WO2015018748A1 - Elektrische energiespeichervorrichtung und verfahren zum hochfahren der spannung an deren anschlüssen - Google Patents

Elektrische energiespeichervorrichtung und verfahren zum hochfahren der spannung an deren anschlüssen Download PDF

Info

Publication number
WO2015018748A1
WO2015018748A1 PCT/EP2014/066569 EP2014066569W WO2015018748A1 WO 2015018748 A1 WO2015018748 A1 WO 2015018748A1 EP 2014066569 W EP2014066569 W EP 2014066569W WO 2015018748 A1 WO2015018748 A1 WO 2015018748A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
voltage
storage device
module
terminals
Prior art date
Application number
PCT/EP2014/066569
Other languages
English (en)
French (fr)
Inventor
Stefan Butzmann
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Priority to US14/910,397 priority Critical patent/US10110035B2/en
Publication of WO2015018748A1 publication Critical patent/WO2015018748A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention is based on an electrical energy storage device, in particular a battery device, with two electrical connections and at least one current path electrically connecting the two connections, in which a plurality of energy storage modules of the energy storage device are connected to a series connection of these energy storage modules, wherein at least one of the energy storage modules has a plurality of storage units.
  • the invention further relates to a method for raising the voltage at the terminals of such an electrical energy storage device.
  • a failure of the traction battery can lead to a so-called “lounger.” Failure can even lead to safety-relevant problems in wind turbines, for example, where batteries are used as electrical energy stores to protect the wind turbine from impermissible operating conditions in a strong wind In the event of failure, the wind turbine may in some circumstances fall into such an inadmissible operating state. ⁇
  • the energy storage modules of an energy storage device in the intermediate circuit (DC voltage intermediate circuit) of an inverter system or an inverter system are connected.
  • This DC link is provided with a capacitive component, the DC link capacitor, for constant holding of the DC voltage and for suppressing voltage peaks. Due to the principle, the capacitive component must be preloaded.
  • the energy storage modules of the electrical energy storage device are connected in the intermediate circuit parallel to the capacitive component.
  • a precharging current path connected in parallel to the contactor in the first main current path is provided with a so-called precharge contactor and a protective resistor.
  • the pre-charging contactor and the main contactor attached to the other terminal of the electrical energy storage device, ie in the second main current path are first switched on.
  • the capacitive component acting as a DC link capacitor is first charged with a limited current.
  • the main contactor is switched on.
  • the electrical energy storage device according to the invention with the features mentioned in claim 1 and the inventive method with the features mentioned in claim 9 offer the advantage that the charging of a capacitive device can be performed easily, gently and compactly.
  • the at least one energy storage module comprises a controllable multi-voltage stage converter for selectively connecting one or more of its memory units in the current path for stepwise setting of a module voltage in response to a drive signal
  • Control and / or regulating device of the electrical energy storage device has.
  • the voltage at the terminals of the electrical energy storage device can be started up in small voltage steps. These voltage steps are smaller than the voltage of a single memory unit of the at least one energy storage module having the controllable multi-voltage stage converter.
  • Such an energy storage device is particularly well suited for precharging a capacitive component connected to the terminals of the energy storage device, in particular an intermediate circuit capacitor of an intermediate circuit connected downstream of the energy storage device.
  • the small voltage steps during startup do not lead to high current peaks in the capacitive component, as a result of which this component does not age so quickly.
  • the smallest storage units of the electrical energy storage modules are the
  • the electrical energy storage device is in particular a battery device with battery modules which are connected to at least one series circuit. At least one of these battery modules has a plurality of battery units, preferably battery cells, and a controllable multi-voltage stage converter (multi-level converter).
  • a battery device can be designed, for example, as a traction battery device for electric or hybrid vehicles.
  • the maximum module voltage is twice as large or more than twice as large as the voltage of the individual memory units of the at least one energy storage module with the controllable multi-voltage stage converter.
  • Extra Low Voltage is a voltage whose upper voltage limit does not exceed the limit value for voltage range I according to IEC 60449.
  • the limit value for DC voltage is 120 V. This value corresponds to the limit for the continuously permissible contact voltage for adult humans and normal applications, which is considered not to be life-threatening.
  • Safety Extra Low Voltage is an electrical voltage that, due to its low height, offers special protection against electric shock. If the rated voltage at DC voltage is less than 60 V, protection against direct contact is not necessary.
  • the maximum module voltage is particularly preferred in the safety extra-low voltage range, ie at most 60 V.
  • the electrical energy storage device may consist of relatively few energy storage modules, the modules voltage technology without special knowledge or special device shadow, for example, in a module exchange in a workshop , can be handled.
  • the multi-voltage stage converter and the control and / or regulating device ensure that the voltage can be increased in significantly smaller voltage steps.
  • all the energy storage modules of the device have a plurality of memory units and a multi-voltage stage converter.
  • at least one of the energy storage modules has no controllable multi-voltage stage converter. This at least one energy storage module is set up by means of an associated switching device, optionally the at least one storage unit of this module in a section of Rungs or alternatively short-circuit this section of the rung.
  • each of the controllable multi-voltage stage converter has a circuit arrangement with controllable switches and with diode elements.
  • the controllable switches are preferably designed as power semiconductor components, in particular as power transistors such as power MOSFETs (MOSFET: metal-oxide-semiconductor field-effect transistor).
  • the diode elements are semiconductor devices that allow current to pass only in one direction and block the current in the other direction, thus acting high impedance.
  • the energy storage device has a parallel connection of a plurality of current paths electrically connecting the two connections. Each of the rungs contains energy storage modules. Due to the parallel connection, a sufficient output current is available.
  • the controllable switches are preferably designed as power semiconductor components, in particular as power transistors such as power MOSFETs (MOSFET: metal-oxide-semiconductor field-effect transistor).
  • MOSFET metal-oxide-semiconductor field-effect transistor.
  • the diode elements are semiconductor devices that allow current to pass only in one
  • Energy storage device acting as a DC link capacitor capacitive device, which is arranged in a current path between the terminals.
  • the energy storage device has a parallel to the current path with the capacitive component connected to the two terminals inverter.
  • Converter device can then be connected to an electrical machine.
  • the electrical energy storage device has at least one current path electrically connecting the two terminals, are interconnected in the plurality of energy storage modules to a series connection of these modules at least one of the energy storage modules, in particular each of these
  • Energy storage modules a plurality of memory units, preferably memory cells, wherein the at least one energy storage module a a controllable multi-voltage stage converter for selectively connecting one or more of its memory units in the current path for stepwise increasing a module voltage in response to a drive signal and the voltage at the terminals is ramped up by driving the multi-voltage stage converters in a step size at least is on average smaller than the maximum module voltage of the at least one energy storage module with the multi-voltage stage converter.
  • the step size is to be understood as the height of the voltage level.
  • the method is in particular a method for precharging a capacitive component connected to the terminals.
  • FIG. 1 is a schematic representation of an electrical energy storage device for precharging a connected to the terminals of this device capacitive device according to a first embodiment of the invention
  • Fig. 2 is a schematic representation of the electrical energy storage device according to a second embodiment of the invention.
  • FIG. 1 shows a schematic representation of a modular electrical energy storage device 10 for precharging a capacitive component 12 connected to a connection device of this device 10.
  • This capacitive component 12 represents, for example, an intermediate circuit capacitor C Z K of an intermediate circuit which is not shown in more detail
  • Electrical energy storage device 10 is formed as a battery device with a series circuit of energy storage modules 14, wherein these energy storage modules 14 are configured in such a battery device as battery modules.
  • the illustrated electrical energy storage device 10 comprises two electrical connections 16, 18 of the connection device and a the two terminals 16, 18 electrically connecting current path 20 in which a plurality of the energy storage modules 14 via their two module terminals 22, 24 to a Series circuit of energy storage modules 14 are connected.
  • the one terminal 16 is connected to a reference potential (ground M).
  • the other terminal 18 is at an electrical potential, which is determined by the sum of the module voltages of the energy storage modules 14 connected in series in the current path. From the corresponding series connection of the electrical
  • Energy storage modules 14 are shown in FIG. 1, only two modules 14 by way of example.
  • Each of the energy storage modules 14 of the electrical energy storage device 10 has a plurality (exactly two in FIG. 1) designed as storage cells
  • Memory units 26 and a controllable multi-level converter (multi-level converter) 28 for selectively interconnecting a single one of the two memory units 26 or a series connection of the two memory units 26 of this module 14 in the current path 20.
  • Each of the controllable multi-voltage stage converter 28 has a circuit arrangement with controllable switches 30 and with diode elements 32.
  • the circuit arrangement is constructed in such a way that by appropriate control of the switch 30 either either (i) each of the memory units 26 individually or (ii) a series connection of both memory units 26 or (iii) a short-circuit current path between the module terminals 22, 24 in dependence a drive signal of a (not shown) control and / or regulating device of the electrical energy storage device 10 can be interposed.
  • the voltage at the terminals 16, 18 of the electrical energy storage device 10 is increased by driving the multi-voltage stage converter 28 stepwise in a step size corresponding to the voltage of the individual storage units 26. With two memory units that deliver the same output voltage, this step size corresponds to half the maximum module voltage.
  • FIG. 2 shows a second embodiment of the electrical energy storage device 10.
  • this energy storage device 10 only one of the energy storage modules 14 is equipped with a multi-voltage stage converter 28.
  • the voltage across the capacitive element (the capacitor voltage U C ZK) is gradually increased by the converter 28 having module 14 and then at the same time this module 14 using the integrated switch 30 bridged and a conventional energy storage module 14 'added in half-bridge topology.
  • the electrical energy storage device 10 allows in both embodiments to ramp up the voltage for the same number of modules in smaller voltage levels. This results in smaller current peaks on the capacitive component 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft eine elektrische Energiespeichervorrichtung (10), insbesondere Batterievorrichtung, mit zwei elektrischen Anschlüssen(16, 18) und mindestens einem die beiden Anschlüsse (16, 18) elektrisch verbindenden Strompfad (20), in dem mehreren Energiespeichermodule (14) der Energiespeichervorrichtung (10) zu einer Serienschaltung dieser Energiespeichermodule (14) verschaltet sind, wobei zumindest eines der Energiespeichermodule (14), insbesondere jedes dieser Energiespeichermodule, mehrere Speichereinheiten (26) aufweist. Es ist vorgesehen, dass das zumindest eine Energiespeichermodul (14) einen ansteuerbaren Mehrspannungsstufen-Konverter (28) für ein wahlweises Verschalten einer einzelnen oder mehrerer seiner Speichereinheiten (26) in dem Strompfad (20) zum stufenweisen Einstellen einer Modulspannung in Abhängigkeit von einem Ansteuersignal einer Steuer-und/oder Regeleinrichtung der elektrischen Energiespeichervorrichtung (10) aufweist. Die Erfindung betrifft weiterhin ein Verfahren zum Hochfahren der Spannung an den Anschlüssen (16, 18) einer entsprechenden Energiespeichervorrichtung (10).

Description

Beschreibung
Titel
Elektrische Energiespeichervorrichtung und Verfahren zum Hochfahren der Spannung an deren Anschlüssen
Die Erfindung geht aus von einer elektrischen Energiespeichervorrichtung, insbesondere Batterievorrichtung, mit zwei elektrischen Anschlüssen und mindestens einem die beiden Anschlüsse elektrisch verbindenden Strompfad, in dem mehrere Energiespeichermodule der Energiespeichervorrichtung zu einer Serienschaltung dieser Energiespeichermodule verschaltet sind, wobei zumindest eines der Energiespeichermodule mehrere Speichereinheiten aufweist. Die Erfindung betrifft weiterhin ein Verfahren zum Hochfahren der Spannung an den Anschlüssen einer derartigen elektrischen Energiespeichervorrichtung.
Stand der Technik
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie zum Beispiel bei Windenenergieanlagen (WEA), als auch in Fahrzeugen, zum Beispiel in Elektro- und Hybridfahrzeugen, vermehrt modular aufgebaute elektrische Energiespeichervorrichtungen, insbesondere Batterien beziehungsweise Batterievorrichtungen, als Spannungsquellen zum Einsatz kommen werden, an die sehr hohe Anforderungen bezüglich Zuverlässigkeit gestellt werden. Hintergrund für diese hohen Anforderungen ist, dass ein Ausfall eines Energiespeichermoduls der Vorrichtung, also zum Beispiel einer Batterie oder einer Batteriezelle der Batterievorrichtung, zu einem Ausfall des Gesamtsystems führen kann. So führt zum Beispiel bei einem Elektrof ahrzeug ein Ausfall der Traktionsbatterie zu einem sogenannten„Liegenbleiber". Der Ausfall kann sogar zu sicherheitsrelevanten Problemen führen. So werden bei Windenergieanlagen Batterien als elektrische Energiespeicher eingesetzt, um bei starkem Wind die Windenergieanlage durch eine Rotorblattverstellung vor unzulässigen Betriebszuständen zu schützen. Kommt es zu einem Ausfall, so kann die Windenergieanlage unter Umständen in einen solchen unzulässigen Betriebszustand geraten. Λ
Oftmals sind die Energiespeichermodule einer Energiespeichervorrichtung im Zwischenkreis (Gleichspannungszwischenkreis) eines Wechselrichtersystems oder eines Umrichtersystems verschaltet. Dieser Zwischenkreis ist zum konstan- ten Halten der Gleichspannung und zum Unterdrücken von Spannungsspitzen mit einem kapazitiven Bauelement, dem Zwischenkreiskondensator, versehen. Prinzipbedingt muss das kapazitive Bauelement dazu vorgeladen sein. Die Energiespeichermodule der elektrischen Energiespeichervorrichtung sind im Zwischenkreis parallel zu dem kapazitiven Bauelement geschaltet.
Würde der elektrische Energiespeicher ohne Vorladen direkt auf das kapazitive Bauelement geschaltet, so würde kurzfristig ein extrem hoher Strom fließen, bis das kapazitive Bauelement geladen ist, da ein Energiespeicher wie zum Beispiel eine Batterie einen geringen Innenwiderstand aufweist und das als Zwischen- kreiskondensator dienende kapazitive Bauelement eine hohe elektrische Kapazität besitzt. Dies würde zu einer extremen Alterung dieser Bauteile und einem frühen Ausfall führen. Daher ist es erforderlich, das kapazitive Bauelement durch moderate Bestromung vorzuladen. Um die Energiespeichervorrichtung beziehungsweise deren Energiespeichermodule bei einem entsprechenden Fahrzeug vom Fahrzeugbordnetz trennen zu können, sind typischerweise zwei als Leistungsschalter ausgebildete Schalteinrichtungen, meist Schütze, vorgesehen, die in je einem der Hauptstrompfade angeordnet sind. Beim Einschalten der beiden Schütze würde jedoch ein erhebli- eher Strom in das den Zwischenkreis-Kondensator bildende kapazitive Bauelement fließen. Daher ist ein parallel zu dem Schütz im ersten Hauptstrompfad geschalteter Vorladestrompfad mit einem sogenannten Vorladeschütz und mit einem Schutzwiderstand vorgesehen. Zum Vorladen werden zunächst das Vorladeschütz und das am anderen An- schluss der elektrischen Energiespeichervorrichtung, also im zweiten Hauptstrompfad, angebrachte Hauptschütz eingeschaltet. Hierdurch wird das als Zwischenkreiskondensator wirkende kapazitive Bauelement zunächst mit einem begrenzten Strom aufgeladen. Sobald die Spannung über dem kapazitiven Bau- element hinreichend groß ist, wird das Hauptschütz eingeschaltet. „
Nachteilig an dem beschriebenen Verfahren sind die relativ hohen Kosten, der relativ große beanspruchte Bauraum sowie das Gewicht des Vorladeschützes und des den Vorladewiderstand bereitstellenden Bauelements. Die erfindungsgemäße elektrische Energiespeichervorrichtung mit den in Anspruch 1 genannten Merkmalen und das erfindungsgemäße Verfahren mit den in Anspruch 9 genannten Merkmalen bieten den Vorteil, dass das Aufladen eines kapazitiven Bauelements einfach, schonend und platzsparend durchgeführt werden kann.
Bei der erfindungsgemäßen elektrischen Energiespeichervorrichtung ist vorgesehen, dass das zumindest eine Energiespeichermodul einen ansteuerbaren Mehrspannungsstufen-Konverter für ein wahlweises Verschalten einer einzelnen oder mehrerer seiner Speichereinheiten in dem Strompfad zum stufenweisen Einstellen einer Modulspannung in Abhängigkeit von einem Ansteuersignal einer
Steuer- und/oder Regeleinrichtung der elektrischen Energiespeichervorrichtung aufweist. Durch den/die Mehrspannungsstufen-Konverter kann die Spannung an den Anschlüssen der elektrischen Energiespeichervorrichtung in kleinen Spannungsschritten hochgefahren werden. Diese Spannungsschritte sind kleiner als die Spannung einer einzelnen Speichereinheit des mindestens einen Energiespeichermoduls, das den ansteuerbaren Mehrspannungsstufen-Konverter aufweist. Eine solche Energiespeichervorrichtung eignet sich besonders gut zum Vorladen eines an die Anschlüsse der Energiespeichervorrichtung angeschlossenen kapazitiven Bauelements, insbesondere eines Zwischenkreiskondensators eines der Energiespeichervorrichtung nachgeschalteten Zwischenkreises. Durch die kleinen Spannungsschritte beim Hochfahren kommt es nicht zu hohen Stromspitzen im kapazitiven Bauelement, wodurch dieses Bauteil nicht so schnell altert. Die kleinsten Speichereinheiten der elektrischen Energiespeichermodule sind die
Speicherzellen. Die elektrische Energiespeichervorrichtung ist insbesondere eine Batterievorrichtung mit Batteriemodulen die zu mindestens einer Serienschaltung verschaltet sind. Zumindest eines dieser Batteriemodule weist mehrere Batterieeinheiten, vorzugsweise Batteriezellen, und einen ansteuerbaren Mehrspan- nungsstufen-Konverter (Multi-Level-Konverter) auf. Eine derartige Batterievorrichtung kann beispielsweise als Traktions-Batterievorrichtung für Elektro- oder Hybridfahrzeuge ausgebildet sein. Gemäß einer bevorzugten Ausgestaltung der Erfindung liegt ist die maximale Modulspannung doppelt so groß oder mehr als doppelt so groß wie die Spannung der einzelnen Speichereinheiten des mindestens einen Energiespeicher- moduls mit dem ansteuerbaren Mehrspannungsstufen-Konverter.
Insbesondere ist die maximale Modulspannung im Kleinspannungsbereich (umgangssprachlich auch Niedervolt- oder Schwachstrombereich genannt). Kleinspannung (engl. Extra Low Voltage, ELV) ist eine Spannung deren Spannungs- obergrenze den Grenzwert für den Spannungsbereich I nach IEC 60449 nicht überschreitet. Der Grenzwert für Gleichspannung (DC) liegt bei 120 V. Dieser Wert entspricht der Grenze für die dauernd zulässige Berührungsspannung für erwachsene Menschen und normale Anwendungsfälle, die als nicht lebensbedrohlich gilt. Sicherheitskleinspannung (engl. Safety Extra Low Voltage, SELV) ist eine elektrische Spannung, die aufgrund ihrer geringen Höhe besonderen Schutz gegen einen elektrischen Schlag bietet. Ist die Nennspannung bei Gleichspannung (DC) kleiner als 60 V, so ist ein Schutz gegen direktes Berühren nicht nötig. Besonders bevorzugt ist die maximale Modulspannung im Sicherheitskleinspan- nungsbereich, also bei höchstens 60 V.
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist die maximale Modulspannung im Bereich 50 V < X < 60 V. Die elektrische Energiespeichervorrichtung kann aus relativ wenigen Energiespeichermodulen bestehen, wobei die Module spannungstechnisch ohne besondere Kenntnisse oder besondere Gerät- schatten, beispielsweise bei einem Modultausch in einer Werkstatt, gehandhabt werden können. Auf der anderen Seite wird durch den/die Mehrspannungsstufen-Konverter und die Steuer- und/oder Regeleinrichtung gewährleistet, dass die Spannung in deutlich kleineren Spannungsschritten hochgefahren werden kann. Gemäß einer vorteilhaften Ausgestaltung der Erfindung weisen alle Energiespeichermodule der Vorrichtung mehrere Speichereinheiten und einen Mehrspannungsstufen-Konverter auf. Gemäß einer alternativen Ausgestaltung der Erfindung weist mindestens eines der Energiespeichermodule keinen ansteuerbaren Mehrspannungsstufen-Konverter auf. Dieses mindestens eine Energiespeicher- modul ist mittels einer zugeordneten Schaltvorrichtung dazu eingerichtet, wahlweise die mindestens eine Speichereinheit dieses Moduls in einen Abschnitt des Strompfades aufzunehmen oder diesen Abschnitt des Strompfades alternativ kurzzuschließen.
Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung weist jeder der ansteuerbaren Mehrspannungsstufen-Konverter eine Schaltungsanordnung mit ansteuerbaren Schaltern und mit Diodenelementen auf. Mittels derartiger elektrischer Bauelemente lässt sich ein ansteuerbaren Mehrspannungsstufen- Konverter relativ einfach aufbauen. Die ansteuerbaren Schalter sind vorzugsweise als Leistungshalbleiter-Bauelemente, insbesondere als Leistungstransistoren wie etwa Leistungs-MOSFETs (MOSFET: Metall-Oxid-Halbleiter-Feldeffekttransistor) ausgebildet. Die Diodenelemente sind Halbleiterbauelemente, die Strom nur in einer Richtung passieren lassen und den Strom in der anderen Richtung sperren, also hochohmig wirken. Mit Vorteil weist die Energiespeichervorrichtung eine Parallelschaltung mehrerer die beiden Anschlüsse elektrisch verbindenden Strompfade auf. In jedem der Strompfade befinden sich Energiespeichermodule. Durch die Parallelschaltung steht ein hinreichender Ausgangsstrom zur Verfügung. Gemäß noch einer weiteren bevorzugten Ausgestaltung der Erfindung weist die
Energiespeichervorrichtung ein als Zwischenkreiskondensator wirkendes kapazitives Bauelement auf, das in einem Strompfad zwischen den Anschlüssen angeordnet ist. Mit Vorteil ist dabei vorgesehen, dass die Energiespeichervorrichtung eine parallel zu dem Strompfad mit dem kapazitiven Bauelement an die beiden Anschlüsse angeschlossene Umrichtereinrichtung aufweist. An diese
Umrichtereinrichtung kann dann eine elektrische Maschine angeschlossen werden.
Bei dem erfindungsgemäßen Verfahren zum Hochfahren der Spannung an den Anschlüssen einer elektrischen Energiespeichervorrichtung, insbesondere einer vorstehend genannten elektrischen Energiespeichervorrichtung, ist vorgesehen, dass die elektrische Energiespeichervorrichtung mindestens einen die beiden Anschlüsse elektrisch verbindenden Strompfad aufweist, in dem mehreren Energiespeichermodule zu einer Serienschaltung dieser Module verschaltet sind, wo- bei zumindest eines der Energiespeichermodule, insbesondere jedes dieser
Energiespeichermodule, mehrere Speichereinheiten, vorzugsweise Speicherzellen aufweist, wobei das zumindest eine Energiespeichermodul einen ansteuerbaren Mehrspannungsstufen-Konverter für ein wahlweises Verschalten einer einzelnen oder mehrerer seiner Speichereinheiten in dem Strompfad zum stufenweisen Erhöhen einer Modulspannung in Abhängigkeit von einem An- steuersignal aufweist und die Spannung an den Anschlüssen durch Ansteuern der Mehrspannungsstufen-Konverter in einer Schrittweite hochgefahren wird, die zumindest im Mittel kleiner als die maximale Modulspannung des zumindest einen Energiespeichermoduls mit dem Mehrspannungsstufen-Konverter ist. Unter der Schrittweite ist in diesem Zusammenhang die Höhe der Spannungsstufe zu verstehen. Das Verfahren ist insbesondere ein Verfahren für ein Vorladen eines an den Anschlüssen angeschlossenen kapazitiven Bauelements.
Die Erfindung wird im Folgenden anhand von Abbildungen näher erläutert. Es zeigt
Fig. 1 eine schematische Darstellung einer elektrischen Energiespeichervorrichtung zum Vorladen eines an die Anschlüsse dieser Vorrichtung angeschlossenen kapazitiven Bauelements gemäß einer ersten Ausführungsform der Erfindung und
Fig. 2 eine schematische Darstellung der elektrischen Energiespeichervorrichtung gemäß einer zweiten Ausführungsform der Erfindung.
Die Figur 1 zeigt in einer schematischen Darstellung eine modular aufgebaute elektrische Energiespeichervorrichtung 10 zum Vorladen eines an eine Anschlusseinrichtung dieser Vorrichtung 10 angeschlossenen kapazitiven Bauelements 12. Dieses kapazitive Bauelement 12 stellt beispielsweise einen Zwi- schenkreiskondensator CZK eines nicht genauer dargestellten Zwischenkreises dar. Die dargestellte elektrische Energiespeichervorrichtung 10 ist als Batterievorrichtung mit einer Serienschaltung von Energiespeichermodulen 14 ausgebildet, wobei diese Energiespeichermodule 14 bei einer solchen Batterievorrichtung als Batteriemodule ausgestaltet sind.
Die dargestellte elektrischen Energiespeichervorrichtung 10 umfasst zwei elektrische Anschlüsse 16, 18 der Anschlusseinrichtung und einen die beiden Anschlüsse 16, 18 elektrisch verbindenden Strompfad 20, in dem mehrere der Energiespeichermodule 14 über ihre je zwei Modulanschlüsse 22, 24 zu einer Serienschaltung von Energiespeichermodulen 14 verschaltet sind. Der eine Anschluss 16 ist mit einem Referenzpotential (Masse M) verbunden. Der andere Anschluss 18 liegt auf einem elektrischen Potential, welches von der Summe der Modulspannungen der im Strompfad seriell verschalteten Energiespeichermodu- le 14 bestimmt wird. Von der entsprechenden Serienschaltung der elektrischen
Energiespeichermodule 14 sind in Fig. 1 nur zwei Module 14 exemplarisch dargestellt.
Jedes der Energiespeichermodule 14 der elektrischen Energiespeichervorrich- tung 10 weist mehrere (in Fig. 1 genau zwei) als Speicherzellen ausgebildete
Speichereinheiten 26 sowie einen ansteuerbaren Mehrspannungsstufen- Konverter (Multi-Level Konverter) 28 zum wahlweisen Verschalten einer einzelnen der beiden Speichereinheiten 26 oder einer Serienschaltung der beiden Speichereinheiten 26 dieses Moduls 14 in dem Strompfad 20 auf.
Jeder der ansteuerbaren Mehrspannungsstufen-Konverter 28 weist eine Schaltungsanordnung mit ansteuerbaren Schaltern 30 und mit Diodenelementen 32 auf. Die Schaltungsanordnung ist dabei derart aufgebaut, dass durch entsprechende Ansteuerung der Schalter 30 wahlweise entweder (i) jede der Speicher- einheiten 26 einzeln oder (ii) eine Serienschaltung beider Speichereinheiten 26 oder (iii) ein Kurzschlussstrompfad zwischen die Modulanschlüsse 22, 24 in Abhängigkeit von einem Ansteuersignal einer (nicht gezeigten) Steuer- und/oder Regeleinrichtung der elektrischen Energiespeichervorrichtung 10 zwischengeschaltet werden kann.
Es ergibt sich folgende Funktion und folgende Vorteile der elektrischen Energiespeichervorrichtung:
Die Spannung an den Anschlüssen 16, 18 der elektrischen Energiespeichervor- richtung 10 wird durch Ansteuern der Mehrspannungsstufen-Konverter 28 stufenweise in einer Schrittweite hochgefahren, die der Spannung der einzelnen Speichereinheiten 26 entspricht. Bei zwei Speichereinheiten, die die gleiche Ausgangsspannung liefern, entspricht diese Schrittweite also der halben maximalen Modulspannung.
Durch dieses Hochfahren der Spannung der Vorrichtung 10 wird das in einem Strompfad 34 des Zwischenkreises zwischen den Anschlüssen 16, 18 angeord- nete kapazitive Bauelement 12 ohne Auftreten von größeren Stromspitzen an diesem kapazitiven Bauelement 12 vorgeladen. Ein Vorladen auf diese Weise schont das kapazitive Bauelement 12 und lässt es weniger schnell altern.
Fig. 2 zeigt eine zweite Ausführungsform der elektrischen Energiespeichervorrichtung 10. Bei dieser Energiespeichervorrichtung 10 ist nur eines der Energiespeichermodule 14 mit einem Mehrspannungsstufen-Konverter 28 ausgerüstet. Die anderen Energiespeichermodule 14' sind als konventionelle Energiespeichermodule 14' in Halbbrücken-Topologie ausgebildet. Derartige Energiespeichermodule 14' sind mittels ihrer Schaltvorrichtung dazu eingerichtet, wahlweise ihre mindestens eine Speichereinheit 26 (hier ihre zwei in Serie geschalteten Speichereinheiten 26) in einen Abschnitt des Strompfades 20 aufzunehmen oder diesen Abschnitt des Strompfades 20 alternativ kurzzuschließen.
Bei Verwendung eines einzelnen Energiespeichermoduls 14 mit einem Mehrspannungsstufen-Konverter 28 in der Energiespeichervorrichtung 10 wird die Spannung am kapazitiven Bauelement (die Kondensatorspannung UCZK) stufenweise durch das den Konverter 28 aufweisende Modul 14 erhöht und danach zeitgleich dieses Modul 14 mit Hilfe der integrierten Schalter 30 überbrückt und ein konventionelles Energiespeichermodul 14' in Halbbrücken-Topologie hinzu geschaltet.
Bei der Ausführung aller Energiespeichermodule 14 als Energiespeichermodule 14 mit Mehrspannungsstufen-Konvertern 28 (wie in Fig. 1 gezeigt) wird die Spannung der Energiespeichermodule 14 einfach nacheinander stufenweise hochgefahren.
Die erfindungsgemäße elektrische Energiespeichervorrichtung 10 erlaubt in beiden Ausführungsformen das Hochfahren der Spannung bei gleicher Modulanzahl in kleineren Spannungsstufen. Dadurch ergeben sich kleinere Stromspitzen am kapazitiven Bauelement 12.

Claims

Ansprüche
Elektrische Energiespeichervorrichtung (10), insbesondere Batterievorrichtung, mit zwei elektrischen Anschlüssen (16, 18) und mindestens einem die beiden Anschlüsse (16, 18) elektrisch verbindenden Strompfad (20), in dem mindestens zwei Energiespeichermodule (14, 14') der Energiespeichervorrichtung (10) zu einer Serienschaltung dieser Energiespeichermodule (14, 14') verschaltet sind, wobei zumindest eines der Energiespeichermodule (14) mehrere Speichereinheiten (26) aufweist,
dadurch gekennzeichnet, dass
das zumindest eine Energiespeichermodul (14) einen ansteuerbaren Mehrspannungsstufen-Konverter (28) für ein wahlweises Verschalten einer einzelnen oder mehrerer seiner Speichereinheiten (26) in dem Strompfad (20) zum stufenweisen Einstellen einer Modulspannung in Abhängigkeit von einem Ansteuersignal einer Steuer- und/oder Regeleinrichtung der elektrischen Energiespeichervorrichtung (10) aufweist.
Energiespeichervorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die maximale Modulspannung mindestens doppelt so groß ist wie die Spannung der einzelnen Speichereinheiten (26) des mindestens einen Energiespeichermoduls (14) mit ansteuerbarem Mehrspannungsstufen-Konverter (28).
Energiespeichervorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die maximale Modulspannung bei 120 Volt liegt.
Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der mindestens eine ansteuerbare Mehrspannungsstufen-Konverter (28) eine Schaltungsanordnung mit
ansteuerbaren Schaltern (30) und mit Diodenelementen (32) aufweist.
Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eines der Energiespeichermodule (14') keinen ansteuerbaren Mehrspannungsstufen-Konverter (28) aufweist und dass dieses mindestens eine Energiespeichermodul (14') mittels einer zugeordneten Schaltvorrichtung dazu eingerichtet ist, wahlweise die mindestens eine Speichereinheit (26) dieses Moduls (14') in einen Abschnitt des Strompfades (20) aufzunehmen oder diesen Abschnitt des Strompfades (20) alternativ kurzzuschließen.
6. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Parallelschaltung mehrerer die beiden Anschlüsse (16, 18) elektrisch verbindenden Strompfade (20). 7. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein als Zwischenkreiskondensator (CZK) wirkendes kapazitives Bauelement (12), das in einem Strompfad (34) zwischen den Anschlüssen (16, 18) angeordnet ist. 8. Energiespeichervorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Energiespeichervorrichtung (10) eine parallel zu dem Strompfad (34) mit dem kapazitiven Bauelement (12) an die beiden Anschlüsse (16, 18) angeschlossene Umrichtereinrichtung aufweist. 9. Verfahren zum Hochfahren der Spannung an den Anschlüssen (16, 18) einer elektrischen Energiespeichervorrichtung (10), insbesondere einer elektrischen Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei die elektrische Energiespeichervorrichtung (10) mindestens einen die beiden Anschlüsse (16, 18) elektrisch verbindenden Strompfad (20) auf- weist, in dem mehreren Energiespeichermodule (14, 14') zu einer Serienschaltung dieser Module (14, 14') verschaltet sind, wobei zumindest eines der Energiespeichermodule (14, 14') mehrere Speichereinheiten (26) und einen ansteuerbaren Mehrspannungsstufen-Konverter (28) für ein wahlweises Verschalten einer einzelnen oder mehrerer seiner Speichereinheiten (26) in dem Strompfad (20) zum stufenweisen Erhöhen einer Modulspannung in
Abhängigkeit von einem Ansteuersignal aufweist und die Spannung an den Anschlüssen (16, 18) durch Ansteuern der Mehrspannungsstufen-Konverter (28) in einer Schrittweite hochgefahren wird, die zumindest im Mittel kleiner als die maximale Modulspannung des zumindest einen Energiespeichermo- duls (14) mit dem Mehrspannungsstufen-Konverter (28) ist. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Verfahren ein Verfahren für ein Vorladen eines an den Anschlüssen (16, 18) angeschlossenen kapazitiven Bauelements (12) ist.
PCT/EP2014/066569 2013-08-07 2014-08-01 Elektrische energiespeichervorrichtung und verfahren zum hochfahren der spannung an deren anschlüssen WO2015018748A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/910,397 US10110035B2 (en) 2013-08-07 2014-08-01 Electric energy storage device and method for increasing the voltage at the storage device terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013215572.7A DE102013215572A1 (de) 2013-08-07 2013-08-07 Elektrische Energiespeichervorrichtung und Verfahren zum Hochfahren der Spannung an deren Anschlüssen
DE102013215572.7 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015018748A1 true WO2015018748A1 (de) 2015-02-12

Family

ID=51300719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066569 WO2015018748A1 (de) 2013-08-07 2014-08-01 Elektrische energiespeichervorrichtung und verfahren zum hochfahren der spannung an deren anschlüssen

Country Status (3)

Country Link
US (1) US10110035B2 (de)
DE (1) DE102013215572A1 (de)
WO (1) WO2015018748A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530989A (ja) * 2015-07-23 2018-10-18 ブルー ソリューション 再構成可能容量性エネルギー貯蔵デバイス、電力供給システムおよびこのデバイスが組み込まれた電気移動体
CN109565236A (zh) * 2016-07-29 2019-04-02 施密徳豪泽股份公司 电系统和用于给中间电路预充电的电路

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
DE102015214276A1 (de) * 2015-07-28 2017-02-02 Robert Bosch Gmbh Mehrphasiger Wechselrichter
US10014773B2 (en) * 2016-08-31 2018-07-03 General Electric Company Hybrid active power link module device and associated systems and methods
DE102017011167A1 (de) * 2017-12-04 2019-06-06 Belectric Gmbh Verfahren zum Betreiben eines Batteriespeichersystem
US11563238B2 (en) * 2017-12-11 2023-01-24 Semiconductor Energy Laboratory Co., Ltd. Charging-control device and electronic device with secondary battery
US10693300B2 (en) * 2017-12-28 2020-06-23 Saft America Stepwise battery module precharge and post-discharge of high voltage battery systems
DE102018214772A1 (de) 2018-08-30 2020-03-05 Robert Bosch Gmbh Verfahren zum Betreiben wenigstens einer elektrischen Komponente eines Fahrzeugs
JP7421871B2 (ja) * 2019-05-24 2024-01-25 株式会社Subaru 車両用電源装置
JP7281340B2 (ja) * 2019-05-24 2023-05-25 株式会社Subaru 車両用電源装置
DE102022127336A1 (de) 2022-10-18 2024-04-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batteriemodul mit einem bidirektionalen Mehrstufenwandler und entsprechend aufgebaute Hochvoltbatterie

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254275A1 (en) * 2004-05-17 2005-11-17 Sanyo Electric Industrial Co., Ltd Inverter device and inverter module
US20120025768A1 (en) * 2010-07-30 2012-02-02 Shinya Nakano Power supply device having precharging circuit for charging capacitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395280B2 (en) 2010-02-16 2013-03-12 Infineon Technologies Ag Circuit arrangement including a multi-level converter
EP2556586A1 (de) * 2010-04-08 2013-02-13 Alstom Technology Ltd. Modularisierter wandler für hvdc und statcom
DE102010041029A1 (de) 2010-09-20 2012-03-22 Sb Limotive Company Ltd. Verfahren zur Inbetriebnahme eines Batteriesystems mit einem Gleichspannungszwischenkreis
DE102011002608A1 (de) * 2011-01-13 2012-07-19 Sb Limotive Company Ltd. Verfahren zur Ladung eines Zwischenkreiskondensators
DE102012212556A1 (de) * 2012-07-18 2014-01-23 Robert Bosch Gmbh Batterie mit einer Mehrzahl von Batteriemodulen und Verfahren zur Erzeugung einer stufenweise einstellbaren Batteriespannung
DE102012212646A1 (de) * 2012-07-19 2014-01-23 Robert Bosch Gmbh Batterie und Kraftfahrzeug mit Batterie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254275A1 (en) * 2004-05-17 2005-11-17 Sanyo Electric Industrial Co., Ltd Inverter device and inverter module
US20120025768A1 (en) * 2010-07-30 2012-02-02 Shinya Nakano Power supply device having precharging circuit for charging capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018530989A (ja) * 2015-07-23 2018-10-18 ブルー ソリューション 再構成可能容量性エネルギー貯蔵デバイス、電力供給システムおよびこのデバイスが組み込まれた電気移動体
CN109565236A (zh) * 2016-07-29 2019-04-02 施密徳豪泽股份公司 电系统和用于给中间电路预充电的电路

Also Published As

Publication number Publication date
US20160197505A1 (en) 2016-07-07
DE102013215572A1 (de) 2015-02-12
US10110035B2 (en) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2015018748A1 (de) Elektrische energiespeichervorrichtung und verfahren zum hochfahren der spannung an deren anschlüssen
EP1463188B1 (de) Schaltungsanordnung, Zusatzmodul und Photovoltaik-System
WO2006021511A1 (de) Spannungsregler mit überspannungsschutz
DE102012208520A1 (de) Vorrichtung und Verfahren zur Verbindung von Mehrspannungsbordnetzen
DE102014008516A1 (de) Bordnetz für ein Kraftfahrzeug
DE102016005565A1 (de) Schaltungsanordnung für eine Zwischenkreiskapazität
DE102012219488A1 (de) Schaltungsanordnung und Verfahren zum Vorladen eines kapazitiven Bauelements
WO2012038153A1 (de) Verfahren zur inbetriebnahme eines batteriesystems mit einem gleichspannungszwischenkreis
EP2470393B1 (de) Parallelschaltung von akkumulatorsträngen
WO2013189875A1 (de) Batterie mit mindestens einer halbleiterbasierten trenneinrichtung
DE102011053013A1 (de) Vorrichtung und Verfahren zur Symmetrierung der Spannungsaufteilung von in Reihe geschalteten Energiespeichern
WO2013113601A2 (de) Verfahren und vorrichtung zum vorladen eines elektrischen verbrauchers
DE102009045519A1 (de) Batteriesystem und Verfahren zum Balancieren der Batteriezellen eines Batteriesystems
DE102012201602B4 (de) Verfahren und Steuereinrichtung zum Einstellen eines durch einen Batteriestrang fließenden Stromes
DE102010061763B4 (de) Batterie
WO2013113585A2 (de) Verfahren zum ladungsausgleich von batterieelementen, batteriesystem und kraftfahrzeug mit einem solchen batteriesystem
DE102012201359A1 (de) Batteriesystem, Kraftfahrzeug mit einem solchen Batteriesystem sowie ein Verfahren zum Balancieren der Batteriezellen eines Batteriesystems
EP3117511A1 (de) Verfahren zur erkennung eines zusammenbruchs einer spannung
EP2619840B1 (de) Verfahren zur inbetriebnahme eines batteriesystems mit einem gleichspannungszwischenkreis
WO2011060821A1 (de) Angleichen elektrischer spannungen elektrischer speichereinheiten
DE102013009991A1 (de) Fremdstartfähige Integration einer Batterie in ein Kraftfahrzeug-Bordnetz
DE102020117681A1 (de) Kontrolleinrichtung für einen Batteriespeicher
DE102015003122A1 (de) Kraftfahrzeug mit einer Batterieanordnung und Verfahren zum Betrieb einer Batterieanordnung
DE102018200678A1 (de) Elektrisches Energiesystem
EP3053270B1 (de) Invertschaltung mit spannungsbegrenzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14910397

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749759

Country of ref document: EP

Kind code of ref document: A1