WO2015018636A2 - Système régulateur pour montre mécanique - Google Patents

Système régulateur pour montre mécanique Download PDF

Info

Publication number
WO2015018636A2
WO2015018636A2 PCT/EP2014/065736 EP2014065736W WO2015018636A2 WO 2015018636 A2 WO2015018636 A2 WO 2015018636A2 EP 2014065736 W EP2014065736 W EP 2014065736W WO 2015018636 A2 WO2015018636 A2 WO 2015018636A2
Authority
WO
WIPO (PCT)
Prior art keywords
resonator
tuning fork
escape wheel
regulator system
wheel
Prior art date
Application number
PCT/EP2014/065736
Other languages
English (en)
Other versions
WO2015018636A3 (fr
Inventor
Jean-Pierre Mignot
Jean-Jacques Born
Rudolf Dinger
Original Assignee
The Swatch Group Research And Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Swatch Group Research And Development Ltd filed Critical The Swatch Group Research And Development Ltd
Priority to US14/784,175 priority Critical patent/US10222757B2/en
Priority to EP14741892.5A priority patent/EP3030938B1/fr
Priority to CN201480029731.7A priority patent/CN105264444B/zh
Priority to RU2016103696A priority patent/RU2016103696A/ru
Priority to JP2016517638A priority patent/JP6067936B2/ja
Publication of WO2015018636A2 publication Critical patent/WO2015018636A2/fr
Publication of WO2015018636A3 publication Critical patent/WO2015018636A3/fr
Priority to HK16108443.8A priority patent/HK1220519A1/zh

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/104Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/08Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically
    • G04C3/10Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means
    • G04C3/101Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details
    • G04C3/104Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel
    • G04C3/105Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a mechanical oscillator other than a pendulum or balance, e.g. by a tuning fork, e.g. electrostatically driven by electromagnetic means constructional details of the pawl or the ratched-wheel pawl and ratched-wheel being magnetically coupled
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements

Definitions

  • the present invention relates to the control system of a mechanical timepiece.
  • regulator system or regulator means two distinct devices: the resonator and the exhaust.
  • the resonator is the organ producing a periodic movement which constitutes the time base of the timepiece.
  • the well-known resonators are pendulums oscillating under the effect of gravitation, the pendulums forming with the spiral associated a mechanical resonator oscillating around the balance shaft and oscillating tuning forks by elastic deformation of their structure.
  • the best known realization of tuning forks is the tuning fork used in music, but the one produced in greater numbers is the resonator made of crystalline quartz used as a time base for electronic watches.
  • the exhaust is the connecting element between the wheel of the timepiece and the resonator.
  • the exhaust has two functions. First, it must transmit to the resonator the energy necessary to maintain its oscillation. This function is normally performed by a mechanism transmitting to the energy resonator from the last wheel of the gear (hereinafter referred to as the escape wheel). In addition to transmitting energy to the resonator, the exhaust must control the speed of travel of the train and synchronize it with the oscillation of the resonator. This second function is normally performed by a part of the exhaust mechanism which engages in the teeth of the escape wheel and allows the active tooth to pass only when the resonator has oscillated.
  • the mechanical exhausts can fulfill their functions only by means of a direct mechanical contact with the teeth of the escape wheel as well as with the resonator.
  • the anchor In the example of the Swiss lever escapement, the anchor is in contact with the resonator while it is close to the equilibrium point and is almost permanently in contact with one of the teeth of the wheel of the wheel. exhaust.
  • the situation is aggravated by the fact that, in a mechanical escapement, the contacts both with the teeth of the escape wheel and with the resonator are at least partially accompanied by a sliding movement between the two elements in contact. A slippery movement inevitably involves friction losses which has several harmful consequences.
  • a major disadvantage of contact with the resonator involving friction is the fact of disrupting the movement of the resonator with forces that are not of the type of so-called "elastic" forces. This means that the resonator is disturbed with forces influencing its natural frequency. This disturbance influences the horological performance of the room. It is easily understood that the disturbance of the movement of the resonator depends on the extent of the interaction of the escapement with the resonator. Since the escape wheel is driven by the gear train and the latter by the mainspring, the chronometric error created by the contact between the escapement mechanism and the resonator depends on the condition of the mainspring : The chronometric error is different if the mainspring is very tight compared to the situation of a watch where the mainspring is almost completely relaxed. This mistake Chronometry is well known to specialists as the isochronism error.
  • the sliding motion involves friction and thus energy losses.
  • the elements in contact are greased or oiled with great care and using very thorough lubrication products. This makes it possible to reduce the friction losses, but nevertheless implies that the chronometric performances become dependent on the performance of the lubricants. These vary with time, the lubricants degrade or no longer remain on the surface to be lubricated. As a result of this phenomenon, the performance of the watch deteriorates and it must be cleaned and lubricated again.
  • EP 1 967 919 B1 describes a coaxial escapement improving the energy transmission conditions between the escape wheel and the resonator.
  • this type of exhaust is an improvement over the Swiss lever escapement, it can not avoid slippery contact and therefore can not avoid the friction losses mentioned above.
  • Friction losses can however be avoided if the transmission of energy by mechanical contact is replaced by a transmission without contact for example by magnetic or electrostatic forces. These obviously have no friction losses.
  • An exhaust where the mechanical contacts are replaced by magnets is called the magnetic escapement.
  • Magnetic escapements have been known for a long time. HS Baker was the first to file a patent (US) for a magnetic escapement in 1927, followed by CF. Clifford (1,938) and R. Straumann in 1941. These developments led to an industrial realization: the company German Junghans produced an alarm clock with a magnetic escapement in the early sixties. A description of this escapement can be found in the article by CF. Clifford in the "Horological Journal” edition April 1962.
  • the resonator is a diapason-shaped resonator in its form similar to the known tuning forks of music.
  • the tuning fork resonator has indeed a large number of advantages compared to the spiral balance resonator. Firstly, it does not need bearings and therefore its quality factor is not degraded by the friction in the bearings (its oscillation losses are lower) and the tuning fork resonator does not need lubrication likely to request regular services from the watch. It is also well known that the tuning fork resonator allows much better chronometric performance than a balance spring resonator.
  • Max Hetzel and the Bulova company are at the origin of the wristwatches fitted with tuning fork resonators, his patent was filed in 1953, and the technology used is described for example in the document US Pat. No. 2,971,323.
  • Three producers have marketed more than six million watches according to the principles described in this document; the company Bulova with the product called “Accutron”, the company Citizen with the product called “HiSonic” and the company Ebauches SA with a product called “Swissonic 1 00" or "Mosaba". The three products, however, were not mechanical watches.
  • the tuning fork resonator was indeed driven and kept in oscillation by an electronic circuit providing electric pulses with two coils located opposite magnets attached to the ends of the branches of the tuning fork similar to the product of the aforementioned Junghans company.
  • the wheel was driven by the tuning fork by means of a ratchet mechanism attached to one of the branches.
  • the energy for the operation of the watch came from the power supply of the transistor excitation circuit of the tuning fork. It was actually electric or electronic watches.
  • These products demonstrated the superior chronometric performances of a tuning fork resonator compared to a balance - spring resonator: their accuracy of operation was better than that of a watch fitted with a balance - spring resonator. It is also well known that the precision of a quartz electronic watch is far superior to that of a mechanical watch. This is also due to the stability of the quartz tuning fork resonator regulating the march of these products.
  • EP 2 466 401 A1 shows the tuning fork provided with two magnets (a magnet on each branch) similar to the tuning fork watches mentioned above.
  • the exhaust function is performed according to this document by an escape wheel carrying a multitude of magnets located between the legs of the tuning fork and so that the magnets of the tuning fork are in front of a pair of magnets of the wheel exhaust as shown in Figure 1 of the present application.
  • the operation of the magnetic escapement according to EP 2 466 401 A1 is described in this document and is here only briefly summarized for the description of the invention which is the subject of the present application.
  • a resonator is characterized in that its amplitude of vibration becomes very large when it is excited at its own resonance frequency and this is also the case with the tuning fork resonator described in EP 2 466 401 A1.
  • the magnets of the tuning fork also exert a tangential force on the magnets of the escape wheel. This tangential force acts in the direction of braking the escape wheel when it begins to anticipate the speed given by the oscillations of the tuning fork. It is this tangential force that synchronizes the speed of the escape wheel with the frequency of the tuning fork and thus controls the running of the watch.
  • the device according to EP 2 466 401 A1 has several disadvantages which are the consequence of the fact that the tuning fork interacts with the escape wheel so as to produce tangential forces which vary greatly when the wheel moves by a tooth. It is easily understood that the tangential forces acting on the escape wheel produce a torque that pulls the wheel in the position where the magnets on the wheel and on the tuning fork are opposite and of opposite polarity. This is the stable equilibrium position. Starting from the stable equilibrium position and turning the escape wheel p. ex. clockwise the interaction between the magnets on the wheel and on the tuning fork will first create a couple pulling the wheel back into the equilibrium position. This is the case until the magnets of identical polarity are opposite.
  • the first consequence is that the escape wheel is blocked by the forces of the magnets when it is stopped. It is easily understood that, if the magnets of the escape wheel are in front of the magnets of the tuning fork and of reverse polarity, the two pairs of magnets attract each other and the escape wheel remains locked in this position. This situation happens every time the clockwork is stopped, which happens if the watch is not worn and stops at the end of its power reserve, but also when the time is set. we stop the gear for the start at the precise second. This phenomenon is well known and typical for timepieces equipped with a magnetic escapement of the prior art. Timepieces fitted with magnetic escapements of the CF type. Clifford had sophisticated mechanisms to launch the escape wheel when starting the movement.
  • the second disadvantage of the system described in EP 2 466 401 A1 is its sensitivity to desynchronization in case of impact. Placing magnets on the escape wheel and on the tuning fork arms leads to significant forces between the two regulating members.
  • the mechanical power needed to synchronize a mechanical watch is however very small. As the mechanical power is given by the product between the tangential force and the velocity, it is found that large forces necessarily lead to low velocities. In the case in a rotary motion, they lead to a rotation speed of the low escape wheel.
  • wristwatches are subjected to rather violent shocks. If the watch falls to the ground, shocks of several thousand times the earth acceleration are reached. Even in normal use, shocks producing acceleration much higher than ground acceleration are common.
  • Shock is generally not just a linear acceleration
  • the watch normally touches or falls on a corner of the room so that the acceleration is a combination of linear acceleration and angular acceleration. If the angular component of the acceleration due to the shock accelerates the escape wheel at an angular velocity exceeding the synchronization speed with the tuning fork, the above-mentioned synchronization mechanism will no longer function and the escape wheel continues to accelerate, driven by the cogwheel and the barrel spring of the watch. In such a case, the watch loses all its chronometric qualities, the needles turn at a speed much too high.
  • the tuning fork resonator is indeed a tuning fork in the shape of a swinging bar, bent in U.
  • This type of tuning fork is well known in music and is used to tune instruments. It is known from its application in music that this type of tuning fork transmits its vibration by its rod attached to the middle of the U of the tuning fork. The musician knows that the sound of the tuning fork is much more audible if the tuning fork is placed on a surface capable of vibrating at its frequency, for example on the lid of the piano.
  • the object of the present invention is to overcome the drawbacks of magnetic exhausts of the prior art by providing a control system of a mechanical timepiece based on the magnetic interaction between a resonator and an escape wheel, said interaction creating radial and tangential forces acting on the escape wheel (9) and generating there couples, which is characterized in that it is arranged so that the couples due to said tangential forces act in opposite directions and cancel each other out when the resonator is stopped and a torque is applied to the escape wheel.
  • This is achieved with a magnetic escapement interacting with the resonator with negligible tangential forces at the stop of the resonator and generally lower so as to allow a rotational speed of the escape wheel sufficiently high to make the timepiece insensitive. to shocks.
  • the tuning fork resonator according to one of the embodiments of the invention has a structure allowing a solid embedding ensuring the shock resistance of the resonator and its assembly.
  • FIG. 1 shows the prior art, in particular the system according to document EP 2 466 401 A1,
  • FIG. 1a shows the device according to FIG. 1 in rotation and the tangential forces acting on the escape wheel when the resonator is at a standstill
  • FIG. 1b shows graphically the tangential forces according to FIG. 1a during the rotation of the escape wheel from one equilibrium position to the next
  • FIG. 2 shows the device according to a preferred embodiment of the invention
  • FIG. 3 shows a section through the device shown in FIG. 2 in the plane B-B '
  • FIG. 4 shows a section through the device of FIG. 2 in the plane A-A '
  • FIG. 5 shows the tangential forces acting on the escape wheel in the device according to FIG. 2 when the resonator is at a standstill
  • FIG. 6 graphically shows the tangential forces according to FIG. 5 acting on the escape wheel during rotation of the wheel by a tooth
  • FIG. 7 shows the tangential forces on the escape wheel of the device according to the invention when the tuning fork vibrates at its resonant frequency and synchronizes the speed of the escape wheel
  • FIG. 8 shows the torque produced by the tangential forces on the escape wheel of the device according to the invention when the escape wheel is synchronized with the oscillation of the resonator and this as a function of the phase difference between the oscillation movement of the tuning fork and the rotation of the escape wheel,
  • Figure 9 shows the device according to the invention with a double resonator - H-shaped tuning fork.
  • Figure 1 shows the prior art according to EP 2 466 401 A1.
  • the U-shaped tuning fork resonator 1 carries at the end of each branch a permanent magnet 2 oriented so that the magnetic fields created by the magnets are in the same direction.
  • the escape wheel 3 is arranged between the branches of the tuning fork and carries in the example drawn six permanent magnets 4 alternately oriented so as to show the magnets of the tuning fork opposite or identical magnetic poles.
  • the escape wheel carries in addition the pinion 5 meshing with the wheel of the timepiece.
  • Figure 1a shows the tangential forces that develop as the escape wheel rotates slowly and the resonator is stopped. This is the start-up situation of the watch movement.
  • the geometry in Figure 1 being symmetrical with respect to a plane through the axis of the wheel and passing through the magnets of the tuning fork, there can be no tangential force.
  • the magnets of opposite polarity attract what will produce the forces 7 and 8. It is found that the two tangential forces produce a torque on the wheel escapement acting in the same direction and against rotation in the direction of the arrow 6.
  • FIG. 1b shows the resultant tangential force (the sum of the two forces 7 and 8 shown in FIG. 1 a) of the prior art according to FIG. 1 as a function of the angle of rotation of the escape wheel 3.
  • the angle of rotation shown corresponds to the advancement of the escape wheel from a stable equilibrium position to the next.
  • the movement starts with the angle of rotation 0 in the situation drawn in Figure 1.
  • This situation corresponds to the stable balance of the escape wheel and is indicated by the arrow indicated by A.
  • the escape wheel will have made half of the rotation (designated by 0.5) and it arrives in the unstable equilibrium position.
  • the escape wheel meshes with the gear of the timepiece by means of the pinion gear 13.
  • the gear wheel timepiece and its mainspring (barrel spring) are well known and are not shown in the figures.
  • On top of the ferromagnetic ring 10 is the tuning fork resonator 14.
  • the tuning fork resonator comprises two branches 16 and 17 attached to a solid base 15.
  • FIGS. 4 show the sections through the structure in the planes AA 'and B-B', the view in these sections is in the direction of the arrows in fig.2.
  • Figure 3 is a central section through the escape wheel in the plane B-B 'showing the interaction between the ferromagnetic structure and the tuning fork resonator. Hatched surfaces correspond to cut parts of the structure, while white surfaces are visible surfaces outside the plane of the section.
  • the indication "N / S" in the magnets indicates their polarity.
  • the lower side of the magnets carries the pole pieces 20 and 21 which direct the magnetic flux to the ferromagnetic structure 10 of the escape wheel. In the position drawn in Figures 2 and 3, the right pole piece 21 is in front of a tooth of the ferromagnetic structure while the left pole piece 20 is between two teeth.
  • FIG. 4 shows the central section along the plane A - A '.
  • the figure shows the mounting of the tuning fork in the cage of the movement 22, this piece is normally called “platinum” by the skilled person and, in a highly schematized manner, the bearing of the escape wheel.
  • the foot of the tuning fork 1 5 is cut off and one realizes the rigid assembly that the structure of the tuning fork according to the invention makes it possible to achieve.
  • FIGS. 2 and 3 show that the embodiment according to the invention causes the tuning fork to interact with the ring made of ferromagnetic material with its external toothing on one arm of the tuning fork (the arm 16) and with the internal toothing on the other arm (the arm 17). It is also noted that the interaction with the ring gear is alternating, when the pole piece of the right arm 17 is in front of a tooth of the ferromagnetic ring 10, the pole piece of the other arm 16 is between two teeth.
  • FIG. 5 shows the tangential forces 25 and 26 which develop in the structure according to the invention when the escape wheel rotates in the direction of arrow 24. It can be seen that by turning the escape wheel in the clockwise from its equilibrium position a pole piece of the tuning fork moves away from one tooth of the ferromagnetic structure while the other approaches. This will produce tangential forces as shown by the arrows 25 and 26 and it is found that the two tangential forces produce couples to the escape wheel of opposite direction. As a result, the pairs created by the tangential forces cancel each other out.
  • FIG. 6 is a graphical representation of the tangential forces 25 and 26 as a function of the angle of rotation of the escape wheel.
  • the two forces 25 and 26 are opposed giving the very low resultant force, designated 27. If the two magnets have a correct magnetization the resultant force 27 is zero, the inevitable manufacturing tolerances however make the two forces 25 and 26 do not exactly compensate each other and the result is the weak force 27 shown in FIG. 6.
  • the force 27 will also have a value corresponding to 1% of the forces 25 or 26 respectively.
  • the scale of rotation of the wheel covers the progress of the wheel by a tooth, in the situation corresponding to Figure 2 there are 36 teeth, the wheel will have traveled 10 ° in the range designated from 0 to 1 on the axis of rotation of the wheel.
  • the amplitude of vibration of its arms becomes high and can reach several hundredths of millimeters.
  • Figure 7 shows the tangential forces acting on the escape wheel when the escape wheel is synchronized to the frequency of the tuning fork resonator.
  • the result illustrated in FIG. 7 shows the magnetic forces of the device drawn in FIG. 2.
  • the horizontal axis indicates the rotation of the escape wheel by a complete tooth. At the zero position, the tooth is in front of the pole piece as shown in Figure 2. At positions 5 and -5, the wheel is rotated by a half-tooth, the range of rotation illustrated in Figure 7 corresponds to the rotation of the wheel by a complete tooth.
  • the vertical axis is that of tangential forces.
  • Curve 28 shows the force exerted by the pole piece on the arm 17, the curve 29 the negative value of that exerted by the pole piece on the arm 16 and the curve 30 gives the sum of the two curves.
  • the figure shows the situation when the escape wheel is synchronized to the oscillation of the tuning fork. This condition is fulfilled when the escape wheel rotates by one tooth in time as the resonator performs an oscillation. It is found that the tangential force shown in the curve 30, which indicates the sum of the forces of the two arms, is substantially lower than either of the forces 28 and 29. It could be deduced from FIG. 7 that the tuning fork , even oscillating at large amplitude, is not able to synchronize the escape wheel on its own frequency.
  • Fig. 7 shows the situation where the tuning fork resonator vibrates exactly in phase with the rotation of the escape wheel.
  • the escape wheel which is driven by the barrel spring of the timepiece through the gear normally tends to rotate faster than the tuning fork resonator oscillates. His movement of the teeth precedes the vibration of the tuning fork.
  • the skilled person calls the advance of the wheel phase shift compared to the movement of the tuning fork.
  • the phase shift is measured in °, 0 ° means that there is no phase shift; at 180 ° the phase shift corresponds to an advance of half a tooth and at least 180 ° the escape wheel would be delayed by half a tooth.
  • FIG. 8 shows the torque resulting from the interaction between the vibrating tuning fork and the escape wheel as a function of the phase difference between the rotation of the escape wheel and the vibration of the resonator.
  • the tangential forces of the two arms of the tuning fork are multiplied with their corresponding radius in order to obtain the torque acting on the escape wheel and the vertical axis indicates the sum of the two pairs and therefore the resulting torque on the escape wheel.
  • Negative torque values in Figure 8 correspond to a torque that brakes the escape wheel, positive torque values accelerate the escape wheel.
  • Figure 8 shows that in the range of 0 to 100 ° the braking torque acting on the escape wheel increases continuously with the phase shift.
  • FIG. 8 clearly shows that the rotational speed of the escape wheel is synchronized with the frequency of the tuning fork as long as the spring barrel arrives to train the timepiece. The phase shift of the two synchronized movements determines the torque braking the escape wheel and synchronizes it with the frequency of the tuning fork resonator.
  • Figure 8 corresponds to the situation of a vibrating resonator with a fixed amplitude. This is not the case, however. If the resonator brakes the escape wheel, there is necessarily a transfer of energy from the wheel to the resonator. The energy transferred to the tuning fork resonator will increase its amplitude of vibration until the energy losses of the resonator, due for example to the friction in the air of its branches, are again equal to the energy input from of the escape wheel. The resonator can not create or lose energy must indeed always vibrate at an amplitude leading to the equality of energy provided by the escape wheel and energy lost in friction and other losses. As the losses increase with the amplitude of vibration, one realizes that the amplitude of vibration must increase if the energy (the torque) transmitted to the resonator increases.
  • the tuning fork resonator according to the invention has a shape very different from a U tuning fork according to the prior art described in document EP 2 466 401 A1.
  • the tuning fork consists of two branches attached to a foot 15 in the form of a solid plate.
  • This geometry has several advantages over the resonator of the prior art shown in FIG. The advantages are the consequence of movements and deformations in this tuning fork structure.
  • the tuning fork according to FIG. 2 deforms as if the two arms 16 and 17 were recessed and motionless at their base and oscillate at their free end in a left - right movement in counter - phase. It is found that this movement of the arms is in first approximation devoid of movements in the direction of the length of the tuning fork.
  • the foot 15 of the tuning fork does not move, it undergoes the stresses coming from the arms in oscillation. These stresses deform the foot 1 5 near the bases of the arms of the tuning fork, but they attenuate very quickly and strongly towards the base of the foot.
  • FIG. 2 The structure drawn in FIG. 2 is not the only possibility of a resonator satisfying the requirements of a magnetic escapement according to the invention.
  • Figure 9 shows by way of example a double tuning fork structure.
  • the double tuning fork structure offers the possibility of attaching masses 31 and 32 at the end of the two additional branches. These masses 31 and 32 can be mounted in an adjustable position and make it possible to adjust the resonant frequency of the double tuning fork.
  • Other methods of adjusting the clock frequency of a tuning fork are known to those skilled in the art such as the removal of small amounts of mass at the end of the branches by a laser material ablation.
  • the discrete permanent magnets with one or more magnetic layers, typically in platinum and cobalt alloy (50-50 at.%) Or samarium cobalt.
  • the regulating system of the invention has been described above in connection with the use of magnets and therefore of magnetostatic forces, it is also envisaged according to the invention to replace the discrete magnets or the layer (s). electrets and electrostatic forces.
  • the construction of the regulating system is entirely similar and is dimensioned according to the permanent electrostatic fields established between the branches of the resonator and the escape wheel.
  • the tuning fork resonator may carry electrets at the end of each arm and the escape wheel is conductive or electrified locally, on the teeth of the wheel coming opposite electrets of the resonator, with charges opposed to the electrets of the resonator. .

Abstract

La présente invention concerne les organes régulateurs pour une pièce d'horlogerie mécanique, spécifiquement un système basé sur l'interaction magnétique entre un résonateur, en forme de diapason par exemple, et une roue d'échappement, dit « échappement magnétique ». Le système est caractérisé par le fait qu'il y a plusieurs zones d'interactions magnétiques (25) et (26) entre le résonateur (14) et la roue d'échappement (9) qui sont disposées de telle manière que les couples produits à la roue d'échappement par ces interactions se compensent mutuellement si la roue d'échappement n'est pas synchronisée sur la fréquence du résonateur. Il en résulte un couple négligeable sur la roue d'échappement quand celle-ci tourne lentement dans le sens de la flèche (24) ou en contre-sens. Ceci permet le démarrage de la pièce d'horlogerie à un couple faible du ressort de barillet et sans procédure ou dispositif de lancement ainsi qu'une meilleure résistance de la pièce d'horlogerie contre la perte de synchronisation en cas de choc.

Description

Système régulateur pour montre mécanique
Description
La présente invention concerne le système régulateur d'une pièce d'horlogerie mécanique. Par système régulateur ou organe régulateur on entend deux dispositifs distincts : le résonateur et l'échappement.
Le résonateur est l'organe produisant un mouvement périodique qui constitue la base de temps de la pièce d'horlogerie. Les résonateurs bien connus sont les pendules oscillant sous l'effet de la gravitation, les balanciers formant avec le spiral associé un résonateur mécanique oscillant autour de l'arbre du balancier et les diapasons oscillant par déformation élastique de leur structure. La réalisation la mieux connue des diapasons est le diapason utilisé dans la musique, celle produite en plus grande nombre est cependant le résonateur fabriqué en quartz cristallin utilisé comme base de temps pour les montres électroniques.
L'échappement est l'élément de liaison entre le rouage de la pièce d'horlogerie et le résonateur. L'échappement a deux fonctions. Premièrement il doit transmettre au résonateur l'énergie nécessaire au maintien de son oscillation. Cette fonction est normalement réalisée par un mécanisme transmettant au résonateur de l'énergie provenant de la dernière roue de l'engrenage (ci-après appelée roue d'échappement). En plus de la transmission de l'énergie alimentant le résonateur, l'échappement doit contrôler la vitesse d'avancement du rouage et la synchroniser avec l'oscillation du résonateur. Cette deuxième fonction est normalement réalisée par une partie du mécanisme de l'échappement qui s'engage dans les dents de la roue d'échappement et ne laisse passer la dent active que quand le résonateur a effectué une oscillation. Beaucoup de principes d'échappements sont connus dans l'horlogerie, l'échappement le plus utilisé dans le domaine des montres bracelets est l'échappement à ancre, plus particulièrement l'échappement à ancre suisse qui est cité ici à titre d'exemple seulement. Une description de l'échappement à ancre suisse se trouve par exemple dans le document EP 2 336 832 A2.
Les échappements mécaniques ne peuvent remplir leurs fonctions qu'au moyen d'un contact mécanique direct avec les dents de la roue d'échappement ainsi qu'avec le résonateur. Dans l'exemple de l'échappement à ancre suisse, l'ancre est en contact avec le résonateur pendant que celui-ci est proche du point d'équilibre et il est presque en permanence en contact avec une des dents de la roue d'échappement. La situation s'aggrave par le fait que, dans un échappement mécanique, les contacts aussi bien avec les dents de la roue d'échappement qu'avec le résonateur sont au moins partiellement accompagnés d'un mouvement glissant entre les deux éléments en contact. Un mouvement glissant implique forcément des pertes de frottement ce qui a plusieurs conséquences néfastes.
Un désavantage majeur du contact avec le résonateur impliquant des frottements est le fait de perturber le mouvement du résonateur avec des forces qui ne sont pas du type des forces dites « élastiques ». Ceci signifie que le résonateur est perturbé avec des forces influençant sa fréquence propre. Cette perturbation influence les performances horlogères de la pièce. On comprend facilement que la perturbation du mouvement du résonateur dépend de l'ampleur de l'interaction de l'échappement avec le résonateur. Comme la roue d'échappement est entraînée par le train d'engrenage et celui-ci par le ressort de barillet, l'erreur chronométrique créée par le contact entre le mécanisme d'échappement et le résonateur dépend de l'état du ressort de barillet : l'erreur chronométrique est différente si le ressort de barillet est très tendu par rapport à la situation d'une montre où le ressort de barillet est presque complètement détendu. Cette erreur chronométrique est bien connue des spécialistes sous le nom d'erreur d'isochronisme.
En plus de ceci, le mouvement glissant implique des frottements et de ce fait des pertes d'énergie. Afin de réduire les pertes d'énergie par frottement, les éléments en contact sont graissés ou huilés avec grand soin et on utilise des produits de lubrification très poussés. Ceci permet de réduire les pertes par frottement, mais implique cependant que les performances chronométriques deviennent dépendantes de la performance des lubrifiants. Celles-ci varient avec le temps, les lubrifiants se dégradent ou ne restent plus sur la surface à lubrifier. Suite à ce phénomène, les performances de la montre se dégradent et celle-ci doit être nettoyée et à nouveau lubrifiée.
Beaucoup de développements ont été faits pour réduire le contact glissant entre le mécanisme de l'échappement et le résonateur. A titre d'exemple EP 1 967 919 B1 décrit un échappement coaxial améliorant les conditions de transmission d'énergie entre la roue échappement et le résonateur. Bien que ce type d'échappement soit une amélioration par rapport à l'échappement à ancre suisse, il ne peut éviter des contacts glissants et il ne peut de ce fait pas éviter les pertes de friction mentionnées plus haut.
Les pertes de friction peuvent cependant être évitées si la transmission d'énergie par contact mécanique est remplacée par une transmission sans contact par exemple par des forces magnétiques ou électrostatiques. Celles-ci n'ont évidemment pas de pertes de frottement. Un échappement où les contacts mécaniques sont remplacés par des aimants est appelé échappement magnétique. Des échappements magnétiques sont connus depuis fort longtemps. H. S. Baker a été le premier à déposer un brevet (U.S.) pour un échappement magnétique en 1927, suivi par CF. Clifford (1 938) et R. Straumann en 1941 . Ces développements ont conduit à une réalisation industrielle : la société allemande Junghans a produit un réveil muni d'un échappement magnétique au début des années '60. Une description de cet échappement se trouve dans l'article de CF. Clifford dans le « Horological Journal » édition avril 1962. Cet échappement ne remplissait cependant que la moitié des fonctions classiques d'un échappement : il synchronisait la roue d'échappement au mouvement de l'oscillateur, mais l'oscillateur en forme de diapason était entraîné électriquement. Il ne s'agissait donc pas d'un mouvement mécanique, mais plutôt d'une montre (d'un réveil) électromécanique ou électronique. Les performances supérieures des mouvements électroniques à quartz ainsi que leur coût de revient plus bas ont fait perdre tout intérêt à l'échappement magnétique dès les années 70. L'intérêt croissant pour les montres mécaniques est à l'origine de développements récents dans ce domaine ; le document EP 2 466 401 A1 décrit une réalisation qui peut être considérée comme l'état actuel de la technique. Ce document décrit l'ensemble des organes régulateurs d'une montre mécanique, le résonateur et l'échappement. Le résonateur est un résonateur en forme de diapason dans sa forme similaire aux diapasons connus de la musique. Le résonateur diapason a en effet un grand nombre d'avantages par rapport au résonateur balancier spiral. Premièrement, il n'a pas besoin de paliers et de ce fait son facteur de qualité n'est pas dégradé par les frottements dans les paliers (ses pertes par oscillation sont moindres) et le résonateur diapason n'a pas besoin de lubrification susceptible de demander des services réguliers de la montre. Il est bien connu également que le résonateur diapason permet des performances chronométriques bien meilleures qu'un résonateur balancier-spiral. Max Hetzel et la société Bulova sont à l'origine des montres bracelet munis de résonateurs en forme de diapason, son brevet a été déposé en 1953, et la technologie utilisée est décrite par exemple dans le document US 2,971 ,323. Trois producteurs ont commercialisé plus de six millions de montres selon les principes décrits dans ce document ; la société Bulova avec le produit appelé « Accutron », la société Citizen avec le produit appelé « HiSonic » et la société Ebauches SA avec un produit appelé « Swissonic 1 00 » ou « Mosaba ». Les trois produits n'étaient cependant pas des montres mécaniques. Le résonateur diapason était en effet entraîné et maintenu en oscillation par un circuit électronique fournissant des impulsions électriques à deux bobines situées en face d'aimants attachés aux extrémités des branches du diapason similaire au produit de la société Junghans susmentionnée. Le rouage était entraîné par le diapason moyennant un mécanisme de cliquet attaché à une des branches. L'énergie pour le fonctionnement de la montre venait de l'alimentation électrique du circuit d'excitation à transistor du diapason. Il s'agissait effectivement de montres électriques ou électroniques. Ces produits ont démontré les performances chronométriques supérieures d'un résonateur en forme de diapason par rapport à un résonateur balancier - spiral : leur précision de marche était meilleure que celle d'une montre munie d'un résonateur balancier - spiral. Il est bien connu également que la précision de marche d'une montre électronique à quartz est très supérieure à celle d'une montre mécanique. Ceci est également dû à la stabilité du résonateur diapason à quartz régulant la marche de ces produits.
Le choix d'un résonateur diapason est donc judicieux et le document EP 2 466 401 A1 montre le diapason muni de deux aimants (un aimant sur chaque branche) similaire aux montres à diapason susmentionnées. La fonction d'échappement est réalisée selon ce document par une roue d'échappement portant une multitude d'aimants situés entre les branches du diapason et de telle sorte que les aimants du diapason sont en face d'une paire d'aimants de la roue échappement comme représenté dans la figure 1 de la présente demande. Le fonctionnement de l'échappement magnétique selon EP 2 466 401 A1 est décrit dans ce document et n'est ici que brièvement résumé pour la description de l'invention faisant l'objet de la présente demande. On comprend que, si les aimants de la roue d'échappement sont en face des aimants du diapason et ceci avec la bonne polarité (un pôle N est en face d'un pôle S), les branches du diapason sont tirées vers la roue d'échappement, si les aimants sont en face avec polarité identique les branches du diapason sont poussées vers l'extérieur. En rotation, la roue d'échappement va alternativement transmettre une force aux branches du diapason poussant les branches vers l'extérieur puis les tirant vers l'intérieur. On comprend que la rotation de la roue d'échappement va exciter la vibration du diapason. Un résonateur est caractérisé par le fait que son amplitude de vibration devient très grande quand il est excité à sa fréquence de résonance propre et ceci est également le cas avec le résonateur diapason décrit dans le document EP 2 466 401 A1 . Quand la roue d'échappement approche la vitesse de rotation excitant le diapason dans sa fréquence de résonance, son amplitude devient substantiellement plus grande. Comme il va être montré plus tard dans la description détaillée de l'invention, les aimants du diapason exercent également une force tangentielle sur les aimants de la roue d'échappement. Cette force tangentielle agit dans le sens de freiner la roue d'échappement quand elle commence de devancer la vitesse donnée par les oscillations du diapason. C'est cette force tangentielle qui synchronise la vitesse de la roue d'échappement sur la fréquence du diapason et contrôle de ce fait la marche de la montre.
Le dispositif selon le document EP 2 466 401 A1 a cependant plusieurs désavantages qui sont la conséquence du fait que le diapason interagit avec la roue d'échappement de sorte à produire des forces tangentielles qui varient fortement quand la roue avance par une dent. On comprend facilement que les forces tangentielles agissant sur la roue d'échappement produisent un couple qui tire la roue dans la position ou les aimants sur la roue et sur le diapason sont en face et de polarité opposée. Celle-ci est la position d'équilibre stable. Partant de la position d'équilibre stable et tournant la roue d'échappement p. ex. dans le sens horaire l'interaction entre les aimants sur la roue et sur le diapason va d'abord créer un couple tirant la roue de retour dans la position d'équilibre. Ceci est le cas jusqu'à ce que les aimants de polarité identique soient en face. Dans cette situation, la disposition des aimants est à nouveau symétrique et il n'y a plus de forces tangentielles donc aucun couple sur la roue d'échappement. Cette position est la position d'équilibre instable de la roue. Si la roue d'échappement continue de tourner dans le même sens un couple tirant la roue vers la prochaine position d'équilibre stable se développe. On constate que les forces tangentielles exercées sur la roue d'échappement par le système décrit en EP 2 466 401 A1 varient très fortement quand la roue avance d'une position d'équilibre stable à la prochaine. Cette situation a plusieurs désavantages significatifs.
La première conséquence est le fait que la roue d'échappement est bloquée par les forces des aimants quand elle est à l'arrêt. On comprend facilement que, si les aimants de la roue d'échappement sont en face des aimants du diapason et de polarité inverse, les deux paires d'aimants s'attirent et la roue échappement reste bloquée dans cette position. Cette situation arrive à chaque fois que le rouage de la montre est arrêté, ce qui se produit si la montre n'est pas portée et s'arrête à la fin de sa réserve de marche, mais aussi lors des mises à l'heure où l'on stoppe le rouage pour la mise en route à la seconde précise. Ce phénomène est bien connu et typique pour les pièces d'horlogerie munies d'un échappement magnétique de l'art antérieur. Les pièces d'horlogerie munies d'échappements magnétiques du type CF. Clifford avaient des mécanismes sophistiqués pour lancer la roue d'échappement lors de la mise en route du mouvement.
Le deuxième désavantage du système décrit en EP 2 466 401 A1 est sa sensibilité à la désynchronisation en cas de choc. Le fait de placer des aimants sur la roue d'échappement et sur les bras du diapason conduit à des forces importantes entre les deux organes régulateurs. La puissance mécanique nécessaire pour synchroniser une montre mécanique est cependant très petite. La puissance mécanique étant donnée par le produit entre la force tangentielle et la vitesse, on constate que des forces importantes conduisent nécessairement à des vitesses faibles. Dans le cas d'un mouvement rotatif, ils conduisent à une vitesse de rotation de la roue d'échappement basse. Notamment les montres bracelets sont soumises à des chocs assez violents. Si la montre tombe par terre, des chocs de plusieurs milliers de fois l'accélération terrestre sont atteints. Même en utilisation normale, des chocs produisant des accélérations beaucoup plus élevées que l'accélération terrestre sont fréquents. Un choc n'est généralement pas seulement une accélération linéaire, la montre touche ou tombe normalement sur un coin de la pièce de sorte que l'accélération est une combinaison d'une accélération linéaire et d'une accélération angulaire. Si la composante angulaire de l'accélération due au choc accélère la roue d'échappement à une vitesse angulaire dépassant la vitesse de synchronisation avec le diapason, le mécanisme de synchronisation susmentionné ne fonctionnera plus et la roue d'échappement continue d'accélérer, entraînée par le rouage et le ressort barillet de la montre. Dans un tel cas, la montre perd toutes ses qualités chronométriques, les aiguilles tournent à une vitesse beaucoup trop élevée. Le risque de désynchronisation dans un système selon le document EP 2 466 401 A1 est également élevé parce que la synchronisation entre la roue d'échappement et le mouvement du résonateur diapason se fait aux positions relatives des deux organes où les forces d'attraction sont grandes et ceci n'est le cas qu'une fois par oscillation du résonateur dans la position dessinée en figure 1 .
Un autre désavantage de la réalisation selon le document EP 2 466401 A1 est lié à la forme du diapason décrit dans ce document. Le résonateur diapason est en effet un diapason en forme d'un barreau oscillant, plié en U. Ce type de diapason est bien connu de la musique et est utilisée pour accorder des instruments. Il est connu de son application dans la musique que ce type de diapason transmet sa vibration par sa tige attachée au milieu du U du diapason. Le musicien sait bien que le son du diapason est bien plus audible si le diapason est posé sur une surface capable de vibrer à sa fréquence, par exemple sur le couvercle du piano. Ceci vient du fait que le diapason transmet son énergie de vibration par sa tige au couvercle du piano qui - considérant sa grande surface - la transmet à l'air comme un haut-parleur. Un résonateur horloger devrait cependant garder son énergie dans la structure résonnante et ne pas la perdre dans la fixation, des pertes dans la fixation dégradent son facteur de qualité et de ce fait ses propriétés chronométriques. La fixation au pied d'un diapason en U est de ce fait très désavantageuse. Le document EP 2 466 401 A1 mentionne le fait que le diapason en U a deux points qui restent immobiles, les points (ou axes) nodaux. Le diapason en U pourrait théoriquement être attaché à son support à ses deux points. Dans les conditions d'une montre bracelet notamment et considérant les grandes accélérations à laquelle elle doit résister, cette solution n'est cependant pas réalisable: soit l'attachement du diapason est effectivement suffisamment petit pour ne pas perturber la vibration du résonateur, auquel cas le dispositif ne résiste pas aux chocs, soit le dispositif résiste aux chocs auquel cas l'attachement est physiquement trop important et il en résulte des pertes d'énergie significatives. Force est de constater que le diapason en U ne permet pas un montage dans le mouvement horloger satisfaisant les conditions exigées de cette application.
Le but de la présente invention est de remédier aux inconvénients des échappements magnétiques de l'art antérieur en fournissant un système régulateur d'une pièce d'horlogerie mécanique basé sur l'interaction magnétique entre un résonateur et une roue d'échappement, ladite interaction créant des forces radiales et tangentielles agissant sur la roue d'échappement (9) et y générant des couples, qui est caractérisé en ce qu'il est agencé pour que les couples dues auxdites forces tangentielles agissent dans des sens opposés et s'annulent mutuellement lorsque le résonateur est à l'arrêt et qu'un couple est appliqué sur la roue d'échappement. Ceci est atteint avec un échappement magnétique interagissant avec le résonateur avec des forces tangentielles négligeables à l'arrêt du résonateur et généralement plus faibles de sorte à permettre une vitesse de rotation de la roue d'échappement suffisamment élevée pour rendre la pièce d'horlogerie insensible aux chocs. Une des formes de réalisation préférées de l'invention permet de synchroniser la roue d'échappement avec le résonateur diapason à chaque demi-oscillation du résonateur diapason ce qui augmente encore la résistance aux chocs. Le résonateur diapason selon une des formes de réalisation de l'invention a une structure permettant un encastrement solide assurant la résistance aux chocs du résonateur et de son montage.
L'invention est expliquée plus en détail en faisant référence aux figures annexées dans lesquels :
la figure 1 montre l'art antérieur, notamment le système selon le document EP 2 466 401 A1 ,
la figure 1 a représente le dispositif selon la figure 1 en rotation et les forces tangentielles agissant sur la roue d'échappement quand le résonateur est à l'arrêt,
la figure 1 b montre graphiquement les forces tangentielles selon la figure 1 a pendant la rotation de la roue d'échappement d'une position d'équilibre à la prochaine,
la figure 2 montre le dispositif selon une réalisation préférée de l'invention,
la figure 3 montre une coupe à travers le dispositif montré en figure 2 dans le plan B-B',
la figure 4 montre une coupe à travers le dispositif de la figure 2 dans le plan A-A', la figure 5 montre les forces tangentielles agissant sur la roue d'échappement dans le dispositif selon la figure 2 quand le résonateur est à l'arrêt,
la figure 6 montre graphiquement les forces tangentielles selon la figure 5 agissant sur la roue d'échappement pendant la rotation de la roue par une dent,
la figure 7 montre les forces tangentielles sur la roue d'échappement du dispositif selon l'invention quand le diapason vibre à sa fréquence de résonance et synchronise la vitesse de la roue d'échappement,
la figure 8 montre le couple produit par les forces tangentielles sur la roue d'échappement du dispositif selon l'invention quand la roue d'échappement est synchronisée sur l'oscillation du résonateur et ceci en fonction du déphasage entre le mouvement d'oscillation du diapason et la rotation de la roue d'échappement,
la figure 9 montre le dispositif selon l'invention avec un résonateur double - diapason en forme de H.
En faisant référence aux figures l'invention va être expliquée d'une manière détaillée. La figure 1 montre l'art antérieur selon le document EP 2 466 401 A1 . Le résonateur diapason 1 en forme de U porte à l'extrémité de chaque branche un aimant permanent 2 orienté de sorte à ce que les champs magnétiques créés par les aimants soient dans la même direction. La roue d'échappement 3 est disposée entre les branches du diapason et porte dans l'exemple dessiné six aimants permanents 4 alternativement orientés de sorte à montrer aux aimants du diapason des pôles magnétiques opposés ou identiques. La roue d'échappement porte en plus le pignon 5 engrenant dans le rouage de la pièce d'horlogerie.
La figure 1 a montre les forces tangentielles qui se développent quand la roue d'échappement tourne lentement et le résonateur est à l'arrêt. Il s'agit de la situation de démarrage du mouvement horloger. La géométrie en figure 1 étant symétrique par rapport à un plan à travers l'axe de la roue et passant par les aimants du diapason, il ne peut pas y avoir de force tangentielle. En tournant la roue d'échappement par exemple dans le sens horaire comme indiquée par la flèche 6, les aimants de polarité opposés s'attirent ce qui produira les forces 7 et 8. On constate que les deux forces tangentielles produisent un couple sur la roue d'échappement qui agit dans le même sens et contre la rotation dans le sens de la flèche 6.
La figure 1 b montre la force tangentielle résultante (la somme des deux forces 7 et 8 montrées en figure 1 a) de l'art antérieur selon la figure 1 en fonction de l'angle de rotation de la roue d'échappement 3. L'angle de rotation représenté correspond à l'avancement de la roue d'échappement d'une position d'équilibre stable à la prochaine. Le mouvement commence par l'angle de rotation 0 dans la situation dessinée en figure 1 . Cette situation correspond à l'équilibre stable de la roue d'échappement et elle est indiquée par la flèche désignée par A. En tournant comme dessinée en figure 1 a vers la position où les aimants de la roue d'échappement sont en face des aimants du diapason mais en polarité identique, la roue d'échappement aura fait la moitié de la rotation (désignée par 0.5) et elle arrive dans la position d'équilibre instable. Cette position est désignée en figure 1 b avec la flèche B. Dans cette première moitié du mouvement de rotation la force tangentielle est positive, elle agit contre la rotation de la roue d'échappement. Dès que le point d'équilibre instable B est dépassé, la force tangentielle tire la roue d'échappement dans le sens de la rotation, dans le diagramme en figure 1 b ceci se montre par des forces négatives. A la fin de la rotation, à l'angle de rotation désigné par 1 , la roue d'échappement sera à nouveau dans la position A, mais elle aura avancé d'un pas. Dans la situation dessinée en figure 1 , ce pas correspond à une rotation de 120° de la roue d'échappement. La figure 2 montre une des réalisations préférées de la présente invention. La roue d'échappement 9 porte une couronne en matériau ferromagnétique 10 munie d'une denture intérieure 1 1 et extérieure 12. La roue d'échappement engrène dans le rouage de la pièce d'horlogerie au moyen du pignon 13. Le rouage de la pièce d'horlogerie ainsi que son ressort moteur (ressort de barillet) sont bien connus et ne sont pas représentés dans les figures. Par-dessus la couronne ferromagnétique 10 se situe le résonateur diapason 14. Le résonateur diapason comporte deux branches 1 6 et 17 attachés à une base massive 15. La réalisation dessinée schématiquement en figure 2 est expliquée plus en détail en se référant aux figures 3 et 4 qui montrent les coupes à travers la structure dans les plans A-A' et B-B', la vue dans ces coupes est dans la direction des flèches en fig.2.
La figure 3 est une coupe centrale à travers la roue d'échappement dans le plan B-B' montrant l'interaction entre la structure ferromagnétique et le résonateur diapason. Les surfaces hachurées correspondent à des parties coupées de la structure, tandis que les surfaces blanches sont des surfaces visibles en dehors du plan de la coupe. Les deux branches du diapason 16 et 17 qu'on voit ici coupées proche de leur extrémité libre portent des aimants 1 8 et 1 9. L'indication « N/S » dans les aimants indique leur polarité. Le côté inférieur des aimants porte les pièces polaires 20 et 21 qui dirigent le flux magnétique vers la structure ferromagnétique 10 de la roue d'échappement. Dans la position dessinée dans les figures 2 et 3, la pièce polaire droite 21 est en face d'une dent de la structure ferromagnétique tandis que la pièce polaire gauche 20 est entre deux dents.
La figure 4 montre la coupe centrale selon le plan A - A'. La figure montre le montage du diapason dans la cage du mouvement 22, cette pièce est normalement appelée « platine » par l'homme du métier et, d'une manière fortement schématisée, le palier de la roue d'échappement. On voit la coupe centrale à travers la roue d'échappement, l'arbre de la roue 23 étant interrompu dans la région des aimants et du diapason pour permettre la représentation de ces éléments qui sont en dehors du plan de la coupe. Le pied du diapason 1 5 est coupé et on s'aperçoit du montage rigide que la structure du diapason selon l'invention permet de réaliser.
Faisant référence aux figures, le fonctionnement des organes régulateurs selon l'invention va maintenant être décrit en détail. Les figures 2 et 3 montrent que la réalisation selon l'invention fait interagir le diapason avec la couronne en matériau ferromagnétique avec sa denture extérieure sur un bras du diapason (le bras 16) et avec la denture intérieure sur l'autre bras (le bras 17). On constate également que l'interaction avec la couronne dentée est alternante, quand la pièce polaire du bras droit 17 est en face d'une dent de la couronne ferromagnétique 10, la pièce polaire de l'autre bras 16 est entre deux dents. Il est bien connu qu'une pièce en matériau ferromagnétique se fait attirer par un aimant et on constate que la rotation de la roue d'échappement produira des forces agissant dans le sens radial et variant selon la position angulaire relative entre les dents de la couronne ferromagnétique et les pièces polaires du diapason. Le diapason étant une structure capable de vibrer et d'entrer en résonance va se faire exciter par la rotation de la roue d'échappement même si la roue d'échappement ne porte pas des aimants comme c'est le cas de l'art antérieur.
La figure 5 montre les forces tangentielles 25 et 26 qui se développent dans la structure selon l'invention quand la roue d'échappement tourne dans le sens de la flèche 24. On s'aperçoit qu'en tournant la roue d'échappement dans le sens horaire par rapport à sa position d'équilibre une pièce polaire du diapason s'éloigne d'une dent de la structure ferromagnétique tandis que l'autre s'approche. Ceci produira des forces tangentielles comme dessinées par les flèches 25 et 26 et on constate que les deux forces tangentielles produisent des couples à la roue d'échappement de sens opposé. De ce fait les couples créés par les forces tangentielles s'annulent mutuellement. La figure 6 est une représentation graphique des forces tangentielles 25 et 26 en fonction de l'angle de rotation de la roue d'échappement. On constate que les deux forces 25 et 26 s'opposent donnant la force résultante très faible, désignée 27. Si les deux aimants ont une aimantation correcte la force résultante 27 est nulle, les tolérances de fabrication inévitables font cependant que les deux forces 25 et 26 ne se compensent pas exactement et il en résulte la faible force 27 représentée en figure 6. A titre d'exemple, si un des aimants a une aimantation qui dévie de la valeur de conception par 1 %, la force 27 aura également une valeur correspondante à 1 % des forces 25 ou 26 respectivement. On constate que le système selon l'invention permet de réduire la force tangentielle résultante d'une manière très importante par rapport à l'art antérieur. L'échelle de rotation de la roue couvre l'avancement de la roue par une dent, dans la situation correspondante à la figure 2 il y a 36 dents, la roue aura parcouru 10° dans la plage désignée de 0 à 1 sur l'axe de rotation de la roue.
La situation dessinée en figure 6 est valable pour une vitesse de rotation de la roue d'échappement loin de la résonance, typiquement au démarrage de la roue et on s'aperçoit que la force tangentielle résultante 27 est très faible, théoriquement même nulle. Ceci permet à la pièce d'horlogerie de se mettre en marche sans dispositif auxiliaire de lancement, ce qui rend le mécanisme des organes régulateurs de la pièce considérablement plus simple et plus fiable.
Si la vitesse de rotation de la roue d'échappement approche la valeur produisant au diapason une excitation à sa fréquence de résonance, l'amplitude de vibration de ses bras devient élevée et peut atteindre plusieurs centièmes de millimètres. Plus l'amplitude de vibration du diapason est élevée, plus l'interaction entre le diapason oscillant et la roue d'échappement tournante va créer des forces tangentielles élevées, forçant la roue à tourner de manière synchrone avec le mouvement du résonateur diapason. On a en effet trouvé que les forces tangentielles augmentent plus que linéairement avec l'amplitude de vibration du diapason. En comparaison avec les forces illustrées en figure 6, les forces tangentielles deviennent plus de vingt fois plus grandes si le diapason est en résonance.
La figure 7 montre les forces tangentielles agissant sur la roue d'échappement quand la roue d'échappement est synchronisée sur la fréquence du résonateur diapason. Le résultat illustré en figure 7 montre les forces magnétiques du dispositif dessiné en figure 2. L'axe horizontal indique la rotation de la roue d'échappement par une dent complète. A la position zéro, la dent est en face de la pièce polaire comme dessiné en figure 2. Aux positions 5 et -5, la roue est tournée par une demi-dent, la plage de rotation illustrée dans la figure 7 correspond à la rotation de la roue par une dent complète. L'axe vertical est celui des forces tangentielles. La courbe 28 montre la force exercée par la pièce polaire au bras 17, la courbe 29 la valeur négative de celle exercée par la pièce polaire au bras 16 et la courbe 30 donne la somme des deux courbes. La figure montre la situation quand la roue d'échappement est synchronisée sur l'oscillation du diapason. Cette condition est remplie quand la roue d'échappement tourne d'une dent dans le temps que le résonateur accomplit une oscillation. On constate que la force tangentielle montrée dans la courbe 30, qui indique la somme des forces des deux bras, est substantiellement plus faible que l'une ou l'autre des forces 28 et 29. On pourrait déduire de la figure 7 que le diapason, même en oscillant à grande amplitude, n'est pas à même de synchroniser la roue d'échappement sur sa fréquence propre. La force tangentielle résultante est en effet faible et on s'aperçoit qu'elle a en plus des composantes positives et négatives qui sont de grandeur proche de sorte que le résultat global couvrant la force résultante pendant l'avancement d'une dent complète sera très faible. Ceci vient du fait que la figure 7 montre la situation où le résonateur diapason vibre exactement en phase avec la rotation de la roue d'échappement. Par ceci, on entend que la dent de la denture 1 1 est exactement en face de la pièce polaire du bras 17, quand le diapason est à son extrémité, écarté. Dans cette situation, il n'y a effectivement pas de transfert d'énergie entre le résonateur et la roue d'échappement. Ce cas n'a cependant qu'un intérêt pour l'explication du mécanisme de synchronisation, en réalité il n'existe pas. La roue d'échappement, qui est entraînée par le ressort de barillet de la pièce d'horlogerie à travers le rouage à normalement tendance à tourner plus vite que le résonateur diapason oscille. Son mouvement des dents devance la vibration du diapason. L'homme du métier appelle l'avance de la roue son déphasage par rapport au mouvement du diapason. Le déphasage est mesuré en °, 0° signifie qu'il n'y a aucun déphasage ; à 180° le déphasage correspond à une avance d'une demi-dent et à moins 180° la roue d'échappement serait en retard d'une demi-dent.
La figure 8 montre le couple résultant de l'interaction entre le diapason vibrant et la roue d'échappement en fonction du déphasage entre la rotation de la roue d'échappement et la vibration du résonateur. Les forces tangentielles des deux bras du diapason sont multipliées avec leur rayon correspondant pour qu'on obtienne le couple agissant sur la roue d'échappement et l'axe vertical indique la somme des deux couples donc le couple résultant sur la roue d'échappement. Des valeurs négatives de couple dans la figure 8 correspondent à un couple qui freine la roue d'échappement, des valeurs positives de couple accélèrent la roue d'échappement. La figure 8 montre que dans la plage de 0 à 100 ° environ le couple de freinage agissant sur la roue d'échappement augmente continuellement avec le déphasage. Ceci signifie que, plus que le couple d'entraînement de la roue d'échappement est grand, plus la roue d'échappement sera déphasée par rapport au mouvement du diapason. Au contraire, s'il n'y a plus de couple entraînant la roue d'échappement, le déphasage tombe à zéro. Ce cas arrive quand le ressort barillet est à la fin de sa réserve de marche et la pièce d'horlogerie s'arrête. La figure 8 montre clairement que la vitesse de rotation de la roue d'échappement est synchronisée sur la fréquence du diapason pour autant que le ressort barillet arrive à entraîner la pièce d'horlogerie. Le déphasage des deux mouvements synchronisés détermine le couple freinant la roue d'échappement et la synchronise sur la fréquence du résonateur diapason.
La figure 8 correspond à la situation d'un résonateur vibrant avec une amplitude fixe. Tel n'est cependant pas le cas. Si le résonateur freine la roue d'échappement, il y a nécessairement un transfert d'énergie de la roue au résonateur. L'énergie transférée au résonateur diapason augmentera son amplitude de vibration jusqu'à ce que les pertes d'énergie du résonateur, dues par exemple au frottement dans l'air de ses branches, soient à nouveau égales à l'apport d'énergie provenant de la roue d'échappement. Le résonateur ne pouvant ni créer ni perdre de l'énergie doit en effet toujours vibrer à une amplitude conduisant à l'égalité de l'énergie apportée par la roue d'échappement et l'énergie perdue dans les frottements et autres pertes. Comme les pertes augmentent avec l'amplitude de vibration, on s'aperçoit que l'amplitude de vibration doit augmenter si l'énergie (le couple) transmise au résonateur augmente.
Plus l'amplitude de vibration devient grande, plus le freinage au même déphasage devient important. Bien que la plage de fonctionnement de l'échappement selon l'invention comme représenté en figure 8 soit déjà assez grande et bien suffisante pour une application pratique, la physique du système montre que le domaine de fonctionnement est en effet bien plus grand encore.
Le résonateur diapason selon l'invention a une forme très différente d'un diapason en U selon l'art antérieur décrit dans le document EP 2 466 401 A1 . Comme représenté en figure 2, le diapason est constitué de deux branches attachées à un pied 15 en forme d'une plaque massive. Cette géométrie a plusieurs avantages par rapport au résonateur de l'art antérieur montré en figure 1 . Les avantages sont la conséquence des mouvements et déformations dans cette structure de diapason. Le diapason selon la figure 2 se déforme comme si les deux bras 16 et 17 étaient encastrés et immobiles à leur base et oscillent à leur bout libre dans un mouvement gauche - droite en contre phase. On constate que ce mouvement des bras est en première approximation dépourvu de mouvements dans le sens de la longueur du diapason. Le pied 15 du diapason ne se déplace donc pas, il subit les contraintes provenant des bras en oscillation. Ces contraintes déforment le pied 1 5 à proximité des bases des bras du diapason, elles s'atténuent cependant très vite et fortement vers la base du pied. Ceci offre la possibilité d'un assemblage simple et massif dans la zone inférieure du pied 15, par exemple par des vis comme dessiné en figure 2. On obtient de ce fait un résonateur diapason avec peu de pertes d'énergie de vibration dans l'encastrement et simultanément un montage massif satisfaisant les exigences de résistance aux chocs d'un mouvement horloger.
La structure dessinée en figure 2 n'est pas la seule possibilité d'un résonateur satisfaisant les exigences d'un échappement magnétique selon l'invention. La figure 9 montre à titre d'exemple une structure en double diapason. La structure en double diapason offre la possibilité d'attacher des masses 31 et 32 au bout des deux branches additionnelles. Ces masses 31 et 32 peuvent être montées à une position ajustable et permettent d'ajuster la fréquence de résonance du double diapason. D'autres méthodes d'ajustage à la fréquence chronométrique d'un diapason sont connues de l'homme du métier comme par exemple l'enlèvement de petites quantités de masse au bout des branches par une ablation de matière au laser.
Il va de soi que l'invention n'est pas limitée aux modes de réalisation qui viennent d'être décrits et que diverses modifications et variantes simples peuvent être envisagées par l'homme du métier sans sortir du cadre de l'invention tel que défini par les revendications annexées.
Il va notamment de soi que l'on peut prévoir un blindage du système régulateur de l'invention et en particulier de la roue d'échappement pour limiter voire éliminer l'influence des champs magnétiques extérieurs sur le fonctionnement du système. Typiquement on peut envisager deux flasques réalisés en un matériau ferromagnétique disposés de part et d'autre de la roue d'échappement.
Selon une autre variante, on peut également prévoir de remplacer les aimants permanents discrets par une ou plusieurs couches magnétiques, typiquement en alliage de platine et de cobalt (50-50 at.%) ou en samarium cobalt.
En outre bien que le système régulateur de l'invention ait été décrit ci-dessus en liaison avec l'utilisation d'aimants et donc de forces magnétostatiques, il est également envisagé selon l'invention de remplacer les aimants discrets ou la ou les couches magnétiques par des électrets et des forces électrostatiques. La construction du système régulateur est entièrement similaire et est dimensionnée en fonction des champs électrostatiques permanents établis entre les branches du résonateur et la roue d'échappement. En somme, dans ce mode faisant appel à des forces et couples électrostatiques, il est possible d'utiliser un matériau conducteur soit pour les branches du résonateur si la roue d'échappement est électrisée et chargée avec une énergie suffisante, soit pour la roue d'échappement si ce sont les branches du résonateur qui sont électrisées et chargées, ce matériau conducteur est polarisé localement. Typiquement le résonateur diapason peut porter des électrets à l'extrémité de chaque bras et la roue d'échappement est conductrice ou électrisée localement, sur le les dents de la roue venant en regard des électrets du résonateur, avec des charges opposées aux électrets du résonateur.

Claims

Revendications
1 . Système régulateur d'une pièce d'horlogerie mécanique basé sur l'interaction magnétique entre un résonateur (14) et une roue d'échappement (9), ladite interaction créant des forces radiales et tangentielles (25, 26) agissant sur la roue d'échappement (9) et y générant des couples, caractérisé en ce que le système régulateur est agencé pour que les couples dues auxdites forces tangentielles agissent dans des sens opposés et s'annulent mutuellement lorsque le résonateur est à l'arrêt et qu'un couple est appliqué sur la roue d'échappement.
2. Système régulateur selon la revendication 1 caractérisé en ce que la roue d'échappement (9) interagit avec le résonateur (14) à chaque demi oscillation du résonateur avec des forces tangentielles sensiblement égales et opposées.
3. Système régulateur selon la revendication 1 caractérisé en ce que le résonateur est un diapason.
4. Système régulateur selon la revendication 3 caractérisé en ce que le diapason (14) est composé de deux bras (1 6, 17) attachés à un pied (15) de section plus grande que celle des bras.
5. Système régulateur selon la revendication 3 caractérisé en ce que le résonateur diapason porte un aimant permanent (1 8, 19) à chaque bras.
6. Système régulateur selon la revendication 5 caractérisé en ce que le flux magnétique desdits aimants (18, 1 9) est dirigé vers l'extérieur du diapason à un bras et à l'autre bras vers l'intérieur du diapason.
7. Système régulateur selon la revendication 6 caractérisé en ce que la roue d'échappement porte une structure ferromagnétique (10) en forme de couronne dentée à denture intérieure (1 1 ) et extérieure (12) disposées en sorte que si une dent de ladite couronne intérieure est en face de l'aimant d'un bras du diapason l'aimant situé sur l'autre bras du diapason est situé entre deux dents de ladite denture extérieure et vice versa.
8. Système régulateur selon la revendication 1 caractérisé en ce que le résonateur a la forme d'un double diapason en forme de H dont la partie centrale sert de base aux quatre bras.
9. Système régulateur selon l'une quelconque des revendications caractérisé en ce que le résonateur porte des moyens d'ajustage à la fréquence chronométrique en forme de masselottes réglables (31 , 32) disposées sur la structure du résonateur ou de plages ménagées pour être enlevées par ablation.
10. Système régulateur selon la revendication 5 caractérisé en ce que l'aimant permanent est réalisé sous la forme d'une ou plusieurs couches magnétiques.
1 1 . Système régulateur selon la revendication 1 0 caractérisé en ce que la ou les couches magnétiques sont réalisées en alliage de platine et de cobalt.
12. Système régulateur selon l'une des revendications 1 à 4 caractérisé en ce que le résonateur diapason porte des électrets à chaque bras et en ce que la roue d'échappement est conductrice ou électrisée localement avec des charges opposées aux électrets du résonateur.
13. Mouvement horloger comportant un système régulateur selon l'une des revendications précédentes.
PCT/EP2014/065736 2013-08-05 2014-07-22 Système régulateur pour montre mécanique WO2015018636A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/784,175 US10222757B2 (en) 2013-08-05 2014-07-22 Regulating system for a mechanical watch
EP14741892.5A EP3030938B1 (fr) 2013-08-05 2014-07-22 Système régulateur pour montre mécanique
CN201480029731.7A CN105264444B (zh) 2013-08-05 2014-07-22 用于机械表的调节系统
RU2016103696A RU2016103696A (ru) 2013-08-05 2014-07-22 Система регулирования для механических часов
JP2016517638A JP6067936B2 (ja) 2013-08-05 2014-07-22 機械式腕時計用調整システム
HK16108443.8A HK1220519A1 (zh) 2013-08-05 2016-07-18 用於機械錶的調節系統

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1354/13 2013-08-05
CH01354/13A CH707471B1 (fr) 2013-08-05 2013-08-05 Système régulateur pour montre mécanique.

Publications (2)

Publication Number Publication Date
WO2015018636A2 true WO2015018636A2 (fr) 2015-02-12
WO2015018636A3 WO2015018636A3 (fr) 2015-07-16

Family

ID=51212856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/065736 WO2015018636A2 (fr) 2013-08-05 2014-07-22 Système régulateur pour montre mécanique

Country Status (8)

Country Link
US (1) US10222757B2 (fr)
EP (1) EP3030938B1 (fr)
JP (1) JP6067936B2 (fr)
CN (1) CN105264444B (fr)
CH (1) CH707471B1 (fr)
HK (1) HK1220519A1 (fr)
RU (1) RU2016103696A (fr)
WO (1) WO2015018636A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10459406B2 (en) * 2014-09-25 2019-10-29 The Swatch Group Research And Development Ltd Interaction between two timepiece components
USD790416S1 (en) * 2015-03-27 2017-06-27 RB Distribution, Inc. Front wheel drive shift fork
EP3182225B1 (fr) * 2015-12-18 2018-08-08 Montres Breguet S.A. Mécanisme séquenceur d'horlogerie à roue de passage à frottement réduit
KR102597049B1 (ko) * 2016-01-27 2023-11-02 삼성디스플레이 주식회사 지시 바늘을 포함하는 표시 장치
CN105700328B (zh) * 2016-04-28 2018-05-15 刘亚楠 无卡度机械表走时调整机构
FR3059792B1 (fr) * 2016-12-01 2019-05-24 Lvmh Swiss Manufactures Sa Dispositif pour piece d'horlogerie, mouvement horloger et piece d'horlogerie comprenant un tel dispositif
EP3757684A1 (fr) * 2019-06-26 2020-12-30 The Swatch Group Research and Development Ltd Mobile inertiel pour resonateur d'horlogerie avec dispositif d'interaction magnetique insensible au champ magnetique externe
EP3767397B1 (fr) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Mouvement horloger comprenant un element tournant muni d'une structure aimantee ayant une configuration periodique
EP3800511B1 (fr) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Axe de pivotement d'un organe réglant
EP3839650A1 (fr) * 2019-12-18 2021-06-23 ETA SA Manufacture Horlogère Suisse Procede de fabrication d`au moins deux pieces mecaniques
CN112079272B (zh) * 2020-08-13 2022-04-08 江苏伟丰建筑安装集团有限公司 一种建筑材料运输设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971323A (en) 1953-06-19 1961-02-14 Bulova Watch Co Inc Electronically-controlled timepiece
EP1967919B1 (fr) 2007-03-09 2009-06-03 ETA SA Manufacture Horlogère Suisse Echappement à impulsions tangentielles
EP2336832A2 (fr) 2009-12-21 2011-06-22 Rolex Sa Echappement à ancre suisse
EP2466401A1 (fr) 2010-12-15 2012-06-20 Asgalium Unitec SA Resonateur magnetique pour piece d'horlogerie mecanique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1177077B (de) * 1961-06-19 1964-08-27 Straumann Inst Ag Magnetische Hemmung fuer Uhrwerk
US3208287A (en) * 1961-10-21 1965-09-28 Jeco Kk Magnetic escapement
CH405171A (fr) * 1962-08-11 1965-09-15 Lavet Marius Jean Appareil horaire et procédé de fabrication de cet appareil
GB1128394A (en) * 1966-07-04 1968-09-25 Horstmann Magnetics Ltd Magnetic escapements
CH1385466A4 (fr) * 1966-09-26 1969-07-31
DE1673670B2 (de) * 1967-06-27 1972-01-27 Fa Muller Schlenker, 7220 Schwen ningen Elektrische uhr mit magnetischem antrieb eines polrades
US3591814A (en) * 1969-06-06 1971-07-06 Clifford Cecil F Compound reed oscillator or filter
US3678307A (en) * 1969-07-23 1972-07-18 Clifford Cecil F Electromechanical oscillator with isochronous compensation and/or frequency regulation
US3719839A (en) * 1970-03-25 1973-03-06 Y Endo Device for magnetically regulating each stop position of an intermittently rotating output member
US3652955A (en) * 1970-07-30 1972-03-28 Gen Time Corp Electromechanical oscillator using electret coupling
CH594201B5 (fr) * 1972-12-13 1977-12-30 Ebauches Sa
CH661403GA3 (fr) * 1985-10-02 1987-07-31
ATE363675T1 (de) * 2003-10-01 2007-06-15 Asulab Sa Uhr mit einem mechanischen uhrwerk, das mit einem elektronischen regulator gekoppelt ist
CH702187A2 (fr) * 2009-11-02 2011-05-13 Lvmh Swiss Mft Sa Organe réglant pour montre bracelet, et pièce d'horlogerie comportant un tel organe réglant.
CH703475B1 (fr) * 2010-07-30 2015-06-30 Swatch Group Res & Dev Ltd Procédé de réalisation d'une transmission sans contact dans un mouvement d'horlogerie.
EP2450756B1 (fr) * 2010-11-04 2015-01-07 Nivarox-FAR S.A. Dispositif anti-galop pour mécanisme d'échappement
EP2607969B1 (fr) * 2011-12-19 2014-09-17 Nivarox-FAR S.A. Mouvement horloger à faible sensibilité magnétique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971323A (en) 1953-06-19 1961-02-14 Bulova Watch Co Inc Electronically-controlled timepiece
EP1967919B1 (fr) 2007-03-09 2009-06-03 ETA SA Manufacture Horlogère Suisse Echappement à impulsions tangentielles
EP2336832A2 (fr) 2009-12-21 2011-06-22 Rolex Sa Echappement à ancre suisse
EP2466401A1 (fr) 2010-12-15 2012-06-20 Asgalium Unitec SA Resonateur magnetique pour piece d'horlogerie mecanique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C.F. CLIFFORD, HOROLOGICAL JOURNAL, April 1962 (1962-04-01)

Also Published As

Publication number Publication date
US20160070235A1 (en) 2016-03-10
US10222757B2 (en) 2019-03-05
RU2016103696A (ru) 2017-08-10
HK1220519A1 (zh) 2017-05-05
JP2016520845A (ja) 2016-07-14
WO2015018636A3 (fr) 2015-07-16
CN105264444B (zh) 2017-08-04
EP3030938A2 (fr) 2016-06-15
US20180181072A2 (en) 2018-06-28
CN105264444A (zh) 2016-01-20
JP6067936B2 (ja) 2017-01-25
CH707471B1 (fr) 2014-07-31
EP3030938B1 (fr) 2023-05-17

Similar Documents

Publication Publication Date Title
EP3030938B1 (fr) Système régulateur pour montre mécanique
EP2466401B1 (fr) Résonateur magnétique pour pièce d'horlogerie mécanique
EP3130966B1 (fr) Mouvement d'horlogerie mecanique muni d'un systeme de retroaction du mouvement
EP3182216B1 (fr) Oscillateurs couplés d'horlogerie
EP2990885B1 (fr) Mouvement horloger mécanique à échappement magnétique
EP2282240B1 (fr) Module chronograph pour montre bracelet
EP2761378B1 (fr) Oscillateur a diapason pour mouvement horloger mecanique
EP3087435B1 (fr) Dispositif regulateur de la vitesse angulaire d'un mobile dans un mouvement horloger comprenant un echappement magnetique
EP3602206B1 (fr) Pièce d'horlogerie mécanique comprenant un mouvement dont la marche est améliorée par un dispositif de correction
WO2018177779A1 (fr) Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction
EP2613205A2 (fr) Organe réglant pour montre ou chronographe
CH713636A2 (fr) Pièce d'horlogerie mécanique comprenant un mouvement dont la marche est améliorée par un dispositif de correction.
CH707990A1 (fr) Mouvement de montre mécanique.
WO2018215284A1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune
EP2802941B1 (fr) Organe réglant pour chronographe mécanique
CH713637A2 (fr) Pièce d'horlogerie comprenant un mouvement mécanique dont la marche est améliorée par un dispositif de correction.
CH705967B1 (fr) Mécanisme d'horlogerie comprenant un organe réglant comprenant un oscillateur vibrant, et mouvement d'horlogerie comprenant un tel mécanisme.
EP3140698B1 (fr) Oscillateur mecanique a diapason pour mouvement horloger
CH709755B1 (fr) Mécanisme d'horlogerie muni d'un résonateur diapason.
CH707187A2 (fr) Résonateur de mouvement d'horlogerie et ensemble comprenant un tel résonateur et un mécanisme d'échappement.
CH713829B1 (fr) Dispositif de régulation pour pièce d'horlogerie avec oscillateur harmonique isotrope ayant des masses rotatives et une force de rappel commune.
CH705969B1 (fr) Organe réglant pour un mouvement d'horlogerie.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480029731.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14741892

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2014741892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14784175

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016517638

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016103696

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE