WO2015016406A1 - 차량용 절대측위 보정 시스템 및 방법 - Google Patents

차량용 절대측위 보정 시스템 및 방법 Download PDF

Info

Publication number
WO2015016406A1
WO2015016406A1 PCT/KR2013/006967 KR2013006967W WO2015016406A1 WO 2015016406 A1 WO2015016406 A1 WO 2015016406A1 KR 2013006967 W KR2013006967 W KR 2013006967W WO 2015016406 A1 WO2015016406 A1 WO 2015016406A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
coordinates
landmark
gps
road
Prior art date
Application number
PCT/KR2013/006967
Other languages
English (en)
French (fr)
Inventor
이재관
김문식
Original Assignee
자동차부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자동차부품연구원 filed Critical 자동차부품연구원
Priority to PCT/KR2013/006967 priority Critical patent/WO2015016406A1/ko
Publication of WO2015016406A1 publication Critical patent/WO2015016406A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • the present invention relates to a positioning correction system and a positioning correction method, and more particularly, to a vehicle absolute positioning correction system and a vehicle absolute positioning correction method.
  • GPS Global Positioning System
  • the positioning method determines the three-dimensional position by measuring the distance between the point where the GPS receiver is located and the satellite and crossing the distance vector. The measurement of distance is based on how precisely the GPS receiver can measure time, which is calculated by receiving the signal propagating from the satellite to the measuring point.
  • relative positioning uses two or more GPS receivers to calculate the relative baseline vectors between viewpoints by measuring the phases of carrier signals from multiple satellites at about the same time (or within a few minutes). It has the disadvantage that more than one is required.
  • Absolute positioning also called point positioning, uses a method of measuring the distance to a satellite by tracking the codes of carrier signals of several satellites with one GPS receiver. Since the code signal is a binary system, positioning calculation is simple and quick. It has the advantage, but has the disadvantage of relatively low precision.
  • this absolute positioning method positioning correction technique is applied to overcome the low precision, and most of them use a method of estimating and correcting the behavior of the vehicle based on the information of the acceleration sensor combined with the GPS receiver.
  • this absolute positioning correction method has a problem that the absolute positioning error is large or the absolute positioning result cannot be obtained in a malignant area such as a city center or a tunnel in which skyscrapers are densely arranged.
  • the present invention is to solve the various problems including the above problems, by integrating the road information extracted by the sensor for recognizing the surrounding situation of the vehicle to correct the absolute positioning information of the vehicle difficult to calculate only the existing GPS information It is an object of the present invention to provide a system and method.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the absolute positioning correction system for a vehicle includes a GPS unit for acquiring GPS coordinates of a vehicle, a database unit for storing absolute coordinates of a ground landmark, a surround sensor unit for measuring a distance and a bearing between the landmark and the vehicle, and the land And a control calculator configured to calculate a correction coordinate of the vehicle using a mark and a distance and a bearing between the vehicle, the GPS coordinates of the vehicle, and the absolute coordinates of the landmark.
  • the GPS unit, the database unit, the surround sensor unit and the control operation unit may be provided in the vehicle.
  • the landmark may include at least one of a road lane, a road marking, a road signal, a road sign, a road guard rail, and a road structure.
  • the distance and orientation between the landmark and the vehicle may be measured by a radar, a laser, or an image sensor disposed at at least a portion of the front portion and the rear portion of the vehicle.
  • the absolute positioning correction method for a vehicle may include obtaining first position information including GPS coordinates of a vehicle, and obtaining second position information including relative coordinates of the vehicle based on a ground landmark having absolute coordinates. And correcting the first location information by using the second location information.
  • correcting the first position information may include obtaining a correction value calculated by using the GPS coordinates of the vehicle, the relative coordinates of the vehicle, and the absolute coordinates of the landmark, and The method may include acquiring the correction coordinates of the vehicle by applying the correction value to the GPS coordinates.
  • the landmark may include at least one of a road lane, a road marking, a road signal, a road sign, a road guard rail, and a road structure.
  • the relative coordinates may be obtained through information obtained by a radar, a laser, or an image sensor disposed on at least some of the front and rear parts of the vehicle.
  • the absolute positioning correction method for a vehicle may include: acquiring a first GPS coordinate of the vehicle at a first time point; acquiring a first relative coordinate of the vehicle based on a ground landmark having an absolute coordinate at the first time point; Acquiring a correction value calculated using the first GPS coordinates of the vehicle, the first relative coordinates of the vehicle, and the absolute coordinates of the landmark; and applying the correction value to the first GPS coordinates of the vehicle; Acquiring the first corrected coordinates of the vehicle, acquiring the second GPS coordinates of the vehicle at a second time point, and applying the correction value to the second GPS coordinates of the vehicle, at the second time point. Obtaining a second correction coordinate of the.
  • the landmark may include at least one of a road lane, a road marking, a road signal, a road sign, a road guard rail, and a road structure.
  • the first relative coordinates may be obtained through information obtained by a radar, a laser, or an image sensor disposed on at least some of the front and rear parts of the vehicle.
  • the first viewpoint includes a viewpoint at which the landmark is recognized by the radar, a laser, or an image sensor
  • the second viewpoint is the landmark by the radar, a laser, or an image sensor. May include the time when it is not recognized.
  • the second time point may be after the first time point.
  • an error between the GPS coordinates of the vehicle and the corrected coordinates of the vehicle may be greater than a predetermined threshold at the first time point or the second time point.
  • the absolute position of the vehicle received by the GPS receiver using the landmark information values acquired by the vehicle surround sensor is being expanded to mass production in order to recognize the surrounding situation of the vehicle
  • a vehicle absolute positioning correction system and correction method capable of correcting errors can be implemented.
  • the scope of the present invention is not limited by these effects.
  • FIG. 1 is a block diagram illustrating a vehicle absolute positioning correction system according to an embodiment of the present invention.
  • FIG. 2 is a perspective view illustrating a vehicle having an absolute positioning correction system for a vehicle according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating a vehicle absolute positioning correction system and a correction method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a vehicle absolute positioning correction method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a vehicle absolute positioning correction method according to another embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a vehicle absolute positioning correction system according to an embodiment of the present invention
  • Figure 2 is a perspective view illustrating a vehicle having an absolute positioning correction system for a vehicle according to an embodiment of the present invention
  • 3 is a conceptual diagram illustrating a vehicle absolute positioning correction system and a correction method according to an embodiment of the present invention.
  • the vehicle absolute positioning correction system includes a GPS unit 130, a database unit 140, a surround sensor unit 150, a control operation unit 160, and a position.
  • the display display unit 170, and all of these components may be provided in the vehicle 120.
  • the GPS unit 130 acquires GPS coordinates of the vehicle 120.
  • the surround sensor unit 150 measures the distance and azimuth between the landmarks 212 and 214 on the ground and the vehicle 120.
  • the surround sensor unit 150 refers to a sensor unit capable of sensing structures or installations around the vehicle 120, and includes a front part (eg, a grill, a bumper, a room mirror) of the vehicle 120 and / or Or it may include a radar 152, a laser 154 or an image sensor 156, 158 disposed on at least a portion of the rear portion (for example, the trunk entrance).
  • the radar and / or laser may also be disposed at the rear of the vehicle 120, unlike the example configuration of FIG. 2.
  • the landmark is a structure or installation that knows absolute coordinates and may include, for example, at least one of a group including a road lane, a road marking, a road signal, a road sign, a road guard rail, and a road structure.
  • the road traffic light 212 and the road lane 214 are illustrated as examples of landmarks.
  • the absolute coordinates C1 and D1 of the landmarks 212 and 214 are stored in the database unit 140.
  • the control operation unit 160 adjusts the correction coordinates A1 and B1 of the vehicle 120 by using the GPS coordinates A2 and B2 of the vehicle 120 and the absolute coordinates C1 and D1 of the landmarks 212 and 214. Can be calculated.
  • the location display unit 170 provides information so that a driver and a passenger who ride in the vehicle 120 may visually and / or acoustically recognize the corrected coordinates of the vehicle 120.
  • GPS Global Positioning System
  • L1 and L2 radio waves There are two kinds of L1 and L2 radio waves, and two kinds of code data are C / A code and P code. Of these, the P code is not open to the public for military use, and the open to the civilian are the C / A codes sent by L1 radio waves and the navigation messages sent separately.
  • the user part is composed of a GPS receiver, and the processing of the receiver simultaneously receives signals from a plurality of GPS satellites, digitizes an analog received signal, and classifies predetermined satellite-specific data according to a known code pattern. Thereafter, necessary signal processing such as orbit calculation, message decoding, reception control, and the like is performed to output positional information.
  • GPS unit 130 of the present application includes such a GPS receiver.
  • GPS positioning which is free to the public, has an error of 30m to 100m.
  • the GPS positioning method has a problem in that an error becomes larger at a point where satellite propagation is difficult to reach, such as under a tunnel or a building.
  • a dilution of precision may occur in the positioning state according to the arrangement of the satellites viewed from the GPS receiver. For this reason, as shown in FIG. 3, the GPS coordinates of the vehicle 120 (coordinates of the point P 2 ) have an error with the coordinates where the vehicle 120 is actually located (coordinates of the point P 1 ).
  • the GPS coordinates of the vehicle 120 (coordinates of point P 6 ) have an error with the coordinates (coordinates of point P 5 ) where the vehicle 120 is actually located.
  • the GPS coordinates (coordinates of point P 4 ) of the landmark 212 may have an error with the coordinates (coordinates of point P 3 ) where the vehicle 120 is actually located.
  • the GPS coordinates herein are coordinates before the absolute positioning correction according to the present application is performed, and include coordinates involving an error obtained by the GPS receiver. Furthermore, absolute coordinates include relatively accurate coordinates on the surface, and include coordinates after the absolute positioning correction according to the present application has been performed. For convenience, the drawings and the detailed description thereof describe these coordinates as two-dimensional coordinates, but it is apparent that the technical idea of the present application is also applicable to three-dimensional coordinates.
  • an operation (S110) of acquiring first location information including GPS coordinates A2 and B2 of the vehicle 120 is performed.
  • the GPS coordinates A2 and B2 of the vehicle 120 may have an error with the absolute coordinates A1 and B1 in which the vehicle 120 is actually located for the above-described reasons.
  • the second location information including the relative coordinates of the vehicle 120 based on the ground landmark 212 in which the absolute coordinates C1 and D1 are known is performed.
  • the relative coordinates of the vehicle 120 based on the ground landmark 212 may be understood as (A1-C1, B1-D1), and the distance S between the landmark 212 and the vehicle 120 and It may be calculated from the absolute coordinates C1 and D1 of the landmark 212 using the azimuth ⁇ .
  • the first component (A1-C1) has a value of-(Scos ⁇ )
  • the bicomponent (B1-D1) may have a value of (Ssin ⁇ ).
  • the first component A1 in the coordinates of the point P 1 where the vehicle 120 is located can be understood as (C1-Scos ⁇ )
  • the second component B1 in the coordinates of the point P 1 is (D1 + Ssin ⁇ ).
  • the distance S and the bearing ⁇ between the landmark 212 and the vehicle 120 may be measured by a radar, a laser, or an image sensor disposed on at least some of the front and rear portions of the vehicle 120.
  • the first location information is corrected using the second location information.
  • the step S130 of correcting the first position information referring to FIG. 3, the GPS coordinates A2 and B2 of the vehicle, the relative coordinates (-Scos ⁇ and Ssin ⁇ ) of the vehicle, and the absolute coordinates C1 and D1 of the landmarks.
  • the method includes obtaining the correction coordinates A3 and B3 of the vehicle 125 by applying the correction value (vector ⁇ v) to the GPS coordinates A4 and B4 of the vehicle 125.
  • the correction value (vector ⁇ v) has a vector component of ( ⁇ A, ⁇ B), that is, a vector component of (A1-A2, B1-B2).
  • a correction value (vector ⁇ v) Has a vector component of (C1-Scos ⁇ -A2, D1 + Ssin ⁇ -B2).
  • the correction coordinates C1-Scos ⁇ and D1 + sin ⁇ of the vehicle 120 that is, the correction coordinates A1 and B1 Acquire.
  • the correction value (vector ⁇ v) may also be applied to a case where the vehicle 120 located at the coordinate of the point P 1 is located at the coordinate of the point P 5 by moving with time. That is, GPS coordinates (A4, B4) of the vehicle 125, which is located at the coordinates P 5 points on the correction value (vector ⁇ v) the addition correction coordinates (A4 + C1-Scos ⁇ -A2 of the vehicle (125), B4 + D1 + Ssin ⁇ -B2), that is, correction coordinates A3 and B3.
  • the landmark is, for example, a road traffic light 212, but the technical idea of the present application is not limited thereto, and the landmark of the present application is a road lane (painting lane on a road) and a road surface that already knows absolute coordinates. It may include at least one of a group including a display (speed limit on the road, driving direction, stop line, etc.), road traffic lights, road signs, road guardrails and road structures. As the database of absolute coordinates for landmarks is constructed, the technical idea of the present disclosure may be more usefully utilized.
  • the landmark is the road lane 214
  • it is possible to know exactly how many lanes the lane in which the vehicle being driven or stopped is located may be useful for vehicle navigation. For example, if the lane that can turn left at the intersection is the first lane and the vehicle needs to turn left, identify the lane where the current vehicle is located, inform the current lane at a certain distance before reaching the intersection, and turn to the first lane for the left turn. You can also set navigation to guide.
  • the lane that can turn left at the intersection is a primary lane and a secondary lane, and the vehicle needs to go straight at the intersection, the lane is informed of the current lane at a predetermined distance before reaching the intersection, and the primary and secondary lanes are used to go straight. Navigation can also be set to lead to other lanes.
  • first GPS coordinates A2 and B2 of the vehicle 120 may be acquired.
  • the first GPS coordinates A2 and B2 of the vehicle 120 may have an error with the absolute coordinates A1 and B1 where the vehicle 120 is actually located for the above-described reasons.
  • a first relative coordinate of the vehicle 120 may be obtained based on the ground landmark 212 having the absolute coordinates C1 and D1 at the first time point.
  • the relative coordinates of the vehicle 120 based on the ground landmark 212 may be understood as (A1-C1, B1-D1), and the distance S between the landmark 212 and the vehicle 120 and It may be calculated from the absolute coordinates C1 and D1 of the landmark 212 using the azimuth ⁇ . That is, referring to FIG. 3, the first component (A1-C1) in the relative coordinates of the vehicle 120 based on the ground landmark 212 has a value of -Scos ⁇ , and the second component of the relative coordinates.
  • (B1-D1) may have a value of Ssin ⁇ .
  • the distance S and the bearing ⁇ between the landmark 212 and the vehicle 120 may be measured by a radar, a laser, or an image sensor disposed on at least some of the front and rear portions of the vehicle 120.
  • the correction value (vector ⁇ v) has a vector component of ( ⁇ A, ⁇ B), that is, a vector component of (A1-A2, B1-B2).
  • the correction value (vector ⁇ ). v) has a vector component of (C1-Scos ⁇ -A2, D1 + Ssin ⁇ -B2).
  • the correction coordinates A1 and B1 may be obtained. Steps S210, S220, S230, and S240 described so far are performed at the same first time point at which the vehicle 120 is located at the coordinate of point P 1 .
  • second GPS coordinates A4 and B4 of the vehicle 125 may be acquired at a second time point, which is a time point after the first time point.
  • the second GPS coordinates A4 and B4 of the vehicle 125 may have an error with the absolute coordinates A3 and B3 where the vehicle 125 is actually located for the above-described reasons.
  • Step S260 is performed. That is, the correction value (vector ⁇ v) may be applied to the case where the vehicle 120 located at the coordinate of P 1 is located at the coordinate of P 5 by moving with time.
  • the second time point is a time point after the first time point.
  • the first time point includes a time point at which the landmark 212 is recognized by a radar, a laser, or an image sensor provided in the vehicle 120.
  • the second time point may include a time point at which the landmark 212 is not recognized by the radar, the laser, or the image sensor provided in the vehicle 125. That is, in a situation in which the radar, laser, or image sensor provided in the vehicle 125 does not recognize the landmark 212 having the information of the absolute coordinates, the vehicle ( 125) absolute positioning can be corrected.
  • an error between the GPS coordinates of the vehicles 120 and 125 and the corrected coordinates of the vehicle may be greater than a predetermined threshold. That is, when the error between the GPS coordinates of the vehicles 120 and 125 and the correction coordinates of the vehicle is equal to or less than a predetermined threshold value, the coordinates of the vehicle may be set only by the GPS coordinates without calculating the correction coordinates by applying the correction value.
  • the second correction value applied to acquire the second correction coordinates A3 and B3 of the vehicle 125 may be an average of a plurality of correction values obtained before reaching the second time point. have. For example, assuming that the vehicle 125, which is located at the coordinate of the point P 3 at the second time point, passes through a plurality of landmarks and obtains respective correction values thereof, the vehicle 125 at the second time point is obtained.
  • the second correction value applied to obtain the second correction coordinates A3 and B3 of 125 may be an average of the plurality of correction values from a past time point.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

본 발명은 차량의 주변상황을 인식하기 위하여 양산 적용이 확대되고 있는 차량용 서라운드 센서로 취득한 랜드마크 정보값들을 사용하여 GPS 수신기로 수신한 차량의 절대측위의 오차를 보정할 수 있는 차량용 절대측위 보정 시스템 및 보정 방법을 위하여, 차량의 GPS좌표를 획득하는 GPS부, 지상의 랜드마크의 절대좌표를 저장하는 데이타베이스부, 상기 랜드마크와 상기 차량 간의 거리와 방위를 측정하는 서라운드 센서부, 상기 랜드마크와 상기 차량 간의 거리와 방위, 상기 차량의 GPS좌표 및 상기 랜드마크의 절대좌표를 이용하여 상기 차량의 보정좌표를 연산하는 제어연산부를 포함하는 차량용 절대측위 보정 시스템을 제공한다.

Description

차량용 절대측위 보정 시스템 및 방법
본 발명은 측위 보정 시스템 및 측위 보정 방법에 관한 것으로서, 더 상세하게는 차량용 절대측위 보정 시스템 및 차량용 절대측위 보정 방법에 관한 것이다.
GPS(Global Positioning System)는 범지구 위치결정 시스템이다. 위치결정 방법은 GPS 수신기가 위치하고 있는 지점과 위성 간의 거리를 측정하여 그 거리벡터를 교차시킴으로써 3차원 위치를 결정한다. 거리의 측정은 GPS 수신기가 시간을 얼마나 정확히 측정할 수 있는가에 따라 정밀도가 결정되는 것으로서 위성에서 측정점까지의 전파되는 신호를 받아 계산한다. 일반적으로 GPS로 위치결정을 할 수 있는 방법으로는 상대측위와 절대측위라는 두 개의 기본적인 운용 방식이 있다. 상대측위는 2대 이상의 GPS 수신기로 거의 동시에(혹은 수 분 이내에) 여러 위성의 반송파 신호의 위상을 측정하여 관측점 간의 상대 기선 벡터를 구하는 방법을 사용하며, 정밀도가 상대적으로 높지만, GPS 수신기가 최소 2대 이상이 필요한 단점을 가진다. 절대측위는 일점측위(point positioning)이라고도 하며, GPS 수신기 1대로 여러 위성의 반송파 신호의 코드를 추적하여 위성까지의 거리를 측정하는 방법을 사용하며, 코드신호가 이진법 체계이므로 측위계산이 간단하고 신속하다는 장점이 있으나, 정밀도가 상대적으로 낮은 단점을 가진다.
이러한 절대측위 방식에서 낮은 정밀도를 극복하기 위하여 측위 보정 기술이 적용되고 있으며, 대부분 GPS 수신기와 결합된 가속도 센서의 정보를 바탕으로 차량의 거동을 추측하여 보정하는 방법을 사용하고 있다. 그러나 이러한 절대측위 보정 방법은 고층 빌딩들이 조밀하게 배치된 도심지나 터널 같은 악의지역에서는 절대측위 오차가 커지거나 절대측위 결과를 얻을 수 없다는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 차량의 주변상황을 인식하기 위한 센서로 추출한 도로정보를 통합하여 기존의 GPS 정보만으로 계산하기 곤란한 차량의 절대측위 정보를 보정할 수 있는 시스템 및 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따른 차량용 절대측위 보정 시스템이 제공된다. 상기 차량용 절대측위 보정 시스템은 차량의 GPS좌표를 획득하는 GPS부, 지상의 랜드마크의 절대좌표를 저장하는 데이타베이스부, 상기 랜드마크와 상기 차량 간의 거리와 방위를 측정하는 서라운드 센서부, 상기 랜드마크와 상기 차량 간의 거리와 방위, 상기 차량의 GPS좌표 및 상기 랜드마크의 절대좌표를 이용하여 상기 차량의 보정좌표를 연산하는 제어연산부를 포함한다.
상기 차량용 절대측위 보정 시스템에서, 상기 GPS부, 상기 데이타베이스부, 상기 서라운드 센서부 및 상기 제어연산부는 상기 차량에 구비될 수 있다.
상기 차량용 절대측위 보정 시스템에서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함할 수 있다.
상기 차량용 절대측위 보정 시스템에서, 상기 랜드마크와 상기 차량 간의 거리와 방위는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 측정될 수 있다.
본 발명의 다른 관점에 따른 차량용 절대측위 보정 방법이 제공된다. 상기 차량용 절대측위 보정 방법은 차량의 GPS좌표를 포함하는 제 1 위치정보를 획득하는 단계, 절대좌표를 가진 지상의 랜드마크를 기준으로 하는 상기 차량의 상대좌표를 포함하는 제 2 위치정보를 획득하는 단계 및 상기 제 2 위치정보를 이용하여 상기 제 1 위치정보를 보정하는 단계를 포함한다.
상기 차량용 절대측위 보정 방법에서, 상기 제 1 위치정보를 보정하는 단계는 상기 차량의 GPS좌표, 상기 차량의 상대좌표, 상기 랜드마크의 절대좌표를 이용하여 연산한 보정치를 획득하는 단계 및 상기 차량의 GPS좌표에 상기 보정치를 적용함으로써, 상기 차량의 보정좌표를 획득하는 단계를 포함할 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함할 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 상대좌표는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 수득한 정보를 통하여 획득될 수 있다.
본 발명의 다른 관점에 따른 차량용 절대측위 보정 방법이 제공된다. 상기 차량용 절대측위 보정 방법은 제 1 시점에서 차량의 제 1 GPS좌표를 획득하는 단계, 상기 제 1 시점에서 절대좌표를 가진 지상의 랜드마크를 기준으로 상기 차량의 제 1 상대좌표를 획득하는 단계, 상기 차량의 제 1 GPS좌표, 상기 차량의 제 1 상대좌표, 상기 랜드마크의 절대좌표를 이용하여 연산한 보정치를 획득하는 단계, 상기 차량의 제 1 GPS좌표에 상기 보정치를 적용함으로써 상기 제 1 시점에서 상기 차량의 제 1 보정좌표를 획득하는 단계, 제 2 시점에서 상기 차량의 제 2 GPS좌표를 획득하는 단계 및 상기 차량의 제 2 GPS좌표에 상기 보정치를 적용함으로써, 상기 제 2 시점에서 상기 차량의 제 2 보정좌표를 획득하는 단계를 포함한다.
상기 차량용 절대측위 보정 방법에서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함할 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 제 1 상대좌표는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 수득한 정보를 통하여 획득될 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 제 1 시점은 상기 레이더, 레이저 또는 영상센서에 의하여 상기 랜드마크가 인식되는 시점을 포함하며, 상기 제 2 시점은 상기 레이더, 레이저 또는 영상센서에 의하여 상기 랜드마크가 인식되지 못하는 시점을 포함할 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 제 2 시점은 상기 제 1 시점 이후일 수 있다.
상기 차량용 절대측위 보정 방법에서, 상기 제 1 시점 또는 상기 제 2 시점에서 상기 차량의 GPS좌표와 상기 차량의 보정좌표의 오차는 소정의 임계값보다 더 클 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 차량의 주변상황을 인식하기 위하여 양산 적용이 확대되고 있는 차량용 서라운드 센서로 취득한 랜드마크 정보값들을 사용하여 GPS 수신기로 수신한 차량의 절대측위의 오차를 보정할 수 있는 차량용 절대측위 보정 시스템 및 보정 방법을 구현할 수 있다. 이에 의하여, 주행 중인 차선이 몇 차선에 위치하는지를 판단할 수 있으며, 차량의 주행방향 위치를 보정할 수도 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템을 도해하는 구성도이다.
도 2는 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템을 구비하는 차량을 도해하는 사시도이다.
도 3은 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템 및 보정 방법을 도해하는 개념도이다.
도 4는 본 발명의 일 실시예에 따른 차량용 절대측위 보정 방법을 도해하는 순서도이다.
도 5는 본 발명의 다른 실시예에 따른 차량용 절대측위 보정 방법을 도해하는 순서도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템을 도해하는 구성도이며, 도 2는 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템을 구비하는 차량을 도해하는 사시도이며, 도 3은 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템 및 보정 방법을 도해하는 개념도이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따른 차량용 절대측위 보정 시스템은 GPS부(130), 데이타베이스부(140), 서라운드 센서부(150), 제어연산부(160) 및 위치표시 디스플레이부(170)를 포함하며, 이러한 구성요소들은 모두 차량(120)에 구비될 수 있다. GPS부(130)는 차량(120)의 GPS좌표를 획득한다. 서라운드 센서부(150)는 지상의 랜드마크(212, 214)와 차량(120) 간의 거리와 방위를 측정한다. 서라운드 센서부(150)라 함은 차량(120)의 주변의 구조물 또는 설치물을 감지할 수 있는 센서부를 의미하며, 차량(120)의 전방부(예를 들어, 그릴, 범퍼, 룸미러) 및/또는 후방부(예를 들어, 트렁크 입구) 중 적어도 일부에 배치된 레이더(152), 레이저(154) 또는 영상센서(156, 158)를 포함할 수 있다. 레이더 및/또는 레이저는, 도 2의 예시적인 구성과 달리, 차량(120)의 후방부에도 배치될 수 있다.
랜드마크는 절대좌표를 알고 있는 구조물 또는 설치물로서, 예를 들어, 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함할 수 있다. 도 3에서는, 랜드마크의 예로서, 도로신호등(212)과 노면차선(214)을 도해하였다. 랜드마크(212, 214)의 절대좌표(C1,D1)는 데이타베이스부(140)에 저장되어 있다. 제어연산부(160)는 차량(120)의 GPS좌표(A2,B2) 및 랜드마크(212, 214)의 절대좌표(C1,D1)를 이용하여 차량(120)의 보정좌표(A1,B1)를 연산할 수 있다. 위치표시 디스플레이부(170)는 차량(120)에 탑승한 운전자 및 동승자가 차량(120)의 보정좌표를 시각적 및/또는 청각적으로 인식할 수 있도록 정보를 제공한다.
이하에서는, 이러한 차량용 절대측위 보정 시스템을 사용하여 차량용 절대측위 보정 방법을 설명하고자 한다.
범지구 위치결정 시스템인 GPS(Global Positioning System)는 미국 국방성이 개발하여 미국 운수성과 공동으로 운용 관리하고 있는 인공위성에 의한 전세계적인 전파측위 시스템으로서, 위성부분(space segment), 제어부분(control segment) 및 이용자부분(user segment)의 3부분으로 구성된다. 위성부분은 24기의 GPS위성군으로 이루어지며, GPS위성이 발신하고 있는 전파에는 L1 대와 L2 대의 두 종류가 있으며, 코드 데이터에는 C/A 코드와 P 코드의 두 종류가 있다. 이 중에서 P 코드는 군사용으로 일반에는 공개되지 않으며, 민간에 개방되어 있는 것은 L1 대의 전파를 타고 보내오는 C/A 코드와 이와는 별도로 보내오는 항법 메시지이다. 이용자부분은 GPS수신기로 구성되는데, 수신기의 처리는 복수의 GPS위성으로부터 오는 신호를 동시에 수신하여, 아날로그적인 수신신호를 디지털화하고, 이미 알고 있는 코드 패턴에 따라 소정의 위성별 데이타를 구분한다. 이후에 궤도계산이나 메시지 해독, 수신제어 등의 필요한 신호처리를 실시하여, 위치정보를 출력한다. 본원의 GPS부(130)는 이러한 GPS수신기를 포함한다.
그러나 민간에 무료로 공개된 GPS 측위 정도는 30m 내지 100m 의 오차를 가지고 있다. 또한, GPS 측위 방법은 터널이나 빌딩 아래와 같이 위성의 전파가 도달하기 어려운 지점에서는 오차가 더욱 커지는 문제점을 가지고 있다. 나아가, GPS 측위 방법은 기하학적 계산원리를 사용하므로, GPS수신기에서 본 위성의 배치에 따라 측위 상태에 오차(DOP, Dilution of Precision)가 발생할 수 있다. 이러한 이유로, 도 3에 도시된 것처럼, 차량(120)의 GPS좌표(P2 지점의 좌표)는 차량(120)이 실제로 위치하는 좌표(P1 지점의 좌표)와 오차를 가지게 된다. 또한, 차량(120)의 GPS좌표(P6 지점의 좌표)는 차량(120)이 실제로 위치하는 좌표(P5 지점의 좌표)와 오차를 가지게 된다. 나아가, 랜드마크(212)의 GPS좌표(P4 지점의 좌표)는 차량(120)이 실제로 위치하는 좌표(P3 지점의 좌표)와 오차를 가지게 된다.
이하에서는, 차량(120) 주변에 위치하며 절대좌표를 알고 있는 랜드마크(212, 214)를 이용함으로써 이러한 오차를 보정하는 방법을, 도 3 및 도 4를 참조하여, 순차적으로 설명하고자 한다.
본원에서 GPS좌표는 본원에 의한 절대측위 보정이 수행되기 이전의 좌표로서, GPS수신기에 의해 획득되는 오차를 수반하는 좌표를 포함한다. 나아가, 절대좌표는 지표상의 상대적으로 정확한 좌표를 포함하며, 본원에 의한 절대측위 보정이 수행된 이후의 좌표를 포함한다. 편의상, 도면과 이를 설명하는 상세한 설명에서는, 이러한 좌표를 2차원 좌표로 설명하였으나, 본원의 기술적 사상은 3차원 좌표에도 적용 가능함은 명백하다.
우선, 차량(120)의 GPS좌표(A2,B2)를 포함하는 제 1 위치정보를 획득하는 단계(S110)를 수행한다. 차량(120)의 GPS좌표(A2,B2)는 상술한 이유들에 의하여 실제로 차량(120)이 위치하는 절대좌표(A1,B1)와 오차를 가질 수 있다. 계속하여, 절대좌표(C1,D1)를 알고 있는 지상의 랜드마크(212)를 기준으로 하는 차량(120)의 상대좌표를 포함하는 제 2 위치정보를 획득하는 단계(S120)를 수행한다. 지상의 랜드마크(212)를 기준으로 하는 차량(120)의 상대좌표는 (A1-C1,B1-D1)으로 이해될 수 있으며, 랜드마크(212)와 차량(120) 간의 거리(S)와 방위(θ)를 활용하여 랜드마크(212)의 절대좌표(C1,D1)로부터 연산될 수 있다.
즉, 도 3을 참조하면, 지상의 랜드마크(212)를 기준으로 하는 차량(120)의 상대좌표에서 제1성분인 (A1-C1)은 -(Scosθ)의 값을 가지며, 상대좌표의 제2성분(B1-D1)은 (Ssinθ)의 값을 가질 수 있다. 이에 의할 경우, 차량(120)이 위치하는 P1 지점의 좌표에서 제1성분인 A1은 (C1 - Scosθ)로 이해될 수 있으며, P1 지점의 좌표에서 제2성분인 B1은 (D1 + Ssinθ)로 이해될 수 있다. 랜드마크(212)와 차량(120) 간의 거리(S)와 방위(θ)는 차량(120)의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 측정될 수 있다.
계속하여, 제 2 위치정보를 이용하여 제 1 위치정보를 보정하는 단계(S130)를 수행한다. 제 1 위치정보를 보정하는 단계(S130)는, 도 3을 참조하면, 차량의 GPS좌표(A2,B2), 차량의 상대좌표(-Scosθ,Ssinθ), 랜드마크의 절대좌표(C1,D1)를 이용하여 연산한 보정치(벡터 △v)를 획득하는 단계 및 차량(120)의 GPS좌표(A2,B2)에 상기 보정치(벡터 △v)를 적용함으로써, 차량(120)의 보정좌표(A1,B1)를 획득하는 단계를 포함한다. 나아가, 차량(125)의 GPS좌표(A4,B4)에 상기 보정치(벡터 △v)를 적용함으로써, 차량(125)의 보정좌표(A3,B3)를 획득하는 단계를 포함한다.
여기에서, 보정치(벡터 △v)는 (△A, △B)의 벡터성분, 즉, (A1-A2,B1-B2)의 벡터성분을 가진다. 차량(120)의 GPS좌표(A2,B2), 차량(120)의 상대좌표(-Scosθ,Ssinθ), 랜드마크(212)의 절대좌표(C1,D1)를 이용하는 경우, 보정치(벡터 △v)는 (C1-Scosθ-A2, D1+Ssinθ-B2)의 벡터성분을 가진다. 나아가, 차량(120)의 GPS좌표(A2,B2)에 상기 보정치(벡터 △v)를 더하여 차량(120)의 보정좌표(C1-Scosθ, D1+sinθ), 즉, 보정좌표(A1,B1)를 획득한다.
한편, 상기 보정치(벡터 △v)는 P1 지점의 좌표에 위치하는 차량(120)이 시간에 따라 이동함으로써 P5 지점의 좌표에 위치하는 경우에도 적용될 수 있다. 즉, P5 지점의 좌표에 위치하는 차량(125)의 GPS좌표(A4,B4)에 상기 보정치(벡터 △v)를 더하여 차량(125)의 보정좌표(A4+C1-Scosθ-A2, B4+D1+Ssinθ-B2), 즉, 보정좌표(A3,B3)를 획득한다.
상술한 설명에서 랜드마크는, 예시적으로, 도로신호등(212)이지만, 본원의 기술적 사상은 이에 한정되지 않으며, 본원의 랜드마크는 절대좌표를 이미 알고 있는 노면차선(도로 상의 도색차선), 노면표시(도로 상의 제한속도, 주행방향, 정지선 등), 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함할 수 있다. 랜드마크에 대한 절대좌표의 데이타베이스화가 구축될수록 본원의 기술적 사상이 더욱 유용하게 활용될 수 있다.
한편, 랜드마크가 노면차선(214)인 경우, 주행 또는 정차 중인 차량이 위치하는 차선이 몇 차선인지 정확하게 알 수 있어 차량 네비게이션에 유용할 수 있다. 예를 들어, 교차로에서 좌회전이 가능한 차선이 일차선이고 차량이 좌회전을 해야 하는 경우, 현재 차량이 위치하는 차선을 파악한 후에 교차로에 도달하기 전의 소정의 거리에서 현재 차선을 알려주고 좌회전을 위하여 일차선으로 유도하도록 네비게이션을 설정할 수도 있다. 또한 예를 들어, 교차로에서 좌회전이 가능한 차선이 일차선 및 이차선이고, 차량은 교차로에서 직진을 해야 하는 경우, 교차로에 도달하기 전의 소정의 거리에서 현재 차선을 알려주고 직진을 위하여 일차선 및 이차선 이외의 차선으로 유도하도록 네비게이션을 설정할 수도 있다.
이하에서는, 차량(120) 주변에 위치하며 절대좌표를 알고 있는 랜드마크(212, 214)를 이용함으로써 절대측위의 오차를 보정하는 방법을, 도 3 및 도 5를 참조하여, 다른 관점에서 순차적으로 설명하고자 한다.
우선, 제 1 시점에서 차량(120)의 제 1 GPS좌표(A2,B2)를 획득하는 단계(S210)를 수행한다. 차량(120)의 제 1 GPS좌표(A2,B2)는 상술한 이유들에 의하여 실제로 차량(120)이 위치하는 절대좌표(A1,B1)와 오차를 가질 수 있다.
계속하여, 제 1 시점에서 절대좌표(C1,D1)를 가진 지상의 랜드마크(212)를 기준으로 차량(120)의 제 1 상대좌표를 획득하는 단계(S220)를 수행한다. 지상의 랜드마크(212)를 기준으로 하는 차량(120)의 상대좌표는 (A1-C1,B1-D1)으로 이해될 수 있으며, 랜드마크(212)와 차량(120) 간의 거리(S)와 방위(θ)를 활용하여 랜드마크(212)의 절대좌표(C1,D1)로부터 연산될 수 있다. 즉, 도 3을 참조하면, 지상의 랜드마크(212)를 기준으로 하는 차량(120)의 상대좌표에서 제1성분인 (A1-C1)은 -Scosθ의 값을 가지며, 상대좌표의 제2성분(B1-D1)은 Ssinθ의 값을 가질 수 있다. 랜드마크(212)와 차량(120) 간의 거리(S)와 방위(θ)는 차량(120)의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 측정될 수 있다.
계속하여, 차량(120)의 제 1 GPS좌표(A2,B2), 차량(120)의 제 1 상대좌표(-Scosθ,Ssinθ), 랜드마크(212)의 절대좌표(C1,D1)를 이용하여 연산한 보정치를 획득하는 단계(S230)를 수행한다. 여기에서, 보정치(벡터 △v)는 (△A, △B)의 벡터성분, 즉, (A1-A2,B1-B2)의 벡터성분을 가진다. 차량(120)의 제 1 GPS좌표(A2,B2), 차량(120)의 상대좌표(-Scosθ,Ssinθ), 랜드마크(212)의 절대좌표(C1,D1)를 이용하는 경우, 보정치(벡터 △v)는 (C1-Scosθ-A2, D1+Ssinθ-B2)의 벡터성분을 가진다.
나아가, 차량(120)의 제 1 GPS좌표(A2,B2)에 상기 보정치(벡터 △v)를 더하여 제 1 시점에서 차량(120)의 보정좌표(C1-Scosθ, D1+sinθ), 즉, 제 1 보정좌표(A1,B1)를 획득하는 단계(S240)를 수행한다. 지금까지 설명한 단계들(S210, S220, S230, S240)은 차량(120)이 P1 지점의 좌표에 위치하는 동일한 제 1 시점에서 수행된다.
계속하여, 차량(125)이 P5 지점의 좌표에 위치하는 제 2 시점에서 차량(125)의 절대측위 보정이 수행된다. 구체적으로 살펴보면, 제 1 시점 이후의 시점인 제 2 시점에서, 차량(125)의 제 2 GPS좌표(A4,B4)를 획득하는 단계(S250)가 수행된다. 차량(125)의 제 2 GPS좌표(A4,B4)는 상술한 이유들에 의하여 실제로 차량(125)이 위치하는 절대좌표(A3,B3)와 오차를 가질 수 있다.
계속하여, 제 2 시점에서 차량(125)의 제 2 GPS좌표(A4,B4)에 상기 보정치(벡터 △v)를 적용함으로써, 제 2 시점에서 차량(125)의 제 2 보정좌표(A3,B3)를 획득하는 단계(S260)가 수행된다. 즉, 상기 보정치(벡터 △v)는 P1 지점의 좌표에 위치하는 차량(120)이 시간에 따라 이동함으로써 P5 지점의 좌표에 위치하는 경우에도 적용될 수 있다. 즉, P5 지점의 좌표에 위치하는 차량(125)의 제 2 GPS좌표(A4,B4)에 상기 보정치(벡터 △v)를 더하여 차량(125)의 제 2 보정좌표(A4+C1-Scosθ-A2, B4+D1+Ssinθ-B2), 즉, 보정좌표(A3,B3)를 획득한다.
상기 제 2 시점은 상기 제 1 시점의 이후의 시점으로서, 예를 들어, 상기 제 1 시점은 차량(120)에 구비된 레이더, 레이저 또는 영상센서에 의하여 랜드마크(212)가 인식되는 시점을 포함할 수 있으며, 상기 제 2 시점은 차량(125)에 구비된 레이더, 레이저 또는 영상센서에 의하여 랜드마크(212)가 인식되지 못하는 시점을 포함할 수 있다. 즉, 절대좌표의 정보를 가지는 랜드마크(212)를 차량(125)에 구비된 레이더, 레이저 또는 영상센서가 인식하지 못하는 상황에서는, 이전에 연산된 상기 보정치(벡터 △v)를 활용하여 차량(125)의 절대측위를 보정할 수 있다.
한편, 상기 제 1 시점 및/또는 상기 제 2 시점에서는 차량(120, 125)의 GPS좌표와 차량의 보정좌표의 오차가 소정의 임계값보다 더 클 수 있다. 즉, 차량(120, 125)의 GPS좌표와 차량의 보정좌표의 오차가 소정의 임계값 이하인 경우에는, 보정치를 적용하여 보정좌표를 연산하지 않고 GPS좌표로만 차량의 좌표를 설정할 수도 있다.
한편, 변형된 실시예에서는, 차량(125)의 제 2 보정좌표(A3,B3)를 획득하기 위하여 적용되는 제 2 보정치는 상기 제 2 시점에 도달하기 이전에 획득한 복수개의 보정치의 평균일 수도 있다. 예를 들어, 상기 제 2 시점에 P3 지점의 좌표에 위치하는 차량(125)이 도달하기 이전에 복수개의 랜드마크들을 거쳐 오면서 이에 대한 각각의 보정치들을 획득하였다고 가정하면, 상기 제 2 시점에서 차량(125)의 제 2 보정좌표(A3,B3)를 획득하기 위하여 적용되는 제 2 보정치는 과거 시점의 상기 복수개의 보정치들의 평균일 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
(부호의 설명)
120, 125 : 차량
130 : GPS부
140 : 데이타베이스부
150 : 서라운드 센서부
160 : 제어연산부
170 : 위치표시 디스플레이부

Claims (14)

  1. 차량의 GPS좌표를 획득하는, GPS부;
    지상의 랜드마크의 절대좌표를 저장하는, 데이타베이스부;
    상기 랜드마크와 상기 차량 간의 거리와 방위를 측정하는, 서라운드 센서부;
    상기 랜드마크와 상기 차량 간의 거리와 방위, 상기 차량의 GPS좌표 및 상기 랜드마크의 절대좌표를 이용하여 상기 차량의 보정좌표를 연산하는, 제어연산부;
    를 포함하는, 차량용 절대측위 보정 시스템.
  2. 제 1 항에 있어서, 상기 GPS부, 상기 데이타베이스부, 상기 서라운드 센서부 및 상기 제어연산부는 상기 차량에 구비된, 차량용 절대측위 보정 시스템.
  3. 제 1 항에 있어서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함하는, 차량용 절대측위 보정 시스템.
  4. 제 1 항에 있어서, 상기 랜드마크와 상기 차량 간의 거리와 방위는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 측정된, 차량용 절대측위 보정 시스템.
  5. 차량의 GPS좌표를 포함하는 제 1 위치정보를 획득하는 단계;
    절대좌표를 가진 지상의 랜드마크를 기준으로 하는 상기 차량의 상대좌표를 포함하는 제 2 위치정보를 획득하는 단계; 및
    상기 제 2 위치정보를 이용하여 상기 제 1 위치정보를 보정하는 단계;
    를 포함하는, 차량용 절대측위 보정 방법.
  6. 제 5 항에 있어서,
    상기 제 1 위치정보를 보정하는 단계는
    상기 차량의 GPS좌표, 상기 차량의 상대좌표, 상기 랜드마크의 절대좌표를 이용하여 연산한 보정치를 획득하는 단계; 및
    상기 차량의 GPS좌표에 상기 보정치를 적용함으로써, 상기 차량의 보정좌표를 획득하는 단계;
    를 포함하는, 차량용 절대측위 보정 방법.
  7. 제 5 항에 있어서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함하는, 차량용 절대측위 보정 방법.
  8. 제 5 항에 있어서, 상기 상대좌표는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 수득한 정보를 통하여 획득된, 차량용 절대측위 보정 방법.
  9. 제 1 시점에서 차량의 제 1 GPS좌표를 획득하는 단계;
    상기 제 1 시점에서 절대좌표를 가진 지상의 랜드마크를 기준으로 상기 차량의 제 1 상대좌표를 획득하는 단계;
    상기 차량의 제 1 GPS좌표, 상기 차량의 제 1 상대좌표, 상기 랜드마크의 절대좌표를 이용하여 연산한 보정치를 획득하는 단계;
    상기 차량의 제 1 GPS좌표에 상기 보정치를 적용함으로써, 상기 제 1 시점에서 상기 차량의 제 1 보정좌표를 획득하는 단계;
    제 2 시점에서 상기 차량의 제 2 GPS좌표를 획득하는 단계; 및
    상기 차량의 제 2 GPS좌표에 상기 보정치를 적용함으로써, 상기 제 2 시점에서 상기 차량의 제 2 보정좌표를 획득하는 단계;
    를 포함하는, 차량용 절대측위 보정 방법.
  10. 제 9 항에 있어서, 상기 랜드마크는 노면차선, 노면표시, 도로신호등, 도로표지판, 도로가드레일 및 도로구조물을 포함하는 군에서 적어도 어느 하나를 포함하는, 차량용 절대측위 보정 방법.
  11. 제 9 항에 있어서, 상기 제 1 상대좌표는 상기 차량의 전방부 및 후방부 중 적어도 일부에 배치된 레이더, 레이저 또는 영상센서에 의하여 수득한 정보를 통하여 획득된, 차량용 절대측위 보정 방법.
  12. 제 9 항에 있어서, 상기 제 1 시점은 상기 레이더, 레이저 또는 영상센서에 의하여 상기 랜드마크가 인식되는 시점을 포함하며, 상기 제 2 시점은 상기 레이더, 레이저 또는 영상센서에 의하여 상기 랜드마크가 인식되지 못하는 시점을 포함하는, 차량용 절대측위 보정 방법.
  13. 제 9 항에 있어서, 상기 제 2 시점은 상기 제 1 시점 이후인, 차량용 절대측위 보정 방법.
  14. 제 9 항에 있어서, 상기 제 1 시점 또는 상기 제 2 시점에서 상기 차량의 GPS좌표와 상기 차량의 보정좌표의 오차는 소정의 임계값보다 더 큰, 차량용 절대측위 보정 방법.
PCT/KR2013/006967 2013-08-01 2013-08-01 차량용 절대측위 보정 시스템 및 방법 WO2015016406A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/006967 WO2015016406A1 (ko) 2013-08-01 2013-08-01 차량용 절대측위 보정 시스템 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/006967 WO2015016406A1 (ko) 2013-08-01 2013-08-01 차량용 절대측위 보정 시스템 및 방법

Publications (1)

Publication Number Publication Date
WO2015016406A1 true WO2015016406A1 (ko) 2015-02-05

Family

ID=52431921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006967 WO2015016406A1 (ko) 2013-08-01 2013-08-01 차량용 절대측위 보정 시스템 및 방법

Country Status (1)

Country Link
WO (1) WO2015016406A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029438A (zh) * 2017-06-12 2018-12-18 广州英卓电子科技有限公司 一种在有限区域内的车辆定位方法
CN109313646A (zh) * 2016-06-14 2019-02-05 罗伯特·博世有限公司 用于创建经优化的定位地图的方法和设备和用于创建用于车辆的定位地图的方法
CN113795769A (zh) * 2020-03-27 2021-12-14 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100253605B1 (ko) * 1992-04-09 2000-04-15 에프. 제이. 스미트 차량 위치 결정 장치
KR20070020652A (ko) * 2005-08-16 2007-02-22 현대자동차주식회사 절대좌표를 이용한 차량 위치 정보 제공 시스템 및 그 방법
KR20100031277A (ko) * 2008-09-12 2010-03-22 삼성전자주식회사 전방 영상을 이용한 위치 인식 장치 및 방법
KR20100059911A (ko) * 2007-08-29 2010-06-04 콘티넨탈 테베스 아게 운트 코. 오하게 특성 포인트에 의한 차량 위치의 보정
KR20130067851A (ko) * 2011-12-14 2013-06-25 한국전자통신연구원 차량 위치 인식 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100253605B1 (ko) * 1992-04-09 2000-04-15 에프. 제이. 스미트 차량 위치 결정 장치
KR20070020652A (ko) * 2005-08-16 2007-02-22 현대자동차주식회사 절대좌표를 이용한 차량 위치 정보 제공 시스템 및 그 방법
KR20100059911A (ko) * 2007-08-29 2010-06-04 콘티넨탈 테베스 아게 운트 코. 오하게 특성 포인트에 의한 차량 위치의 보정
KR20100031277A (ko) * 2008-09-12 2010-03-22 삼성전자주식회사 전방 영상을 이용한 위치 인식 장치 및 방법
KR20130067851A (ko) * 2011-12-14 2013-06-25 한국전자통신연구원 차량 위치 인식 장치 및 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109313646A (zh) * 2016-06-14 2019-02-05 罗伯特·博世有限公司 用于创建经优化的定位地图的方法和设备和用于创建用于车辆的定位地图的方法
CN109313646B (zh) * 2016-06-14 2023-10-27 罗伯特·博世有限公司 用于创建经优化的定位地图的方法和设备以及机器可读的存储介质
CN109029438A (zh) * 2017-06-12 2018-12-18 广州英卓电子科技有限公司 一种在有限区域内的车辆定位方法
CN113795769A (zh) * 2020-03-27 2021-12-14 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆
CN113795769B (zh) * 2020-03-27 2023-08-04 深圳市速腾聚创科技有限公司 车辆定位方法、装置和车辆

Similar Documents

Publication Publication Date Title
US10788830B2 (en) Systems and methods for determining a vehicle position
EP2950292B1 (en) Driving support device, driving support method, and recording medium storing driving support program
CN109949439B (zh) 行车实景信息标注方法、装置、电子设备和介质
US8892331B2 (en) Drive assist system and wireless communication device for vehicle
US20090237293A1 (en) Recognition system for vehicle
CN105277190A (zh) 用于车辆自定位的装置和方法
KR101487471B1 (ko) 차량용 절대측위 보정 시스템 및 방법
KR20180056675A (ko) 디지털 맵을 생성하기 위한 방법 및 시스템
US10453219B2 (en) Image processing apparatus and image processing method
CN108291814A (zh) 用于在环境中点精确地定位机动车的方法、设备、地图管理装置和系统
CN111123334A (zh) 一种极限工况下多车协同定位平台及定位方法
CN112415502A (zh) 雷达装置
JP6671570B1 (ja) 位置推定装置および位置推定方法
JP2018077162A (ja) 車両位置検出装置、車両位置検出方法及び車両位置検出用コンピュータプログラム
CN113743171A (zh) 目标检测方法及装置
JP2023075184A (ja) 出力装置、制御方法、プログラム及び記憶媒体
WO2015016406A1 (ko) 차량용 절대측위 보정 시스템 및 방법
JP2007241468A (ja) 車線変更検出装置
CN111674388A (zh) 用于车辆弯道行驶的信息处理方法和装置
US20180364046A1 (en) Apparatus and method for determining a vehicle position in a fixed-traffic-node coordinate system
CN110843772B (zh) 潜在碰撞的相对方向判断方法、装置、设备及存储介质
KR101764839B1 (ko) 차선 인식 시스템 및 방법
US20200110183A1 (en) Method of determining location of vehicle, apparatus for determining location, and system for controlling driving
CN115046562B (zh) 一种低成本高精度自动驾驶汽车定位方法
EP3754372A1 (en) Object identification device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890505

Country of ref document: EP

Kind code of ref document: A1