1), una cuba de banco de hielo (2), una unidad central (3) refrigerante, una columna/as (4) con grifo/os (5), un barril o barriles (6) que contienen producto o bebida, una botella de C02 (7) y todo ello conectado mediante una serie de tubos, electroválvulas, sensores, conectares, presostatos o similar que se CARACTERIZA
porque:
en el equipo suministrador :
la unidad condensadora (1) tiene un filtro (14) delante del ventilador (13) que retiene toda la suciedad no saturando al evaporador y no perdiendo potencia frigorífica, y también tiene instalado un anemómetro (15) el cual da una señal de alarma para limpiar el filtro (14) cuando detecta cualquier cambio de paso de aire refrigerante;
la cuba de banco de hielo (2) está integrada por dos cubetas (21 y 22) de polyester y fibra de vidrio estratificado y pintado de gelcoat que están metidas una dentro de la otra separadas por un aislante en todo su perímetro, y además incorpora una tapa de cierre hermético (26) que presuriza y estanca todo el conjunto;
la unidad central (3) esta está constituida por una caja (325) que está cerrada, aislada y estanca, fabricada con polyester y fibra de vidrio estratificado y pintado con gelcoat con un aislante térmico en todo su perímetro de poliuretano expandido, interiormente esta caja (325) tiene unos intercambiadores (321 y 322), una línea general de entrada (33) por donde entra el fluido refrigerante que proviene de la cuba del banco de hielo (2), una línea general de salida (331) por donde sale el fluido refrigerante hasta la cuba del banco de hielo (2), unas electroválvulas, presostatos, sensores de temperatura, y unos conectares; las columnas (4) que contienen los grifos (5) están fijadas encima de la caja (325) de la unidad central (3) y se compone de una línea de refrigeración (41) que tienen un extremo libre por lo que el líquido refrigerante sale por el e inunda interiormente toda la columna (4), un sensor de temperatura (43) que manda una señal a una electroválvula (37) que hay en la línea general de entrada (33) de la unidad central (3) que corta el paso de entrada del fluido refrigerante a la columna (4), este líquido refrigerante que inunda la columna (4) se evacúa por gravedad mediante un tubo aislado (411) que por su otro extremo está conectado, dentro de la caja (325) de la unidad central (3), a un tubo o conducto denominado pitón (8);
el barril o barriles (6) que contienen producto o bebida, tiene instalado un cabezal con un equipo hidráulico (61) que desconecta automáticamente el barril mediante un sensor (81) ubicado en una línea de producto que detecta el agotamiento del producto por lo que cierra una electroválvula (82) a la entrada del barril (6), desconectando el cabezal hidráulico (61) a fin de que no se descargue la línea de producto (L2) evitando un golpe de presión;
y la botella de C02 (7) que tiene una electroválvula (71) por donde sale una línea que se distribuye en un bypass, línea que por un lado va al barril (6) y tiene una electroválvula (72) y por el otro lado hay una línea auxiliar (Ll) con una electroválvula (73) y una válvula antirretorno (74), por donde se inicia la inyección de C02 al sistema;
- y en el que el dispositivo de limpieza se compone de unas determinadas electroválvulas (93), una línea de aspiración (91) por donde un producto de desinfección llega a una bomba dosificadora (9) a través de una válvula antirretorno (92), esta bomba dosificadora (9) actúa bajo la orden de un programa que manda una señal para dosificar la cantidad de producto desinfectante (B) oportuno en cada caso, donde simultáneamente el programa también manda una orden a una electroválvula (95) por donde entra agua (A) en unas proporciones determinadas de la red general por otra línea, esta línea además posee una válvula antirretorno (98); y por medio de una bomba de recirculación (94) permite que la mezcla de agua (A) con el producto desinfectante (B), recorra una línea auxiliar (Ll) y unas líneas de producto (L2) un número determinado de veces según el proceso del invento.
2. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que el equipo suministrador y el dispositivo de limpieza, según reivindicación 1 se CARACTERIZA porque está automatizado y es programable.
3. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que en el equipo suministrador cuando tiene una cuba de banco de hielo (2) doble, según reivindicación 1 se CARACTERIZA porque se le instala a unas líneas (16 y 161) de gas refrigerante de la unidad condensadora (1), unas electroválvulas y un bypass (18) a la salida de un compresor (17).
4. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la cuba del banco de hielo (2), según reivindicación 1 se CARACTERIZA porque el rango de temperaturas que trabaja el fluido refrigerante en el equipo suministrador está entre [-3,3°C y -5,5°C], en un porcentaje de glicol que oscila entre el [10% y 12%] en la mezcla, con un banco de hielo (2) en todo el perímetro del 50% del volumen de la cuba para un remanente de frió.
5. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que el aislante que separa las dos cubetas (21 y 22) que integran la cuba de banco de hielo (2), según reivindicación 1 se CARACTERIZA porque es de 3mm. de espesor.
6. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO porque el aislante térmico de poliuretano expandido de la caja (325) que compone la unidad central (3), según reivindicación 1 se CARACTERIZA porque es de 2mm.
7. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la unidad central (3), según reivindicación 1 se CARACTERIZA por que se ubica bajo la barra (10).
8. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la unidad central (3) según reivindicaciones 1 y 7 se CARACTERIZA porque se fija por una pequeña estructura o soporte (102), constituido por unas pletinas (103) de fácil desmontaje.
9. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que los intercambiadores (322) de la caja de la unidad central (3), según reivindicación 1 se CARACTERIZAN porque poseen una válvula antirretorno (351) y un sensor de temperatura (352) ubicados en una conexión de salida (35), de manera que cuando el sensor de temperatura (352) detecta una bajada de temperatura excesiva de la bebida que contiene el intercambiador (322), manda una señal a una electroválvula (341) ubicada en una conexión de entrada (34) que corta el paso de fluido refrigerante proveniente de la línea general de entrada (33).
10. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que el proceso de limpieza según reivindicación 1, se CARACTERIZA porque se realiza mediante una etapa de vaciado, en el que todas las líneas se vacían de producto o bebida retornando el producto al barril; seguidamente se efectúa una etapa de aclarado de las líneas para limpiar las paredes de los conductos de la mayor cantidad de restos que ha quedado; a continuación se prosigue con una etapa de desinfección, que realiza una recirculación de producto desinfectante purificando las líneas; seguidamente se realiza otra etapa de aclarado, que elimina los restos de producto desinfectante; y en último se procede a una etapa de inyección de C02 o presurización, que llena o satura todas las líneas con el citado gas evitando la proliferación de gérmenes y bacterias.
11. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la etapa de vaciado según las reivindicaciones 1 y 10, se
CARACTERIZA porque abre automáticamente las distintas electroválvulas desde la línea auxiliare (Ll), hasta el barril (6) situado en la línea de producto (L2); e introduce el C02 desde el barril (6) a la línea auxiliar (Ll), pasando por la electroválvula (72) y las electroválvulas (93), recirculando todo el producto o bebida en sentido inverso al de su salida por la línea de producto (L2), haciendo retroceder el citado producto hasta el barril (6) del que procedía.
12. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la etapa de aclarado según reivindicaciones 1 y 10, se CARACTERIZA porque se introduce agua (A) de la red general mediante una señal que recibe la electroválvula (95) situada a la salida de la red, y sucesivamente se van abriendo de forma ordenada el resto de electroválvulas (93) que componen la línea auxiliar (Ll), hasta llegar a una conexión en "Y" (51) que a su vez posee una válvula antirretorno (511) antes de llegar al grifo (5), de manera que el agua (A) baja por la línea de producto (L2) pasando por el intercambiador (321, 322) hasta llegar al cabezal hidráulico (61) del barril (6), el cual está desconectado por seguridad al igual que la electroválvula (82) a su entrada que está cerrada, y la única salida que hay para el desalojo del agua (A) es una electroválvula (96) que está situada a la entrada al desagüe (D) de la red general.
13. - SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la etapa de desinfección según reivindicaciones 1 y 10, se CARACTERIZA porque el producto desinfectante (B) absorbido por la línea de aspiración (91) pasa por la bomba dosificadora (9), que es la encargada de distribuir o regular la cantidad de producto desinfectante a cada una de las electroválvulas (93) que se dirigen a líneas de producto (L2) de cada uno de los barriles; simultáneamente también se introduce agua (A) proveniente de la red general en las cantidades que previamente se han establecido para realizar la mezcla, seguidamente y en dirección contraria al sentido de dispensación de la bebida, cuando la mezcla del producto desinfectante llega a la conexión en "Y" (51) de la columna del grifo sigue el recorrido por la línea de producto (L2) pasando por los intercambiadores (321, 322), y continua hasta llegar al cabezal hidráulico (61) del barril (6), el cual está desconectado por seguridad al igual que la electroválvula (82) a su entrada que está cerrada, estando en este punto la electroválvula (96) que da salida a la red de desagüe general (D) cerrada y por el contrario la electroválvula (97) que conecta con la línea auxiliar (Ll) está abierta, de modo que se genera una recirculación del producto desinfectante por las líneas de producto (L2) todas las veces que se haya definido en el programa del procesador de control del sistema, que una vez terminado la electroválvula (96) que conecta con la red general de desagüe (D) citada previamente, se abre procediendo por tanto al vaciado de todas las líneas que componen las líneas del sistema.
14.- SISTEMA DISPENSADOR DE BEBIDAS Y PROCESO DE LIMPIEZA INTEGRADO en el que la etapa de inyección de C02 o presurización según reivindicaciones 1 y 10 se CARACTERIZA porque se abre la electroválvula (71) de C02 de manera que estando cerradas tanto la electroválvula (72) que conexiona con el barril como la electroválvula de desagüe (96), el gas pasa por la línea auxiliar (Ll) de forma que tanto la línea auxiliar (Ll) como la línea de producto (L2) se llenan de C02 de tal manera que todas y cada una de las líneas quedan llenas de este gas, para cerrarse posteriormente automáticamente todas las electroválvulas que componen el sistema.
PCT/ES2014/070648 2013-08-09 2014-08-07 Sistema dispensador de bebidas y proceso de limpieza integrado WO2015018965A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201331245A ES2531015B1 (es) 2013-08-09 2013-08-09 Sistema dispensador de bebidas y proceso de limpieza integrado
ESP201331245 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015018965A1 true WO2015018965A1 (es) 2015-02-12

Family

ID=52460709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070648 WO2015018965A1 (es) 2013-08-09 2014-08-07 Sistema dispensador de bebidas y proceso de limpieza integrado

Country Status (2)

Country Link
ES (1) ES2531015B1 (es)
WO (1) WO2015018965A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345761A (zh) * 2016-09-12 2017-01-25 天津职业技术师范大学 一种细管内表面自动清洗装置
WO2019081720A1 (en) 2017-10-27 2019-05-02 Carlsberg Breweries A/S CLEANING UNIT FOR PROVIDING A CLEANING FLUID TO A BEVERAGE DELIVERY SYSTEM
EE01494U1 (et) * 2016-10-04 2020-04-15 OÜ UBC Holding Group Joogitoiteliini sanitaarse töötlemise ja jahutamise süsteem
WO2021137775A3 (en) * 2019-12-31 2021-10-28 Pubinno İnovasyon Arge Paz. A.Ş. A beverage line cleaning apparatus and system
WO2021261670A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 케그 캡 및 상기 케그 캡을 구비한 케그
WO2021261671A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 발효음료 제조장치
WO2021261678A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 발효음료 제조장치

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011854A1 (en) * 1993-10-29 1995-05-04 Alan Edwin Board Method and apparatus for cleaning liquid dispensing systems
WO1995012543A1 (en) * 1993-11-04 1995-05-11 Geoffrey Miles Furness Gas pressurized liquid delivery system
GB2290831A (en) * 1994-06-14 1996-01-10 Fenwick Hoi Tong Pau Fluid recovery system
GB2400597A (en) * 2003-03-22 2004-10-20 Imi Cornelius Beverage dispense system for chilled beverages
EP1767489A2 (en) * 2005-09-21 2007-03-28 Imi Cornelius (Uk) Limited IBeverage dispenser with purging means
GB2443332A (en) * 2004-08-13 2008-04-30 Scottish & Newcastle Plc Apparatus for dispensing beverages with means for forming condensation, frost or ice on one face of a housing
US20080264093A1 (en) * 2007-04-27 2008-10-30 Coors Brewing Company Insulated and Refrigerated Beverage Transport Line
ES2313239T3 (es) * 2004-08-17 2009-03-01 Imi Cornelius (Uk) Limited Sistema de dispensacion de bebidas.
WO2009142499A2 (en) * 2008-05-22 2009-11-26 Heineken Supply Chain B.V. Tapping apparatus and cooling apparatus with two heat exchangers and method for the formation of a tapping or cooling apparatus
WO2011051000A1 (en) * 2009-10-30 2011-05-05 Scott Malachy Sr Beverage coolers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995011854A1 (en) * 1993-10-29 1995-05-04 Alan Edwin Board Method and apparatus for cleaning liquid dispensing systems
WO1995012543A1 (en) * 1993-11-04 1995-05-11 Geoffrey Miles Furness Gas pressurized liquid delivery system
GB2290831A (en) * 1994-06-14 1996-01-10 Fenwick Hoi Tong Pau Fluid recovery system
GB2400597A (en) * 2003-03-22 2004-10-20 Imi Cornelius Beverage dispense system for chilled beverages
GB2443332A (en) * 2004-08-13 2008-04-30 Scottish & Newcastle Plc Apparatus for dispensing beverages with means for forming condensation, frost or ice on one face of a housing
ES2313239T3 (es) * 2004-08-17 2009-03-01 Imi Cornelius (Uk) Limited Sistema de dispensacion de bebidas.
EP1767489A2 (en) * 2005-09-21 2007-03-28 Imi Cornelius (Uk) Limited IBeverage dispenser with purging means
US20080264093A1 (en) * 2007-04-27 2008-10-30 Coors Brewing Company Insulated and Refrigerated Beverage Transport Line
WO2009142499A2 (en) * 2008-05-22 2009-11-26 Heineken Supply Chain B.V. Tapping apparatus and cooling apparatus with two heat exchangers and method for the formation of a tapping or cooling apparatus
WO2011051000A1 (en) * 2009-10-30 2011-05-05 Scott Malachy Sr Beverage coolers

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106345761A (zh) * 2016-09-12 2017-01-25 天津职业技术师范大学 一种细管内表面自动清洗装置
EE01494U1 (et) * 2016-10-04 2020-04-15 OÜ UBC Holding Group Joogitoiteliini sanitaarse töötlemise ja jahutamise süsteem
WO2019081720A1 (en) 2017-10-27 2019-05-02 Carlsberg Breweries A/S CLEANING UNIT FOR PROVIDING A CLEANING FLUID TO A BEVERAGE DELIVERY SYSTEM
EP3998227A1 (en) 2017-10-27 2022-05-18 Carlsberg Breweries A/S A cleaning unit for supplying a cleaning liquid to a beverage dispensing system
US11407631B2 (en) 2017-10-27 2022-08-09 Carlsberg Breweries A/S Cleaning unit for supplying a cleaning liquid to a beverage dispensing system
WO2021137775A3 (en) * 2019-12-31 2021-10-28 Pubinno İnovasyon Arge Paz. A.Ş. A beverage line cleaning apparatus and system
WO2021261670A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 케그 캡 및 상기 케그 캡을 구비한 케그
WO2021261671A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 발효음료 제조장치
WO2021261678A1 (ko) * 2020-06-24 2021-12-30 주식회사 인더케그 발효음료 제조장치

Also Published As

Publication number Publication date
ES2531015B1 (es) 2015-11-06
ES2531015A1 (es) 2015-03-09

Similar Documents

Publication Publication Date Title
WO2015018965A1 (es) Sistema dispensador de bebidas y proceso de limpieza integrado
ES2313239T3 (es) Sistema de dispensacion de bebidas.
ES2424148T3 (es) Dispensación de bebidas
KR101419751B1 (ko) 순간 냉각장치
BR112016021850A2 (pt) Aparelho para dispensar uma bebida
US9771252B2 (en) Beverage dispenser
ES2966965T3 (es) Dispositivo de refrigeración para contenedores de provisiones con alimentos líquidos
ES2228742T3 (es) Aparato refrigerador con unidad dispensadora de agua fria.
KR20150016158A (ko) 기능수 공급 장치
ES2731155T3 (es) Sistema y método de dispensación de bebidas
KR20140061861A (ko) 얼음 정수기
KR100487816B1 (ko) 물 공급기
IES990050A2 (en) Improvements in dispenser units
CN208905556U (zh) 嵌入式净饮机
CN208905547U (zh) 嵌入式净饮机
KR100657766B1 (ko) 세균번식방지 시스템을 갖는 냉온수기
ES2606341B1 (es) Válvula para un sistema y método de distribución de bebida con cambio automático
ES2221607T3 (es) Instalacion compacta de distribucion de cerveza.
CN216675466U (zh) 一种酒店用冷热直饮水机
KR101708224B1 (ko) 냉동싸이클을 이용하여 유로 확보가 가능한 순간 냉각장치
JP4225470B2 (ja) 飲料ディスペンサ
US12004681B2 (en) Beverage cooling device
CN208905548U (zh) 嵌入式净饮机
KR200428986Y1 (ko) 냉수와 온수가 동시에 배출되도록 구비되는 냉온수기
CN209879637U (zh) 售水机出水管路系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834312

Country of ref document: EP

Kind code of ref document: A1