WO2015017925A1 - Cuve d'électrolyse à plancher crénelé - Google Patents

Cuve d'électrolyse à plancher crénelé Download PDF

Info

Publication number
WO2015017925A1
WO2015017925A1 PCT/CA2014/050723 CA2014050723W WO2015017925A1 WO 2015017925 A1 WO2015017925 A1 WO 2015017925A1 CA 2014050723 W CA2014050723 W CA 2014050723W WO 2015017925 A1 WO2015017925 A1 WO 2015017925A1
Authority
WO
WIPO (PCT)
Prior art keywords
blocks
raised
cathode
block
electrolytic cell
Prior art date
Application number
PCT/CA2014/050723
Other languages
English (en)
Inventor
Benoit BARDET
Steeve RENAUDIER
Original Assignee
Rio Tinto Alcan International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Limited filed Critical Rio Tinto Alcan International Limited
Priority to BR112016001936A priority Critical patent/BR112016001936A2/pt
Priority to CN201480045237.XA priority patent/CN105452537A/zh
Priority to CA2919332A priority patent/CA2919332A1/fr
Publication of WO2015017925A1 publication Critical patent/WO2015017925A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to an electrolytic cell for the production of aluminum, and an aluminum plant comprising this electrolytic cell.
  • Aluminum is conventionally produced in aluminum smelters, by electrolysis, according to the Hall-Héroult process.
  • an electrolysis cell comprising a box and an inner lining of refractory material.
  • the electrolytic cell also comprises cathode blocks arranged on the inner lining of refractory material at the bottom of the box, traversed by conductive bars for collecting the electrolysis current to lead to a subsequent electrolytic cell, and blocks anodic suspended on an anode frame and partly immersed in an electrolytic bath, above the cathode blocks.
  • a liquid aluminum sheet, covering the cathode blocks, is formed as and when the reaction.
  • An aluminum smelter traditionally comprises several hundred electrolytic cells connected in series and traversed by an electrolysis current.
  • This electrolysis current whose intensity can reach several hundreds of thousands of amperes, is at the origin of a large magnetic field.
  • the vertical component of this magnetic field combined with the variations of the current lines running through the aluminum sheet, puts the latter in motion. Under the effect of this magnetic field, the aluminum sheet tends to move in the form of waves.
  • MHD magnetohydrodynamic instabilities
  • the small relative width of the grooves formed between the protuberances promotes the accumulation of materials from the operation of the tanks, typically called sludge, obstructing these grooves, without allowing their release by conventional cleaning tools, such as a relatively wide crust shovel, since generally substantially the width of the anode blocks.
  • cleaning tools such as a relatively wide crust shovel
  • the electrical distribution between the busbars passing through the cathode blocks of smaller thickness and the cathode blocks of greater thickness is not balanced, because of the longer length of cathode material, typically carbonaceous, to be crossed by the current electrolysis in cathodic blocks of greater thickness.
  • the present invention aims to overcome all or part of these disadvantages, by providing an electrolytic cell having a better electrical distribution between the busbars, manufacturing and maintenance costs contained, facilitating cleaning operations, and resistant to electrical erosion, while limiting MHD instabilities.
  • the subject of the present invention is an electrolysis cell, intended for the production of aluminum, comprising a box and having a floor on which a plurality of cathode blocks, preferably of carbon material, are arranged, each cathodic block being traversed by at least one longitudinal electrical conductor intended to collect the electrolysis current for the purpose of conveying it out of the box and to a separate electrolytic cell, characterized in that the floor has first surfaces for supporting the blocks cathodic, and second support surfaces of the cathode blocks, the first surfaces being alternated with the second surfaces in a longitudinal direction of the electrolytic cell, each first surface being arranged at a height greater than that of the adjacent one or two surfaces such that the cathode blocks supported by the first surfaces are raised relative to the cathode blocks
  • the electrolytic cell according to the invention has, in a sectional view perpendicular to a transverse direction of the vessel, that is to say perpendicular to the direction in which the cathode blocks extend, a crenellated floor , which makes it possible to raise cathodic blocks, and more particularly their base, in order to emerge over other cathode blocks a portion capable of breaking aluminum waves generated by the instabilities MHD, and without machining the cathode blocks and without extra cost material.
  • cathodic blocks of identical or substantially identical height electrical balancing is correct and easy. Cathodic blocks, whether they are elevated or not, are actually similar in size. Only the height of the floor on which they rest distinguishes them.
  • the electrolytic cell comprises, in particular in operation, a sheet of liquid aluminum covering the cathode blocks and having a surface at a height of between 3 cm and 25 cm above an upper surface of the blocks. raised cathodes supported by the first surfaces.
  • the emerging portion has at least one flank covered by electrical insulation means.
  • electrical insulation means This characteristic offers the advantage of increasing the lifespan of the emergent portion, therefore of the wave breaking system, by preventing their erosion because of current density peaks located at the flanks of the emerging portion.
  • each raised cathode block has, on an edge of its upper surface, a lateral protuberance arranged facing said at least one side of the emergent portion of an adjacent raised cathode block, so that the means electrical insulation are interposed between the lateral protuberance and said at least one flank of the emerging portion of the adjacent raised cathode block.
  • non-elevated cathodic block cathode block resting on one of the second surfaces.
  • Raised cathode block means cathode block resting on one of the first surfaces.
  • the lateral protuberance has an upper surface arranged substantially at the same height as the upper surface of the adjacent raised cathode block.
  • the shortest distance D1 between said at least one electrical conductor of the non-raised cathode blocks and the corner formed by the lateral protuberance and the upper surface of the non-raised cathode blocks is substantially identical to the distance D2 shorter between said at least one electrical conductor of the adjacent raised cathode block (s) and one of the longitudinal edges of the upper surface of said adjacent raised cathode block (s).
  • the raised cathode blocks and the non-raised cathode blocks are identical.
  • the raised cathode blocks are monobloc.
  • the raised cathode blocks are formed together of an upper block, preferably of carbon material, reported and bonded to a lower block, preferably of carbon material and resting on one of the first surfaces.
  • the upper block is bonded to the lower block via an electrically conductive paste.
  • the upper block corresponds to the emerging portion.
  • the emergent portion comprises at least one overlapping edge arranged to cover a portion of the upper surface of an adjacent non-raised cathode block, said at least one overlapping edge being bonded to the upper surface of this block cathodic non-elevated adjacent by an electrically insulating paste.
  • This embodiment advantageously makes it possible to eliminate the currents that can appear on the sidewalls of the raised cathode block in order to prevent its erosion, thus lengthening the service life of the wave breaking system.
  • the electrolysis cell comprises a plurality of anode blocks, each anode block being arranged in totality either above an emerging portion of raised cathode blocks, or above an upper surface of blocks. cathodic not raised so that each anode block can rest on a substantially planar cathode surface above which it is arranged.
  • the shortest distance E2 between the upper surface of the raised cathode blocks and the said at least one electrical conductor of these raised cathode blocks is smaller than the shortest distance F2 between a flank of the emergent portion and the said at least one an electrical conductor of these raised cathode blocks.
  • the shortest distance E1 between the upper surface of the non-raised cathode block (s) and the at least one electrical conductor of these non-raised cathode blocks is smaller than the shortest distance F2 between a sidewall of the portion. emerging from the or one of the adjacent raised cathode blocks and said at least one electrical conductor of this raised cathode block.
  • the shortest distance E2 between the upper surface of the raised cathode blocks and the at least one electrical conductor of these raised cathode blocks is substantially identical to the shortest distance E1 between the upper surface of the one or more adjacent non-elevated cathode blocks and said at least one electrical conductor of these non-elevated cathode blocks.
  • a balanced electrical distribution is thus obtained between the electrical conductors of the raised and non-raised cathode blocks.
  • the width of the raised cathode blocks is of the order of 0.8 to 1.2 times the width of the non-elevated cathode blocks, and the height of the raised cathode blocks is of the order of 0.8. at 1, 2 times the height of the cathodic blocks not elevated.
  • FIG. 1 is a sectional view longitudinal view of an electrolytic cell according to one embodiment of the invention
  • - Figure 2 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • Figure 3 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • FIG. 4 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • FIG. 5 is a perspective view, from above, of cathode blocks of an electrolytic cell according to one embodiment of the invention
  • FIG. 1 is a sectional view longitudinal view of an electrolytic cell according to one embodiment of the invention
  • Figure 3 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • FIG. 4 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • FIG. 5 is a perspective view, from above, of cathode blocks of an electrolytic cell according to one embodiment of the invention
  • FIG. 1 is a sectional view longitudinal view of an electrolytic cell according to one embodiment of
  • FIG. 6 is a longitudinal sectional view of an electrolysis cell in a embodiment of the invention
  • - Figure 7 is a longitudinal sectional view of an electrolytic cell according to one embodiment of the invention
  • Figure 8 is a schematic view of two anode blocks and two cathode blocks of an electrolytic cell according to one embodiment of the invention, with the anodes positioned for the start of the tank
  • - Figure 9 is a schematic view of a cleaning operation of a portion of a tank of electrolysis according to one embodiment of the invention.
  • FIG. 1 shows an electrolytic tank 1 according to one embodiment of the invention.
  • the electrolysis tank 1 is intended for the production of aluminum according to the Hall-Héroult process. It is specified that the description is made with respect to a Cartesian reference system linked to the electrolysis tank 1, the X axis being oriented in a longitudinal direction of the electrolysis tank 1, the Y axis being oriented in a transverse direction of the electrolysis tank 1, and the Z axis being oriented in a vertical direction of the electrolytic cell.
  • the orientations, directions, plans and longitudinal, transverse, vertical displacements are thus defined with respect to this reference frame.
  • the electrolysis tank 1 comprises a box 2, a floor 4 on which is arranged a plurality of cathode blocks 6, 7, preferably of carbon material, each traversed by one or more longitudinal electrical conductors 8 (two blocks 6, 7). 2), such as steel bars or steel / copper composite, intended to collect the electrolysis current for its routing out of the box 2 and to a separate electrolysis tank.
  • the casing 2 may be made of steel, and its bottom may be lined with an inner coating of refractory and / or insulating materials. Where appropriate, the upper surface of this coating 10 may form the floor 4 for supporting the blocks 6, 7 cathodic.
  • the floor 4 has first support surfaces 40 of some of the cathode blocks, and second surfaces 42 also intended to support some of the cathode blocks.
  • the first surfaces 40 and the second surfaces 42 may be substantially rectangular. As can be seen in FIG. 1, the first surfaces 40 are alternated with the second surfaces 42 in a longitudinal direction X of the electrolysis tank 1.
  • each first surface 40 is arranged at a height greater than that of the second or second surfaces 42 adjacent thereto.
  • the cathodic blocks 6, and more particularly the bases of these cathode blocks 6, supported by the first surfaces 40 are raised relative to the cathode blocks 7, more particularly their bases, supported by the second surfaces 42.
  • the difference in height between the first surfaces 40 and the second surfaces 42 may for example be between 3 to 20 cm, and more particularly between 5 and 15 cm.
  • cathodic blocks 6 raised to designate the cathodic blocks resting on a first surface 40 and cathodic blocks 7 not elevated to designate the cathodic blocks resting on a second surface 42. refer to high blocks and low blocks.
  • the raised cathodic blocks 6 Due to the elevation of their base, the raised cathodic blocks 6 have an emergent portion 60 extending above a top surface 70 of the adjacent non-raised cathode block (s). Thus, the emergent portions 60 form a wave breaking system, for stabilizing the sheet 14 of liquid aluminum during operation of the electrolysis tank 1.
  • FIG. 5 show that the cathode blocks 6 extend in length in the transverse direction Y of the electrolysis tank 1 and that they are aligned next to each other in the longitudinal direction X of the electrolysis tank 1.
  • the emergent portions 60 are intended to be permanently covered by the sheet 14 of liquid aluminum formed at the bottom of the electrolytic cell. It is obviously the same for the upper surface 70 of the cathodic blocks 7 not elevated.
  • the aluminum ply 14 has a thickness of several centimeters or tens of centimeters and a surface at a height between 3 and 25 cm above the upper surface 64 of the emerging portion 60.
  • the electrolysis tank 1 corresponds to an undrained electrolytic cell.
  • the upper surface 64 of the cathode blocks 6 corresponding to the upper surface of the emerging portions 60 is devoid of an aluminum wettable coating, for example a titanium diboride coating, as is the case for the drained electrolysis cells operate with a thin layer of aluminum a few millimeters on the wettable surface of the cathode.
  • all the blocks 6, 7 cathodic are covered by the sheet 14 of aluminum.
  • the first surfaces 40 may be substantially coplanar with each other.
  • the second surfaces 42 may be substantially coplanar with each other. In other words, all the first surfaces 40 can be arranged at the same height and all the second surfaces 42 can be arranged at the same height.
  • the first and second surfaces 40, 42 extend parallel to each other, in a transverse direction Y of the electrolysis tank 1, that is to say along the cathode blocks 6.
  • the raised cathodic blocks 6 and the non-raised cathode blocks 7 are identical.
  • the shortest distance E2 between the upper surface 64 of the raised cathode blocks 6 and the one or more electrical conductors 8 of these raised cathode blocks 6 is similar to the shortest distance E1 between the upper surface 70 of the adjacent cathode blocks 7 not elevated and one or the electrical conductor 8 of these cathodic blocks 7 not raised.
  • the height of the emergent portion 60 is then identical to the vertical offset between the first surfaces 40 and the second surfaces 42.
  • the height of the emergent portions 60 is preferably between 3 and 15 cm, and more particularly between 6 and 12 cm.
  • the use of raised cathodic blocks 6 and cathodic blocks 7 not elevated identical advantageously facilitates the manufacture of tanks and reduce costs, including standardizing blocks 6, 7 cathodic supply and minimizing material costs.
  • the cathodic blocks 6 are formed integrally, for reasons of conductivity or ease of manufacture, but embodiments in which the cathodic blocks 6 are formed by bonding blocks are not excluded, as will be seen further with reference to Figures 6 and 7.
  • the emerging portion 60 has two sides 62 covered by electrical insulation means.
  • the electrical insulation means make it possible to protect the flanks 62 from electrical erosion due to the electrical current density, while preventing the electric power lines from concentrating at the level of the flanks 62.
  • electrical insulation is meant any means making it possible to ensure by its thickness and resistivity characteristics that the electrical resistance between a point of the aluminum ply 14 and one of the electrical conductors 8 is greater via the insulation means and a flank 62 of the emerging portion 60, only by an upper surface 64 of a cathode block 6.
  • the electrical insulation means may correspond to a layer 12 of electrically insulating paste, for example a carbonaceous paste having an electrical conductivity much lower than the conductivity of the adjacent raised cathode block, in particular at least three times lower.
  • each non-elevated cathode block 7 may have, on an edge of its upper surface 70, a lateral protuberance 72 arranged opposite a flank 62 of the emergent portion 60 of an adjacent raised cathode block 6.
  • the electrical insulation means in particular the layer 12 of electrically insulating paste, are interposed between this lateral protuberance 72 and the adjacent flank 62.
  • This protuberance 72 makes it possible in particular to maintain the electrical insulation means during assembly of the cathode of the tank and to protect them from erosion by abrasion due to the movements of the sheet 14 of aluminum.
  • the lateral protuberances 72 may have an upper surface 74 arranged substantially at the same height as the upper surface 64 of the adjacent emergent portion 60.
  • the upper surface 64 of the emergent portion 60 of the raised cathode blocks 6 and that of the adjacent lateral protuberance (s) 72 are substantially coplanar. This further facilitates the introduction and tamping of the electrically insulating paste.
  • the protuberances 72 may extend in length along the transverse direction Y of the electrolysis tank 1, as can be seen in FIG. 5. They may be arranged along one or both of them. longitudinal edges of the cathodic blocks 7 not elevated.
  • the protuberances 72 can either be an integral part of the non-raised cathode blocks 7, in which case a machining operation is necessary, or correspond to a block of carbon material reported and for example glued to the corresponding cathode block 7.
  • the shortest distance D1 between the one or one of the electrical conductors 8 of the non-raised cathode blocks 7 and the corner formed by the lateral protuberance 72 and the upper surface 70 may be substantially identical to the shortest distance D2 between the or one of the electrical conductors 8 of the adjacent raised cathode block or blocks 6 and one of the longitudinal edges (thus extending in the transverse direction Y of the vessel 1 of electrolysis) of the upper surface 64 of this or these cathode blocks 6 raised.
  • the shortest distance E2 between the upper surface 64 of the raised cathode blocks 6 and the or one of the electrical conductors 8 of these raised cathode blocks 6 may be substantially identical to the distance E1 the shorter one between the upper surface 70 of the adjacent non-raised cathode block (s) 7 and one or the electrical conductor 8 of these non-elevated cathode blocks 7. In this way, a balanced electrical distribution is obtained between the electrical conductors 8 of the raised and non-raised cathode blocks 6.
  • the shortest distance E2 between the upper surface 64 of the raised cathode blocks 6 and the one or more of the electrical conductors 8 of these raised cathode blocks 6 may be less than the distance F2. shorter between one of the flanks 62 of the emerging portion 60 and the one or one of the electrical conductors 8 of these raised cathode blocks 6.
  • the distance E1 is advantageously also less than the distance F2.
  • the width of the raised cathodic blocks 6 may be of the order of 0.8 to 1, 2 times the width of the blocks
  • the height of the raised cathodic blocks 6 may be in the order of 0.8 to 1.2 times the height of the non-elevated cathode blocks.
  • the raised cathode block 6 is formed of two parts.
  • the emerging portion 60 is an upper block 601 made of carbon material reported and bonded, for example by means of an electrically conductive paste, to a block 602 also made of carbon material, to jointly form the cathode block 6 raised.
  • the emergent portion 60 which may correspond to the upper block 601, more particularly has a width greater than that of the lower block 602 supporting it.
  • the emergent portion 60 comprises in fact at least one (here two) overlap edge 66, each overlap edge 66 being intended to cover a portion of the upper surface 70 of the adjacent non-raised cathodic block 7.
  • each lap edge 66 is joined and adhered to the upper surface 70 of the adjacent non-raised cathode block 7 by means of an electrically insulating paste 18.
  • Such a configuration makes it possible to prevent the appearance of current flow zones at the edges 62 of the emergent portions 60, as illustrated in FIG. 7.
  • the emergent portion 60 and the lower block 602 that supports it could also be shaped piece.
  • the emerging portion 60 may be an integral part of the corresponding raised cathodic block 6.
  • the upper surface of the lower blocks and the upper surface 70 of the adjacent non-raised cathode blocks 6 are advantageously arranged at the same height. In other words, they are substantially coplanar. This facilitates the construction of such a tank, including the joining and bonding of the different blocks.
  • the electrolysis cell 1 comprises a plurality of anode blocks 22.
  • the wave breaker system is formed of an alternation of large low cathodic surfaces (i.e., upper surface of cathodic block 7 not elevated less possibly the surface or surfaces covered by a cover edge 66 or protuberances 72 lateral) and large cathodic surfaces (ie surface 64 upper elevated cathodic block 6 plus possibly the surface 74 of 72 lateral protuberances), so that the wave breaking system of the electrolysis tank 1 according to the invention is particularly resistant to erosion due to the movements of the tablecloth aluminum and cleaning operations.
  • the widths of said low cathode surfaces and said high cathode surfaces are identical, and substantially equal to the width of an anode block 22 (or several anode blocks 22 if the same anode assembly consists of several anodic blocks 22 arranged side-to-side. -side).
  • the anodic blocks 22 may also be arranged in line with a low or high cathode surface, that is to say inside the imaginary volume obtained by vertical projection of the corresponding low or high cathode surface.
  • each anode block 22 can rest entirely during the start and preheating of the tank either on a low cathode surface or on a high cathode surface.
  • conventional cleaning tools such as a crust shovel 100
  • conventional cleaning tools typically have the width of an anode block and are used when changing the anode in the tank. Therefore, the low and high cathode surfaces, which have substantially the same width as the anode blocks and are arranged at the right of these anode blocks, can be easily cleaned by means of a crust shovel 100, as can be seen in FIG. Figure 9.
  • the accumulations of sludge on the cathode, and particularly on the low cathode surfaces forming grooves of the wavebreak, can thus be prevented.
  • each electrical conductor 8 may comprise a main part in a first material and an insert in a second material of greater electrical conductivity than the first material. This allows adjustments of the electrical distribution in the corresponding cathode block to prevent premature erosion.
  • the insert may for example be copper, and the main part of the electrical conductor 8 steel.
  • the electrical conductors 8 each comprise an electrically conductive portion that can exit the box from the side of the tank or from below the tank.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Cette cuve (1), destinée à la production d'aluminium, comprend un caisson (2), un plancher (4) supportant une pluralité de blocs (6) cathodiques traversés chacun par un conducteur (8) électrique. De plus, le plancher (4) présente des premières surfaces (40) et des deuxièmes surfaces (42) de support des blocs (6, 7) cathodiques, les premières surfaces (40) étant alternées avec les deuxièmes surfaces (42) dans une direction longitudinale de la cuve (1) d'électrolyse. Chaque première surface (40) est agencée à une hauteur supérieure à celle de la ou des deuxièmes surfaces (42) adjacentes, de sorte que les blocs (6) cathodiques supportés par les premières surfaces (40) sont surélevés par rapport aux blocs (7) cathodiques supportés par les deuxièmes surfaces (42). Enfin, les blocs (6) cathodiques surélevés présentent une portion (60) émergente s'étendant au-dessus d'une surface (70) supérieure du ou des blocs (7) cathodiques adjacents supportés par les deuxièmes surfaces (42).

Description

CUVE D'ÉLECTROLYSE À PLANCHER CRÉNELÉ
La présente invention concerne une cuve d'électrolyse destinée à la production d'aluminium, et une aluminerie comprenant cette cuve d'électrolyse. L'aluminium est classiquement produit dans des alumineries, par électrolyse, selon le procédé de Hall-Héroult. A cet effet, on prévoit une cuve d'électrolyse comprenant un caisson et un revêtement intérieur en matériau réfractaire. La cuve d'électrolyse comprend également des blocs cathodiques agencés sur le revêtement intérieur en matériau réfractaire au fond du caisson, parcourus par des barres conductrices destinées à collecter le courant d'électrolyse pour le conduire à une cuve d'électrolyse suivante, et des blocs anodiques suspendus à un cadre anodique et plongés partiellement dans un bain électrolytique, au-dessus des blocs cathodiques. Une nappe d'aluminium liquide, recouvrant les blocs cathodiques, se forme au fur et à mesure de la réaction.
Une aluminerie comprend traditionnellement plusieurs centaines de cuves d'électrolyse connectées en série et parcourues par un courant d'électrolyse. Ce courant d'électrolyse, dont l'intensité peut atteindre plusieurs centaines de milliers d'Ampère, est à l'origine d'un champ magnétique important. La composante verticale de ce champ magnétique, combinée aux variations des lignes de courant parcourant la nappe d'aluminium, met cette dernière en mouvement. Sous l'effet de ce champ magnétique, la nappe d'aluminium tend à se déplacer sous la forme de vagues. On parle d'instabilités magnétohydrodynamiques (MHD).
Ce mouvement de vague de la nappe d'aluminium impose une distance minimale entre anode et cathode (distance interpolaire). Or, plus cette distance interpolaire est importante, plus la consommation énergétique est élevée, et donc le rendement faible. Des solutions visant à briser la vague d'aluminium ont été conséquemment développées. L'une d'entre elles, connue notamment du document de brevet US5683559, consiste à usiner la surface supérieure des blocs cathodiques, de manière à créer des créneaux, ou alternance de protubérances et de rainures, sensiblement parallèles pour former obstacle au déplacement des vagues d'aluminium afin d'en réduire les amplitudes. Cependant, cette solution est coûteuse, à la fois en raison de l'opération d'usinage proprement dite et en raison de la perte de matière résultant de cette opération d'usinage. De plus, cette conception crénelée des blocs cathodiques complique les opérations de nettoyage. En effet, la faible largeur relative des rainures formées entre les protubérances favorise l'accumulation de matériaux issus de l'opération des cuves, typiquement appelés boues, obstruant ces rainures, sans permettre pour autant leur dégagement par des outils conventionnels de nettoyage, comme une pelle à croûte relativement large, car généralement sensiblement de la largeur des blocs anodiques. Il existe en outre un risque de casser les protubérances formées entre deux rainures adjacentes, compte-tenu de la faible largeur de ces protubérances.
Le document de brevet US2012/0279054 propose d'alterner des blocs cathodiques de différentes épaisseurs pour diminuer les instabilités de l'interface bain électrolytique/ nappe d'aluminium.
Cependant, on comprendra aisément que cette surépaisseur engendre un surcoût matière pour les blocs cathodiques faisant office de protubérances, qui est non négligeable compte-tenu du nombre de blocs cathodiques par cuve et du nombre de cuves (généralement plusieurs centaines) par aluminerie.
Aussi, la distribution électrique entre les barres conductrices traversant les blocs cathodiques de plus faible épaisseur et les blocs cathodiques de plus forte épaisseur n'est pas équilibrée, du fait de la longueur plus importante de matériau cathodique, typiquement carboné, à traverser par le courant d'électrolyse dans les blocs cathodiques de plus forte épaisseur.
En outre, on note l'existence de pics de densité de courant pouvant apparaître sur certaines parties des blocs cathodiques de plus forte épaisseur qui engendrent une érosion rapide de ces blocs cathodiques, en particulier de leurs flancs où tendent à se concentrer les lignes de courant, si bien que le brise-vague ainsi proposé présente une durée de vie relativement faible.
Aussi la présente invention vise à pallier en tout ou partie ces inconvénients, en proposant une cuve d'électrolyse ayant une meilleure distribution électrique entre les barres conductrices, à coûts de fabrication et d'entretien contenus, facilitant les opérations de nettoyage, et résistante à l'érosion électrique, tout en limitant les instabilités MHD. A cet effet, la présente invention a pour objet une cuve d'électrolyse, destinée à la production d'aluminium, comprenant un caisson et présentant un plancher sur lequel est agencée une pluralité de blocs cathodiques, de préférence en matériau carboné, chaque bloc cathodique étant traversé par au moins un conducteur électrique longitudinal destiné à collecter le courant d'électrolyse en vue de son acheminement hors du caisson et vers une cuve d'électrolyse distincte, caractérisée en ce que le plancher présente des premières surfaces de support des blocs cathodiques, et des deuxièmes surfaces de support des blocs cathodiques, les premières surfaces étant alternées avec les deuxièmes surfaces dans une direction longitudinale de la cuve d'électrolyse, chaque première surface étant agencée à une hauteur supérieure à celle de la ou des deuxièmes surfaces adjacentes, de sorte que les blocs cathodiques supportés par les premières surfaces sont surélevés par rapport aux blocs cathodiques supportés par les deuxièmes surfaces, les blocs cathodiques ainsi surélevés présentant une portion émergente s'étendant au-dessus d'une surface supérieure du ou des blocs cathodiques adjacents supportés par les deuxièmes surfaces.
Ainsi, la cuve d'électrolyse selon l'invention présente, selon une vue en coupe perpendiculaire à une direction transversale de la cuve, c'est-à-dire perpendiculaire à la direction dans laquelle s'étendent les blocs cathodiques, un plancher crénelé, ce qui permet de surélever des blocs cathodiques, et plus particulièrement leur base, afin de faire émerger au dessus d'autres blocs cathodiques une portion capable de briser des vagues d'aluminium générées par les instabilités MHD, et ce sans usinage des blocs cathodiques et sans surcoût matière. De plus, avec des blocs cathodiques d'une hauteur identique ou sensiblement identique, l'équilibrage électrique est correct et facilité. Les blocs cathodiques, qu'ils soient surélevés ou non, sont effectivement similaires en dimensions. Seule la hauteur du plancher sur lequel ils reposent les distingue.
Selon un mode de réalisation, la cuve d'électrolyse comporte, notamment en fonctionnement, une nappe d'aluminium liquide recouvrant les blocs cathodiques et ayant une surface à une hauteur comprise entre 3 cm et 25 cm au dessus d'une surface supérieure des blocs cathodiques surélevés supportés par les premières surfaces.
Selon un mode de réalisation, la portion émergente présente au moins un flanc recouvert par des moyens d'isolation électrique. Cette caractéristique offre l'avantage d'augmenter la durée de vie de la portion émergente, donc du système brise-vague, en prévenant leur érosion à cause de pics de densité de courant localisés au niveau des flancs de la portion émergente. Selon un mode de réalisation avantageux, chaque bloc cathodique non surélevé présente, sur un bord de sa surface supérieure, une protubérance latérale agencée en regard dudit au moins un flanc de la portion émergente d'un bloc cathodique surélevé adjacent, de sorte que les moyens d'isolation électrique sont interposés entre la protubérance latérale et ledit au moins un flanc de la portion émergente du bloc cathodique surélevé adjacent.
Cette caractéristique offre l'avantage d'offrir une protection des moyens d'isolation électrique, notamment contre une abrasion par l'aluminium liquide en mouvement, donc d'augmenter davantage encore la durée de vie des portions émergentes. Par bloc cathodique non surélevé on entend bloc cathodique reposant sur l'une des deuxièmes surfaces. Par bloc cathodique surélevé, on entend bloc cathodique reposant sur l'une des premières surfaces.
De manière avantageuse, la protubérance latérale présente une surface supérieure agencée sensiblement à la même hauteur que la surface supérieure du bloc cathodique surélevé adjacent.
Selon un mode de réalisation particulier, la distance D1 la plus courte entre ledit au moins un conducteur électrique des blocs cathodiques non surélevés et le coin formé par la protubérance latérale et la surface supérieure des blocs cathodiques non surélevés est sensiblement identique à la distance D2 la plus courte entre ledit au moins un conducteur électrique du ou des blocs cathodiques surélevés adjacents et l'un des bords longitudinaux de la surface supérieure de ce ou ces blocs cathodiques surélevés adjacents.
Cette caractéristique dimensionnelle contribue à obtenir une distribution électrique optimale avec une surface cathodique efficace maximisée. Selon un mode de réalisation, les blocs cathodiques surélevés et les blocs cathodiques non surélevés sont identiques.
Selon un mode de réalisation, les blocs cathodiques surélevés sont monoblocs.
Selon un autre mode de réalisation, les blocs cathodiques surélevés sont formés conjointement d'un bloc supérieur, de préférence en matériau carboné, rapporté et collé sur un bloc inférieur, de préférence en matériau carboné et reposant sur l'une des premières surfaces. Avantageusement, le bloc supérieur est collé sur le bloc inférieur par l'intermédiaire d'une pâte électriquement conductrice.
De manière avantageuse, le bloc supérieur correspond à la portion émergente.
Selon un mode de réalisation, la portion émergente comprend au moins un bord de recouvrement agencé pour recouvrir une partie de la surface supérieure d'un bloc cathodique non surélevé adjacent, ledit au moins un bord de recouvrement étant collé à la surface supérieure de ce bloc cathodique non surélevé adjacent par une pâte électriquement isolante.
Ce mode de réalisation permet avantageusement de supprimer les courants pouvant apparaître sur les flancs du bloc cathodique surélevé afin de prévenir son érosion, donc allonger la durée de vie du système brise-vague.
De préférence, ledit au moins un bord de recouvrement recouvre ledit bloc cathodique non surélevé adjacent sur une distance sensiblement identique à la hauteur de la portion émergente. Selon un mode de réalisation, la cuve d'électrolyse comprend une pluralité de blocs anodiques, chaque bloc anodique étant agencé en totalité soit au-dessus d'une portion émergente de blocs cathodiques surélevés, soit au-dessus d'une surface supérieure de blocs cathodiques non surélevés afin que chaque bloc anodique puisse reposer sur une surface de cathode sensiblement plane au-dessus de laquelle il est agencé. Cela permet avantageusement de poser les blocs anodiques à plat sur des surfaces de cathode sensiblement planes pour le démarrage, et plus particulièrement le préchauffage, de la cuve d'électrolyse. Il en résulte une meilleure homogénéité du préchauffage.
Selon une possibilité, la distance E2 la plus courte entre la surface supérieure des blocs cathodiques surélevés et ledit au moins un conducteur électrique de ces blocs cathodiques surélevés est inférieure à la distance F2 la plus courte entre un flanc de la portion émergente et ledit au moins un conducteur électrique de ces blocs cathodiques surélevés.
Ce dimensionnement contribue aussi à lutter contre l'apparition de pics de densité de courant au niveau des flancs de la portion émergente. Selon une possibilité avantageuse, la distance E1 la plus courte entre la surface supérieure du ou des blocs cathodiques non surélevés et ledit au moins un conducteur électrique de ces blocs cathodiques non surélevés est inférieure à la distance F2 la plus courte entre un flanc de la portion émergente du ou de l'un des blocs cathodiques surélevés adjacent et ledit au moins un conducteur électrique de ce bloc cathodique surélevé.
Selon une forme d'exécution, la distance E2 la plus courte entre la surface supérieure des blocs cathodiques surélevés et ledit au moins un conducteur électrique de ces blocs cathodiques surélevés est sensiblement identique à la distance E1 la plus courte entre la surface supérieure du ou des blocs cathodiques adjacents non surélevés et ledit au moins un conducteur électrique de ces blocs cathodiques non surélevés.
On obtient ainsi une distribution électrique équilibrée entre les conducteurs électriques des blocs cathodiques surélevés et non surélevés.
Selon un mode de réalisation, la largeur des blocs cathodiques surélevés est de l'ordre de 0,8 à 1 ,2 fois la largeur des blocs cathodiques non surélevés, et la hauteur des blocs cathodiques surélevés est de l'ordre de 0,8 à 1 ,2 fois la hauteur des blocs cathodiques non surélevés.
L'invention concerne également une aluminerie comprenant au moins une cuve d'électrolyse ayant les caractéristiques précitées. D'autres caractéristiques et avantages de la présente invention ressortiront clairement de la description ci-après d'un mode de réalisation, donné à titre d'exemple non limitatif, en référence aux dessins annexés dans lesquels : la figure 1 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - la figure 2 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, la figure 3 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, la figure 4 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, la figure 5 est une en perspective, de dessus, de blocs cathodiques d'une cuve d'électrolyse selon un mode de réalisation de l'invention, la figure 6 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, - la figure 7 est une vue en coupe longitudinale d'une cuve d'électrolyse selon un mode de réalisation de l'invention, la figure 8 est une vue schématique de deux blocs anodiques et deux blocs cathodiques d'une cuve d'électrolyse selon un mode de réalisation de l'invention, avec les anodes positionnées pour le démarrage de la cuve, - la figure 9 est une vue schématique d'une opération de nettoyage d'une partie d'une cuve d'électrolyse selon un mode de réalisation de l'invention.
La figure 1 montre une cuve 1 d'électrolyse selon un mode de réalisation de l'invention. La cuve 1 d'électrolyse est destinée à la production d'aluminium selon le procédé de Hall- Héroult. On précise que la description est réalisée par rapport à un référentiel cartésien lié à la cuve 1 d'électrolyse, l'axe X étant orienté dans une direction longitudinale de la cuve 1 d'électrolyse, l'axe Y étant orienté dans une direction transversale de la cuve 1 d'électrolyse, et l'axe Z étant orienté dans une direction verticale de la cuve d'électrolyse. Les orientations, directions, plans et déplacements longitudinaux, transversaux, verticaux sont ainsi définis par rapport à ce référentiel.
La cuve 1 d'électrolyse comprend un caisson 2, un plancher 4 sur lequel est agencée une pluralité de blocs 6, 7 cathodiques, de préférence en matériau carboné, chacun traversé par un ou plusieurs conducteurs 8 électriques longitudinaux (deux par blocs 6, 7 cathodiques selon la figure 2), comme des barres en acier ou en composite acier/cuivre, destinés à collecter le courant d'électrolyse en vue de son acheminement hors du caisson 2 et vers une cuve d'électrolyse distincte.
Le caisson 2 peut être en acier, et son fond peut être garni par un revêtement 10 intérieur en matériaux réfractaires et/ou isolants. Le cas échéant, la surface supérieure de ce revêtement 10 peut former le plancher 4 destiné à supporter les blocs 6, 7 cathodiques. Le plancher 4 présente des premières surfaces 40 de support de certains des blocs cathodiques, et des deuxièmes surfaces 42 également destinées à supporter certains des blocs cathodiques. Les premières surfaces 40 et les deuxièmes surfaces 42 peuvent être sensiblement rectangulaires. Comme cela est visible sur la figure 1 , les premières surfaces 40 sont alternées avec les deuxièmes surfaces 42 dans une direction longitudinale X de la cuve 1 d'électrolyse.
En outre, chaque première surface 40 est agencée à une hauteur supérieure à celle de la ou des deuxièmes surfaces 42 qui lui sont adjacentes. Ainsi, les blocs 6 cathodiques, et plus particulièrement les bases de ces blocs 6 cathodiques, supportés par les premières surfaces 40 sont surélevés par rapport aux blocs 7 cathodiques, plus particulièrement leurs bases, supportés par les deuxièmes surfaces 42.
La différence de hauteur entre les premières surfaces 40 et les secondes surfaces 42 peut être par exemple comprise entre 3 à 20 cm, et plus particulièrement comprise entre 5 et 15 cm. Pour la suite de la description, on parlera donc de blocs 6 cathodiques surélevés pour désigner les blocs cathodiques reposant sur une première surface 40, et de blocs 7 cathodiques non surélevés pour désigner les blocs cathodiques reposant sur une deuxième surface 42. On peut alternativement les désigner par blocs hauts et blocs bas.
Du fait de la surélévation de leur base, les blocs 6 cathodiques surélevés présentent une portion 60 émergente s'étendant au-dessus d'une surface 70 supérieure du ou des blocs 7 cathodiques non surélevés adjacents. Ainsi, les portions 60 émergentes forment un système brise-vague, permettant de stabiliser la nappe 14 d'aluminium liquide lors du fonctionnement de la cuve 1 d'électrolyse.
Les figures, et notamment la figure 5, montrent que les blocs 6 cathodiques s'étendent en longueur selon la direction transversale Y de la cuve 1 d'électrolyse et qu'ils sont alignés les uns à côté des autres selon la direction longitudinale X de la cuve 1 d'électrolyse.
On précise que lors du fonctionnement de la cuve 1 d'électrolyse, les portions 60 émergentes sont destinées à être recouvertes en permanence par la nappe 14 d'aluminium liquide formée au fond de la cuve d'électrolyse. Il en est bien évidemment de même pour la surface 70 supérieure des blocs 7 cathodiques non surélevés. De préférence, la nappe 14 d'aluminium a une épaisseur de plusieurs centimètres ou dixaines de centimètres et une surface à une hauteur comprise entre 3 et 25 cm au dessus de la surface supérieure 64 de la portion 60 émergente.
De fait, la cuve 1 d'électrolyse correspond à une cuve d'électrolyse non drainée. Autrement dit, la surface 64 supérieure des blocs 6 cathodiques, correspondant à la surface supérieure des portions 60 émergentes, est dépourvue d'un revêtement mouillable à l'aluminium, par exemple un revêtement en diborure de titane, comme c'est le cas pour les cuves d'électrolyse drainées fonctionnant avec une fine couche d'aluminium de quelques millimètres sur la surface mouillable de la cathode. Ainsi, lors du fonctionnement de la cuve d'électrolyse selon l'invention, tous les blocs 6, 7 cathodiques sont recouverts par la nappe 14 d'aluminium.
Comme cela apparaît sur la figure 1 , les premières surfaces 40 peuvent être sensiblement coplanaires entre elles. De même, les deuxièmes surfaces 42 peuvent être sensiblement coplanaires entre elles. En d'autres termes, toutes les premières surfaces 40 peuvent être agencées à la même hauteur et toutes les deuxièmes surfaces 42 peuvent être agencées à la même hauteur.
Les premières et deuxièmes surfaces 40, 42 s'étendent parallèlement les unes aux autres, selon une direction transversale Y de la cuve 1 d'électrolyse, c'est-à-dire le long des blocs 6 cathodiques.
Selon un mode de réalisation préféré, les blocs 6 cathodiques surélevés et les blocs 7 cathodiques non surélevés sont identiques. Ainsi, la distance E2 la plus courte entre la surface supérieure 64 des blocs 6 cathodiques surélevés et le ou l'un des conducteurs 8 électriques de ces blocs 6 cathodiques surélevés est similaire à la distance la plus courte E1 entre la surface 70 supérieure du ou des blocs 7 cathodiques adjacents non surélevés et l'un des ou le conducteur 8 électrique de ces blocs 7 cathodiques non surélevés. On obtient ainsi une distribution électrique équilibrée entre les conducteurs 8 électriques des blocs 6 cathodiques surélevés et des blocs 7 cathodiques non surélevés. La hauteur de la portion 60 émergente est alors identique au décalage vertical entre les premières surfaces 40 et les secondes surfaces 42. La hauteur des portions 60 émergentes est de préférence comprise entre 3 et 15 cm, et plus particulièrement entre 6 et 12 cm. L'utilisation de blocs 6 cathodiques surélevés et de blocs 7 cathodiques non surélevés identiques permet avantageusement de faciliter la fabrication des cuves et de limiter les coûts, notamment en standardisant les blocs 6, 7 cathodiques à approvisionner et en minimisant les coûts matières. De préférence, les blocs 6 cathodiques sont formés de façon monobloc, pour des raisons de conductivité ou de facilité de fabrication, mais des modes de réalisation dans lesquels les blocs 6 cathodiques sont formés par collage de blocs ne sont pas exclus, comme on le verra plus loin en référence aux figures 6 et 7. Selon le mode de réalisation illustré sur la figure 4, la portion 60 émergente présente deux flancs 62 recouverts par des moyens d'isolation électrique. Les moyens d'isolation électrique permettent de protéger les flancs 62 de l'érosion électrique due à la densité de courant électrique, en évitant que les lignes de courant électrique se concentrent au niveau des flancs 62. Par moyen d'isolation électrique, on entend tout moyen permettant d'assurer par ses caractéristiques d'épaisseur et de résistivité que la résistance électrique entre un point de la nappe 14 d'aluminium et un des conducteurs 8 électrique soit supérieure en passant par le moyen d'isolation et un flanc 62 de la portion 60 émergente, que par une surface supérieure 64 d'un bloc 6 cathodique. Les moyens d'isolation électrique peuvent correspondre à une couche 12 de pâte électriquement isolante, par exemple une pâte carbonée ayant une conductivité électrique bien inférieure à la conductivité du 6 bloc cathodique surélevé adjacent, notamment au moins trois fois inférieure.
De plus, chaque bloc 7 cathodique non surélevé peut présenter, sur un bord de sa surface 70 supérieure, une protubérance 72 latérale agencée en regard d'un flanc 62 de la portion 60 émergente d'un bloc 6 cathodique surélevé adjacent. Ainsi, les moyens d'isolation électrique, notamment la couche 12 de pâte électriquement isolante, sont interposés entre cette protubérance 72 latérale et le flanc 62 adjacent. Cette protubérance 72 permet notamment de maintenir les moyens d'isolation électrique lors du montage de la cathode de la cuve et de les protéger de l'érosion par abrasion due aux mouvements de la nappe 14 d'aluminium.
Comme on le constate sur la figure 4, les protubérances 72 latérales peuvent présenter une surface 74 supérieure agencée sensiblement à la même hauteur que la surface 64 supérieure de la portion 60 émergente adjacente. Autrement dit, la surface 64 supérieure de la portion 60 émergente des blocs 6 cathodiques surélevés et celle du ou des protubérances 72 latérales adjacentes sont sensiblement coplanaires. Cela facilite en outre l'introduction et le tassage de la pâte électriquement isolante. On notera que les protubérances 72 peuvent s'étendre en longueur selon la direction transversale Y de la cuve 1 d'électrolyse, comme cela est visible sur la figure 5. Elles peuvent être agencées le long de l'un des, ou des deux, bords longitudinaux des blocs 7 cathodiques non surélevés. Les protubérances 72 peuvent soit faire partie intégrante des blocs 7 cathodiques non surélevés, auquel cas une opération d'usinage est nécessaire, soit correspondre à un bloc en matériau carboné rapporté et par exemple collé sur le bloc 7 cathodique correspondant.
Selon le mode de réalisation illustré aux figures 4 et 5, la distance D1 la plus courte entre le ou l'un des conducteurs 8 électriques des blocs 7 cathodiques non surélevés et le coin formé par la protubérance 72 latérale et la surface 70 supérieure peut être sensiblement identique à la distance D2 la plus courte entre le ou l'un des conducteurs 8 électriques du ou des blocs 6 cathodiques surélevés adjacents et l'un des bords longitudinaux (donc s'étendant selon la direction transversale Y de la cuve 1 d'électrolyse) de la surface supérieure 64 de ce ou ces blocs 6 cathodiques surélevés. En outre, quelque soit le mode de réalisation, la distance E2 la plus courte entre la surface supérieure 64 des blocs 6 cathodiques surélevés et le ou l'un des conducteurs 8 électriques de ces blocs 6 cathodiques surélevés peut être sensiblement identique à la distance E1 la plus courte entre la surface 70 supérieure du ou des blocs 7 cathodiques adjacents non surélevés et l'un des ou le conducteur 8 électrique de ces blocs 7 cathodiques non surélevés. On obtient ainsi une distribution électrique équilibrée entre les conducteurs 8 électriques des blocs 6 cathodiques surélevés et non surélevés.
Par ailleurs, quelque soit le mode de réalisation, la distance E2 la plus courte entre la surface 64 supérieure des blocs 6 cathodiques surélevés et le ou l'un des conducteurs 8 électriques de ces blocs 6 cathodiques surélevés peut être inférieure à la distance F2 la plus courte entre l'un des flancs 62 de la portion 60 émergente et le ou l'un des conducteurs 8 électriques de ces blocs 6 cathodiques surélevés. En outre, la distance E1 est avantageusement également inférieure à la distance F2.
Ces dimensionnements permettent une distribution électrique optimale pour lutter contre l'apparition de pics de densité de courant au niveau des flancs 62 de la portion 60 émergente, comme cela est par exemple représenté sur la figure 3 ou sur la figure 7, où les zones 16 de passage préférentiel du courant ont été représentées. Ainsi, sur la figure 3, on constate que la densité de courant au niveau des flancs 62 est relativement limitée, ce qui limite l'érosion de ces flancs 62 et augmente conséquemment la durée de vie du système brise-vague de la cuve 1 d'électrolyse selon l'invention. De plus, quelque soit le mode de réalisation et toujours dans une optique de distribution électrique optimale pour limiter l'érosion, la largeur des blocs 6 cathodiques surélevés peut être de l'ordre de 0,8 à 1 ,2 fois la largeur des blocs 7 cathodiques non surélevés, et la hauteur des blocs 6 cathodiques surélevés peut être de l'ordre de 0,8 à 1 ,2 fois la hauteur des blocs 7 cathodiques non surélevés.
Selon le mode de réalisation illustré sur les figures 6 et 7, le bloc cathodique 6 surélevé est formé de deux parties. La portion 60 émergente est un bloc 601 supérieur en matériau carboné rapporté et collé, par exemple par l'intermédiaire d'une pâte 20 électriquement conductrice, sur un bloc 602 inférieur également en matériau carboné, pour former conjointement le bloc cathodique 6 surélevé. La portion émergente 60, pouvant correspondre au bloc 601 supérieur, présente plus particulièrement une largeur supérieure à celle du bloc 602 inférieur la supportant. La portion 60 émergente comprend de fait au moins un (ici deux) bord 66 de recouvrement, chaque bord 66 de recouvrement étant destiné à recouvrir une partie de la surface 70 supérieure du bloc 7 cathodique non surélevé adjacent. En outre, chaque bord 66 de recouvrement est jointé et collé à la surface 70 supérieure du bloc cathodique 7 non surélevé adjacent au moyen d'une pâte 18 électriquement isolante.
Une telle configuration permet de prévenir l'apparition de zones de passage de courant au niveau des flancs 62 des portions 60 émergentes, comme illustré sur la figure 7. La portion 60 émergente et le bloc 602 inférieur qui la supporte pourraient également être formés de façon monobloc. Autrement dit, la portion 60 émergente peut faire partie intégrante du bloc 6 cathodique surélevé correspondant.
On remarquera que lorsque la portion 60 émergente correspond à un bloc rapporté, la surface supérieure des blocs inférieurs et la surface 70 supérieure du ou des blocs 6 cathodiques non surélevés adjacents sont agencées avantageusement à la même hauteur. Autrement dit, elles sont sensiblement coplanaires. On facilite ainsi la construction d'une telle cuve, notamment le jointage et le collage des différents blocs.
Comme cela est visible sur les figures, à l'exception de la figure 5, la cuve 1 d'électrolyse comprend une pluralité de blocs 22 anodiques. Le système brise-vague est formé d'une alternance de larges surfaces cathodiques basses (c'est-à-dire surface 70 supérieure de bloc 7 cathodique non surélevé moins éventuellement la ou les surfaces recouvertes par un bord 66 de recouvrement ou des protubérances 72 latérales) et de larges surfaces cathodiques hautes (c'est-à-dire surface 64 supérieure de bloc 6 cathodique surélevé plus éventuellement la surface 74 de protubérances 72 latérales), si bien que le système brise-vague de la cuve 1 d'électrolyse selon l'invention résiste particulièrement bien à l'érosion due aux mouvements de la nappe d'aluminium et aux opérations de nettoyage. Avantageusement, les largeurs desdites surfaces cathodiques basses et desdites surfaces cathodiques hautes sont identiques, et sensiblement égales à la largeur d'un bloc anodique 22 (ou plusieurs blocs 22 anodiques si un même ensemble anodique est constitué de plusieurs blocs 22 anodiques disposés côte-à-côte). Les blocs 22 anodiques peuvent être en outre disposés au droit d'une surface cathodique basse ou haute, c'est-à- dire à l'intérieur du volume fictif obtenu par projection verticale de la surface cathodique basse ou haute correspondante. Ainsi, comme visible sur la figure 8, chaque bloc anodique 22 peut reposer entièrement lors du démarrage et préchauffage de la cuve soit sur une surface cathodique basse, soit sur une surface cathodique haute. Aussi, les outils conventionnels de nettoyage, comme une pelle à croûte 100, ont typiquement la largeur d'un bloc anodique et sont utilisés lors d'un changement d'anode dans la cuve. Par conséquent, les surfaces cathodiques basses et hautes, qui ont sensiblement la même largeur que les blocs anodiques et sont disposées au droit de ces blocs anodiques peuvent être facilement nettoyées au moyen notamment d'une pelle à croûte 100, comme cela est visible sur la figure 9. Les accumulations de boues sur la cathode, et notamment sur les surfaces cathodiques basses formant rainures du brise vague, peuvent ainsi être empêchées.
Quelque soit le mode de réalisation, on notera que chaque conducteur 8 électrique peut comprendre une partie principale dans un premier matériau et un insert dans un deuxième matériau de conductivité électrique supérieure à celle du premier matériau. Cela permet des ajustements de la distribution électrique dans le bloc cathodique correspondant afin de prévenir une érosion prématurée. L'insert peut par exemple être en cuivre, et la partie principale du conducteur 8 électrique en acier. Les conducteurs 8 électriques comportent chacun une partie électriquement conductrice pouvant sortir du caisson par le côté de la cuve ou par le dessous de la cuve. Bien entendu, l'invention n'est nullement limitée aux modes de réalisation décrits ci- dessus, ces modes de réalisation n'ayant été donné qu'à titre d'exemples. Des modifications sont possibles, notamment du point de vue de la constitution des divers éléments ou par la substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

REVENDICATIONS
1. Cuve (1) d'électrolyse, destinée à la production d'aluminium, comprenant un caisson (2) et présentant un plancher (4) sur lequel est agencée une pluralité de blocs (6, 7) cathodiques, de préférence en matériau carboné, chaque bloc (6, 7) cathodique étant traversé par au moins un conducteur (8) électrique longitudinal destiné à collecter le courant d'électrolyse en vue de son acheminement hors du caisson (2) et vers une cuve d'électrolyse distincte, caractérisée en ce que le plancher (4) présente des premières surfaces (40) de support des blocs (6) cathodiques, et des deuxièmes surfaces (42) de support des blocs (7) cathodiques, les premières surfaces (40) étant alternées avec les deuxièmes surfaces (42) dans une direction longitudinale de la cuve (1) d'électrolyse, chaque première surface (40) étant agencée à une hauteur supérieure à celle de la ou des deuxièmes surfaces (42) adjacentes, de sorte que les blocs (6) cathodiques supportés par les premières surfaces (40) sont surélevés par rapport aux blocs (7) cathodiques supportés par les deuxièmes surfaces (42), les blocs (6) cathodiques ainsi surélevés présentant une portion (60) émergente s'étendant au-dessus d'une surface (70) supérieure du ou des blocs (7) cathodiques adjacents supportés par les deuxièmes surfaces (42).
2. Cuve (1) d'électrolyse selon la revendication 1 , caractérisée en ce que la cuve (1) d'électrolyse comporte une nappe (14) d'aluminium liquide recouvrant les blocs (6, 7) cathodiques et ayant une surface à une hauteur comprise entre 3 cm et 25 cm au dessus d'une surface (64) supérieure des blocs (6) cathodiques surélevés supportés par les premières surfaces (40).
3. Cuve (1) d'électrolyse selon la revendication 1 ou 2, caractérisée en ce que la portion (60) émergente présente au moins un flanc (62) recouvert par des moyens d'isolation électrique.
4. Cuve (1) d'électrolyse selon la revendication 3, caractérisée en ce que chaque bloc (7) cathodique non surélevé présente, sur un bord de sa surface (70) supérieure, une protubérance (72) latérale agencée en regard dudit au moins un flanc (62) de la portion (60) émergente d'un bloc (6) cathodique surélevé adjacent, de sorte que les moyens d'isolation électrique sont interposés entre la protubérance (72) latérale et ledit au moins un flanc (62) de la portion (60) émergente du bloc (6) cathodique surélevé adjacent.
5. Cuve (1) d'électrolyse selon la revendication 4, caractérisée en ce que la protubérance (72) latérale présente une surface (74) supérieure agencée sensiblement à la même hauteur que la surface (64) supérieure du bloc (6) cathodique surélevé adjacent.
6. Cuve (1) d'électrolyse selon la revendication 4 ou 5, caractérisée en ce que la distance (D1) la plus courte entre ledit au moins un conducteur (8) électrique des blocs (7) cathodiques non surélevés et le coin formé par la protubérance (72) latérale et la surface (70) supérieure des blocs (7) cathodiques non surélevés est sensiblement identique à la distance (D2) la plus courte entre ledit au moins un conducteur (8) électrique du ou des blocs (6) cathodiques surélevés adjacents et l'un des bords longitudinaux de la surface (64) supérieure de ce ou ces blocs (6) cathodiques surélevés adjacents.
7. Cuve (1) d'électrolyse selon l'une des revendications 1 à 3, caractérisée en ce que les blocs (6) cathodiques surélevés et les blocs (7) cathodiques non surélevés sont identiques.
8. Cuve (1) d'électrolyse selon l'une des revendications 1 à 7, caractérisée en ce que les blocs (6) cathodiques surélevés sont monoblocs.
9. Cuve (1) d'électrolyse selon l'une des revendications 1 à 6, caractérisée en ce que les blocs (6) cathodiques surélevés sont formés conjointement d'un bloc (601) supérieur, de préférence en matériau carboné, rapporté et collé sur un bloc (602) inférieur, de préférence en matériau carboné et reposant sur l'une des premières surfaces (40).
10. Cuve (1) d'électrolyse selon la revendication 9, caractérisée en ce que le bloc (601) supérieur est collé sur le bloc (602) inférieur par l'intermédiaire d'une pâte (20) électriquement conductrice.
1 1. Cuve (1) d'électrolyse selon la revendication 9 ou 10, caractérisée en ce que le bloc (601) supérieur correspond à la portion (60) émergente.
12. Cuve (1) d'électrolyse selon l'une des revendications 9 à 1 1 , caractérisée en ce que la portion (60) émergente comprend au moins un bord (66) de recouvrement agencé pour recouvrir une partie de la surface (70) supérieure d'un bloc (7) cathodique non surélevé adjacent, ledit au moins un bord (66) de recouvrement étant collé à la surface (70) supérieure de ce bloc (7) cathodique non surélevé adjacent par une pâte (18) électriquement isolante.
13. Cuve (1) d'électrolyse selon la revendication 12, caractérisée en ce que ledit au moins un bord (66) de recouvrement recouvre ledit bloc (7) cathodique non surélevé adjacent sur une distance sensiblement identique à la hauteur de la portion (60) émergente.
14. Cuve (1) d'électrolyse selon l'une des revendications 1 à 13, caractérisée en ce que la cuve (1) d'électrolyse comprend une pluralité de blocs (22) anodiques, chaque bloc (22) anodique étant agencé en totalité soit au-dessus d'une portion (60) émergente de blocs (6) cathodiques surélevés soit au-dessus d'une surface supérieure de blocs (7) cathodiques non surélevés afin que chaque bloc (22) anodique puisse reposer sur une surface sensiblement plane au-dessus de laquelle il est agencé.
15. Cuve (1) d'électrolyse selon l'une des revendications 1 à 14, caractérisée en ce que la distance (E2) la plus courte entre la surface supérieure des blocs (6) cathodiques surélevés et ledit au moins un conducteur (8) électrique de ces blocs (6) cathodiques surélevés est inférieure à la distance (F2) la plus courte entre un flanc (62) de la portion (60) émergente et ledit au moins un conducteur (8) électrique de ces blocs (6) cathodiques surélevés.
16. Cuve (1) d'électrolyse selon l'une des revendications 1 à 15, caractérisée en ce que la distance (E1) la plus courte entre la surface (70) supérieure du ou des blocs (7) cathodiques non surélevés et ledit au moins un conducteur (8) électrique de ces blocs (7) cathodiques non surélevés est inférieure à la distance (F2) la plus courte entre un flanc (62) de la portion (60) émergente du ou de l'un des blocs (6) cathodiques surélevés adjacent et ledit au moins un conducteur (8) électrique de ce bloc (6) cathodique surélevé.
17. Cuve (1) d'électrolyse selon l'une des revendications 1 à 16, caractérisée en ce que la distance (E2) la plus courte entre la surface supérieure des blocs (6) cathodiques surélevés et ledit au moins un conducteur (8) électrique de ces blocs (6) cathodiques surélevés est sensiblement identique à la distance (E1) la plus courte entre la surface (70) supérieure du ou des blocs (7) cathodiques adjacents non surélevés et ledit au moins un conducteur (8) électrique de ces blocs (7) cathodiques non surélevés.
18. Cuve (1) d'électrolyse selon l'une des revendications 1 à 17, caractérisée en ce que la largeur des blocs (6) cathodiques surélevés est de l'ordre de 0,8 à 1 ,2 fois la largeur des blocs (7) cathodiques non surélevés, et la hauteur des blocs (6) cathodiques surélevés est de l'ordre de 0,8 à 1 ,2 fois la hauteur des blocs (7) cathodiques non surélevés.
19. Aluminerie comprenant au moins une cuve (1) d'électrolyse selon l'une des revendications 1 à 18.
PCT/CA2014/050723 2013-08-09 2014-07-31 Cuve d'électrolyse à plancher crénelé WO2015017925A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112016001936A BR112016001936A2 (pt) 2013-08-09 2014-07-31 cuba de eletrólise com piso entalhado
CN201480045237.XA CN105452537A (zh) 2013-08-09 2014-07-31 具有锯齿状的地板的电解池
CA2919332A CA2919332A1 (fr) 2013-08-09 2014-07-31 Cuve d'electrolyse a plancher crenele

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR13/01909 2013-08-09
FR1301909 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015017925A1 true WO2015017925A1 (fr) 2015-02-12

Family

ID=49667212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2014/050723 WO2015017925A1 (fr) 2013-08-09 2014-07-31 Cuve d'électrolyse à plancher crénelé

Country Status (4)

Country Link
CN (1) CN105452537A (fr)
BR (1) BR112016001936A2 (fr)
CA (1) CA2919332A1 (fr)
WO (1) WO2015017925A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3601640A4 (fr) * 2017-03-31 2021-01-06 Alcoa USA Corp. Systèmes et procédés de production électrolytique d'aluminium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286359A (en) * 1991-05-20 1994-02-15 Reynolds Metals Company Alumina reduction cell
CA2596427A1 (fr) * 1994-09-08 1996-03-14 Moltech Invent S.A. Cellule d'extraction electrolytique d'aluminium comportant des blocs cathodiques ameliores en carbone
CA2808243A1 (fr) * 2010-08-23 2012-03-01 Sgl Carbon Se Cathode, dispositif de production d'aluminium et utilisation de la cathode pour la production d'aluminium

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003308A1 (fr) * 1983-02-17 1984-08-30 Martin Marietta Corp Cellule de reduction d'aluminium a faible energie avec ecoulement de bain induit
DE69509540T2 (de) * 1994-09-08 1999-09-30 Moltech Invent Sa Aluminium-elektrogewinnungszelle mit verbesserten kohlenstoff-kathodeblöcken
SK11232000A3 (sk) * 1998-02-11 2001-03-12 Moltech Invent S. A. Elektrolyzér na výrobu hliníka s drenážovanou katódou so zlepšeným rozložením oxidu hlinitého
CN101440503A (zh) * 2007-11-23 2009-05-27 高德金 一种新型铝电解槽结构
CN101775622B (zh) * 2009-01-13 2011-11-16 沈阳铝镁设计研究院有限公司 一种节能型铝电解槽阴极结构
CN101818363A (zh) * 2009-01-21 2010-09-01 贵阳铝镁设计研究院 一种铝电解槽的节能型阴极
CN101787548B (zh) * 2009-01-22 2013-02-27 贵阳铝镁设计研究院有限公司 铝电解槽阴极结构
CN201367473Y (zh) * 2009-01-22 2009-12-23 贵阳铝镁设计研究院 铝电解槽阴极结构
CN101805912B (zh) * 2009-02-17 2013-06-12 贵阳铝镁设计研究院有限公司 一种铝电解槽的阴极
CN201416035Y (zh) * 2009-03-03 2010-03-03 沈阳铝镁设计研究院 节能型铝电解槽阴极结构
CN101899678A (zh) * 2009-05-25 2010-12-01 高德金 铝电解槽阴极导电结构
CN201545919U (zh) * 2009-11-17 2010-08-11 贵阳铝镁设计研究院 铝电解槽阴极结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286359A (en) * 1991-05-20 1994-02-15 Reynolds Metals Company Alumina reduction cell
CA2596427A1 (fr) * 1994-09-08 1996-03-14 Moltech Invent S.A. Cellule d'extraction electrolytique d'aluminium comportant des blocs cathodiques ameliores en carbone
CA2808243A1 (fr) * 2010-08-23 2012-03-01 Sgl Carbon Se Cathode, dispositif de production d'aluminium et utilisation de la cathode pour la production d'aluminium

Also Published As

Publication number Publication date
CN105452537A (zh) 2016-03-30
BR112016001936A2 (pt) 2017-08-01
CA2919332A1 (fr) 2015-02-12

Similar Documents

Publication Publication Date Title
CA2559372C (fr) Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
EP2459777B1 (fr) Anode rainuree de cuve d'electrolyse
FR2579025A1 (fr) Pile a combustible a separation amelioree
FR2583069A1 (fr) Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
FR3091036A1 (fr) Procede de fabrication de batteries, et batterie obtenue par ce procede
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
WO2015017925A1 (fr) Cuve d'électrolyse à plancher crénelé
EP0169152B1 (fr) Bloc cathodique modulaire et cathode à faible chute de tension pour cuves d'électrolyse hall-héroult
CA2919050C (fr) Aluminerie comprenant un circuit electrique de compensation
FR2921074A1 (fr) Anode rainuree de cuve d'electrolyse
CA3122500A1 (fr) Ensemble anodique et cuve d'electrolyse comprenant cet ensemble anodique
CA2975962C (fr) Aluminerie et procede de compensation d'un champ magnetique cree par la circulation du courant d'electrolyse de cette aluminerie
EP0144371A1 (fr) Barre cathodique comportant une semelle metallique, pour cuves d'electrolyse hall-heroult.
WO2012172196A1 (fr) Cuve d'électrolyse destinée à être utilisée pour produire de l'aluminium
FR3032460A1 (fr) Cuve d'electrolyse
FR3016899A1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve.
FR3121938A1 (fr) Multipode et ensemble anodique
LU83152A1 (fr) Appareil pour relier electriquement des cuves electrolytiques
FR2882887A1 (fr) Circuit electrique d'un electrolyseur et procede pour reduire les champs electromagnetiques au voisinage de l'electrolyseur
FR2882888A1 (fr) Circuit electrique d'un electrolyseur et procede pour reduire les champs electromagnetiques au voisinage de l'electrolyseur
FR2871479A1 (fr) Circuit electrique d'un electrolyseur a electrodes bipolaires et installation d'electrolyse a electrodes bipolaires
EP0294358B1 (fr) Electrode destinée à une cellule d' électrolyse
FR2503739A1 (fr) Ensemble cathodique pour cellule d'electrolyse
WO2016075526A1 (fr) Procédé de manutention d'une pluralité d'anodes destinées à la production d'aluminium par électrolyse ignée
FR3032452B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium liquide et aluminerie comprenant cette cuve

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045237.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2919332

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016001936

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14834002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016001936

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160128