WO2015016103A1 - Adsorbent material and method for producing same - Google Patents

Adsorbent material and method for producing same Download PDF

Info

Publication number
WO2015016103A1
WO2015016103A1 PCT/JP2014/069362 JP2014069362W WO2015016103A1 WO 2015016103 A1 WO2015016103 A1 WO 2015016103A1 JP 2014069362 W JP2014069362 W JP 2014069362W WO 2015016103 A1 WO2015016103 A1 WO 2015016103A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
group
component
polymer component
particles
Prior art date
Application number
PCT/JP2014/069362
Other languages
French (fr)
Japanese (ja)
Inventor
天野雄介
森川圭介
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2015016103A1 publication Critical patent/WO2015016103A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers

Definitions

  • the present invention relates to an adsorbent capable of efficiently adsorbing an object to be adsorbed such as metal ions and a method for producing the same.
  • affinity with water can be improved and a metal can be adsorbed effectively by using a polymer having a highly polar structure as a base material.
  • Patent Document 1 discloses a noble metal ion scavenger that introduces a chelating functional group in a polymer having a crosslink between chitosan molecules.
  • this scavenger since the molecular skeleton has a cross-linked structure, it is not dissolved in an acidic solution suitable for adsorption of noble metal ions, and a functional group having a chelating ability is bonded.
  • Patent Document 2 discloses a chelate ion-adsorbing membrane produced by introducing a chelate-forming group into a graft copolymer membrane obtained by graft copolymerizing glycidyl methacrylate and a crosslinking agent on a porous membrane. ing.
  • Such chelate-type ion-adsorbing films are used for removing metal ions and are described as having excellent performance in elution resistance, chemical durability, and throughput.
  • Patent Document 3 discloses a cation adsorbent in which ion exchange groups are introduced by graft polymerization of styrene sulfonate in one step on a sheet-like, film-like, or fiber-like organic polymer substrate. Has been. This document also describes that a graft-crosslinked structure can be obtained by coexisting a polyfunctional monomer during graft polymerization.
  • Patent Document 4 discloses a crosslinked copolymer particle which is based on a copolymer of glycidyl methacrylate and a crosslinking agent and swells significantly in water. This document describes that the crosslinked copolymer particles are useful for separating high molecular substances such as proteins.
  • Patent Documents 1, 2, and 4 have remarkable resin swelling when it contains water because of its high hydrophilicity.
  • Patent Document 3 since the styrene skeleton is present in the graft chain, the matrix is hydrophobic, and once dried, the original adsorption performance is not exhibited.
  • a particle shape having a high bulk density is preferable.
  • the change in the bulk density due to swelling is remarkable, and the adsorption capacity per unit volume is increased.
  • a high degree of swelling control is required to keep it high.
  • a highly hydrophilic adsorbent has a large volume fluctuation due to an external factor such as an exposed temperature, there is a concern that the resin swells in a use environment and a problem such as column breakage occurs.
  • the present invention has been made to solve the above problems, and provides an adsorbent having a hydrophilic skeleton and having a controlled swelling property derived from a crosslinked structure, and such an adsorbent. It aims at providing the manufacturing method of.
  • the inventors of the present invention have intensively studied to achieve the above object, and as a result, (i) in the prior art, when efficiently recovering an object to be adsorbed such as metal ions, attention is paid to the recovery efficiency as a single adsorbent.
  • research is focused on improving hydrophilicity to increase the adsorption efficiency and increasing the amount of adsorbed functional groups introduced.
  • the adsorbent when actually using the adsorbent, the adsorbent itself swells. It has been noticed that, in conjunction with the increase in the property, the packing efficiency of the adsorbent itself when packed in a closed space such as a column is lowered.
  • the base material is an ethylene-vinyl alcohol copolymer that is a hydrophilic polymer, and a hydrophilic (meth) acrylic acid ester skeleton is formed on the base material.
  • introducing a polymer component having an adsorptive functional group as a structural unit as a graft chain, and further crosslinking the polymer component makes it possible to suppress the swelling while maintaining the adsorptivity, and (iv) increase the packing efficiency
  • the final form of the polymer is crosslinked so that the adsorbent can be used even when a heating solvent is applied.
  • the first embodiment of the present invention is a polymer having an ethylene-vinyl alcohol copolymer as a base material, a polymer having an adsorption functional group having a (meth) acrylate skeleton as a structural unit as a graft chain on the base material.
  • the cross-linking component may have, for example, any one or more functional groups selected from the group consisting of amino groups, isocyanate groups, epoxy groups, carbodiimide groups, and azetidinium groups.
  • the adsorbing functional group is a glucamine group, a diol group, a polyol group, a group composed of a polyol and a nitrogen atom, an iminodiacetic acid group, an amino group, an ammonium group, an amidoxime group, a dithiocarbamic acid group, a thiourea group, It may be any one or more functional groups selected from the group consisting of an isothiourea group, a phosphoric acid group, and a phosphonic acid group.
  • the adsorbent may be a porous body.
  • the average value of the long diameters of the pores formed on the surface of the porous body may be in the range of 0.01 ⁇ m to 20 ⁇ m.
  • the adsorbent may be in the form of particles, for example, in which case the particle diameter range of the adsorbent may be about 10 to 2000 ⁇ m.
  • a second embodiment of the present invention is a method for producing the adsorbent, Preparing an ethylene-vinyl alcohol copolymer as a base component;
  • a polymer component introduction step of introducing a polymer component P 0 having a reactive (meth) acrylate skeleton as a structural unit into the base material component as a graft chain;
  • An adsorption functional group introduction step of introducing an adsorption functional group to the polymer component P 0 , having a (meth) acrylate skeleton as a structural unit, and obtaining a polymer component P 1 having an adsorption functional group;
  • a crosslinking step of crosslinking the polymer component P 0 or P 1 ; Is a method for producing an adsorbent comprising at least
  • the polymeric component P 0 may be provided with a graft chain introduction step is introduced as a graft chain to the substrate component.
  • ionizing radiation may act on the substrate component to introduce a graft chain.
  • the graft ratio of the graft chain introduced may be, for example, 30 to 900% by mass from the viewpoint of improving the adsorptivity to the adsorbed material.
  • adsorptive functional group introduction step adsorptive functional group concentration in the complex of the polymeric component P 1 and the substrate component is preferably in the range from 1.5 mmol / g or more.
  • the swelling property of the resin is controlled by the crosslinking treatment while using a highly hydrophilic skeleton as a base material, the swelling property is low while maintaining high adsorption performance, and the metal ions and the like are efficiently covered.
  • the adsorbate can be recovered.
  • the manufacturing method of the adsorbent of this invention the adsorbent which has the above outstanding performances can be manufactured efficiently.
  • a polymer component P having an ethylene-vinyl alcohol copolymer as a base material, a (meth) acrylate skeleton as a structural unit as a graft unit on the base material, and an adsorptive functional group. 1 is an adsorbent in which 1 is introduced and the polymer component P 1 is crosslinked.
  • a second embodiment of the present invention is a method for producing the adsorbent, Preparing an ethylene-vinyl alcohol copolymer as a base component; A polymer component introduction step of introducing a polymer component P 0 having a reactive (meth) acrylate skeleton as a structural unit into the base material component as a graft chain; The introducing adsorptive functional group on the polymer component P 0, and (meth) which has an acrylic acid ester skeleton as a structural unit, the functional group introduced to obtain a polymer component P 1 having an adsorbing functional group, A crosslinking step of crosslinking the polymer component P 0 or P 1 ; At least.
  • the adsorbent of the present invention contains an ethylene-vinyl alcohol copolymer as a base component.
  • An ethylene-vinyl alcohol copolymer is suitable as a base material for an adsorbent because it has high hydrophilicity, excellent moldability, and excellent acid resistance.
  • the ethylene content of the ethylene-vinyl alcohol copolymer may be about 10 to 60 mol%, preferably about 20 to 50 mol%. If the ethylene content is too low, the water resistance of the resulting graft copolymer may be reduced. On the other hand, when there is too much ethylene content, manufacture is difficult and acquisition is difficult.
  • the saponification degree of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 99 mol% or more.
  • the degree of saponification is too low, moldability may be deteriorated or the water resistance of the obtained graft copolymer may be lowered.
  • melt flow rate (MFR) (210 ° C., load 2160 g) of the ethylene-vinyl alcohol copolymer is not particularly limited, but is preferably 0.1 g / 10 min or more, more preferably 0.5 g / 10 min or more. preferable. If the melt flow rate is too small, water resistance and strength may be reduced. In addition, the upper limit of a melt flow rate should just be the range normally used, for example, may be 25 g / 10min or less.
  • the ethylene-vinyl alcohol copolymer of the present invention may contain other unsaturated monomer units as long as the effects of the present invention are not impaired.
  • the content of the unsaturated monomer unit is preferably 10 mol% or less, more preferably 5% mol or less.
  • Such ethylene-vinyl alcohol copolymers can be used alone or in combination of two or more.
  • the surface shape of the base material component is not particularly limited as long as graft polymerization is possible. From the viewpoint of improving the reactivity during graft polymerization, it is preferably a porous body that has been previously made porous.
  • the porous body only needs to have a plurality of holes formed on at least the surface thereof, and does not need to have holes formed therein.
  • the porous body has a structure including at least 10, preferably 100 or more, more preferably 1,000 or more pores having a major axis of 0.01 ⁇ m to 20 ⁇ m per 1 cm 2 of area. May be.
  • the porous base material component may physically form pores with respect to the base material component, or may be prepared by melting and mixing with a pore forming agent such as a foaming agent and the base material, or a solvent.
  • the polymer may be extracted by mixing by melt kneading or the like, and then the solvent extractable polymer may be extracted.
  • the pores formed on the surface of the porous body may have an average length of about 0.01 ⁇ m to 20 ⁇ m, preferably about 0.05 ⁇ m to 10 ⁇ m, more preferably about 0.1 ⁇ m to 5 ⁇ m. May be.
  • the average value of the major axis of these pores is a value measured by the method described in the examples described later.
  • a porous base material component made porous using a solvent-soluble polymer component is preferable in that the pore size can be easily controlled.
  • the substrate component and the solvent-soluble polymer component are mixed by melt-kneading, etc. It is preferably formed by a step of obtaining a composite obtained by cooling and solidifying a melt and a step of extracting a solvent-soluble polymer component from the composite with a solvent.
  • cooling and solidifying a melt means cooling and solidifying the melt without using a solidification bath or the like.
  • the solvent-soluble polymer used in the present invention is not particularly limited as long as it can be melt-mixed with the ethylene-vinyl alcohol copolymer, and is an organic solvent-soluble polymer (for example, polystyrene) or an alkali-soluble polymer (for example, polyester). Or the like, and is preferably a water-soluble polymer.
  • the water-soluble polymer is not particularly limited as long as it can be melt-mixed with the ethylene-vinyl alcohol copolymer, and generally known water-soluble polymers can be used.
  • water-soluble polymer examples include starch; gelatin; cellulose derivatives; water-soluble amine-based polymers such as polyvinylamine and polyallylamine; polyacrylic acid; polyacrylamide such as polyisopropylacrylamide; polyvinylpyrrolidone; Among these, polyvinyl alcohol is particularly preferably used because it is excellent in melt kneading with an ethylene-vinyl alcohol copolymer and easily controls the voids.
  • the ratio (mass ratio) between the base material component and the solvent-soluble polymer component can be appropriately determined according to the required degree of porosity.
  • the base material component: solvent-soluble polymer component is 100 : About 0 to 20:80, and preferably about 100: 0 to 30:70.
  • polyvinyl alcohol used as a water-soluble polymer can have structural units other than vinyl alcohol units and structural units derived from vinyl ester monomers as long as the effects of the present invention are obtained.
  • the structural unit includes, for example, ⁇ -olefins such as ethylene, propylene, n-butene, isobutylene and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, N-propyl acrylate, acrylic acid i Unsaturated monomers having an acrylate group such as -propyl, N-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid And salts thereof; methyl methacrylate, ethyl methacrylate, N-propyl methacrylate, i-propyl
  • Unsaturated monomer having a methacrylic acid ester group acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidopropyldimethylamine and its salt (For example, quaternary salt); methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and its salt, methacrylamidepropyldimethylamine and its salt (for example, quaternary salt); methyl vinyl ether, ethyl Vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether Vinyl ethers such as ether, stearyl vinyl ether and 2,3-diacetoxy-1-
  • the viscosity average polymerization degree (measured in accordance with JIS K6726) of the polyvinyl alcohol used in the present invention is not particularly limited, but is preferably 100 to 10,000, more preferably 200 to 7,000, still more preferably. Is 300 to 5,000. If the viscosity average degree of polymerization deviates from the above range, the surface area of the resulting porous body may be reduced.
  • the saponification degree of the polyvinyl alcohol used in the present invention is not particularly limited, but is preferably 50 mol% or more, more preferably 60 to 98 mol%, and particularly preferably 70 to 95 mol%. If the degree of saponification is too low, the water solubility is lowered and the extractability after molding becomes worse. Polyvinyl alcohol having a too high degree of saponification is difficult to melt and mix.
  • the porous ethylene-vinyl alcohol copolymer used in the present invention is, for example, mixed by melt-kneading an ethylene-vinyl alcohol copolymer and a solvent-soluble polymer (preferably a water-soluble polymer). Then, after obtaining a composite (compound) in which the melt is cooled and solidified, a solvent-soluble polymer (preferably a water-soluble polymer) is extracted from the composite.
  • the method of melt kneading is not particularly limited, and a known kneader such as a single screw extruder, a twin screw extruder, a Brabender, or a kneader can be used. In order to obtain a target shape, pulverization or the like may be performed at each stage as necessary.
  • the solvent used for the extraction is not particularly limited, and water, various organic solvents, water and organic solvents A mixture or the like can be used, but when a water-soluble polymer is used, it is preferable to use water, particularly hot water, as the solvent.
  • the temperature of hot water is preferably 40 ° C to 120 ° C, more preferably 50 ° C to 100 ° C.
  • the base material component Prior to the functional group-introducing step, the base material component, by performing a graft chain formation step of introducing a polymer component P 0 as a graft chain, it is possible to obtain a graft copolymer.
  • the graft chain can be obtained by utilizing radical polymerization using a polymerization initiator. And a method of generating a radical with respect to a base material component using ionizing radiation and introducing a graft chain. Among these, from the viewpoint of high graft chain introduction efficiency, a method of introducing the polymer component P 0 as a graft chain using ionizing radiation is preferably used.
  • the polymer component P 0 is a radical addition polymerization of a reactive (meth) acrylate skeleton (hereinafter sometimes referred to as a reactive (meth) acrylate skeleton) monomer from a radical generated in the base component. Can be obtained.
  • a reactive (meth) acrylate skeleton hereinafter sometimes referred to as a reactive (meth) acrylate skeleton
  • Examples of the reactive (meth) acrylic acid ester skeleton include a skeleton in which a functional group (that is, a functional group having reactivity with an adsorbing functional group) is introduced into the alkoxy group in the (meth) acrylic acid ester.
  • Examples of such a skeleton include glycidyl (meth) acrylate, glyceryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, chloroethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate.
  • These reactive (meth) acrylic acid ester skeletons may be used alone or in combination of two or more.
  • the polymer component P 0 requires other vinyl polymerizable monomers (for example, (meth) acrylate monomers in which no reactive group is introduced). It may be included accordingly. Further, as described later, when a cross-linked structure is introduced in the formation process of the polymer component P 0 , a structure derived from the cross-linked component may be included.
  • the polymer component P 0 is preferably composed of a (meth) acrylic acid ester skeleton having a highly reactive functional group at its terminal.
  • the reactive functional group present in the skeleton is described later.
  • the adsorbing functional group can be easily introduced.
  • Examples of the ionizing radiation include ⁇ rays, ⁇ rays, ⁇ rays, accelerated electron rays, ultraviolet rays, and the like. Practically, accelerated electron rays or ⁇ rays are preferable.
  • the unsaturated monomer used here includes, in addition to the monomer forming the reactive (meth) acrylate skeleton described above, other vinyl polymerizable monomers ((meth) acrylate esters as necessary). As such) and multifunctional monomers.
  • Polyfunctional monomers may be used in the case of introducing a crosslinked structure in the formation process of the polymer components P 0.
  • the polyfunctional monomer for example, divinylbenzene, methylenebisacrylamide, polyethylene glycol dimethacrylate and the like are preferably used.
  • the other vinyl polymerizable monomer may be contained in an amount of, for example, 50 mol% or less, preferably 30 mol% or less, and the polyfunctional monomer is, for example, It may be contained in an amount of 50 mol% or less, preferably 30 mol% or less.
  • the base component and the unsaturated monomer may be brought into contact with each other as a liquid phase graft polymerization method in which a liquid unsaturated monomer or an unsaturated monomer solution is brought into direct contact with the unsaturated monomer solution.
  • a liquid phase graft polymerization method in which a liquid unsaturated monomer or an unsaturated monomer solution is brought into direct contact with the unsaturated monomer solution.
  • vapor-phase graft polymerization methods in which the monomer vapor or vaporized contact is made, but it can be selected according to the purpose.
  • the reaction conditions such as the concentration of the unsaturated monomer to be contacted and the polymerization treatment time can be appropriately set by those skilled in the art depending on the required graft rate and the like. it can.
  • the dose of ionizing radiation is not particularly limited, but is preferably 5 to 230 kGy, more preferably 10 to 190 kGy, still more preferably 15 to 140 kGy, and most preferably 20 to 120 kGy. If the dose is too small, the graft rate may decrease and the desired adsorption capacity may not be obtained. When the dose is too high, there is a concern that the treatment process is costly and the resin deteriorates during irradiation.
  • the amount of the unsaturated monomer introduced by graft polymerization is not particularly limited, but is preferably, for example, 30 to 900 parts by mass (30 to 900%) with respect to 100 parts by mass of the base material. It is more preferably 60 to 800 parts by mass (60 to 800%), further preferably 120 to 700 parts by mass (120 to 700%), and 150 to 700 parts by mass (150 to 700%). Is more preferably 200 to 600 parts by mass (200 to 600%). If the graft rate is too small, the adsorption performance to the adsorbed material such as metal ions is often insufficient. When the graft rate is too high, synthesis is generally difficult. In addition, a graft rate shows the value measured by the method described in the Example mentioned later.
  • an adsorptive functional group is introduced into the polymer component P 0 having at least a reactive (meth) acrylate skeleton as a structural unit.
  • the polymer component P 1 can be obtained by introducing an adsorptive functional group to the polymer component P 0 obtained as described above.
  • a compound having an adsorptive functional group may be dissolved in a good solvent of this compound and brought into contact with the polymer component P 0 and reacted, and the reaction conditions such as the compound concentration and reaction time are the types of the polymer component P 0 .
  • the reaction conditions such as the compound concentration and reaction time are the types of the polymer component P 0 .
  • it can be appropriately selected by those skilled in the art.
  • the polymer component P 1 has a (meth) acrylic acid ester skeleton as a structural unit, and has an adsorptive functional group having an adsorptivity to an adsorbent, and thus has a highly polar structure, It becomes a polymer with excellent affinity.
  • the adsorptive functional group to be introduced into the polymer component P 1 can be selected according to the type of the target adsorbate, and is, for example, a chelate-forming group because of its high adsorptivity to metal ions.
  • Glucamine group, diol group, polyol group, group composed of polyol and nitrogen atom, iminodiacetic acid group, amino group, ammonium group, amidoxime group, dithiocarbamic acid group, thiourea group, isothiourea group, phosphoric acid group, phosphonic acid Groups and the like are preferred.
  • These adsorbing functional groups may be used alone or in combination of two or more.
  • the adsorbing functional group may be a functional group introduced by, for example, hydrolysis of a reactive functional group.
  • the complex of polymeric components P 1 and the substrate the above components, for example, there adsorptive functional group is 1.5 mmol / g or more It may be.
  • 2.0 mmol / g or more, more preferably 3.0 mmol / g or more may be introduced.
  • the upper limit can be set as appropriate, but may be about 30 mmol / g from the viewpoint of suppressing swelling.
  • the amount of the adsorbing functional group indicates a value measured by the method described in Examples described later.
  • the polymer component P 0 or P 1 can be crosslinked.
  • a monomer case as described above, to form in the step of forming the polymeric component P 0, with a reactive (meth) acrylic ester backbone of performing crosslinking treatment (I) relative to the polymer component P 0
  • a crosslinked structure can be introduced into the polymer component P 0 .
  • a polymer component P 1 e.g., A part of the adsorptive functional group
  • the cross-linking component may cross-link a part of the adsorptive functional group and cross-link groups other than the other adsorptive functional group in the graft copolymer.
  • the crosslinking treatment (I) in the technique in which a divinyl compound is present as a copolymerization component at the time of radical polymerization of the vinyl compound and the crosslinking treatment is performed simultaneously with the polymerization, the polymerization control is difficult depending on the polymerization method and the shape of the adsorbent to be obtained. Since there is a possibility of inducing problems such as gelation, the method of crosslinking the adsorption functional group of the polymer component P 1 by the crosslinking treatment (II) is more preferable.
  • the crosslinking treatment (II) will be described in detail.
  • the polymer component P 1 is preferably treated by being immersed and stirred in a treatment solution in which a crosslinking agent is dissolved or dispersed.
  • a crosslinking agent is dissolved or dispersed.
  • concentration, temperature, liquid volume and treatment time of the crosslinking treatment liquid having a crosslinking agent are determined based on the polymer component P 1 (and necessary Depending on the kind of the base material component to be added according to the above, it can be appropriately set.
  • the solvent is not particularly limited, and a solvent in which the crosslinking agent is easily dissolved or dispersed can be selected as appropriate. However, an aqueous solvent (particularly water) is preferably used because post-treatment is easy.
  • the reaction temperature can be appropriately set.
  • the temperature for performing the crosslinking treatment may be, for example, about 30 to 100 ° C., preferably about 35 to 90 ° C.
  • cross-linking agents can be used as long as they have cross-linkability to the adsorptive functional group.
  • cross-linking agents having any one or more of amino group, isocyanate group, epoxy group, carbodiimide group, and azetidinium group ( Or a crosslinking component).
  • azetidinium group, isocyanate group, amino group, epoxy group and the like are particularly preferably used because of excellent reactivity with general adsorption functional groups.
  • a crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
  • crosslinking agent having an amino group examples include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, isophoronediamine, 1,3-bisaminomethylcyclohexane.
  • Diamine compounds such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, dicyandiamide; diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, polyvinylamine, polyallylamine, polyethyleneimine, polyamidoamine
  • Polyamine compounds such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, 1,3 Bis (hydrazinocarboethyl) -5-isopropyl hydantoin, polyacrylic acid hydrazide, and hydrazine compounds such as hydrazine carbonate is.
  • TDI Tolylene diisocyanate
  • Hydrogenated TDI Trimethylolpropane-TDI adduct for example, “DesmodurL” manufactured by Bayer
  • triphenylmethane triisocyanate methylenebisdiphenyl isocyanate
  • MDI methylenebisdiphenyl isocyanate
  • hydrogenated MDI polymerized MDI; hexamethylene diisocyanate; xylylene diisocyanate; -Dicyclohexylmethane diisocyanate; isophorone diisocyanate and the like.
  • Isocyanates dispersed in water using an emulsifier can also be used.
  • crosslinking agent having an epoxy group examples include “Denacol” (EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, manufactured by Nagase ChemteX Corporation.
  • crosslinking agent having a carbodiimide group examples include “Carbodilite” (SV-02, V-02, V-02-L2, V-04, E-01, E-02) manufactured by Nisshinbo Chemical Co., Ltd.
  • crosslinking agent having an azetidinium group examples include polyamide / epichlorohydrin resin, polyamine / epichlorohydrin resin, and the like, for example, manufactured by Seiko PMC Co., Ltd. (WS4002, WS4020, WS4024, WS4030, WS4046, WS4010, CP8970). ) And the like.
  • the adsorbent of the present invention has an ethylene-vinyl alcohol copolymer as a base material, and a polymer component P 1 having a (meth) acrylate skeleton as a structural unit as a graft unit and having an adsorptive functional group is introduced into the base material. are, the polymer component P 1 is crosslinked by a crosslinking component.
  • the degree of swelling represented by the following formula (I) may be, for example, 50 to 200% from the viewpoint of controlling swelling under hot water while maintaining affinity with water.
  • Swelling degree ⁇ (mass after the adsorbent is shaken in hot water at 70 ° C. for 10 minutes to contain water) ⁇ (absolute dry mass of the adsorbed adsorbent) ⁇ / (absorption of the adsorbed adsorbent) (Dry mass) x 100 (%)
  • the degree of swelling is 150% or less, more preferably 130% or less.
  • the degree of swelling is preferably 60% or more, and more preferably 70% or more. In addition, this swelling degree shows the value measured by the method described in the Example mentioned later.
  • the reason for swelling the adsorbent with hot water of about 70 ° C. is as follows. That is, in the adsorption and recovery operation, it may be brought into contact with a high-temperature medium such as hot water, and the resin is most easily swollen during the operation. For this reason, it is important to control the swelling characteristics at high temperatures from the viewpoint of improving the adsorption and recovery efficiency.
  • the shape of the adsorbent of the present invention is not particularly limited, depending on the application location, from various shapes such as fibers and aggregates of woven and knitted fabrics and nonwoven fabrics, particles, sheets, hollow fibers, and films or processed products thereof. You can choose.
  • the particles are preferably in the form of particles from the viewpoint of improving the adsorptivity with an object to be adsorbed such as metal ions and being easily packed in a closed space such as a column.
  • the adsorbent may be spherical or non-spherical (for example, irregularly shaped particles).
  • the adsorbent When the adsorbent is in the form of particles, it may be appropriately adjusted to the desired particle size by pulverization or the like, but the particle size is preferably 10 ⁇ m to 2000 ⁇ m, more preferably 30 ⁇ m to 1500 ⁇ m, and most preferably 40 ⁇ m to 1000 ⁇ m.
  • the particle diameter When the particle diameter is 10 ⁇ m or less, it is difficult to handle because the fine powder is likely to fly.
  • the particle size is 2000 ⁇ m or more, sufficient adsorption performance may not be obtained.
  • a particle diameter shows the value classified by sieving.
  • the adsorbent may be a porous body.
  • the pores formed on the surface may have an average value of the major axis of about 0.01 ⁇ m to 20 ⁇ m, preferably 0.05 ⁇ m to It may be about 10 ⁇ m, more preferably about 0.1 ⁇ m to 5 ⁇ m, still more preferably about 0.2 ⁇ m to 5 ⁇ m.
  • the average value of the major axis of these pores is a value measured by the method described in the examples described later.
  • the adsorbent of the present invention may contain various additives such as inorganic fine particles, light stabilizers, antioxidants and the like within a range not impairing the effects of the present invention.
  • the adsorbent of the present invention can adsorb various objects to be adsorbed according to the type of adsorbing functional group, and can then efficiently elute and recover the objects to be adsorbed.
  • Preferred adsorbents include, for example, various metals (for example, platinum group metals, gold, silver, copper, nickel, chromium, vanadium, cobalt, lead, zinc, etc.) or valuable metals from solutions containing these metal compounds. It can be used for recovery and removal of harmful metals (for example, mercury, cadmium, etc.) contained in factory wastewater, mine wastewater, hot spring water, and the like.
  • Adsorption functional group amount [mmol / g] ⁇ (Number of adsorption functional groups possessed by reaction substrate) ⁇ (W [g] / reaction substrate molecular weight [g / mol]) ⁇ 1000 ⁇ / resin particle mass after reaction [g]
  • Example 1 90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) at a temperature of 210 ° C. using a lab plast mill. Then, the compound obtained by cooling and solidifying the melt was pulverized and classified into particles having a particle diameter of 106 ⁇ m to 212 ⁇ m using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • a commercially available ethylene-vinyl alcohol copolymer Kuraray Co., Ltd., F101
  • vinyl alcohol polymer Kuraray Co., Ltd., PVA205
  • the average value of the major axis of the pores of the porous particles was 0.27 ⁇ m.
  • the porous particles were irradiated with 100 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and the graft ratio was evaluated to be 351%. Further, the particles were immersed in an aqueous disodium iminodiacetate adjusted to 100 ° C. and reacted for 9 hours.
  • the particles were washed with water and dried to obtain an adsorbent complex (polymer complex P1 and substrate component complex) having an iminodiacetic acid group.
  • the amount of functional groups introduced into the adsorptive complex was 4.6 mmol / g, and the degree of swelling before the crosslinking treatment was 445%.
  • the obtained adsorptive complex was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent.
  • the average value of the long diameter of the pores of the adsorbent was 0.21 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 106 ⁇ m to 425 ⁇ m using a sieve, and the degree of swelling was evaluated.
  • a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 2 A commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., L104) 80 parts by mass and a vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) 20 parts by mass were tested at a temperature of 210 ° C. using a lab plast mill. Then, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 212 ⁇ m to 425 ⁇ m were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • the average value of the major axis of the pores of the porous particles was 0.41 ⁇ m.
  • the porous particles were irradiated with 30 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes to carry out graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 258%. Further, the particles were immersed in an aqueous disodium iminodiacetate adjusted to 100 ° C. and reacted for 9 hours.
  • the particles were washed with water and dried to obtain an adsorbent complex having an iminodiacetic acid group.
  • the amount of functional groups introduced into the adsorptive complex was 3.8 mmol / g, and the degree of swelling before the crosslinking treatment was 290%.
  • the obtained adsorptive complex was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameters of the pores of the adsorbent was 0.39 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 300 ⁇ m to 500 ⁇ m using a sieve, and the degree of swelling was evaluated.
  • a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 3 90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of a vinyl alcohol polymer (Kuraray Co., Ltd., PVA403) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 212 ⁇ m to 425 ⁇ m were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • a commercially available ethylene-vinyl alcohol copolymer Kuraray Co., Ltd., F101
  • a vinyl alcohol polymer Kuraray Co., Ltd., PVA403
  • the average value of the major axis of the pores of the porous particles was 0.23 ⁇ m.
  • the porous particles were irradiated with 60 kGy of ⁇ -rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 140 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 310%. Further, the particles were immersed in an isopropanol solution of ethylenediamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group.
  • the amount of functional groups introduced into the adsorbent complex was 6.0 mmol / g, and the degree of swelling before the crosslinking treatment was 258%.
  • the obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameter of the pores of the adsorbent was 0.14 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 300 ⁇ m to 500 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 4 70 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., E105) and 30 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA217) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle size of 106 ⁇ m to 212 ⁇ m were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • the average value of the major axis of the pores of the porous particles was 0.89 ⁇ m.
  • the porous particles were irradiated with 60 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes to carry out graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated to be 323%. Further, the particles were immersed in an isopropanol solution of N- (2-aminoethyl) piperazine adjusted to 80 ° C. and reacted for 1 hour.
  • the particles were washed with water and dried to obtain an adsorptive complex having an amino group.
  • the amount of the functional group introduced into the adsorptive complex was 7.9 mmol / g, and the degree of swelling before the crosslinking treatment was 321%.
  • the obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour.
  • the particles were washed with water and dried to obtain the target adsorbent.
  • the average value of the long diameter of the pores of the adsorbent was 0.71 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 425 ⁇ m to 710 ⁇ m using a sieve, and the degree of swelling was evaluated.
  • a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 5 90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of a vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle size of 106 ⁇ m to 212 ⁇ m were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • a commercially available ethylene-vinyl alcohol copolymer Kuraray Co., Ltd., F101
  • a vinyl alcohol polymer Kuraray Co., Ltd., PVA205
  • the average value of the major axis of the pores of the porous particles was 0.27 ⁇ m.
  • the porous particles were irradiated with 100 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 374%. Further, the particles were immersed in an isopropanol solution of diethylenetriamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group.
  • the amount of functional groups introduced into the adsorptive complex was 8.7 mmol / g, and the degree of swelling before the crosslinking treatment was 389%.
  • the obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average long diameter of the adsorbent pores was 0.20 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 106 ⁇ m to 425 ⁇ m using a sieve, and the degree of swelling was evaluated.
  • a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 6 50 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., E105) and 50 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) were mixed at 210 ° C. with a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 1180 ⁇ m to 1400 ⁇ m were prepared using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles.
  • a commercially available ethylene-vinyl alcohol copolymer Kuraray Co., Ltd., E105
  • vinyl alcohol polymer Kuraray Co., Ltd., PVA205
  • the average pore diameter of the pores of the porous particles was 1.56 ⁇ m.
  • the porous particles were irradiated with 60 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 340%. Further, the particles were immersed in an isopropanol solution of diethylenetriamine adjusted to 80 ° C. and reacted for 4 hours. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group.
  • the functional group introduction amount of the adsorptive complex was 6.9 mmol / g, and the degree of swelling before the crosslinking treatment was 356%.
  • the obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the major axis of the pores of the adsorbent was 1.42 ⁇ m.
  • the obtained adsorbent was classified into particles having a particle diameter of 2100 ⁇ m to 2400 ⁇ m using a sieve, and the degree of swelling was evaluated.
  • a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 7 The adsorptive complex having iminodiacetic acid groups obtained in the same manner as in Example 1 was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C., The reaction was carried out for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average long diameter of the adsorbent pores was 0.20 ⁇ m. The obtained adsorbent was classified into particles having a particle diameter of 106 ⁇ m to 425 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 8 The adsorptive complex having an amino group obtained in the same manner as in Example 4 was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameters of the pores of the adsorbent was 0.69 ⁇ m. The obtained adsorbent was classified into particles having a particle diameter of 425 ⁇ m to 710 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 1 The target adsorbent was obtained in the same manner as in Example 1 except that the crosslinking treatment was not performed (functional group introduction amount: 5.04.6 mmol / g). The average long diameter of the adsorbent pores was 0.20 ⁇ m. The obtained adsorbent was classified into particles having a particle diameter of 106 ⁇ m to 425 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 2 The target adsorbent was obtained in the same manner as in Example 5 except that the crosslinking treatment was not performed (functional group introduction amount: 10.18.7 mmol / g). The average long diameter of the adsorbent pores was 0.19 ⁇ m. The obtained adsorbent was classified into particles having a particle diameter of 106 ⁇ m to 425 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • Example 3 A commercially available ethylene-vinyl alcohol copolymer (E105, manufactured by Kuraray Co., Ltd.) was pulverized, and particles having a particle diameter of 425 ⁇ m to 710 ⁇ m were prepared using a sieve. The particles were irradiated with 10 kGy of ⁇ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and the graft ratio was evaluated to be 11%.
  • E105 ethylene-vinyl alcohol copolymer
  • the particles were immersed in an isopropanol solution of ethylenediamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The amount of functional group introduced into the adsorbent was 1.2 mmol / g. The obtained adsorbent was classified into particles having a particle diameter of 500 to 710 ⁇ m using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
  • the adsorbent of the present invention exhibits good adsorptivity to metal ions.
  • the swelling property is highly controlled while increasing the amount of the adsorptive functional group, particularly good adsorptivity to metal ions is shown. From the results of these examples, the adsorbent of the present invention is very effective when separating and recovering an adsorbed material such as metal ions.
  • the adsorbent that has not been subjected to the crosslinking treatment is swelled by water absorption, and the amount of adsorbent that can be filled is reduced, so that the adsorption performance per unit volume is significantly reduced.
  • the amount of the adsorbing functional group is reduced as in Comparative Example 3, it is easy to control the swelling, but the adsorption performance is remarkably lowered.
  • the present invention it is possible to provide a new adsorbent that can be used industrially and has high adsorbability while highly controlling resin swelling due to water absorption.
  • the adsorbent can efficiently recover various objects to be adsorbed, such as ions of platinum group metals, gold, silver, copper, nickel, chromium, vanadium, cobalt, lead, zinc, mercury, cadmium and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Provided are: an adsorbent material able to efficiently adsorb an adsorption subject such as a metal ion; and a method for producing such an adsorbent material. The adsorbent material is such that an ethylene-vinyl alcohol copolymer is the substrate, a (meth)acrylate ester skeleton is a structural unit as a graft chain to the substrate, and a polymer component (P1) having an adsorbent functional group is introduced and the polymer component (P1) is cross-linked. Also, such an adsorbent material for example may have a degree of swelling indicated by the belowmentioned formula (I) on the order of 50-200%: degree of swelling = {(mass of adsorbent material after shaking for 10 minutes in hot water at 70°C, causing hydration) - (absolute dry mass of hydrated adsorbent material)}/(absolute dry mass of hydrated adsorbent material)×100% …(I).

Description

吸着材及びその製造方法Adsorbent and method for producing the same
 本発明は、金属イオンなどの被吸着物を効率よく吸着することができる吸着材及びその製造方法に関する。 The present invention relates to an adsorbent capable of efficiently adsorbing an object to be adsorbed such as metal ions and a method for producing the same.
 近年、貴金属の回収や、有害金属イオンの除去を行う場合、またはタンパク質などの高分子物質を分離精製する場合には、キレート樹脂などを用いて分離・回収する吸着法が知られている。 In recent years, an adsorption method in which separation and recovery using a chelate resin or the like is known when collecting noble metals, removing harmful metal ions, or separating and purifying high-molecular substances such as proteins.
 キレート樹脂の場合、極性が高い構造を有する高分子を母体とすることで、水との親和性が向上し、効果的に金属を吸着させることができる。 In the case of a chelate resin, affinity with water can be improved and a metal can be adsorbed effectively by using a polymer having a highly polar structure as a base material.
 例えば、特許文献1には、キトサン分子間に架橋を有するポリマーにおいて、キレート性官能基を導入する貴金属イオン捕集剤が開示されている。この捕集剤では、分子骨格が架橋構造を有するため、貴金属イオンの吸着に適した酸性溶液中で溶解することがなく、且つキレート形成能を有する官能基が結合されている。 For example, Patent Document 1 discloses a noble metal ion scavenger that introduces a chelating functional group in a polymer having a crosslink between chitosan molecules. In this scavenger, since the molecular skeleton has a cross-linked structure, it is not dissolved in an acidic solution suitable for adsorption of noble metal ions, and a functional group having a chelating ability is bonded.
 さらに、特許文献2には、多孔膜にメタクリル酸グリシジルおよび架橋剤をグラフト共重合させたグラフト共重合膜に対して、キレート形成基を導入することにより製造されたキレート型イオン吸着膜が開示されている。そのようなキレート型イオン吸着膜は、金属イオンの除去に用いられ、耐溶出性、化学的耐久性および処理量に優れた性能を有すると記載されている。 Furthermore, Patent Document 2 discloses a chelate ion-adsorbing membrane produced by introducing a chelate-forming group into a graft copolymer membrane obtained by graft copolymerizing glycidyl methacrylate and a crosslinking agent on a porous membrane. ing. Such chelate-type ion-adsorbing films are used for removing metal ions and are described as having excellent performance in elution resistance, chemical durability, and throughput.
 また、特許文献3には、シート状、フィルム状、または繊維形状の有機高分子基材にスチレンスルホン酸塩を1段階でグラフト重合することによってイオン交換基が導入された陽イオン吸着材が開示されている。またこの文献には、グラフト重合時に、多官能性モノマーを共存させることにより、グラフト鎖が架橋した構造を得ることができることについて記載されている。 Patent Document 3 discloses a cation adsorbent in which ion exchange groups are introduced by graft polymerization of styrene sulfonate in one step on a sheet-like, film-like, or fiber-like organic polymer substrate. Has been. This document also describes that a graft-crosslinked structure can be obtained by coexisting a polyfunctional monomer during graft polymerization.
 さらに、特許文献4には、グリシジルメタクリレートと架橋剤の共重合体を母体とし、水中で著しく膨潤する架橋共重合体粒子が開示されている。この文献では、前記架橋共重合体粒子がタンパク質などの高分子物質を分離するのに有用であると記載されている。 Furthermore, Patent Document 4 discloses a crosslinked copolymer particle which is based on a copolymer of glycidyl methacrylate and a crosslinking agent and swells significantly in water. This document describes that the crosslinked copolymer particles are useful for separating high molecular substances such as proteins.
特許第3236363号公報Japanese Patent No. 3236363 特許第3312634号公報Japanese Patent No. 3312634 特開2008-296155号公報JP 2008-296155 A 特許3096097号公報Japanese Patent No. 3096097
 しかし、特許文献1、2および4で記載された極性が高い構造を有する高分子を母体とした吸着材は、その高い親水性ゆえに含水時の樹脂膨潤が顕著である。
 特許文献3では、グラフト鎖中にスチレン骨格が存在するため、母体が疎水的であり、一度乾燥してしまうと本来の吸着性能を発現しないといった問題を抱えている。
However, the adsorbent based on a polymer having a structure with high polarity described in Patent Documents 1, 2, and 4 has remarkable resin swelling when it contains water because of its high hydrophilicity.
In Patent Document 3, since the styrene skeleton is present in the graft chain, the matrix is hydrophobic, and once dried, the original adsorption performance is not exhibited.
 また、吸着材をカラムなどに充填して使用するような場合、嵩密度が高い粒子形状が好ましいが、粒子形状の場合は膨潤による嵩密度の変化が顕著であり、単位体積あたりの吸着容量を高く保つには高度な膨潤性の制御が必要である。
 さらに、親水性の高い吸着材は、暴露される温度等の外的要因による体積変動が大きいため、使用環境下で樹脂が膨潤し、カラムの破損などの問題が発生する懸念がある。
In addition, when the adsorbent is packed in a column or the like, a particle shape having a high bulk density is preferable. However, in the case of the particle shape, the change in the bulk density due to swelling is remarkable, and the adsorption capacity per unit volume is increased. A high degree of swelling control is required to keep it high.
Furthermore, since a highly hydrophilic adsorbent has a large volume fluctuation due to an external factor such as an exposed temperature, there is a concern that the resin swells in a use environment and a problem such as column breakage occurs.
 本発明は、上記課題を解決するためになされたものであり、親水性骨格を有しながら、架橋構造に由来して膨潤性が制御された吸着材を提供すること、およびそのような吸着材の製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and provides an adsorbent having a hydrophilic skeleton and having a controlled swelling property derived from a crosslinked structure, and such an adsorbent. It aims at providing the manufacturing method of.
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、(i)従来技術では、金属イオンなどの被吸着物を効率よく回収する際、吸着材単体としての回収効率に着目し、その吸着効率を上げるための親水性の向上、吸着官能基の導入量の増加などを主眼として研究を行っているが、それでは、実際に吸着材を使用する際に、吸着材自身の膨潤性の増加と相まって、カラムなどの閉塞空間に充填する際の吸着材自体の充填効率を低下させてしまうことに気が付いた。さらに(ii)金属イオンなどの被吸着物を回収する際、高温操作が必要な場合があるが、高温時に吸着材の膨潤性が高くなり、カラムなどの破損につながることを見出した。 The inventors of the present invention have intensively studied to achieve the above object, and as a result, (i) in the prior art, when efficiently recovering an object to be adsorbed such as metal ions, attention is paid to the recovery efficiency as a single adsorbent. However, research is focused on improving hydrophilicity to increase the adsorption efficiency and increasing the amount of adsorbed functional groups introduced. However, when actually using the adsorbent, the adsorbent itself swells. It has been noticed that, in conjunction with the increase in the property, the packing efficiency of the adsorbent itself when packed in a closed space such as a column is lowered. Furthermore, (ii) when recovering an adsorbed material such as metal ions, a high-temperature operation may be required, but it has been found that the swellability of the adsorbent increases at a high temperature, leading to breakage of the column and the like.
 そこでさらに研究を進めた結果、(iii)親水性高分子であるエチレン-ビニルアルコール系共重合体を基材とするとともに、この基材に対して、親水性の(メタ)アクリル酸エステル骨格を構造単位とし吸着官能基を有する高分子成分をグラフト鎖として導入し、さらに、該高分子成分を架橋することで、吸着性を保持しつつ膨潤性を抑制できるため、(iv)充填効率を高めることが可能であり吸着材全体としての回収効率を向上できるだけでなく、(v)最終的な形態である高分子に架橋処理がなされているため、加熱溶媒を適用した場合であっても吸着材の膨潤性を抑制することができ、(vi)このような高温条件下における吸着材の膨潤性を管理することによって、金属イオンなどの被吸着物の回収作業を効率よく行うことができることを見出し、本発明に至った。 As a result of further research, (iii) the base material is an ethylene-vinyl alcohol copolymer that is a hydrophilic polymer, and a hydrophilic (meth) acrylic acid ester skeleton is formed on the base material. Introducing a polymer component having an adsorptive functional group as a structural unit as a graft chain, and further crosslinking the polymer component makes it possible to suppress the swelling while maintaining the adsorptivity, and (iv) increase the packing efficiency In addition to improving the recovery efficiency of the adsorbent as a whole, (v) the final form of the polymer is crosslinked so that the adsorbent can be used even when a heating solvent is applied. (Vi) By efficiently managing the swellability of the adsorbent under such high-temperature conditions, the work of recovering the adsorbent such as metal ions can be performed efficiently. It found that it has led to the present invention.
 すなわち、本発明の第1の実施態様は、エチレン-ビニルアルコール系共重合体を基材とし、該基材にグラフト鎖として(メタ)アクリル酸エステル骨格を構造単位とし吸着官能基を有する高分子成分Pが導入されており、該高分子成分Pが架橋されている、吸着材である。
 このような吸着材は、例えば、下記式(I)で表される膨潤度が50~200%であってもよい。
膨潤度={(吸着材を70℃の熱水中で10分振とうし、含水させた後の質量)-(含水させた吸着材の絶乾質量)}/(含水させた吸着材の絶乾質量)×100(%)・・・(I)
That is, the first embodiment of the present invention is a polymer having an ethylene-vinyl alcohol copolymer as a base material, a polymer having an adsorption functional group having a (meth) acrylate skeleton as a structural unit as a graft chain on the base material. An adsorbent in which component P 1 is introduced and the polymer component P 1 is crosslinked.
Such an adsorbent may have a swelling degree represented by the following formula (I) of 50 to 200%, for example.
Swelling degree = {(mass after the adsorbent is shaken in hot water at 70 ° C. for 10 minutes to contain water) − (absolute dry mass of the adsorbed adsorbent)} / (absorption of the adsorbed adsorbent) (Dry mass) x 100 (%) (I)
 前記架橋成分は、例えば、アミノ基、イソシアネート基、エポキシ基、カルボジイミド基、およびアゼチジニウム基からなる群から選択されたいずれか一つ以上の官能基を有していてもよい。 The cross-linking component may have, for example, any one or more functional groups selected from the group consisting of amino groups, isocyanate groups, epoxy groups, carbodiimide groups, and azetidinium groups.
 前記吸着材では、吸着官能基が、グルカミン基、ジオール基、ポリオール基、ポリオールと窒素原子とから構成される基、イミノジ酢酸基、アミノ基、アンモニウム基、アミドキシム基、ジチオカルバミン酸基、チオウレア基、イソチオウレア基、リン酸基、ホスホン酸基からなる群から選択されたいずれか一つ以上の官能基であってもよい。 In the adsorbent, the adsorbing functional group is a glucamine group, a diol group, a polyol group, a group composed of a polyol and a nitrogen atom, an iminodiacetic acid group, an amino group, an ammonium group, an amidoxime group, a dithiocarbamic acid group, a thiourea group, It may be any one or more functional groups selected from the group consisting of an isothiourea group, a phosphoric acid group, and a phosphonic acid group.
 前記吸着材は多孔質体であってもよい。また多孔質体である場合、多孔質体の表面に形成された細孔の長径の平均値が0.01μm~20μmの範囲内にあってもよい。 The adsorbent may be a porous body. In the case of a porous body, the average value of the long diameters of the pores formed on the surface of the porous body may be in the range of 0.01 μm to 20 μm.
 吸着材は、例えば粒子状であってもよく、その場合吸着材の粒子径の範囲が10~2000μm程度であってもよい。 The adsorbent may be in the form of particles, for example, in which case the particle diameter range of the adsorbent may be about 10 to 2000 μm.
 本発明の第2の実施態様は、前記吸着材の製造方法であって、
 エチレン-ビニルアルコール系共重合体を基材成分として準備する工程と、
 反応性を有する(メタ)アクリル酸エステル骨格を構造単位として有する高分子成分Pを、前記基材成分に、グラフト鎖として導入する高分子成分導入工程と、
 前記高分子成分Pに対して吸着官能基を導入し、(メタ)アクリル酸エステル骨格を構造単位として有するとともに、吸着官能基を有する高分子成分Pを得る吸着官能基導入工程と、
 前記高分子成分PまたはPに対して架橋処理を行う架橋工程と、
を少なくとも備える吸着材の製造方法である。
A second embodiment of the present invention is a method for producing the adsorbent,
Preparing an ethylene-vinyl alcohol copolymer as a base component;
A polymer component introduction step of introducing a polymer component P 0 having a reactive (meth) acrylate skeleton as a structural unit into the base material component as a graft chain;
An adsorption functional group introduction step of introducing an adsorption functional group to the polymer component P 0 , having a (meth) acrylate skeleton as a structural unit, and obtaining a polymer component P 1 having an adsorption functional group;
A crosslinking step of crosslinking the polymer component P 0 or P 1 ;
Is a method for producing an adsorbent comprising at least
 前記製造方法では、基材成分に対して高分子成分Pがグラフト鎖として導入されるグラフト鎖導入工程を備えていてもよい。この場合、基材成分に電離放射線を作用させグラフト鎖を導入してもよい。 In the above manufacturing method, the polymeric component P 0 may be provided with a graft chain introduction step is introduced as a graft chain to the substrate component. In this case, ionizing radiation may act on the substrate component to introduce a graft chain.
 高分子成分導入工程において、被吸着物への吸着性を高める観点から、導入されるグラフト鎖のグラフト率は、例えば30~900質量%であってもよい。
 吸着官能基導入工程において、高分子成分Pおよび基材成分の複合体中の吸着官能基濃度は、1.5mmol/g以上であるのが好ましい。
In the polymer component introduction step, the graft ratio of the graft chain introduced may be, for example, 30 to 900% by mass from the viewpoint of improving the adsorptivity to the adsorbed material.
In adsorptive functional group introduction step, adsorptive functional group concentration in the complex of the polymeric component P 1 and the substrate component is preferably in the range from 1.5 mmol / g or more.
 本発明の吸着材は、親水性の高い骨格を母体としながら、架橋処理により樹脂の膨潤性が制御されているため、高い吸着性能を維持しながら膨潤性は低く、効率よく金属イオンなどの被吸着物を回収することができる。また、本発明の吸着材の製造方法では、上記のような優れた性能を有する吸着材を、効率よく製造することができる。 In the adsorbent of the present invention, since the swelling property of the resin is controlled by the crosslinking treatment while using a highly hydrophilic skeleton as a base material, the swelling property is low while maintaining high adsorption performance, and the metal ions and the like are efficiently covered. The adsorbate can be recovered. Moreover, in the manufacturing method of the adsorbent of this invention, the adsorbent which has the above outstanding performances can be manufactured efficiently.
 以下、本発明の実施の形態について具体的に説明する。なお、以下に説明する実施の形態は、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail. Note that the embodiments described below do not limit the present invention.
 本発明の第1の実施形態は、エチレン-ビニルアルコール系共重合体を基材とし、該基材にグラフト鎖として(メタ)アクリル酸エステル骨格を構造単位とし吸着官能基を有する高分子成分Pが導入されており、該高分子成分Pが架橋されている、吸着材である。
 また、本発明の第2の実施形態は、前記吸着材を製造する方法であって、
 エチレン-ビニルアルコール系共重合体を基材成分として準備する工程と、
 反応性を有する(メタ)アクリル酸エステル骨格を構造単位として有する高分子成分Pを、前記基材成分に、グラフト鎖として導入する高分子成分導入工程と、
 前記高分子成分Pに対して吸着官能基を導入し、(メタ)アクリル酸エステル骨格を構造単位として有するとともに、吸着官能基を有する高分子成分Pを得る官能基導入工程と、
 前記高分子成分PまたはPに対して架橋処理を行う架橋工程と、
を少なくとも備えている。
 吸着材としての親水性を保ちながら、架橋により、最終的な形態となる高分子鎖の運動性を抑制することで、被吸着物への吸着性を有しつつ吸着材の膨潤性を低く抑えることができる。
In the first embodiment of the present invention, a polymer component P having an ethylene-vinyl alcohol copolymer as a base material, a (meth) acrylate skeleton as a structural unit as a graft unit on the base material, and an adsorptive functional group. 1 is an adsorbent in which 1 is introduced and the polymer component P 1 is crosslinked.
A second embodiment of the present invention is a method for producing the adsorbent,
Preparing an ethylene-vinyl alcohol copolymer as a base component;
A polymer component introduction step of introducing a polymer component P 0 having a reactive (meth) acrylate skeleton as a structural unit into the base material component as a graft chain;
The introducing adsorptive functional group on the polymer component P 0, and (meth) which has an acrylic acid ester skeleton as a structural unit, the functional group introduced to obtain a polymer component P 1 having an adsorbing functional group,
A crosslinking step of crosslinking the polymer component P 0 or P 1 ;
At least.
While maintaining the hydrophilicity of the adsorbent, it suppresses the swellability of the adsorbent while maintaining the adsorptivity to the adsorbent by suppressing the mobility of the polymer chain that will be the final form by crosslinking. be able to.
(基材成分)
 本発明の吸着材は、エチレン-ビニルアルコール系共重合体を基材成分として含む。エチレン-ビニルアルコール系共重合体は、親水性が高く、成形性に優れ、耐酸性にも優れることから、吸着材の基材として好適である。
(Base material component)
The adsorbent of the present invention contains an ethylene-vinyl alcohol copolymer as a base component. An ethylene-vinyl alcohol copolymer is suitable as a base material for an adsorbent because it has high hydrophilicity, excellent moldability, and excellent acid resistance.
 エチレン-ビニルアルコール系共重合体は、例えば、そのエチレン含有量が、10~60モル%程度であってもよく、20~50モル%程度が好ましい。エチレン含量が少なすぎると、得られるグラフト共重合体の耐水性が低下する虞がある。一方、エチレン含量が多すぎると製造が難しく入手が困難である。 For example, the ethylene content of the ethylene-vinyl alcohol copolymer may be about 10 to 60 mol%, preferably about 20 to 50 mol%. If the ethylene content is too low, the water resistance of the resulting graft copolymer may be reduced. On the other hand, when there is too much ethylene content, manufacture is difficult and acquisition is difficult.
 また、エチレン-ビニルアルコール系共重合体のけん化度は、90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上が特に好ましい。けん化度が低すぎる場合、成形性が悪くなったり、得られるグラフト共重合体の耐水性が低下する虞がある。 The saponification degree of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 99 mol% or more. When the degree of saponification is too low, moldability may be deteriorated or the water resistance of the obtained graft copolymer may be lowered.
 また、エチレン-ビニルアルコール系共重合体のメルトフローレート(MFR)(210℃、荷重2160g)についても特に限定されないが、0.1g/10分以上が好ましく、0.5g/10分以上がより好ましい。メルトフローレートが小さすぎる場合、耐水性や強度が低下する虞がある。なお、メルトフローレートの上限は通常用いられる範囲であればよく、例えば、25g/10分以下であってもよい。 Further, the melt flow rate (MFR) (210 ° C., load 2160 g) of the ethylene-vinyl alcohol copolymer is not particularly limited, but is preferably 0.1 g / 10 min or more, more preferably 0.5 g / 10 min or more. preferable. If the melt flow rate is too small, water resistance and strength may be reduced. In addition, the upper limit of a melt flow rate should just be the range normally used, for example, may be 25 g / 10min or less.
 本発明のエチレン-ビニルアルコール系共重合体は、本発明の効果を損なわない範囲で別の不飽和単量体単位を含んでいてもよい。該不飽和単量体単位の含量は、10モル%以下であることが好ましく、5%モル以下であることがより好ましい。
 このようなエチレン-ビニルアルコール系共重合体は、単独で又は2種以上組み合わせて用いることができる。
The ethylene-vinyl alcohol copolymer of the present invention may contain other unsaturated monomer units as long as the effects of the present invention are not impaired. The content of the unsaturated monomer unit is preferably 10 mol% or less, more preferably 5% mol or less.
Such ethylene-vinyl alcohol copolymers can be used alone or in combination of two or more.
 基材成分の表面形状は、グラフト重合可能である限り特に限定されないが、グラフト重合時の反応性を向上させる観点から、予め多孔質化されている多孔質体であることが好ましい。なお、多孔質体とは、少なくとも表面に複数の孔が形成されていればよく、内部まで孔が形成されている必要はない。好ましくは、多孔質体は、長径が0.01μm~20μmである細孔を、面積1cmあたりに少なくとも10個、好ましくは100個以上、より好ましくは1,000個以上含む構造を有していてもよい。 The surface shape of the base material component is not particularly limited as long as graft polymerization is possible. From the viewpoint of improving the reactivity during graft polymerization, it is preferably a porous body that has been previously made porous. The porous body only needs to have a plurality of holes formed on at least the surface thereof, and does not need to have holes formed therein. Preferably, the porous body has a structure including at least 10, preferably 100 or more, more preferably 1,000 or more pores having a major axis of 0.01 μm to 20 μm per 1 cm 2 of area. May be.
 多孔質な基材成分は、物理的に基材成分に対して孔を形成させてもよいし、発泡剤などの気孔形成剤と基材と溶融混合することにより作製してもよいし、溶媒により抽出可能なポリマーと基材とを溶融混練などにより混合させた後に、溶媒抽出可能なポリマーを抽出することによって作製してもよい。 The porous base material component may physically form pores with respect to the base material component, or may be prepared by melting and mixing with a pore forming agent such as a foaming agent and the base material, or a solvent. The polymer may be extracted by mixing by melt kneading or the like, and then the solvent extractable polymer may be extracted.
 多孔質体の表面に形成される細孔は、その長径の平均値が0.01μm~20μm程度であってもよく、好ましくは0.05μm~10μm、より好ましくは0.1μm~5μm程度であってもよい。これら細孔の長径の平均値は、後述する実施例に記載した方法により測定される値である。 The pores formed on the surface of the porous body may have an average length of about 0.01 μm to 20 μm, preferably about 0.05 μm to 10 μm, more preferably about 0.1 μm to 5 μm. May be. The average value of the major axis of these pores is a value measured by the method described in the examples described later.
 特に溶媒溶解性ポリマー成分を用いて多孔質化された多孔質性基材成分は、細孔のサイズを制御しやすい点で好ましい。例えば、溶媒溶解性ポリマー成分を用いて多孔質な基材成分を調製する場合は、細孔のサイズを制御する観点から、基材成分と溶媒溶解性ポリマー成分とを溶融混練などにより混合し、溶融物を冷却固化させた複合体を得る工程と、前記複合体から溶媒溶解性ポリマー成分を溶媒により抽出する工程と、によって形成するのが好ましい。
 なお、本発明において、「溶融物の冷却固化」とは、溶融物を凝固浴など用いることなく冷却固化することを意味している。
In particular, a porous base material component made porous using a solvent-soluble polymer component is preferable in that the pore size can be easily controlled. For example, when preparing a porous substrate component using a solvent-soluble polymer component, from the viewpoint of controlling the size of the pores, the substrate component and the solvent-soluble polymer component are mixed by melt-kneading, etc. It is preferably formed by a step of obtaining a composite obtained by cooling and solidifying a melt and a step of extracting a solvent-soluble polymer component from the composite with a solvent.
In the present invention, “cooling and solidifying a melt” means cooling and solidifying the melt without using a solidification bath or the like.
 本発明に用いられる溶媒溶解性ポリマーは、エチレン-ビニルアルコール系共重合体と溶融混合できる限り特に限定されず、有機溶媒溶解性ポリマー(例えば、ポリスチレン)、アルカリ易溶解性ポリマー(例えば、ポリエステルなど)などであってもよく、好ましくは、水溶性ポリマーである。水溶性ポリマーは、エチレン-ビニルアルコール系共重合体と溶融混合できる限り特に限定されず、一般に知られている水溶性ポリマーを利用できる。当該水溶性ポリマーは、例えば、デンプン;ゼラチン;セルロース誘導体;ポリビニルアミン、ポリアリルアミン等の水溶性アミン系ポリマー;ポリアクリル酸;ポリイソプロピルアクリルアミド等のポリアクリルアミド;ポリビニルピロリドン;ポリビニルアルコールなどが挙げられる。これらの中でも、エチレン-ビニルアルコール系共重合体との溶融混練のし易さに優れ、空隙の制御が容易であることから、特にポリビニルアルコールが好適に用いられる。 The solvent-soluble polymer used in the present invention is not particularly limited as long as it can be melt-mixed with the ethylene-vinyl alcohol copolymer, and is an organic solvent-soluble polymer (for example, polystyrene) or an alkali-soluble polymer (for example, polyester). Or the like, and is preferably a water-soluble polymer. The water-soluble polymer is not particularly limited as long as it can be melt-mixed with the ethylene-vinyl alcohol copolymer, and generally known water-soluble polymers can be used. Examples of the water-soluble polymer include starch; gelatin; cellulose derivatives; water-soluble amine-based polymers such as polyvinylamine and polyallylamine; polyacrylic acid; polyacrylamide such as polyisopropylacrylamide; polyvinylpyrrolidone; Among these, polyvinyl alcohol is particularly preferably used because it is excellent in melt kneading with an ethylene-vinyl alcohol copolymer and easily controls the voids.
 基材成分と溶媒溶解性ポリマー成分との割合(質量比)は、必要とする多孔質の程度に応じて、適宜決めることができるが、例えば、基材成分:溶媒溶解性ポリマー成分は、100:0~20:80程度であってもよく、好ましくは、100:0~30:70程度であってもよい。 The ratio (mass ratio) between the base material component and the solvent-soluble polymer component can be appropriately determined according to the required degree of porosity. For example, the base material component: solvent-soluble polymer component is 100 : About 0 to 20:80, and preferably about 100: 0 to 30:70.
 例えば、水溶性ポリマーとして用いられるポリビニルアルコールは、本発明の効果が得られる限り、ビニルアルコール単位及びビニルエステル系単量体に由来する構造単位以外の構造単位を有することができる。当該構造単位は、例えば、エチレン、プロピレン、n-ブテン、イソブチレン、1-ヘキセンなどのα-オレフィン類;アクリル酸及びその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸N-プロピル、アクリル酸i-プロピル、アクリル酸N-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル基を有する不飽和単量体;メタクリル酸及びその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸N-プロピル、メタクリル酸i-プロピル、メタクリル酸N-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル基を有する不飽和単量体;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩(例えば4級塩);メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩(例えば4級塩);メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル、2,3-ジアセトキシ-1-ビニルオキシプロパンなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのシアン化ビニル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;酢酸アリル、2,3-ジアセトキシ-1-アリルオキシプロパン、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸及びその塩またはエステル;ビニルトリメトキシシランなどのビニルシリル化合物、酢酸イソプロペニルである。当該構造単位の含有量は、10モル%未満である。 For example, polyvinyl alcohol used as a water-soluble polymer can have structural units other than vinyl alcohol units and structural units derived from vinyl ester monomers as long as the effects of the present invention are obtained. The structural unit includes, for example, α-olefins such as ethylene, propylene, n-butene, isobutylene and 1-hexene; acrylic acid and salts thereof; methyl acrylate, ethyl acrylate, N-propyl acrylate, acrylic acid i Unsaturated monomers having an acrylate group such as -propyl, N-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid And salts thereof; methyl methacrylate, ethyl methacrylate, N-propyl methacrylate, i-propyl methacrylate, N-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, methacrylic acid Dodecyl, octadecyl methacrylate, etc. Unsaturated monomer having a methacrylic acid ester group; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidopropyldimethylamine and its salt (For example, quaternary salt); methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and its salt, methacrylamidepropyldimethylamine and its salt (for example, quaternary salt); methyl vinyl ether, ethyl Vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether Vinyl ethers such as ether, stearyl vinyl ether and 2,3-diacetoxy-1-vinyloxypropane; vinyl cyanides such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride and vinyl fluoride; vinylidene chloride, fluorine Vinylidene halides such as vinylidene halide; allyl compounds such as allyl acetate, 2,3-diacetoxy-1-allyloxypropane, allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid, fumaric acid, and salts or esters thereof A vinylsilyl compound such as vinyltrimethoxysilane and isopropenyl acetate. The content of the structural unit is less than 10 mol%.
 本発明に用いられるポリビニルアルコールの粘度平均重合度(JIS K6726に準拠して測定)は特に限定されないが、好ましくは100~10,000であり、より好ましくは200~7,000であり、さらに好ましくは300~5,000である。粘度平均重合度が上記範囲から逸脱すると、得られる多孔質体の表面積が低下する虞がある。 The viscosity average polymerization degree (measured in accordance with JIS K6726) of the polyvinyl alcohol used in the present invention is not particularly limited, but is preferably 100 to 10,000, more preferably 200 to 7,000, still more preferably. Is 300 to 5,000. If the viscosity average degree of polymerization deviates from the above range, the surface area of the resulting porous body may be reduced.
 本発明に用いられるポリビニルアルコールのけん化度は特に限定されないが、好ましくは50モル%以上であり、より好ましくは60~98モル%であり、特に好ましくは70~95モル%である。けん化度が低すぎると水溶性が低下し成形後の抽出性が悪くなる。けん化度が高すぎるポリビニルアルコールは溶融混合が難しい。 The saponification degree of the polyvinyl alcohol used in the present invention is not particularly limited, but is preferably 50 mol% or more, more preferably 60 to 98 mol%, and particularly preferably 70 to 95 mol%. If the degree of saponification is too low, the water solubility is lowered and the extractability after molding becomes worse. Polyvinyl alcohol having a too high degree of saponification is difficult to melt and mix.
 本発明で用いられる多孔質エチレン-ビニルアルコール系共重合体は、前述したように、例えば、エチレン-ビニルアルコール系共重合体と溶媒溶解性ポリマー(好ましくは水溶性ポリマー)を溶融混練にて混合して溶融物を冷却固化させた複合体(コンパウンド)を得た後に、この複合体から溶媒溶解性ポリマー(好ましくは水溶性ポリマー)を抽出することによって得られる。溶融混練する方法は特に限定されず、一軸押出機、二軸押出機、ブラベンダー、ニーダーなど公知の混練機を用いることができる。目的とする形状を得るために、必要に応じて各段階で粉砕などを実施してもよい。 As described above, the porous ethylene-vinyl alcohol copolymer used in the present invention is, for example, mixed by melt-kneading an ethylene-vinyl alcohol copolymer and a solvent-soluble polymer (preferably a water-soluble polymer). Then, after obtaining a composite (compound) in which the melt is cooled and solidified, a solvent-soluble polymer (preferably a water-soluble polymer) is extracted from the composite. The method of melt kneading is not particularly limited, and a known kneader such as a single screw extruder, a twin screw extruder, a Brabender, or a kneader can be used. In order to obtain a target shape, pulverization or the like may be performed at each stage as necessary.
 また、エチレン-ビニルアルコール系共重合体を溶解せず、溶媒溶解性ポリマーを抽出することができる限り、抽出に用いられる溶媒は特に限定されず、水、各種有機溶媒、水と有機溶媒との混合物などを用いることができるが、水溶性ポリマーを利用する場合、溶媒としては水、特に熱水を用いるのが好ましい。熱水の温度は、40℃~120℃が好ましく、50℃~100℃がさらに好ましい。 Further, as long as the solvent-soluble polymer can be extracted without dissolving the ethylene-vinyl alcohol copolymer, the solvent used for the extraction is not particularly limited, and water, various organic solvents, water and organic solvents A mixture or the like can be used, but when a water-soluble polymer is used, it is preferable to use water, particularly hot water, as the solvent. The temperature of hot water is preferably 40 ° C to 120 ° C, more preferably 50 ° C to 100 ° C.
(グラフト鎖形成工程)
 官能基導入工程に先立って、基材成分に対して、高分子成分Pをグラフト鎖として導入するグラフト鎖形成工程を行って、グラフト共重合体を得ることができる。
(Graft chain forming step)
Prior to the functional group-introducing step, the base material component, by performing a graft chain formation step of introducing a polymer component P 0 as a graft chain, it is possible to obtain a graft copolymer.
(グラフト鎖導入処理)
 前述した基材成分に対して、高分子成分Pをグラフト鎖として導入する方法としては、種々の公知の方法が可能であり、例えば、重合開始剤を用いたラジカル重合を利用してグラフト鎖を導入する方法、電離放射線を用いて基材成分に対してラジカルを発生させ、グラフト鎖を導入する方法などが挙げられる。これらのうち、グラフト鎖の導入効率が高い観点から、電離放射線を用いて、高分子成分Pをグラフト鎖として導入する方法が好ましく用いられる。
(Graft chain introduction treatment)
As a method for introducing the polymer component P 0 as a graft chain into the base material component described above, various known methods are possible. For example, the graft chain can be obtained by utilizing radical polymerization using a polymerization initiator. And a method of generating a radical with respect to a base material component using ionizing radiation and introducing a graft chain. Among these, from the viewpoint of high graft chain introduction efficiency, a method of introducing the polymer component P 0 as a graft chain using ionizing radiation is preferably used.
(高分子成分P製造工程)
 高分子成分Pは、反応性を有する(メタ)アクリル酸エステル骨格(以下、反応性(メタ)アクリル酸エステル骨格と称する場合がある)モノマーを、基材成分に生じたラジカルからラジカル付加重合することにより得ることができる。
(Polymer component P 0 production process)
The polymer component P 0 is a radical addition polymerization of a reactive (meth) acrylate skeleton (hereinafter sometimes referred to as a reactive (meth) acrylate skeleton) monomer from a radical generated in the base component. Can be obtained.
 反応性(メタ)アクリル酸エステル骨格の例としては、(メタ)アクリル酸エステルにおけるアルコキシ基に官能基(すなわち、吸着官能基に対して反応性を有する官能基)が導入された骨格が挙げられ、そのような骨格としては、例えば、グリシジル(メタ)アクリレート、グリセリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、クロロエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレートなどの骨格が挙げられる。これらの反応性(メタ)アクリル酸エステル骨格は、単独でまたは二種以上組み合わせて使用してもよい。 Examples of the reactive (meth) acrylic acid ester skeleton include a skeleton in which a functional group (that is, a functional group having reactivity with an adsorbing functional group) is introduced into the alkoxy group in the (meth) acrylic acid ester. Examples of such a skeleton include glycidyl (meth) acrylate, glyceryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, chloroethyl (meth) acrylate, and 3-chloro-2-hydroxypropyl (meth) acrylate. Can be mentioned. These reactive (meth) acrylic acid ester skeletons may be used alone or in combination of two or more.
 なお、高分子成分Pは、反応性(メタ)アクリル酸エステル骨格以外にも、その他のビニル重合性モノマー(例えば、反応基が導入されていない(メタ)アクリル酸エステルモノマー)などを必要に応じて含んでいてもよい。また、後述するように高分子成分Pの形成過程において架橋構造を導入する場合は、架橋成分に由来する構造を含んでいてもよい。 In addition to the reactive (meth) acrylate skeleton, the polymer component P 0 requires other vinyl polymerizable monomers (for example, (meth) acrylate monomers in which no reactive group is introduced). It may be included accordingly. Further, as described later, when a cross-linked structure is introduced in the formation process of the polymer component P 0 , a structure derived from the cross-linked component may be included.
 該高分子成分Pは、反応性の高い官能基を末端に有する(メタ)アクリル酸エステル骨格で構成されているのが好ましく、その場合、骨格に存在する反応性官能基に対して、後述する吸着官能基を、容易に導入することができる。 The polymer component P 0 is preferably composed of a (meth) acrylic acid ester skeleton having a highly reactive functional group at its terminal. In this case, the reactive functional group present in the skeleton is described later. The adsorbing functional group can be easily introduced.
 電離放射線としては、α線、β線、γ線、加速電子線、紫外線などがあるが、実用的には加速電子線またはγ線が好ましい。 Examples of the ionizing radiation include α rays, β rays, γ rays, accelerated electron rays, ultraviolet rays, and the like. Practically, accelerated electron rays or γ rays are preferable.
 電離放射線を用いて、基材成分に不飽和単量体をグラフト重合させる方法としては、基材成分と不飽和単量体とを共存させて放射線を照射する同時照射法と、基材成分のみに予め放射線を照射した後、不飽和単量体と基材成分とを接触させる前照射法のいずれでも可能であるが、前照射法がグラフト重合以外の副反応を生成しにくい特徴を有する。 As a method of graft polymerization of unsaturated monomer to the base material component using ionizing radiation, simultaneous irradiation method in which the base material component and unsaturated monomer coexist and irradiate with radiation, only the base material component is used. Although any of the pre-irradiation methods in which the unsaturated monomer and the substrate component are brought into contact with each other after irradiation with radiation in advance is possible, the pre-irradiation method has a feature that it is difficult to generate side reactions other than graft polymerization.
 なお、ここで用いられる不飽和単量体としては、前述の反応性(メタ)アクリル酸エステル骨格を形成するモノマーに加えて、必要に応じてその他のビニル重合性モノマー((メタ)アクリル酸エステル自体)、多官能性のモノマーなどが挙げられる。多官能性のモノマーは、高分子成分Pの形成過程において架橋構造を導入する場合に用いることができる。多官能性のモノマーとしては、例えばジビニルベンゼン、メチレンビスアクリルアミド、ポリエチレングリコールジメタクリレート等が好適に用いられる。 The unsaturated monomer used here includes, in addition to the monomer forming the reactive (meth) acrylate skeleton described above, other vinyl polymerizable monomers ((meth) acrylate esters as necessary). As such) and multifunctional monomers. Polyfunctional monomers may be used in the case of introducing a crosslinked structure in the formation process of the polymer components P 0. As the polyfunctional monomer, for example, divinylbenzene, methylenebisacrylamide, polyethylene glycol dimethacrylate and the like are preferably used.
 高分子成分Pを形成する当該構造単位中、その他のビニル重合性モノマーは、例えば50モル%以下、好ましくは30モル%以下含まれていてもよく、また、多官能性のモノマーは、例えば50モル%以下、好ましくは30モル%以下含まれていてもよい。 In the structural unit forming the polymer component P 0 , the other vinyl polymerizable monomer may be contained in an amount of, for example, 50 mol% or less, preferably 30 mol% or less, and the polyfunctional monomer is, for example, It may be contained in an amount of 50 mol% or less, preferably 30 mol% or less.
 グラフト重合の際に、基材成分と不飽和単量体とを接触させる方法としては、液状の不飽和単量体あるいは不飽和単量体溶液と直接接触させる液相グラフト重合法と、不飽和単量体の蒸気あるいは気化状態で接触させる気相グラフト重合法とがあるが、目的に応じて選択可能である。なお、液相グラフト重合法、気相グラフト重合法において、接触させる不飽和単量体の濃度、重合処理時間などの反応条件は、求められるグラフト率などに応じて当業者において適宜設定することができる。 In the graft polymerization, the base component and the unsaturated monomer may be brought into contact with each other as a liquid phase graft polymerization method in which a liquid unsaturated monomer or an unsaturated monomer solution is brought into direct contact with the unsaturated monomer solution. There are vapor-phase graft polymerization methods in which the monomer vapor or vaporized contact is made, but it can be selected according to the purpose. In the liquid phase graft polymerization method and the gas phase graft polymerization method, the reaction conditions such as the concentration of the unsaturated monomer to be contacted and the polymerization treatment time can be appropriately set by those skilled in the art depending on the required graft rate and the like. it can.
 電離放射線を照射する線量としては、特に限定されないが、5~230kGyが好ましく、10~190kGyがより好ましく、15~140kGyがさらに好ましく、20~120kGyが最も好ましい。線量が少な過ぎる場合、グラフト率が低下し目的の吸着能が得られないことがある。線量が高すぎる場合、処理工程にコストがかかる、照射時に樹脂が劣化するなどの懸念がある。 The dose of ionizing radiation is not particularly limited, but is preferably 5 to 230 kGy, more preferably 10 to 190 kGy, still more preferably 15 to 140 kGy, and most preferably 20 to 120 kGy. If the dose is too small, the graft rate may decrease and the desired adsorption capacity may not be obtained. When the dose is too high, there is a concern that the treatment process is costly and the resin deteriorates during irradiation.
 グラフト重合により導入する不飽和単量体の量(グラフト率)は、特に限定されないが、例えば、基材100質量部に対して30~900質量部(30~900%)であることが好ましく、60~800質量部(60~800%)であることがより好ましく、120~700質量部(120~700%)であることがさらに好ましく、150~700質量部(150~700%)であることがさらにより好ましく、200~600質量部(200~600%)であることが特に好ましい。グラフト率が少なすぎると、金属イオンなどの被吸着物への吸着性能が不十分である場合が多い。グラフト率が多すぎるような場合は、一般的に合成が難しい。なお、グラフト率は、後述する実施例に記載された方法により測定された値を示す。 The amount of the unsaturated monomer introduced by graft polymerization (graft ratio) is not particularly limited, but is preferably, for example, 30 to 900 parts by mass (30 to 900%) with respect to 100 parts by mass of the base material. It is more preferably 60 to 800 parts by mass (60 to 800%), further preferably 120 to 700 parts by mass (120 to 700%), and 150 to 700 parts by mass (150 to 700%). Is more preferably 200 to 600 parts by mass (200 to 600%). If the graft rate is too small, the adsorption performance to the adsorbed material such as metal ions is often insufficient. When the graft rate is too high, synthesis is generally difficult. In addition, a graft rate shows the value measured by the method described in the Example mentioned later.
[官能基導入工程]
 まず、官能基導入工程では、反応性を有する(メタ)アクリル酸エステル骨格を少なくとも構造単位として有する高分子成分Pに対して吸着官能基を導入する。
[Functional group introduction step]
First, in the functional group introduction step, an adsorptive functional group is introduced into the polymer component P 0 having at least a reactive (meth) acrylate skeleton as a structural unit.
(高分子成分P製造工程)
 前述のようにして得られた高分子成分Pに対して、吸着官能基を導入することにより高分子成分Pを得ることができる。吸着官能基を有する化合物は、この化合物の良溶媒に溶解させて、高分子成分Pと接触させ反応させればよく、化合物濃度、反応時間などの反応条件は、高分子成分Pの種類、求められる吸着官能基の導入量に応じて、当業者により適宜選択することができる。
(Polymer component P 1 production process)
The polymer component P 1 can be obtained by introducing an adsorptive functional group to the polymer component P 0 obtained as described above. A compound having an adsorptive functional group may be dissolved in a good solvent of this compound and brought into contact with the polymer component P 0 and reacted, and the reaction conditions such as the compound concentration and reaction time are the types of the polymer component P 0 . Depending on the amount of adsorbed functional group introduced, it can be appropriately selected by those skilled in the art.
 高分子成分Pは、(メタ)アクリル酸エステル骨格を構造単位として有するとともに、被吸着物に対して吸着性を有する吸着官能基を有しているため、極性の高い構造となり、水との親和性に優れた高分子となる。 The polymer component P 1 has a (meth) acrylic acid ester skeleton as a structural unit, and has an adsorptive functional group having an adsorptivity to an adsorbent, and thus has a highly polar structure, It becomes a polymer with excellent affinity.
 高分子成分Pに導入される吸着官能基としては、目的とする被吸着物の種類に応じて選択することができ、例えば、金属イオンなどに対する吸着性が高い点から、キレート形成基であるグルカミン基、ジオール基、ポリオール基、ポリオールと窒素原子とから構成される基、イミノジ酢酸基、アミノ基、アンモニウム基、アミドキシム基、ジチオカルバミン酸基、チオウレア基、イソチオウレア基、リン酸基、ホスホン酸基などが好ましい。これらの吸着官能基は、単独でまたは二種以上組み合わせて使用してもよい。なお、吸着官能基は、例えば反応性官能基の加水分解などにより導入される官能基であってもよい。 The adsorptive functional group to be introduced into the polymer component P 1 can be selected according to the type of the target adsorbate, and is, for example, a chelate-forming group because of its high adsorptivity to metal ions. Glucamine group, diol group, polyol group, group composed of polyol and nitrogen atom, iminodiacetic acid group, amino group, ammonium group, amidoxime group, dithiocarbamic acid group, thiourea group, isothiourea group, phosphoric acid group, phosphonic acid Groups and the like are preferred. These adsorbing functional groups may be used alone or in combination of two or more. The adsorbing functional group may be a functional group introduced by, for example, hydrolysis of a reactive functional group.
 また、吸着容量の向上と樹脂の低膨潤性とを両立させる観点から、上述の高分子成分Pおよび基材成分の複合体には、例えば、吸着官能基が1.5mmol/g以上存在していてもよい。好ましくは、2.0mmol/g以上、より好ましくは3.0mmol/g以上導入されていてもよい。
 なお、上限については、適宜設定することが可能であるが、膨潤性を抑制する観点から、30mmol/g程度であってもよい。吸着官能基量は、後述する実施例に記載された方法により測定された値を示す。
From the viewpoint of satisfying both low swelling improvements and resin adsorption capacity, the complex of polymeric components P 1 and the substrate the above components, for example, there adsorptive functional group is 1.5 mmol / g or more It may be. Preferably, 2.0 mmol / g or more, more preferably 3.0 mmol / g or more may be introduced.
The upper limit can be set as appropriate, but may be about 30 mmol / g from the viewpoint of suppressing swelling. The amount of the adsorbing functional group indicates a value measured by the method described in Examples described later.
[架橋工程]
 架橋工程は、高分子成分PまたはPに対して架橋処理を行うことができる。
 例えば、高分子成分Pに対して架橋処理(I)を行う場合、前述したように、高分子成分Pの形成工程において、反応性を有する(メタ)アクリル酸エステル骨格を形成するモノマーと、多官能性のモノマーの双方を用いることにより、高分子成分Pに対して架橋構造を導入することができる。
[Crosslinking process]
In the crosslinking step, the polymer component P 0 or P 1 can be crosslinked.
For example, a monomer case, as described above, to form in the step of forming the polymeric component P 0, with a reactive (meth) acrylic ester backbone of performing crosslinking treatment (I) relative to the polymer component P 0 By using both of the polyfunctional monomers, a crosslinked structure can be introduced into the polymer component P 0 .
 一方で、高分子成分Pに対して架橋処理(II)を行う場合、吸着官能基が導入された高分子成分Pに対して、架橋剤を適用し、高分子成分P(例えば、吸着官能基の一部)を架橋成分によって架橋することができる。
なお、架橋成分は、吸着官能基の一部を架橋するとともに、グラフト共重合体中のその他の吸着官能基以外の基を架橋していてもよい。
On the other hand, when performed on the polymer component P 1 crosslinking processes (II), relative to the polymer component P 1 of adsorptive functional group is introduced by applying a crosslinking agent, a polymer component P 1 (e.g., A part of the adsorptive functional group) can be crosslinked by a crosslinking component.
The cross-linking component may cross-link a part of the adsorptive functional group and cross-link groups other than the other adsorptive functional group in the graft copolymer.
 架橋処理を行うことにより、吸着材としての親水性を保ちながら、最終的な形態となる高分子鎖の運動性を抑制することで、被吸着物への吸着性を有しつつ吸着材の膨潤性を低く抑えることができる。 By carrying out the cross-linking treatment, while maintaining the hydrophilicity of the adsorbent, it suppresses the mobility of the polymer chain that will be the final form, so that the adsorbent swells while adsorbing to the adsorbent. Can be kept low.
 架橋処理(I)のように、ビニル化合物のラジカル重合時に共重合成分としてジビニル化合物を共存させ、重合と同時に架橋処理を行う手法では、重合方法や、求める吸着材の形状によっては重合制御が難しく、ゲル化等の問題を誘発する可能性があるため、架橋処理(II)により高分子成分Pの吸着官能基を架橋する手法の方がより好適である。以下、架橋処理(II)について、詳述する。 As in the case of the crosslinking treatment (I), in the technique in which a divinyl compound is present as a copolymerization component at the time of radical polymerization of the vinyl compound and the crosslinking treatment is performed simultaneously with the polymerization, the polymerization control is difficult depending on the polymerization method and the shape of the adsorbent to be obtained. Since there is a possibility of inducing problems such as gelation, the method of crosslinking the adsorption functional group of the polymer component P 1 by the crosslinking treatment (II) is more preferable. Hereinafter, the crosslinking treatment (II) will be described in detail.
 架橋処理(II)では、高分子成分Pを架橋剤が溶解または分散した処理液に浸漬、攪拌し処理されることが好ましい。
 吸着反応基による吸着性を維持しつつ、吸着材全体の膨潤性を維持する観点から、架橋剤を有する架橋処理液の濃度、温度、液量および処理時間は、高分子成分P(および必要に応じて付加される基材成分)の種類に応じて、適宜設定することができる。また、溶媒は特に限定されず、架橋剤が溶解または分散しやすい溶媒を適宜選択することができるが、後処理が容易であることから、水性溶媒(特に水)が好適に用いられる。
In the crosslinking treatment (II), the polymer component P 1 is preferably treated by being immersed and stirred in a treatment solution in which a crosslinking agent is dissolved or dispersed.
From the viewpoint of maintaining the swellability of the entire adsorbent while maintaining the adsorptive properties by the adsorptive reactive groups, the concentration, temperature, liquid volume and treatment time of the crosslinking treatment liquid having a crosslinking agent are determined based on the polymer component P 1 (and necessary Depending on the kind of the base material component to be added according to the above, it can be appropriately set. The solvent is not particularly limited, and a solvent in which the crosslinking agent is easily dissolved or dispersed can be selected as appropriate. However, an aqueous solvent (particularly water) is preferably used because post-treatment is easy.
 架橋剤の種類に応じて、反応温度は適宜設定することが可能であるが、例えば、反応率を向上させるとともに、付加反応後の高分子の膨潤性を適度な範囲にできる観点から、例えば、架橋処理を行う温度は、例えば、30~100℃程度、好ましくは35~90℃程度であってもよい。 Depending on the type of the crosslinking agent, the reaction temperature can be appropriately set.For example, from the viewpoint of improving the reaction rate and allowing the swelling property of the polymer after the addition reaction to be in an appropriate range, for example, The temperature for performing the crosslinking treatment may be, for example, about 30 to 100 ° C., preferably about 35 to 90 ° C.
 吸着官能基への架橋性を有する限り、各種架橋剤を使用することが可能であり、例えば、アミノ基、イソシアネート基、エポキシ基、カルボジイミド基、アゼチジニウム基のいずれか一つ以上を有する架橋剤(または架橋成分)が挙げられる。これらの中でも、一般的な吸着官能基との反応性に優れることから、特にアゼチジニウム基、イソシアネート基、アミノ基、エポキシ基などが好適に用いられる。架橋剤は、一種を単独で用いてもよく、二種以上を併用してもよい。 Various cross-linking agents can be used as long as they have cross-linkability to the adsorptive functional group. For example, cross-linking agents having any one or more of amino group, isocyanate group, epoxy group, carbodiimide group, and azetidinium group ( Or a crosslinking component). Among these, azetidinium group, isocyanate group, amino group, epoxy group and the like are particularly preferably used because of excellent reactivity with general adsorption functional groups. A crosslinking agent may be used individually by 1 type, and may use 2 or more types together.
 アミノ基を有する架橋剤としては、エチレンジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、イソホロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド等のジアミン化合物;ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、ポリビニルアミン、ポリアリルアミン、ポリエチレンイミン、ポリアミドアミン等のポリアミン化合物、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、アジピン酸ジヒドラジド、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、ポリアクリル酸ヒドラジド、炭酸ヒドラジン等のヒドラジン化合物が挙げられる。 Examples of the crosslinking agent having an amino group include ethylenediamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, isophoronediamine, 1,3-bisaminomethylcyclohexane. Diamine compounds such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, dicyandiamide; diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, polyvinylamine, polyallylamine, polyethyleneimine, polyamidoamine Polyamine compounds such as oxalic acid dihydrazide, malonic acid dihydrazide, succinic acid dihydrazide, glutaric acid dihydrazide, adipic acid dihydrazide, 1,3 Bis (hydrazinocarboethyl) -5-isopropyl hydantoin, polyacrylic acid hydrazide, and hydrazine compounds such as hydrazine carbonate is.
 イソシアネート基を有する架橋剤としては、旭化成ケミカルズ株式会社製「デュラネート」(WB40-100、WB40-80D、WE50-100、WT30-100、WT20-100等);トリレンジイソシアネート(TDI);水素化TDI;トリメチロールプロパン-TDIアダクト(例えばバイエル社製、「DesmodurL」);トリフェニルメタントリイソシアネート;メチレンビスジフェニルイソシアネート(MDI);水素化MDI;重合MDI;ヘキサメチレンジイソシアネート;キシリレンジイソシアネート;4,4-ジシクロヘキシルメタンジイソシアネート;イソホロンジイソシアネート等が挙げられる。乳化剤を用いて水に分散させたイソシアネートも使用できる。 As a crosslinking agent having an isocyanate group, “Duranate” manufactured by Asahi Kasei Chemicals Corporation (WB40-100, WB40-80D, WE50-100, WT30-100, WT20-100, etc.); Tolylene diisocyanate (TDI); Hydrogenated TDI Trimethylolpropane-TDI adduct (for example, “DesmodurL” manufactured by Bayer); triphenylmethane triisocyanate; methylenebisdiphenyl isocyanate (MDI); hydrogenated MDI; polymerized MDI; hexamethylene diisocyanate; xylylene diisocyanate; -Dicyclohexylmethane diisocyanate; isophorone diisocyanate and the like. Isocyanates dispersed in water using an emulsifier can also be used.
 エポキシ基を有する架橋剤としては、ナガセケムテックス株式会社製「デナコール」(EX-611、EX-612、EX-614、EX-614B、EX-622、EX-512、EX-521、EX-411、EX-421、EX-313、EX-314、EX-321、EX-201、EX-211、EX-212、EX-252、EX-810、EX-811、EX-850、EX-851、EX-821、EX-830、EX-832、EX-841、EX-861、EX-911、EX-941、EX-920、EX-931、EX-721、EX-203、EX-711、EX-221等)、ビスフェノールAジグリシジルエーテル、ビスフェノールAジβメチルグリシジルエーテル、ビスフェノールFジグリシジルエーテル、テトラヒドロキシフェニルメタンテトラグリシジルエーテル、レゾルシノールジグリシジルエーテル、ブロム化ビスフェノールAジグリシジルエーテル、クロル化ビスフェノールAジグリシジルエーテル、水素添加ビスフェノールAジグリシジルエーテル、ビスフェノールAアルキレンオキサイド付加物のジグリシジルエーテル、ノボラックグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル、ペンタエリスリトールジグリシジルエーテル、エポキシウレタン樹脂等のグリシジルエーテル型;p-オキシ安息香酸グリシジルエーテル・エステル等のグリシジルエーテル・エステル型;フタル酸ジグリシジルエステル、テトラハイドロフタル酸ジグリシジルエステル、ヘキサハイドロフタル酸ジグリシジルエステル、アクリル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステル等のグリシジルエステル型;グリシジルアニリン、テトラグリシジルジアミノジフェニルメタン、トリグリシジルイソシアヌレート、トリグリシジルアミノフェノール等のグリシジルアミン型;エポキシ化ポリブタジエン、エポキシ化大豆油等の線状脂肪族エポキシ樹脂;3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシシクロヘキサン)カルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート、ビニルシクロヘキセンジエポキサイド、ジシクロペンタジエンオキサイド、ビス(2,3-エポキシシクロペンチル)エーテル、リモネンジオキサイド等の脂環族エポキシ樹脂等が挙げられる。 Examples of the crosslinking agent having an epoxy group include “Denacol” (EX-611, EX-612, EX-614, EX-614B, EX-622, EX-512, EX-521, EX-411, manufactured by Nagase ChemteX Corporation. , EX-421, EX-313, EX-314, EX-321, EX-201, EX-211, EX-212, EX-252, EX-810, EX-811, EX-850, EX-851, EX -821, EX-830, EX-832, EX-841, EX-861, EX-911, EX-941, EX-920, EX-931, EX-721, EX-203, EX-711, EX-221 Etc.), bisphenol A diglycidyl ether, bisphenol A diβ methyl glycidyl ether, bisphenol F diglycidyl ether , Tetrahydroxyphenylmethane tetraglycidyl ether, resorcinol diglycidyl ether, brominated bisphenol A diglycidyl ether, chlorinated bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, diglycidyl ether of bisphenol A alkylene oxide adduct, novolak Glycidyl ether type such as glycidyl ether, polyalkylene glycol diglycidyl ether, glycerin triglycidyl ether, pentaerythritol diglycidyl ether, epoxy urethane resin; glycidyl ether ester type such as p-oxybenzoic acid glycidyl ether; ester; diphthalic acid Glycidyl ester, tetrahydrophthalic acid diglycidyl ester, hexahydro Glycidyl ester types such as phthalic acid diglycidyl ester, acrylic acid diglycidyl ester, dimer acid diglycidyl ester; glycidyl amine types such as glycidyl aniline, tetraglycidyl diaminodiphenylmethane, triglycidyl isocyanurate, triglycidyl aminophenol; epoxidized polybutadiene, Linear aliphatic epoxy resins such as epoxidized soybean oil; 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl (3,4 Epoxycyclohexane) carboxylate, bis (3,4-epoxy-6-methylcyclohexylmethyl) adipate, vinylcyclohexene diepoxide, dicyclopentadiene oxide , Bis (2,3-epoxy cyclopentyl) ether, alicyclic epoxy resins such as limonene oxide.
 カルボジイミド基を有する架橋剤としては、日清紡ケミカル株式会社製「カルボジライト」(SV-02、V-02、V-02-L2、V-04、E-01、E-02)が挙げられる。 Examples of the crosslinking agent having a carbodiimide group include “Carbodilite” (SV-02, V-02, V-02-L2, V-04, E-01, E-02) manufactured by Nisshinbo Chemical Co., Ltd.
 アゼチジニウム基を有する架橋剤としては、ポリアミド・エピクロロヒドリン樹脂、ポリアミン・エピクロロヒドリン樹脂などが挙げられ、例えば、星光PMC株式会社製(WS4002、WS4020、WS4024、WS4030、WS4046、WS4010、CP8970)などが挙げられる。 Examples of the crosslinking agent having an azetidinium group include polyamide / epichlorohydrin resin, polyamine / epichlorohydrin resin, and the like, for example, manufactured by Seiko PMC Co., Ltd. (WS4002, WS4020, WS4024, WS4030, WS4046, WS4010, CP8970). ) And the like.
(吸着材)
 本発明の吸着材は、エチレン-ビニルアルコール系共重合体を基材とし、該基材にグラフト鎖として(メタ)アクリル酸エステル骨格を構造単位とし吸着官能基を有する高分子成分Pが導入されており、該高分子成分Pが架橋成分により架橋されている。
(Adsorbent)
The adsorbent of the present invention has an ethylene-vinyl alcohol copolymer as a base material, and a polymer component P 1 having a (meth) acrylate skeleton as a structural unit as a graft unit and having an adsorptive functional group is introduced into the base material. are, the polymer component P 1 is crosslinked by a crosslinking component.
 好ましくは、水との親和性を保ちつつ、熱水下での膨潤性を制御する観点から、下記式(I)で表される膨潤度が、例えば50~200%であってもよい。
膨潤度={(吸着材を70℃の熱水中で10分振とうし、含水させた後の質量)-(含水させた吸着材の絶乾質量)}/(含水させた吸着材の絶乾質量)×100(%)・・・(I)
 好ましくは、膨潤度は150%以下、さらに好ましくは130%以下である。また、膨潤度は好ましくは60%以上、さらに好ましくは70%以上である。なお、この膨潤度は、後述する実施例に記載された方法により測定された値を示す。
Preferably, the degree of swelling represented by the following formula (I) may be, for example, 50 to 200% from the viewpoint of controlling swelling under hot water while maintaining affinity with water.
Swelling degree = {(mass after the adsorbent is shaken in hot water at 70 ° C. for 10 minutes to contain water) − (absolute dry mass of the adsorbed adsorbent)} / (absorption of the adsorbed adsorbent) (Dry mass) x 100 (%) (I)
Preferably, the degree of swelling is 150% or less, more preferably 130% or less. The degree of swelling is preferably 60% or more, and more preferably 70% or more. In addition, this swelling degree shows the value measured by the method described in the Example mentioned later.
 式(I)において、約70℃の熱水で吸着材を膨潤させる理由は、以下の点にある。すなわち、吸着回収操作においては、熱水等の高温媒体に接触させる場合があり、該操作時に樹脂が最も膨潤し易い。そのため、吸着回収効率を向上させる観点からは、特に高温での膨潤特性を制御することが重要である。 In the formula (I), the reason for swelling the adsorbent with hot water of about 70 ° C. is as follows. That is, in the adsorption and recovery operation, it may be brought into contact with a high-temperature medium such as hot water, and the resin is most easily swollen during the operation. For this reason, it is important to control the swelling characteristics at high temperatures from the viewpoint of improving the adsorption and recovery efficiency.
(吸着材の形状)
 本発明の吸着材の形状は特に限定されず、適用箇所に応じて、繊維やその集合体である織編物や不織布、粒子、シート、中空糸、およびフィルムあるいはそれらの加工品など各種の形状から選択することができる。これらのうち、金属イオンなどの被吸着物との吸着性を向上するとともに、カラムなどの閉塞空間において充填しやすい観点から、粒子状であることが好ましい。粒子状である場合、吸着材は、球状であっても、非球状(例えば異形粒子状)であってもよい。
(Adsorbent shape)
The shape of the adsorbent of the present invention is not particularly limited, depending on the application location, from various shapes such as fibers and aggregates of woven and knitted fabrics and nonwoven fabrics, particles, sheets, hollow fibers, and films or processed products thereof. You can choose. Among these, the particles are preferably in the form of particles from the viewpoint of improving the adsorptivity with an object to be adsorbed such as metal ions and being easily packed in a closed space such as a column. When it is particulate, the adsorbent may be spherical or non-spherical (for example, irregularly shaped particles).
 吸着材が粒子状の場合、適宜粉砕等により目的の粒子径に調整すれば良いが、粒子径は10μm~2000μmが好ましく、30μm~1500μmがさらに好ましく、40μm~1000μmが最も好ましい。粒子径が10μm以下の場合、微粉が舞い易いなど取り扱いが難しい。粒子径が2000μm以上の場合、吸着性能が充分に得られないことがある。なお粒子径は、篩分けにより分級された値を示す。 When the adsorbent is in the form of particles, it may be appropriately adjusted to the desired particle size by pulverization or the like, but the particle size is preferably 10 μm to 2000 μm, more preferably 30 μm to 1500 μm, and most preferably 40 μm to 1000 μm. When the particle diameter is 10 μm or less, it is difficult to handle because the fine powder is likely to fly. When the particle size is 2000 μm or more, sufficient adsorption performance may not be obtained. In addition, a particle diameter shows the value classified by sieving.
 また、吸着材は多孔質体であってもよく、その場合、表面に形成される細孔は、その長径の平均値が0.01μm~20μm程度であってもよく、好ましくは0.05μm~10μm、より好ましくは0.1μm~5μm、さらに好ましくは0.2μm~5μm程度であってもよい。これら細孔の長径の平均値は、後述する実施例に記載した方法により測定される値である。 The adsorbent may be a porous body. In this case, the pores formed on the surface may have an average value of the major axis of about 0.01 μm to 20 μm, preferably 0.05 μm to It may be about 10 μm, more preferably about 0.1 μm to 5 μm, still more preferably about 0.2 μm to 5 μm. The average value of the major axis of these pores is a value measured by the method described in the examples described later.
 本発明の吸着材は、本発明の効果を阻害しない範囲内で、無機微粒子、光安定剤、酸化防止剤などの各種添加剤を含んでいてもよい。 The adsorbent of the present invention may contain various additives such as inorganic fine particles, light stabilizers, antioxidants and the like within a range not impairing the effects of the present invention.
 本発明の吸着材は、吸着官能基の種類に応じて様々な被吸着物を吸着でき、その後、被吸着物を効率よく溶離して回収することが可能である。好ましい被吸着物としては、例えば、各種金属(例えば、白金族金属、金、銀、銅、ニッケル、クロム、バナジウム、コバルト、鉛、亜鉛等)またはこれらの金属化合物を含有する溶液からの有価金属回収や、工場廃水、鉱山廃水、温泉水等に含まれる有害金属(例えば、水銀、カドミウムなど)の除去などに利用することができる。 The adsorbent of the present invention can adsorb various objects to be adsorbed according to the type of adsorbing functional group, and can then efficiently elute and recover the objects to be adsorbed. Preferred adsorbents include, for example, various metals (for example, platinum group metals, gold, silver, copper, nickel, chromium, vanadium, cobalt, lead, zinc, etc.) or valuable metals from solutions containing these metal compounds. It can be used for recovery and removal of harmful metals (for example, mercury, cadmium, etc.) contained in factory wastewater, mine wastewater, hot spring water, and the like.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[膨潤度]
 予め乾燥させた粒子0.3gを70℃の熱水20gに添加し、100rpmで10分振とうした。ろ過して粒子を回収し、表面に付着した水をふき取った後、含水粒子の質量を測定した。その後、粒子を40℃の真空乾燥機で24時間真空乾燥し、絶乾粒子の質量を測定した。以下に示す式に従い算出した。
 膨潤度[%]={(含水粒子質量[g])-(絶乾粒子質量[g])}/(絶乾粒子質量[g])×100
[Swelling degree]
0.3 g of dried particles was added to 20 g of hot water at 70 ° C. and shaken at 100 rpm for 10 minutes. The particles were collected by filtration and the water adhering to the surface was wiped off, and then the mass of the water-containing particles was measured. Thereafter, the particles were dried in a vacuum dryer at 40 ° C. for 24 hours, and the mass of the absolutely dry particles was measured. Calculation was performed according to the following formula.
Swelling degree [%] = {(hydrous particle mass [g]) − (absolute dry particle mass [g])} / (absolute dry particle mass [g]) × 100
[吸着官能基の算出方法]
 吸着官能基を導入する反応を行う前後の質量変化をWとする。以下に示す式に従い算出した。
 吸着官能基量[mmol/g]={(反応基質が有する吸着官能基数)×(W[g]/反応基質分子量[g/mol])×1000}/反応後の樹脂粒子質量[g]
[Calculation method of adsorption functional group]
Let W be the mass change before and after the reaction for introducing the adsorptive functional group. Calculation was performed according to the following formula.
Adsorption functional group amount [mmol / g] = {(Number of adsorption functional groups possessed by reaction substrate) × (W [g] / reaction substrate molecular weight [g / mol]) × 1000} / resin particle mass after reaction [g]
[グラフト率]
 以下に示す式に従い算出した。
 グラフト率[%]=100×{(反応後のグラフト体重量)-(反応前の基材樹脂重量)}/(反応前の基材樹脂重量)
[Graft ratio]
Calculation was performed according to the following formula.
Graft ratio [%] = 100 × {(weight of graft body after reaction) − (base resin weight before reaction)} / (base resin weight before reaction)
[樹脂純分]
 以下に示す式に従い算出した。
 樹脂純分[g]=含水樹脂重量[g]×固形分濃度[質量%]/100
なお、固形分濃度は、含水樹脂0.2gを計量し、100℃熱風乾燥機で6時間乾燥させた後の乾燥重量から求めた値である。
[Pure resin]
Calculation was performed according to the following formula.
Resin purity [g] = hydrous resin weight [g] × solid content concentration [mass%] / 100
In addition, solid content concentration is the value calculated | required from the dry weight after weighing | cleaning water-containing resin 0.2g and making it dry with a 100 degreeC hot air dryer for 6 hours.
[細孔の長径の平均値の算出]
 走査型電子顕微鏡を用い乾燥粒子表面を観察した。表面に形成されている細孔から任意に50個選択し、それぞれの細孔の長径を計測した。50個の長径を平均し、平均値を導出した。但し、1nm以下の場合、傷、付着物等との区別がつかないため、選択から除外した。また、乾燥粒子は、熱風乾燥機にて100℃で3時間乾燥させることにより調製した。
[Calculation of average value of major axis of pores]
The dry particle surface was observed using a scanning electron microscope. Arbitrary 50 pores were selected from the pores formed on the surface, and the major axis of each pore was measured. The 50 major axes were averaged to derive an average value. However, in the case of 1 nm or less, since it cannot be distinguished from scratches, deposits, etc., it was excluded from the selection. The dried particles were prepared by drying at 100 ° C. for 3 hours with a hot air dryer.
[Cu吸着試験]
 吸着材をイオン交換水に浸漬し、室温で1時間振とうし、吸着材の水分散液を調製した。該分散液をメスシリンダーに添加し、0.2ml(=充填体積)まで充填した。次に、充填された分散液をろ過した後3000rpmで5分遠心脱水することで、吸着材の含水粒子を得た。該含水粒子全量を、Cu濃度30ppmの0.001N硫酸100mLに投入し、23℃で1時間攪拌した。その後、上澄み1mLをサンプリングし、50倍に希釈した後、ICP発光分析装置(日本ジャーレルアッシュ製 IRIS-AP)にて測定した。測定した金属濃度をC(ppm)とし、以下の式より、金属吸着率を求めた。
 金属吸着率=[1-(C×50/100)]×100 (%)
[Cu adsorption test]
The adsorbent was immersed in ion-exchanged water and shaken at room temperature for 1 hour to prepare an aqueous dispersion of the adsorbent. The dispersion was added to a graduated cylinder and filled to 0.2 ml (= fill volume). Next, the filled dispersion was filtered and then subjected to centrifugal dehydration at 3000 rpm for 5 minutes to obtain water-containing particles of the adsorbent. The entire amount of the water-containing particles was put into 100 mL of 0.001N sulfuric acid having a Cu concentration of 30 ppm and stirred at 23 ° C. for 1 hour. Thereafter, 1 mL of the supernatant was sampled, diluted 50 times, and then measured with an ICP emission analyzer (IRIS-AP manufactured by Nippon Jarrell Ash). The measured metal concentration was C (ppm), and the metal adsorption rate was determined from the following formula.
Metal adsorption rate = [1− (C × 50/100)] × 100 (%)
[Pt吸着試験]
 吸着材を3Nの塩酸に浸漬し、室温で1時間振とうし、吸着材の塩酸分散液を調製した。該分散液をメスシリンダーに添加し、3ml(=充填体積)まで充填した。次に、充填された分散液をろ過し、水洗した後3000rpmで5分遠心脱水することで、吸着材の含水粒子を得た。該含水粒子全量を、Pt濃度100ppmの3N塩酸100mLに投入し、23℃で1時間攪拌した。その後、上澄み1mLをサンプリングし、50倍に希釈した後、ICP発光分析装置(日本ジャーレルアッシュ製 IRIS-AP)にて測定した。測定した金属濃度をC(ppm)とし、以下の式より、金属吸着率を求めた。
金属吸着率=[1-(C×50/100)]×100 (%)
[Pt adsorption test]
The adsorbent was immersed in 3N hydrochloric acid and shaken at room temperature for 1 hour to prepare a hydrochloric acid dispersion of the adsorbent. The dispersion was added to a graduated cylinder and filled to 3 ml (= fill volume). Next, the filled dispersion was filtered, washed with water, and then subjected to centrifugal dehydration at 3000 rpm for 5 minutes to obtain water-containing particles of the adsorbent. The entire amount of the water-containing particles was put into 100 mL of 3N hydrochloric acid having a Pt concentration of 100 ppm and stirred at 23 ° C. for 1 hour. Thereafter, 1 mL of the supernatant was sampled, diluted 50 times, and then measured with an ICP emission analyzer (IRIS-AP manufactured by Nippon Jarrell Ash). The measured metal concentration was C (ppm), and the metal adsorption rate was determined from the following formula.
Metal adsorption rate = [1− (C × 50/100)] × 100 (%)
[実施例1]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ製、F101)90質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA205)10質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径106μm~212μmの粒子を分級して得た。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の長径の平均値は0.27μmであった。該多孔質粒子に100kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、150分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ351%であった。さらに、該粒子を100℃に調整したイミノ二酢酸二ナトリウム水溶液に浸漬し、9時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでイミノ二酢酸基を有する吸着性複合体(高分子成分P1および基材成分の複合体)を得た。該吸着性複合体の官能基導入量は4.6mmol/gであり、架橋処理前の膨潤度は445%であった。得られた吸着性複合体を、60℃に調整したポリアミド・エピクロロヒドリン樹脂(星光PMC株式会社製架橋剤「WS4020」)水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.21μmであった。得られた吸着材を、篩を用いて粒子径106μm~425μmの粒子に分級し、膨潤度を評価した。また、Cu吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 1]
90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) at a temperature of 210 ° C. using a lab plast mill. Then, the compound obtained by cooling and solidifying the melt was pulverized and classified into particles having a particle diameter of 106 μm to 212 μm using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average value of the major axis of the pores of the porous particles was 0.27 μm. The porous particles were irradiated with 100 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and the graft ratio was evaluated to be 351%. Further, the particles were immersed in an aqueous disodium iminodiacetate adjusted to 100 ° C. and reacted for 9 hours. After the reaction, the particles were washed with water and dried to obtain an adsorbent complex (polymer complex P1 and substrate component complex) having an iminodiacetic acid group. The amount of functional groups introduced into the adsorptive complex was 4.6 mmol / g, and the degree of swelling before the crosslinking treatment was 445%. The obtained adsorptive complex was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameter of the pores of the adsorbent was 0.21 μm. The obtained adsorbent was classified into particles having a particle diameter of 106 μm to 425 μm using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例2]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ製、L104)80質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA205)20質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径212μm~425μmの粒子を分級して得た。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の長径の平均値は0.41μmであった。該多孔質粒子に30kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、90分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ258%であった。さらに、該粒子を100℃に調整したイミノ二酢酸二ナトリウム水溶液に浸漬し、9時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでイミノ二酢酸基を有する吸着性複合体を得た。該吸着性複合体の官能基導入量は3.8mmol/gであり、架橋処理前の膨潤度は290%であった。得られた吸着性複合体を、60℃に調整したポリアミド・エピクロロヒドリン樹脂(星光PMC株式会社製架橋剤「WS4020」)水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.39μmであった。得られた吸着材を、篩を用いて粒子径300μm~500μmの粒子に分級し、膨潤度を評価した。また、Cu吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 2]
A commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., L104) 80 parts by mass and a vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) 20 parts by mass were tested at a temperature of 210 ° C. using a lab plast mill. Then, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 212 μm to 425 μm were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average value of the major axis of the pores of the porous particles was 0.41 μm. The porous particles were irradiated with 30 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes to carry out graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 258%. Further, the particles were immersed in an aqueous disodium iminodiacetate adjusted to 100 ° C. and reacted for 9 hours. After the reaction, the particles were washed with water and dried to obtain an adsorbent complex having an iminodiacetic acid group. The amount of functional groups introduced into the adsorptive complex was 3.8 mmol / g, and the degree of swelling before the crosslinking treatment was 290%. The obtained adsorptive complex was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameters of the pores of the adsorbent was 0.39 μm. The obtained adsorbent was classified into particles having a particle diameter of 300 μm to 500 μm using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例3]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ社製、F101)90質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA403)10質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径212μm~425μmの粒子を分級して得た。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の長径の平均値は0.23μmであった。該多孔質粒子に60kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、140分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ310%であった。さらに、該粒子を80℃に調整したエチレンジアミンのイソプロパノール溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでアミノ基を有する吸着性複合体を得た。該吸着性複合体の官能基導入量は6.0mmol/gであり、架橋処理前の膨潤度は258%であった。得られた吸着性複合体を、40℃に調整したエチレングリコールジグリシジルエーテル水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.14μmであった。得られた吸着材を、篩を用いて粒子径300μm~500μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 3]
90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of a vinyl alcohol polymer (Kuraray Co., Ltd., PVA403) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 212 μm to 425 μm were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average value of the major axis of the pores of the porous particles was 0.23 μm. The porous particles were irradiated with 60 kGy of γ-rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 140 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 310%. Further, the particles were immersed in an isopropanol solution of ethylenediamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group. The amount of functional groups introduced into the adsorbent complex was 6.0 mmol / g, and the degree of swelling before the crosslinking treatment was 258%. The obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameter of the pores of the adsorbent was 0.14 μm. The obtained adsorbent was classified into particles having a particle diameter of 300 μm to 500 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例4]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ社製、E105)70質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA217)30質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径106μm~212μmの粒子を分級して得た。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の長径の平均値は0.89μmであった。該多孔質粒子に60kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、90分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ323%であった。さらに、該粒子を80℃に調整したN-(2-アミノエチル)ピペラジンのイソプロパノール溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでアミノ基を有する吸着性複合体を得た。該吸着性複合体の官能基導入量は7.9mmol/gであり、架橋処理前の膨潤度は321%であった。得られた吸着性複合体を、40℃に調整したエチレングリコールジグリシジルエーテル水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.71μmであった。得られた吸着材を、篩を用いて粒子径425μm~710μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 4]
70 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., E105) and 30 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA217) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle size of 106 μm to 212 μm were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average value of the major axis of the pores of the porous particles was 0.89 μm. The porous particles were irradiated with 60 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes to carry out graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated to be 323%. Further, the particles were immersed in an isopropanol solution of N- (2-aminoethyl) piperazine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group. The amount of the functional group introduced into the adsorptive complex was 7.9 mmol / g, and the degree of swelling before the crosslinking treatment was 321%. The obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameter of the pores of the adsorbent was 0.71 μm. The obtained adsorbent was classified into particles having a particle diameter of 425 μm to 710 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例5]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ社製、F101)90質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA205)10質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径106μm~212μmの粒子を分級して得た。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の長径の平均値は0.27μmであった。該多孔質粒子に100kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、150分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ374%であった。さらに、該粒子を80℃に調整したジエチレントリアミンのイソプロパノール溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでアミノ基を有する吸着性複合体を得た。該吸着性複合体の官能基導入量は8.7mmol/gであり、架橋処理前の膨潤度は389%であった。得られた吸着性複合体を、40℃に調整したエチレングリコールジグリシジルエーテル水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.20μmであった。得られた吸着材を、篩を用いて粒子径106μm~425μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 5]
90 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., F101) and 10 parts by mass of a vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) were heated at 210 ° C. using a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle size of 106 μm to 212 μm were classified using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average value of the major axis of the pores of the porous particles was 0.27 μm. The porous particles were irradiated with 100 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 374%. Further, the particles were immersed in an isopropanol solution of diethylenetriamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group. The amount of functional groups introduced into the adsorptive complex was 8.7 mmol / g, and the degree of swelling before the crosslinking treatment was 389%. The obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average long diameter of the adsorbent pores was 0.20 μm. The obtained adsorbent was classified into particles having a particle diameter of 106 μm to 425 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例6]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ社製、E105)50質量部とビニルアルコール系重合体(株式会社クラレ社製、PVA205)50質量部をラボプラストミルにて、210℃の温度で3分間溶融混練した後、溶融物を冷却固化させたコンパウンドを粉砕し、篩を用いて粒子径1180μm~1400μmの粒子を作製した。さらに得られた粒子を100℃の熱水中で2時間攪拌してビニルアルコール系重合体のみを抽出し、多孔質なエチレン-ビニルアルコール系共重合体粒子を得た。該多孔質粒子の細孔の平均細孔径は1.56μmであった。該多孔質粒子に60kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、150分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ340%であった。さらに、該粒子を80℃に調整したジエチレントリアミンのイソプロパノール溶液に浸漬し、4時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることでアミノ基を有する吸着性複合体を得た。該吸着性複合体の官能基導入量は6.9mmol/gであり、架橋処理前の膨潤度は356%であった。得られた吸着性複合体を、40℃に調整したエチレングリコールジグリシジルエーテル水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は1.42μmであった。得られた吸着材を、篩を用いて粒子径2100μm~2400μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 6]
50 parts by mass of a commercially available ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd., E105) and 50 parts by mass of vinyl alcohol polymer (Kuraray Co., Ltd., PVA205) were mixed at 210 ° C. with a lab plast mill. After melt-kneading for 3 minutes at a temperature, the compound obtained by cooling and solidifying the melt was pulverized, and particles having a particle diameter of 1180 μm to 1400 μm were prepared using a sieve. Further, the obtained particles were stirred in hot water at 100 ° C. for 2 hours to extract only the vinyl alcohol polymer, thereby obtaining porous ethylene-vinyl alcohol copolymer particles. The average pore diameter of the pores of the porous particles was 1.56 μm. The porous particles were irradiated with 60 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 150 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and then the graft ratio was evaluated and found to be 340%. Further, the particles were immersed in an isopropanol solution of diethylenetriamine adjusted to 80 ° C. and reacted for 4 hours. After the reaction, the particles were washed with water and dried to obtain an adsorptive complex having an amino group. The functional group introduction amount of the adsorptive complex was 6.9 mmol / g, and the degree of swelling before the crosslinking treatment was 356%. The obtained adsorptive complex was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the major axis of the pores of the adsorbent was 1.42 μm. The obtained adsorbent was classified into particles having a particle diameter of 2100 μm to 2400 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例7]
 実施例1と同様にして得たイミノ二酢酸基を有する吸着性複合体を、60℃に調整したポリアミド・エピクロロヒドリン樹脂(星光PMC株式会社製架橋剤「WS4020」)水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.20μmであった。得られた吸着材を、篩を用いて粒子径106μm~425μmの粒子に分級し、膨潤度を評価した。また、Cu吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 7]
The adsorptive complex having iminodiacetic acid groups obtained in the same manner as in Example 1 was immersed in an aqueous solution of polyamide / epichlorohydrin resin (cross-linking agent “WS4020” manufactured by Seiko PMC Co., Ltd.) adjusted to 60 ° C., The reaction was carried out for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average long diameter of the adsorbent pores was 0.20 μm. The obtained adsorbent was classified into particles having a particle diameter of 106 μm to 425 μm using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[実施例8]
 実施例4と同様にして得たアミノ基を有する吸着性複合体を、40℃に調整したエチレングリコールジグリシジルエーテル水溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。吸着材の細孔の長径の平均値は0.69μmであった。得られた吸着材を、篩を用いて粒子径425μm~710μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Example 8]
The adsorptive complex having an amino group obtained in the same manner as in Example 4 was immersed in an aqueous ethylene glycol diglycidyl ether solution adjusted to 40 ° C. and allowed to react for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The average value of the long diameters of the pores of the adsorbent was 0.69 μm. The obtained adsorbent was classified into particles having a particle diameter of 425 μm to 710 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[比較例1]
 架橋処理を実施しなかったこと以外は実施例1と同様にして、目的の吸着材を得た(官能基導入量5.04.6mmol/g)。吸着材の細孔の長径の平均値は0.20μmであった。得られた吸着材を、篩を用いて粒子径106μm~425μmの粒子に分級し、膨潤度を評価した。また、Cu吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Comparative Example 1]
The target adsorbent was obtained in the same manner as in Example 1 except that the crosslinking treatment was not performed (functional group introduction amount: 5.04.6 mmol / g). The average long diameter of the adsorbent pores was 0.20 μm. The obtained adsorbent was classified into particles having a particle diameter of 106 μm to 425 μm using a sieve, and the degree of swelling was evaluated. In addition, a Cu adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[比較例2]
 架橋処理を実施しなかったこと以外は実施例5と同様にして、目的の吸着材を得た(官能基導入量10.18.7mmol/g)。吸着材の細孔の長径の平均値は0.19μmであった。得られた吸着材を、篩を用いて粒子径106μm~425μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Comparative Example 2]
The target adsorbent was obtained in the same manner as in Example 5 except that the crosslinking treatment was not performed (functional group introduction amount: 10.18.7 mmol / g). The average long diameter of the adsorbent pores was 0.19 μm. The obtained adsorbent was classified into particles having a particle diameter of 106 μm to 425 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
[比較例3]
 市販のエチレン-ビニルアルコール系共重合体(株式会社クラレ社製、E105)を粉砕し、篩を用いて粒子径425μm~710μmの粒子を作製した。該粒子に10kGyのγ線を照射し、80℃窒素置換したグリシジルメタクリレートのイソプロパノール溶液に浸漬し、90分攪拌しグラフト重合を実施した。その後、得られた粒子をメタノールで洗浄し乾燥した後、グラフト率を評価したところ11%であった。さらに、該粒子を80℃に調整したエチレンジアミンのイソプロパノール溶液に浸漬し、1時間反応させた。反応後、該粒子を水で洗浄し、乾燥させることで目的の吸着材を得た。該吸着材の官能基導入量は1.2mmol/gであった。得られた吸着材を、篩を用いて粒子径500μm~710μmの粒子に分級し、膨潤度を評価した。また、Pt吸着試験を行い、金属吸着性能を評価した。粒子組成及び性能評価結果を表1に示す。
[Comparative Example 3]
A commercially available ethylene-vinyl alcohol copolymer (E105, manufactured by Kuraray Co., Ltd.) was pulverized, and particles having a particle diameter of 425 μm to 710 μm were prepared using a sieve. The particles were irradiated with 10 kGy of γ rays, immersed in an isopropanol solution of glycidyl methacrylate substituted with nitrogen at 80 ° C., and stirred for 90 minutes for graft polymerization. Thereafter, the obtained particles were washed with methanol and dried, and the graft ratio was evaluated to be 11%. Further, the particles were immersed in an isopropanol solution of ethylenediamine adjusted to 80 ° C. and reacted for 1 hour. After the reaction, the particles were washed with water and dried to obtain the target adsorbent. The amount of functional group introduced into the adsorbent was 1.2 mmol / g. The obtained adsorbent was classified into particles having a particle diameter of 500 to 710 μm using a sieve, and the degree of swelling was evaluated. In addition, a Pt adsorption test was performed to evaluate metal adsorption performance. Table 1 shows the particle composition and performance evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~8に示すように、本発明の吸着材は、金属イオンに対して良好な吸着性を示している。特に、実施例1~5では、吸着官能基の量を高くしつつ、膨潤性を高度に制御されているため、金属イオンに対して特に良好な吸着性を示している。このような実施例の結果から、本発明の吸着材は、例えば金属イオンなどの被吸着物を分離回収する際などに非常に有効である。 As shown in Examples 1 to 8, the adsorbent of the present invention exhibits good adsorptivity to metal ions. In particular, in Examples 1 to 5, since the swelling property is highly controlled while increasing the amount of the adsorptive functional group, particularly good adsorptivity to metal ions is shown. From the results of these examples, the adsorbent of the present invention is very effective when separating and recovering an adsorbed material such as metal ions.
 比較例1、2のように、架橋処理をしていない吸着材では吸水による膨潤が激しく、充填可能な吸着材量が少なくなることから単位体積あたりの吸着性能が著しく低下する。比較例3のように吸着官能基量を減らした場合、膨潤を制御することは容易だが吸着性能が著しく低下する。 As in Comparative Examples 1 and 2, the adsorbent that has not been subjected to the crosslinking treatment is swelled by water absorption, and the amount of adsorbent that can be filled is reduced, so that the adsorption performance per unit volume is significantly reduced. When the amount of the adsorbing functional group is reduced as in Comparative Example 3, it is easy to control the swelling, but the adsorption performance is remarkably lowered.
 本発明によれば、吸水による樹脂膨潤を高度に制御しながら、高い吸着性をもつ、工業的に使用可能な新規な吸着材を提供することができる。該吸着材は、各種被吸着物、例えば、白金族金属、金、銀、銅、ニッケル、クロム、バナジウム、コバルト、鉛、亜鉛、水銀、カドミウム等のイオンを効率よく回収することができる。 According to the present invention, it is possible to provide a new adsorbent that can be used industrially and has high adsorbability while highly controlling resin swelling due to water absorption. The adsorbent can efficiently recover various objects to be adsorbed, such as ions of platinum group metals, gold, silver, copper, nickel, chromium, vanadium, cobalt, lead, zinc, mercury, cadmium and the like.
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments of the present invention have been described. However, various additions, modifications, or deletions are possible without departing from the spirit of the present invention, and such modifications are also included in the scope of the present invention. It is.

Claims (12)

  1.  エチレン-ビニルアルコール系共重合体を基材とし、該基材にグラフト鎖として(メタ)アクリル酸エステル骨格を構造単位とし吸着官能基を有する高分子成分Pが導入されており、該高分子成分Pが架橋成分により架橋されている、吸着材。 An ethylene-vinyl alcohol copolymer is used as a base material, and a polymer component P 1 having a (meth) acrylic acid ester skeleton as a structural unit and having an adsorptive functional group as a graft chain is introduced into the base material. component P 1 is crosslinked by a crosslinking component, adsorbent.
  2.  請求項1の吸着材において、下記式(I)で表される膨潤度が50~200%である吸着材。
    膨潤度={(吸着材を70℃の熱水中で10分振とうし、含水させた後の質量)-(含水させた吸着材の絶乾質量)}/(含水させた吸着材の絶乾質量)×100(%)・・・(I)
    The adsorbent according to claim 1, wherein the degree of swelling represented by the following formula (I) is 50 to 200%.
    Swelling degree = {(mass after the adsorbent is shaken in hot water at 70 ° C. for 10 minutes to contain water) − (absolute dry mass of the adsorbed adsorbent)} / (absorption of the adsorbed adsorbent) (Dry mass) x 100 (%) (I)
  3.  請求項1または2の吸着材において、架橋成分が、アミノ基、イソシアネート基、エポキシ基、カルボジイミド基、およびアゼチジニウム基からなる群から選択されたいずれか一つ以上の官能基を有する吸着材。 The adsorbent according to claim 1 or 2, wherein the crosslinking component has any one or more functional groups selected from the group consisting of an amino group, an isocyanate group, an epoxy group, a carbodiimide group, and an azetidinium group.
  4.  請求項1~3のいずれか一項の吸着材において、吸着官能基が、グルカミン基、ジオール基、ポリオール基、ポリオールと窒素原子とから構成される基、イミノジ酢酸基、アミノ基、アンモニウム基、アミドキシム基、ジチオカルバミン酸基、チオウレア基、イソチオウレア基、リン酸基、ホスホン酸基からなる群から選択されたいずれか一つ以上の官能基である吸着材。 The adsorbent according to any one of claims 1 to 3, wherein the adsorptive functional group is a glucamine group, a diol group, a polyol group, a group composed of a polyol and a nitrogen atom, an iminodiacetic acid group, an amino group, an ammonium group, An adsorbent that is at least one functional group selected from the group consisting of an amidoxime group, a dithiocarbamic acid group, a thiourea group, an isothiourea group, a phosphoric acid group, and a phosphonic acid group.
  5.  請求項1~4のいずれか一項の吸着材において、吸着材が多孔質体であり、多孔質体の表面に形成された細孔の長径の平均値が0.01μm~20μmの範囲内にある吸着材。 The adsorbent according to any one of claims 1 to 4, wherein the adsorbent is a porous body, and an average value of major diameters of pores formed on the surface of the porous body is within a range of 0.01 µm to 20 µm. Some adsorbent.
  6.  請求項1~5のいずれか一項の吸着材において、吸着材が粒子状であり、粒子径の範囲が10~2000μmである吸着材。 The adsorbent according to any one of claims 1 to 5, wherein the adsorbent is in the form of particles and the particle diameter ranges from 10 to 2000 µm.
  7.  請求項1~6のいずれか一項の吸着材において、金属イオンを吸着するための吸着材。 The adsorbent according to any one of claims 1 to 6, which adsorbs metal ions.
  8.  請求項1~7のいずれか一項に記載の吸着材の製造方法であって、
     エチレン-ビニルアルコール系共重合体を基材成分として準備する工程と、
     反応性を有する(メタ)アクリル酸エステル骨格を構造単位として有する高分子成分Pを、前記基材成分に、グラフト鎖として導入する高分子成分導入工程と、
     前記高分子成分Pに対して吸着官能基を導入し、(メタ)アクリル酸エステル骨格を構造単位として有するとともに、吸着官能基を有する高分子成分Pを得る吸着官能基導入工程と、
     前記高分子成分PまたはPに対して架橋処理を行う架橋工程と、
    を少なくとも備える吸着材の製造方法。
    A method for producing an adsorbent according to any one of claims 1 to 7,
    Preparing an ethylene-vinyl alcohol copolymer as a base component;
    A polymer component introduction step of introducing a polymer component P 0 having a reactive (meth) acrylate skeleton as a structural unit into the base material component as a graft chain;
    An adsorption functional group introduction step of introducing an adsorption functional group to the polymer component P 0 , having a (meth) acrylate skeleton as a structural unit, and obtaining a polymer component P 1 having an adsorption functional group;
    A crosslinking step of crosslinking the polymer component P 0 or P 1 ;
    A method for producing an adsorbent comprising at least
  9.  請求項8の製造方法において、架橋工程で、高分子成分P1に対して架橋処理を行う吸着材の製造方法。 The manufacturing method of claim 8, in the crosslinking step, the manufacturing method of adsorbent for performing crosslinking treatment on the polymer component P 1.
  10.  請求項8または9の製造方法において、基材成分に電離放射線を作用させグラフト鎖を導入する製造方法。 10. The production method according to claim 8 or 9, wherein ionizing radiation is allowed to act on the substrate component to introduce a graft chain.
  11.  請求項8~10のいずれか一項の製造方法において、高分子成分Pおよび基材成分の複合体中の吸着官能基濃度が、1.5mmol/g以上である製造方法。 The manufacturing method of any one of claims 8-10, a manufacturing method is adsorptive functional group concentration in the complex of the polymeric component P 1 and the substrate component is 1.5 mmol / g or more.
  12.  請求項8~10のいずれか一項の製造方法において、高分子成分導入工程で導入されるグラフト鎖のグラフト率が30~900質量%である製造方法。 11. The production method according to claim 8, wherein the graft ratio of the graft chain introduced in the polymer component introduction step is 30 to 900% by mass.
PCT/JP2014/069362 2013-08-01 2014-07-22 Adsorbent material and method for producing same WO2015016103A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160285 2013-08-01
JP2013160285 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016103A1 true WO2015016103A1 (en) 2015-02-05

Family

ID=52431639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069362 WO2015016103A1 (en) 2013-08-01 2014-07-22 Adsorbent material and method for producing same

Country Status (1)

Country Link
WO (1) WO2015016103A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080329A (en) * 2016-11-04 2018-05-24 学校法人福岡大学 Copolymer and method for producing copolymer, and plating aid containing the copolymer, and molding of polyethylene resin
WO2019131629A1 (en) * 2017-12-25 2019-07-04 日産化学株式会社 Metal removal agent and metal removal method for removing metal impurities in solution
US20210130522A1 (en) * 2019-10-31 2021-05-06 Daikin Industries, Ltd. Graft copolymer and soil resistant composition
WO2023149153A1 (en) * 2022-02-01 2023-08-10 三菱瓦斯化学株式会社 Platinum-group metal recovery agent and platinum-group metal recovery method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508804A (en) * 1990-07-10 1993-12-09 ザルトリウス アクチエンゲゼルシヤフト Porous non-granular convective permeable matrix
JPH0724314A (en) * 1993-07-08 1995-01-27 Asahi Chem Ind Co Ltd Chelate type ion adsorbing film and production thereof
JP2009013204A (en) * 2007-06-29 2009-01-22 Nhv Corporation Particulate cellulosic adsorbent material and method for producing the same
JP2009113034A (en) * 2007-10-16 2009-05-28 Kochi Prefecture Ion sorbent material and methods of manufacturing and using the same
JP2011224360A (en) * 2010-03-31 2011-11-10 Asahi Kasei Kuraray Medical Co Ltd Porous particle, manufacturing method and carrier of porous particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05508804A (en) * 1990-07-10 1993-12-09 ザルトリウス アクチエンゲゼルシヤフト Porous non-granular convective permeable matrix
JPH0724314A (en) * 1993-07-08 1995-01-27 Asahi Chem Ind Co Ltd Chelate type ion adsorbing film and production thereof
JP2009013204A (en) * 2007-06-29 2009-01-22 Nhv Corporation Particulate cellulosic adsorbent material and method for producing the same
JP2009113034A (en) * 2007-10-16 2009-05-28 Kochi Prefecture Ion sorbent material and methods of manufacturing and using the same
JP2011224360A (en) * 2010-03-31 2011-11-10 Asahi Kasei Kuraray Medical Co Ltd Porous particle, manufacturing method and carrier of porous particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080329A (en) * 2016-11-04 2018-05-24 学校法人福岡大学 Copolymer and method for producing copolymer, and plating aid containing the copolymer, and molding of polyethylene resin
JP7090869B2 (en) 2016-11-04 2022-06-27 学校法人福岡大学 Plating method of resin molded products, plating aids, and polyethylene-based resin molded products
WO2019131629A1 (en) * 2017-12-25 2019-07-04 日産化学株式会社 Metal removal agent and metal removal method for removing metal impurities in solution
CN111801158A (en) * 2017-12-25 2020-10-20 日产化学株式会社 Metal removing agent for removing metal impurities in solution and metal removing method
US20210130522A1 (en) * 2019-10-31 2021-05-06 Daikin Industries, Ltd. Graft copolymer and soil resistant composition
US11566095B2 (en) * 2019-10-31 2023-01-31 Daikin Industries. Ltd. Graft copolymer and soil resistant composition
WO2023149153A1 (en) * 2022-02-01 2023-08-10 三菱瓦斯化学株式会社 Platinum-group metal recovery agent and platinum-group metal recovery method

Similar Documents

Publication Publication Date Title
US11560438B2 (en) Porous polymeric cellulose prepared via cellulose crosslinking
JP5590594B2 (en) Chelating polymer compound-containing metal adsorbent
JP5045269B2 (en) Particulate cellulose-based adsorbent and method for producing the same
EP2915840A1 (en) Porous graft copolymer particles, method for producing same, and adsorbent material using same
JP5021540B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
EP2855010B1 (en) Graft copolymer functionalized article
JP5089420B2 (en) Monolithic organic porous body, monolithic organic porous ion exchanger, production method thereof and chemical filter
WO2015016103A1 (en) Adsorbent material and method for producing same
EP2319622A2 (en) Media for membrane ion exchange chromatography based on polymeric primary amines, sorption device containing that media, and chromatography scheme and purification method using the same.
JP2017037070A (en) Separating agent and liquid chromatography column
JP2008024912A (en) Granulated molded product of rare earth compound and method for producing the same
JP2020529917A (en) Removal of bacteria from drinking water by filtration
CN115121295A (en) Ion exchange composition comprising a composite of carrier particles, dispersant and electrostatically bound layered particles
JP2016209836A (en) Adsorbent
CN116764606B (en) BPA molecular imprinting PAN/MOF nanofiber polymer membrane and preparation method and application thereof
JP2015120873A (en) Low swellable composition and manufacturing method therefor
WO2015016102A1 (en) Adsorption filter and method for manufacturing same
JP2014114436A (en) Graft copolymer of ethylene-vinyl alcohol copolymer, manufacturing method thereof, and metal adsorbent with use of the same
WO2020230616A1 (en) Metal-adsorbing fibers and production method therefor
CN114177787A (en) Self-supporting nanofiber anion exchange chromatographic membrane and preparation method thereof
TW201321063A (en) Method for purifying protein
KR102325517B1 (en) Ion exchange powder
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
WO2014148608A1 (en) Composition exhibiting low swelling properties, and filter including said composition
JP6147162B2 (en) Graft copolymer of ethylene-vinyl alcohol copolymer, process for producing the same, and metal ion adsorbent using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14831430

Country of ref document: EP

Kind code of ref document: A1