WO2015018187A1 - 用于液晶显示器的光学补偿膜及包括其的液晶显示器 - Google Patents

用于液晶显示器的光学补偿膜及包括其的液晶显示器 Download PDF

Info

Publication number
WO2015018187A1
WO2015018187A1 PCT/CN2014/071002 CN2014071002W WO2015018187A1 WO 2015018187 A1 WO2015018187 A1 WO 2015018187A1 CN 2014071002 W CN2014071002 W CN 2014071002W WO 2015018187 A1 WO2015018187 A1 WO 2015018187A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
liquid crystal
degrees
path difference
compensation
Prior art date
Application number
PCT/CN2014/071002
Other languages
English (en)
French (fr)
Inventor
康志聪
海博
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/241,427 priority Critical patent/US10261363B2/en
Publication of WO2015018187A1 publication Critical patent/WO2015018187A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/03Number of plates being 3
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to an optical compensation film for a liquid crystal display and a liquid crystal display including the same. Background technique
  • Contrast is the ratio of the brightness of the display to the degree of darkness.
  • the dark state is not enough to be the main factor affecting the contrast of the liquid crystal display.
  • TFT-LCD thin film transistor liquid crystal display
  • the contrast of the picture is continuously reduced, and the sharpness of the picture is correspondingly reduced.
  • Compensation with a wide viewing angle compensation film can effectively reduce the light leakage of the dark state picture, and can greatly improve the contrast of the picture within a certain angle of view.
  • the compensation principle of the compensation film is to correct the phase difference generated by the liquid crystal at different viewing angles, so that the birefringence property of the liquid crystal molecules is compensated for symmetry.
  • the compensation film used is different, and the compensation film used for large-size LCD TVs is mostly for the vertical alignment (VA) display mode.
  • VA vertical alignment
  • Fig. 1 shows a dark state light leakage distribution map corresponding to a liquid crystal optical path difference (LCANd) ::: 333.5 i m in the prior art
  • Fig. 2 is a full view contrast distribution map.
  • the liquid crystal optical path difference, the liquid crystal pretilt angle, and the compensation values of the A film and the C film are shown in Table 1.
  • the present invention proposes an optical compensation film for a liquid crystal display for reducing light leakage and increasing contrast.
  • the inventors have found through research that the compensation values of the first C film, the second C film and the A film in the compensation film have an effect on the effect of the compensation film to reduce light leakage, and compensated by the retardation optical path difference of the A film in the compensation film.
  • the value (ro), the optical path difference compensation value (rth) in the thickness direction, and the optical path difference compensation value (rth) in the thickness direction of the C film take a value within a specific range, and the ⁇ gates are matched to each other to obtain the best value. Reduce the effect of light leakage.
  • the present invention provides an optical compensation film for a liquid crystal display.
  • the compensation film includes: a first c film disposed on one side of the liquid crystal panel, disposed outside the first c film a - - a polyvinyl alcohol layer, and a second C film disposed on the other side of the liquid crystal panel, a ruthenium film disposed on the side of the second C film, and a second polymerization disposed outside the A film a vinyl alcohol layer, wherein the in-plane retardation compensation value of the A film is in the range of [92, 1841 nm, and the optical path difference compensation value in the thickness direction of the A film is [46,
  • Embodiment 2 modified according to Embodiment 1, the slow axis of the first C film is perpendicular to the absorption axis of the first polyvinyl alcohol layer.
  • Embodiment 3 modified according to Embodiment 1 or 2, the slow axis of the A film and the second C film is perpendicular to the absorption axis of the second polyvinyl alcohol layer.
  • the absorption axis of the first polyvinyl alcohol layer is 0 degree with respect to the film plane of the optical compensation film, the first C film Slow axis
  • the slow axis of the second C film is 0 degrees
  • the slow axis of the A film is 0 degrees
  • the absorption axis of the second polyvinyl alcohol layer is 90 degrees.
  • the absorption axis of the first polyvinyl alcohol layer is 90 degrees with respect to the film plane of the optical compensation film, the first C film The slow axis is 0 degrees, the slow axis of the second C film is 90 degrees, and the slow axis of the A film is 90 degrees, the second polyethylene The absorption axis of the enol layer was 0 degrees.
  • Embodiment 6 modified according to any one of Embodiments to 5, the sum of the optical path difference compensation values in the thickness direction of the first C film and the second C film is larger than the in-plane optical path of the A film Difference compensation value.
  • Embodiment 7 which is improved according to any one of Embodiments i to 6, the liquid crystal optical path difference of the liquid crystal panel is in the range of [324.3, 342.8] nm, and the liquid crystal pretilt angle of the liquid crystal panel is at [85]
  • the present invention also provides a liquid crystal display comprising the above optical compensation film, wherein the optical compensation film comprises:
  • the in-plane optical path difference compensation value of the A film is within the range of [92, 184] m i ,
  • the optical path difference compensation value in the thickness direction of the A film is in the range of [46, 92] xim, and the optical path difference compensation value in the thickness direction of the first C film and the second C film is in [Y h Y 2 In the range of nm, and YfiXOOOCMl Sx 4 - 0.01 i434x 3 +l , 2037x 2 57.163x + 125.75,
  • ⁇ 2 (0.0588525 ⁇ 3 -0,9142 ⁇ 2 +42,2422 ⁇ -590.59 , where ⁇ is the optical path difference compensation value in the thickness direction of the ruthenium film.
  • the slow axis of the first C film is perpendicular to the absorption axis of the first polyvinyl alcohol layer, and the slow axis of the A film and the second C film is the same as the first The absorption axis of the divinyl alcohol layer is perpendicular.
  • the sum of the optical path difference compensation values in the thickness direction of the first C film and the second C film is greater than the in-plane optical path difference compensation value of the A film.
  • the experiment can verify that when the A film and the C film take the range of the compensation value in the technical solution of the present invention, the light leakage distribution is greatly reduced, which has a significant advantage over the prior art.
  • FIG. 4 shows a dark state light leakage distribution diagram under the A-plate and C-plate compensation values as described in the background section of the prior art
  • Figure 2 is a diagram showing the full-view contrast distribution of the A-plate and C-plate compensation values as described in the Background section of the prior art
  • FIG. 3 is a schematic structural view of an optical compensation film for a liquid crystal display according to the present invention
  • FIG. 4 is a view showing a tendency of a maximum dark state light leakage amount with a compensation value at different pretilt angles when the liquid crystal optical path difference is 324.3 nm -
  • Figure 5 shows the trend of the maximum dark state light leakage at different pretilt angles as a function of the compensation value when the liquid crystal optical path difference is 342.8 nm -
  • Figure 6 shows the dark state full view light leakage distribution in the first embodiment of the present invention. ;
  • Fig. 7 shows a full-view contrast distribution map in the first embodiment of the present invention:
  • Figure 8 is a view showing a dark state full-view light leakage distribution map in the second embodiment of the present invention.
  • Figure 9 is a view showing a full-view contrast distribution map in the second embodiment of the present invention.
  • Figure 10 is a view showing a dark state full-view light leakage distribution map in a third embodiment of the present invention.
  • Fig. 1 shows a full-view contrast distribution map in the third embodiment of the present invention.
  • an optical compensation film for a liquid crystal display includes a first C film disposed on one side of a liquid crystal panel, a first polyvinyl alcohol layer disposed outside the first C film, and a liquid crystal disposed on the liquid crystal.
  • a second C film on the other side of the panel, an A film disposed outside the second C film, and a second polyvinyl alcohol layer disposed outside the A film.
  • the optical compensation film according to the present invention can adopt the following two structures - with respect to the film plane of the optical compensation film, the optical compensation film according to the present invention can have an absorption axis of 0 degrees for the upper polarizer, and the absorption axis of the T polarized light is 90 degrees (compensation structure one).
  • the absorption axis of the upper polarizer is 90 degrees with respect to the film plane of the optical compensation film, and the absorption axis of the lower polarizer is 0 degree, the A-piate and the C film (C) of the compensation structure are ensured.
  • the slow axis of the -piate is perpendicular to the absorption axis of the polyvinyl alcohol (PVA) layer on the same side of the liquid crystal panel, the present invention is still suitable for ffi. (Compensation Structure II)
  • the inventors have found through research that the compensation values of the A-piaie and C-plate (in-plane optical path difference compensation value, optical path difference compensation value in the thickness direction) reduce the dark state light leakage effect of the optical compensation film. It has an effect, so you can simulate the dark state light leakage by matching the compensation values of different A-piate and C-plate, and then find the optimal compensation value range corresponding to the required dark state light leakage.
  • the structure of the optical compensation film to be used for the liquid crystal display is as shown in Fig. 3, which is the first C film disposed on the liquid crystal panel. a polyvinyl alcohol layer outside the first C film, and a second C film disposed on the other side of the liquid crystal panel, an A film disposed outside the second C film, and a second polymerization disposed outside the A film A vinyl alcohol layer.
  • the slow axes of A plate and C-piate are perpendicular to the absorption axes of the polyvinyl alcohol layer on the same side of the liquid crystal panel (cdl), respectively.
  • the pretilt angle is in the range of [85°, 90°); the four domain (domain) liquid crystal tilt angle is 45°; the liquid crystal: the optical path difference is in the range of [324, 3, 342.8] nm.
  • the light source blue-excited yttrium aluminum garnet phosphor (Blue-YAG) LED spectrum; the central brightness is set to 100 nits; the light source distribution is Lambert's distribution.
  • the dark state light leakage is simulated by matching the compensation values of different A-p!ate and C-piate.
  • the liquid crystal optical path difference is selected as 324.3nm, 342, 8nm, and the pretilt angle is selected as 85° and 89°. To explain.
  • Fig. 4 shows the tendency of the maximum dark state light leakage amount with the compensation value at different pretilt angles when the liquid crystal optical path difference is 324.3iim.
  • Fig. 5 shows that the liquid crystal optical path difference is 342.8iim. The trend of the maximum dark state light leakage at different pretilt angles varies with the compensation value.
  • Figures 4 and 5 are simulated with different A-plate and plate compensation values for different liquid crystal optical path differences and different pretilt angles. It can be seen that the A-piate and C-piate compensation values are different at different pretilt angles. The trend of dark light leakage is consistent. Under different pretilt angles, the corresponding compensation range is the same when the dark state has the lowest light leakage.
  • the pretilt angle is obtained at [85°-90.
  • the optimum compensation value range of A-plate and C-plaie corresponding to the optical compensation film
  • is the optical path difference compensation value (Rth) in the thickness direction of the ruthenium film.
  • the compensation value can be changed by the following three methods - Method 1: On the basis of the current A-piate and C-plate refractive index N, the compensation value is changed by changing the thickness d;
  • Method 2 On the basis of the current A-plate and C-piate, the refractive index N is changed to change the compensation value.
  • Method-3 On the basis of ensuring the range of compensation values of A-piate and C-plate, the thickness d and the refractive index N are simultaneously changed to change the compensation value.
  • optical compensation film proposed by the present invention the following three implementations have also been proposed for comparison with the prior art comparisons listed in the comparative documents.
  • the compensation values of the A-plate and the C-plate in the optical compensation film are changed according to the present invention to compare the dark state. Light leakage and full viewing angle contrast distribution.
  • Fig. 6 shows a dark state full-view light leakage distribution map of the first embodiment
  • Fig. 7 shows a full-view contrast distribution map of the first embodiment.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Fig. 8 shows a dark state full-view light leakage distribution map of the second embodiment
  • Fig. 9 shows a full-view contrast distribution map of the second embodiment.
  • Fig. 10 shows a dark state full-view light leakage distribution map of the embodiment
  • Fig. 1] shows a full-view contrast distribution map of the embodiment: three.
  • the present invention also proposes a liquid crystal display comprising the above optical compensation film.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种用于液晶显示器的光学补偿膜,属于液晶显示技术领域,包括:设置在液晶面板一侧的第一C膜,置于第一C膜外侧的第一聚乙烯醇层,以及设置在液晶面板另一侧的第二C膜,置于第二C膜外侧的A膜以及置于A膜外侧的第二聚乙烯醇层,其中A膜的面内光程差补偿值处于[92,184]nm的范围内,A膜的厚度方向上光程差补偿值处于[46,92]nm的范围内。通过该光学补偿膜,改善了暗态漏光分布和显示器的对比度。还提供了一种包括光学补偿膜的液晶显示器。

Description

用于液晶显示器的光学补偿膜及包括其的液晶显示器 技术领域
本发明涉及液晶显示技术领域, 特别是涉及一种用于液晶显示器的光学补 偿膜及包括其的液晶显示器。 背景技术
就液晶显示器的应用而言, 对比度的高低很大程度上影响着其在市场上的 认可程度。 对比度即为显示器亮态程度与暗态程度的比值。 一般而言, 暗态不够 暗是影响液晶显示器对比度的主要因素。随着薄膜晶体管液晶显示器(TFT-LCD) 的观察角度增大, 画面的对比度不断降低, 画面的清晰度也会相应下降。 这是液 晶层中液晶分子的双折射率随观察角度变化而发生改变的结果。 采用宽视角补偿 膜进行补偿, 可以有效降低暗态画面的漏光, 在一定视角内可以大幅度提高画面 的对'比度。 通常, 补偿膜的补偿原理是将液晶在不同视角下产生的相位差进行修 正, 让液晶分子的双折射性质得到对称性的补偿。
针对不同的液晶显示模式, 所采用的补偿膜&不同, 大尺寸液晶电视使用 的补偿膜大多针对垂直对准 (VA) 显示模式。
针对相同的液晶光程差 (LCANd), 补偿膜的补偿值不同, 则大视角的暗态漏
:光状况就不同, 对比度也不同。
例如, 图 1显示了现有技术中在液晶光程差 (LCANd) :::333.5i m时所对应 的暗态漏光分布图, 图 2为全视角对比度分布图。在图 1和图 2中, 液晶光程差、 液晶预倾角, 以及 A膜和 C膜的补偿值如表格 1所示。
Figure imgf000003_0001
表格 1
由此可见,采用现有技术中的 A- plate与 C- piate补偿值,在暗态下采用大视 角观测会有严重漏光现象, 其对比度很差, 视角范围很小。 某些视角下图像清晰 度会受到很大影响。
针对现有技术中的液晶显示器的补偿膜减少漏光效果不理想的问题,本发明 提出了一种用于液晶显示器的光学补偿膜, 用于减少漏光并增大对比度。
发明人通过研究发现, 补偿膜中第一 C膜、 第二 C膜和 A膜的补偿值对于 补偿膜减少漏光的效果有影响,并且通过将补偿膜中的 A膜的面 ή光程差补偿值 (ro) , 厚度方向上光程差补偿值 (rth)以及 C膜的厚度方向上光程差补偿值 (rth) 取特定范围内的数值, 且使它 ί门相互配合, 可以获得最佳的减少漏光的效果。
因此, 本发明提出了一种用于液晶显示器的光学补偿膜, 在实施方案 1中, 该补偿膜包括: 设置在液晶面板一侧的第一 c膜, 置于所述第一 c膜外侧的第 - · 聚乙烯醇层, 以及设置在所述液晶面板另一侧的第二 C膜, 置于所述第二 C膜夕卜 侧的 Α膜以及置于所述 A膜外侧的第二聚乙烯醇层, 其中所述 A膜的面内光程 差补偿值处于 [92, 1841nm的范围内,所述 A膜的厚度方向上光程差补偿值处于 [46,
92]nm的范围内, 所述第一 C膜和第二 C膜的厚度方向上光程差补偿值处于 [Υ, , Y2]nm的范围内, 而
Figure imgf000004_0001
1434χ3+1.2037χ2--57.163χ+1125.75, Υ2=-0.00003236χ4+0.0088525χ3-0,9142χ2+42,2422χ-590.59, 其中 χ为 Α膜的厚度 方向上光程差补偿值。
在根据实施方案 1所改进的实施方案 2中,所述第一 C膜的慢轴与所述第一 聚乙烯醇层的吸收轴垂直。
在根据实施方案 1或 2所改进的实施方案 3中,所述 A膜和所述第二 C膜的 慢轴与所述第二聚乙烯醇层的吸收轴垂直。
在根据实施方案 1到 3中任一个所改进的实施方案 4中, 相对于所述光学 补偿膜的膜平面, 所述第一聚乙烯醇层的吸收轴呈 0度, 所述第一 C膜的慢轴呈
90度, 所述第二 C膜的慢轴呈 0度, 所述 A膜的慢轴呈 0度, 所述第二聚乙烯 醇层的吸收轴呈 90度。
在根据实施方案 i到 3中任一个所改进的实施方案 5中, 相对于所述光学 补偿膜的膜平面, 所述第一聚乙烯醇层的吸收轴呈 90度, 所述第一 C膜的慢轴 呈 0度, 所述第二 C膜的慢轴呈 90度, 所述 A膜的慢轴呈 90度, 所述第二聚乙 烯醇层的吸收轴呈 0度。
在根据实施方案〗到 5中任一个所改进的实施方案 6中, 所述第一 C膜和 第二 C膜的厚度方向上光程差补偿值之和大于所述 A膜的面内光程差补偿值。
在根据实施方案 i到 6中任一个所改进的实施方案 7中, 所述液晶面板的 液晶光程差处于 [324.3, 342.8]nm的范围内,所述液晶面板的液晶预倾角处于 [85
89°]的范围内。
本发明还提出了一种包括上述光学补偿膜的液晶显示器, 其中所述光学补 偿膜包括:
设置在液晶面板一侧的第一 C膜, 置于所述第一 C膜外侧的第一聚乙烯醇 层, 以及设置在所述液晶面板另一侧的第二 C膜, 置于所述第二 C膜外侧的 A 膜以及置于所述 A膜外侧的第二聚乙婦醇层, 其中
所述 A膜的面内光程差补偿值处干 [92, 184]m i的范 内,
所述 A膜的厚度方向上光程差补偿值处于 [46, 92]xim的范围内, 所述第一 C膜和第二 C膜的厚度方向上光程差补偿值处于 [Yh Y2]nm的范 围内, 而 YfiXOOOCMl Sx4- 0.01 i434x3+l ,2037x2 57.163x+ 125.75,
γ2=„0.00003236χ4+0.0088525χ3-0,9142χ2+42,2422χ-590.59 , 其中 χ为 Α膜的厚度 方向上光程差补偿值。
在该显示器的一个实施例中, 所述第一 C膜的慢轴与所述第一聚乙烯醇层 的吸收轴垂直,所述 A膜和所述第二 C膜的慢轴与所述第二聚乙烯醇层的吸收轴 垂直。
在该显示器的一个实施倒中, 所述第一 C膜和第二 C膜的厚度方向上光程 差补偿值之和大于所述 A膜的面内光程差补偿值。
实验可验证, 当 A膜和 C膜取本发明技术方案中的补偿值范围时, 漏光分 布大幅度减少, 相比现有技术拥有显著优势。
上述技术特征可以各种适合的方式组合或由等效的技术特征来替代,只要能 够达到本发明的目的。 附图说明
在下文中将基于仅为非限定性的实施例并参考附图来对本发明迸行更详细 的描述。 其中: 图】显示了现有技术中如背景技术部分所述的 A- plate与 C- plate补偿值下的 暗态漏光分布图;
图 2显示了现有技术中如背景技术部分所述的 A- plate与 C- plate补偿值下的 全视角对比度分布图;
图 3显示了根据本发明的用于液晶显示器的光学补偿膜的结构示意图; 图 4显示了液晶光程差为 324.3mn时不同預倾角度下的最大暗态漏光量随 补偿值变化的趋势- 图 5显示了液晶光程差为 342.8mn时不同預倾角度下的最大暗态漏光量随 补偿值变化的趋势- 图 6显示了本发明的第一实施^中的暗态全视角漏光分布图;
图 7显示了本发明的第一实施例中的全视角对比度分布图:
图 8显示了本发明的第二实施飼中的暗态全视角漏光分布图;
图 9显示了本发明的第二实施例中的全视角对比度分布图;
图 10显示了本发明的第三实施例中的暗态全视角漏光分布图;
图 1显示了本发明的第三实施倒中的全视角对比度分布图。
在图中, 相同的构件由相同的^图标记标示。 附图并未按照实际的比例绘 制。 具体实施方式
下面将参照附图来详细地介绍本发明。
参照图 3, 根据本发明的用于液晶显示器的光学补偿膜包括设置在液晶面板 一侧的第一 C膜, 置于第一 C膜外侧的第一聚乙烯醇层, 以及设置在所述液晶面 板另一侧的第二 C膜, 置于所述第二 C膜外侧的 A膜以及置于所述 A膜外侧的 第二聚乙烯醇层。
根据本发明的光学补偿膜可以采取如下两种架构- 相对于所述光学补偿膜的膜平面,根据本发明的光学补偿膜可以为上偏光片 吸收轴呈 0度, T偏光 i†吸收轴呈 90度 (补偿架构一) 。
补偿架构一 角度
PVA 吸收轴 0度
C 慢轴 90度
液晶面板 (CeU) c 慢轴 0度
A 慢轴 o度
PVA 吸收轴 90度
然而, 当相对于所述光学补偿膜的膜平面, 上偏光片吸收轴呈 90度, 下偏 光片吸收轴呈 0度时, 在保证补偿架构的 A膜 (A-piate)与 C膜 (C- piate)的慢轴分 别与与其位于液晶面板(cell)同一侧的聚乙烯醇 (PVA)层的吸收轴垂直的情况下, 本发明依然适 ffi。 (补偿架构二)
Figure imgf000007_0001
发明人在模拟时, 发现补偿架构一和二是等效的。 即在相同的补偿值下, 补 偿架构一和二对应的最大暗态漏光是一样的。
针对以上补偿架构, 发明人经过研究, 发现 A- piaie与 C- plate的补偿值(面 内光程差补偿值、 厚度方向上光程差补偿值) 对光学补偿膜的减少暗态漏光的效 果有影响,因此可以通过搭配不同的 A-piate与 C- plate的补偿值来模拟暗态漏光, 然后找出所需要的暗态漏光所对应的最佳补偿值范围。
在模拟中, 设定如下- 关于光学补偿膜的设定: 拟设的用于液晶显示器的光学补偿膜的结构如图 3 所示, 其为设置在液晶面板一惻的第一 C膜, 置于第一 C膜外侧的聚乙烯醇层, 以及设置在液晶面板另一侧的第二 C膜, 置于所述第二 C膜外侧的 A膜以及置 于所述 A膜外侧的第二聚乙烯醇层。其中 A plate与 C- piate的慢轴分别与与其位 于液晶面板 (cdl)同一侧的聚乙烯醇层的吸收轴垂直。
关于液晶的设定: 预倾角处于 [85° , 90° ) 的范 内; 四域 (domain)液晶倾角 45° ; 液晶:光程差处于 [324,3 , 342.8]nm的范围内。
关于光源的设定: 使用蓝光激发钇铝石榴石荧光粉 (Blue-YAG)LED 光谱; 中央亮度设定为 100尼特 (nit); 光源分布采用朗伯分布 ( Lambert's distribution)。
在上述设定下,通过搭配不同的 A- p!ate与 C- piate的补偿值来模拟暗态漏光 情况。
分别选取液晶光程差为 324.3nm、 342,8nm, 选取预倾角为 85°、 89°的情况 来进行说明。
如图 4和图 5所示, 图 4显示了液晶光程差为 324.3iim时不同预倾角度下 的最大暗态漏光量随补偿值变化的趋势, 图 5显示了液晶光程差为 342.8iim时不 同预倾角度下的最大暗态漏光量随补偿值变化的趋势。
图 4和图 5在不同的液晶光程差和不同的预倾角下搭配不同的 A-plate与 plate补偿值进行模拟, 可以看出在不同预倾角下, A- piate与 C- piate补偿值对 暗态漏光的影响趋势是一致的。 BP在不同预倾角下, 暗态漏光最小时对应的补偿 值范围是一样的。
因此获得了当液晶光程差位于 [324。3 , 342.8]ιπη范围内,预倾角位于 [85°- 90。) 范围内时, 暗态漏光位于 0.2nit以下时:光学补偿膜所对应的 A- plate与 C-plaie的 最佳补偿值范围:
Figure imgf000008_0002
Figure imgf000008_0001
其中 Y尸 0。0000'4 i3x4- 0.011434x3+l。2037x2— 57.163x+i 125.75,
Υ2--0,00003236χ +0.0088525χ3-0.9142χ2-ί-42.2422χ-590.59,
χ为 Α膜的厚度方向上光程差补偿值 (Rth)。
即当液晶光程差处于 [324.3 , 342.8]nm的范围中, 预倾角处于 [85Q- 90ϋ ) 的 范围中时, 针对不同的光学补偿膜结构, 可以通过合理搭配 A- piate与 C- plate的 补偿值来达到理想的暗态漏光效果。 最佳补偿值范围如上文所述, 如表 2所示。
找到了合适的补偿值范围, 又知道面内光程差补偿值 ORo), 厚度方向上光程 差补偿值 iRih)和折射率1^ 厚度 d关系如下:
Ro ^ (Nx - Ny) * d
Rt - [(Λ¾ + Ny) 12― Nz] * d
其中 x、 y代表面内方^, z代表厚度方^。
因此可以通过以下三种方法来改变补偿值- 方法一:在现行 A- piate与 C-plate折射率 N不变的基础上,通过改变厚度 d 来改变补偿值;
方法二: 在现行 A-plate与 C- piate的基础上, 改变折射率 N来改变补偿值。 方法—三: 在保证 A- piate与 C- plate补偿值范围的基础上, 同时改变厚度 d 和折射率 N来改变补偿值。
针对本发明所提出的光学补偿膜, 还提出了下述三个实施倒, 用于与对比 文件中所列出的现有技术中的对比倒进行对比。
为了和图 1、图 2中所示的现有技术中的光学补偿膜所带来的效果进行对比, 根据本发明改变光学补偿膜中 A- plate与 C- plate的补偿值, 来比较暗态漏光和全 视角对比度分布。
选取了 3组 A-plate与 C-plate的面内光程差补偿值 Ro和厚度方向上光程差 补偿值 Rlh:
实施例一 -
Figure imgf000009_0001
图 6显示了实施例一的暗态全视角漏光分布图; 图 7显示了实施例一的全 视角对比度分布图。
实施例二:
Figure imgf000009_0002
图 8显示了实施例二的暗态全视角漏光分布图: 图 9显示了实施例二的全 视角对比度分布图。
实施例
Figure imgf000009_0003
图 10显示了实施例 的暗态全视角漏光分布图; 图 1】 显示了实施例:三的 全视角对比度分布图。
在图 6-11中: 最大漏光 (nit) 最小漏光 (nit) 最大对比度 最小对比度 对比例 1.890825 0,008976 1710.663 0.733 实施例一 0.199961 0,008912 10,937 实施例二 44,969 实施例三 0, 192224 0,009079 1707,917 6,015 o
由分别与实施例一 o、 实施例二和实施例三所对应的图 6、 图 8和图 10与图 1做对比, ―可以发现改善光学补偿膜的 A-plate与 C- plate的补偿值后, 最大暗态 漏光由 L89nit降低到 0.2nii之内, 远低于使甩现有技术中光学补偿膜所得到的暗 态漏:光。
由分别与实施例一、 实施例二和 o实 7
o施例三所对应的图 、 图 9和图】1与图 o
2做对比, 可以发现改善光学补偿膜的 A- plate与 C- plate的补偿值后, 全视角对 比度分布也远胜于使用现有技术中光学补偿膜所得到的全视角对比度分布。
本发明还提出了一种包括上述光学补偿膜的液晶显示器。
虽然已经参考优选实施例对本发明进行了描述, 但 o在不脱离本发明的范围
o
的情 H 可以对其进行各种改进并且可以用等效物替换其中的部件。 本发明并 不局限于文中公开的特定实施例, 而是包括落入权利要求的范围内的所有技术方

Claims

权利要求
1. 用于液晶显示器的光学补偿膜, 包括- 设置在液晶面板一侧的第一 C膜, 置于所述第一 C膜夕卜侧的第一聚乙烯醇 层, 以及设置在所述液晶面板另一侧的第二 C膜, 置于所述第二 C膜外侧的 A 膜以及置于所述 A膜夕卜侧的第二聚乙烯醇层, 其中
所述 A膜的面内光程差补偿值处于 [92, 184]nm的范围内,
所述 A膜的厚度方向上光程差补偿值处于 [46, 92]nm的范围内, 所述第一 C膜和第二 C膜的厚度方向上光程差补偿值处于 [Yi , Y2lnm的范 围内, 而 Yr:=0.()000413x4- 0.01 1434x3+1.2037x -57.163x+l〗 25.75,
Υ2=::-0.()0003236χ4+Ό.0088525χ3-0.9142χ2+42.2422χ- 590.59, 其中 χ为 Α膜的厚度 方向上光程差补偿值。
2. 根据权利要求 1所述的光学补偿膜,其中,所述第一 C膜的慢轴与所述第 一聚乙烯醇层的吸收轴垂直。
3, 根据权利要求 1所述的光学补偿膜, 其中, 所述 A膜和所述第二 C膜的 慢轴与所述第二聚乙烯醇层的吸收轴垂直。
4, 根据权利要求 1所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 0度, 所述第一 C膜的慢轴呈 90度, 所述 第二 C膜的慢轴呈 0度,所述 A膜的慢轴呈 0度,所述第二聚乙烯醇层的吸收轴 呈 90度。
5. 根据权利要求 2所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 0度, 所述第一 C膜的慢轴呈 90度, 所述 第二 C膜的慢轴呈 ()度,所述 A膜的慢轴呈 ()度,所述第二聚乙烯醇层的吸收轴 呈 90度。
6. 根据权利要求 3所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 0度, 所述第一 C膜的慢轴呈 90度, 所述 第二 C膜的慢轴呈 0度,所述 A膜的慢轴呈 0度,所述第二聚乙烯醇层的吸收轴 呈 90度。
7. 根据权利要求 1所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 90度, 所述第一 C膜的慢轴呈()度, 所述 第二 C膜的慢轴呈 90度,所述 A膜的慢轴呈 90度,所述第二聚乙烯醇层的吸收 轴呈 0度。
8. 根据权利要求 2所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 90度, 所述第一 C膜的慢轴呈 0度, 所述 第二 C膜的慢轴呈 90度,所述 A膜的慢轴呈 90度,所述第二聚乙烯醇层的吸收 轴呈 0度。
9. 根据权利要求 3所述的光学补偿膜, 其中, 相对于所述光学补偿膜的膜平 面, 所述第一聚乙烯醇层的吸收轴呈 90度, 所述第一 C膜的慢轴呈 0度, 所述 第二 C膜的慢轴呈 90度,所述 A膜的慢轴呈 90度,所述第二聚乙烯醇层的吸收 轴呈 0度。
10, 根据权利要求 1所述的光学补偿膜, 其中, 所述第一 C膜和第二 C膜的 厚度方向上光程差补偿值之和大于所述 A膜的面内光程差补偿值。
】1 . 根据权利要求 2所述的光学补偿膜, 其中, 所述第一 C膜和第二 C膜的 厚度方向上光程差补偿值之和大于所述 A膜的面内光程差补偿值。
】2. 根据权利要求 3所述的光学补偿膜, 其中, 所述第一 C膜和第二 C膜的 厚度方向上光程差补偿值之和大于所述 A膜的面内光程差补偿值。
13. 根据权利要求 1所述的光学补偿膜, 其中, 所述液晶面板的液晶光程差 处于 [324.3 , 342.8]nm的范围内, 所述液晶面板的液晶预倾角处于 [85°, 89°]的范 围内。
14. 根据权利要求 2所述的光学补偿膜, 其中, 所述液晶面板的液晶光程差 处于 [324.3, 342.8]nm的范 内, 所述液晶面板的液晶预倾角处于 [85°, 89°]的范 围内。
15. 根据权利要求 3所述的光学补偿膜, 其中, 所述液晶面板的液晶光程差 处于 [324,3 , 342,8]m i的范 内, 所述液晶面板的液晶预倾角处于 [85°, 89°]的范 围内。
〗6. 包括光学补偿膜的液晶显示器, 其中所述光学补偿膜包括- 设置在液晶面板一侧的第一 C膜, 置于所述第一 C膜夕卜侧的第一聚乙烯醇 层, 以及设置在所述液晶面板另一侧的第二 C膜, 置于所述第二 C膜外侧的 A 膜以及置于所述 A膜外侧的第二聚乙烯醇层, 其中
所述 A膜的面内光程差补偿值处于 [92, 184]iim的范围内,
所述 A膜的厚度方向上光程差补偿值处于 [46, 92]nm的范围 ή , 所述第一 C膜和第二 C膜的厚度方向上光程差补偿值处于 [Yh Y2]mn的范 围内, 而 Y =0.0000413χ4-0.ί)11434χ3+1.2037χ2― 57.163χ+1125.75,
Υ2=-0.00003236χ +0.0088525χ3-0.9142χ2+42.2422χ-590.59, 其中 χ为 Α膜的厚度方 向上光程差补偿值。
17. 根据权利要求 6所述的显示器,其中,所述第一 C膜的慢轴与所述第一 聚乙烯醇层的吸收轴垂直,所述 A膜和所述第二 C膜的慢轴与所述第二聚乙烯醇 层的吸收轴垂直。
18. 根据权利要求 16所述的显示器, 其中, 所述第一 C膜和第二 C膜的厚 度方向上光程差补偿值之和大于所述 A膜的面内光程差补偿值。
19, 根据权利要求 17所述的显示器, 其中, 所述第一 C膜和第二 C膜的厚 度方 ^上:光程差补偿值之和大于所述 A膜的面内光程差补偿值。
PCT/CN2014/071002 2013-08-09 2014-01-21 用于液晶显示器的光学补偿膜及包括其的液晶显示器 WO2015018187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/241,427 US10261363B2 (en) 2013-08-09 2014-01-21 Optical compensation film for liquid crystal display and liquid crystal display including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310349469.1 2013-08-09
CN201310349469.1A CN103439829B (zh) 2013-08-09 2013-08-09 用于液晶显示器的光学补偿膜及包括其的液晶显示器

Publications (1)

Publication Number Publication Date
WO2015018187A1 true WO2015018187A1 (zh) 2015-02-12

Family

ID=49693531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071002 WO2015018187A1 (zh) 2013-08-09 2014-01-21 用于液晶显示器的光学补偿膜及包括其的液晶显示器

Country Status (3)

Country Link
US (1) US10261363B2 (zh)
CN (1) CN103439829B (zh)
WO (1) WO2015018187A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439829B (zh) * 2013-08-09 2016-03-30 深圳市华星光电技术有限公司 用于液晶显示器的光学补偿膜及包括其的液晶显示器
CN103605233B (zh) * 2013-11-22 2016-08-24 深圳市华星光电技术有限公司 一种液晶显示器
CN104062808B (zh) * 2014-06-25 2016-08-17 深圳市华星光电技术有限公司 液晶显示器及其光学补偿方法
CN104536204A (zh) * 2014-12-25 2015-04-22 深圳市华星光电技术有限公司 液晶显示器
CN105278151A (zh) * 2015-11-11 2016-01-27 深圳市华星光电技术有限公司 液晶面板
CN105334672A (zh) * 2015-12-08 2016-02-17 深圳市华星光电技术有限公司 液晶面板补偿架构及其光学补偿方法
CN110945414B (zh) 2019-11-15 2022-08-19 京东方科技集团股份有限公司 显示装置和操作显示装置的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764867A (zh) * 2004-01-08 2006-04-26 Lg化学株式会社 使用聚降冰片烯基聚合物薄膜的垂直排列型液晶显示器
CN1860404A (zh) * 2004-11-12 2006-11-08 Lg化学株式会社 垂直取向的液晶显示器
JP2010224012A (ja) * 2009-03-19 2010-10-07 Asahi Kasei E-Materials Corp マルチドメイン化垂直配向型液晶パネル及びこれを具備する液晶表示装置
KR101040641B1 (ko) * 2009-01-19 2011-06-10 동아대학교 산학협력단 보상필름을 사용한 광시야각형 수직정렬 액정셀을 위한 광학구조
CN102854659A (zh) * 2012-09-24 2013-01-02 深圳市华星光电技术有限公司 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法
CN103439829A (zh) * 2013-08-09 2013-12-11 深圳市华星光电技术有限公司 用于液晶显示器的光学补偿膜及包括其的液晶显示器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100526402B1 (ko) * 2002-11-22 2005-11-08 주식회사 엘지화학 고리형 올레핀계 부가 중합체를 포함하는 네가티브C-플레이트(negative C-plate)형 광학이방성 필름 및 이의 제조방법
KR100462327B1 (ko) * 2003-01-28 2004-12-18 주식회사 엘지화학 이축성 위상차 보상필름을 갖는 수직배향 액정표시장치
US7602462B2 (en) * 2005-02-25 2009-10-13 Nitto Denko Corporation Polarizing element, liquid crystal panel, liquid crystal television, and liquid crystal display apparatus
CN101896859B (zh) * 2007-12-14 2012-05-30 夏普株式会社 液晶显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1764867A (zh) * 2004-01-08 2006-04-26 Lg化学株式会社 使用聚降冰片烯基聚合物薄膜的垂直排列型液晶显示器
CN1860404A (zh) * 2004-11-12 2006-11-08 Lg化学株式会社 垂直取向的液晶显示器
KR101040641B1 (ko) * 2009-01-19 2011-06-10 동아대학교 산학협력단 보상필름을 사용한 광시야각형 수직정렬 액정셀을 위한 광학구조
JP2010224012A (ja) * 2009-03-19 2010-10-07 Asahi Kasei E-Materials Corp マルチドメイン化垂直配向型液晶パネル及びこれを具備する液晶表示装置
CN102854659A (zh) * 2012-09-24 2013-01-02 深圳市华星光电技术有限公司 一种光学补偿膜及减弱va液晶显示器暗态漏光的方法
CN103439829A (zh) * 2013-08-09 2013-12-11 深圳市华星光电技术有限公司 用于液晶显示器的光学补偿膜及包括其的液晶显示器

Also Published As

Publication number Publication date
CN103439829A (zh) 2013-12-11
US20150277175A1 (en) 2015-10-01
US10261363B2 (en) 2019-04-16
CN103439829B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2015018187A1 (zh) 用于液晶显示器的光学补偿膜及包括其的液晶显示器
WO2015074339A1 (zh) 用于液晶显示器的光学补偿膜及包括其的液晶显示器
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
WO2019157815A1 (zh) 水平电场型的显示面板、其制作方法及显示装置
WO2014180036A1 (zh) 液晶显示器及其光学补偿方法
JP2006505014A (ja) 複数の投写型ディスプレイシステムのための複数の斜め配向プレート補償器
WO2014153884A1 (zh) 液晶显示面板及液晶显示器
US20190025626A1 (en) Curved-surface liquid crystal display panel and display device
JP6099827B2 (ja) 高コントラスト電気光学液晶カメラアイリス
WO2014056245A1 (zh) Va显示模式补偿架构及va显示模式液晶显示装置
WO2014180048A1 (zh) 液晶显示器及其光学补偿方法
WO2015149377A1 (zh) 用于液晶面板的双层双轴补偿架构及液晶显示装置
WO2015074338A1 (zh) 用于液晶显示器的光学补偿膜及包括其的液晶显示器
US20120327342A1 (en) Optical compensation film and liquid crystal display including the same
US9472142B2 (en) Display assembly and LCD device
US20160018572A1 (en) Light diffusion member and display device
WO2016101339A1 (zh) 液晶显示器
WO2016065659A1 (zh) 液晶面板补偿架构及液晶显示装置
WO2014107886A1 (zh) 用于液晶面板的补偿系统及液晶显示装置
WO2015149379A1 (zh) 用于液晶面板的单层双轴补偿架构及液晶显示装置
WO2015196503A1 (zh) 液晶显示器及其光学补偿方法
WO2016101338A1 (zh) 液晶显示器
US20140192300A1 (en) Compensation System for Liquid Crystal Panel and Liquid Crystal Display Device
US20140098329A1 (en) VA Display Mode Compensation Architecture and VA Display Mode Liquid Crystal Display Device
WO2015196501A1 (zh) 液晶显示器及其光学补偿方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14241427

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834779

Country of ref document: EP

Kind code of ref document: A1