WO2015015538A1 - Polarizing plate protection film, polarizing plate and liquid crystal display device - Google Patents

Polarizing plate protection film, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2015015538A1
WO2015015538A1 PCT/JP2013/006495 JP2013006495W WO2015015538A1 WO 2015015538 A1 WO2015015538 A1 WO 2015015538A1 JP 2013006495 W JP2013006495 W JP 2013006495W WO 2015015538 A1 WO2015015538 A1 WO 2015015538A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
protective film
polarizing plate
liquid crystal
polarizer
Prior art date
Application number
PCT/JP2013/006495
Other languages
French (fr)
Japanese (ja)
Inventor
康敏 伊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020167001479A priority Critical patent/KR20160021859A/en
Priority to JP2015529228A priority patent/JPWO2015015538A1/en
Priority to CN201380078496.8A priority patent/CN105408779A/en
Publication of WO2015015538A1 publication Critical patent/WO2015015538A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate protective film, a polarizing plate, and a liquid crystal display device.
  • liquid crystal display devices such as smart phones and tablets are widely used. These liquid crystal display devices are required to be thin.
  • the liquid crystal display device usually has a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • the polarizing plate may have a polarizer, a retardation film (F2 or F3) disposed on the liquid crystal cell side, and a protective film (F1 or F4) disposed on the opposite side of the liquid crystal cell.
  • a cellulose triacetate film As the protective film (F1 or F4), a cellulose triacetate film (TAC) is used because it is transparent and has low birefringence and is easily adhered to a polarizer through water glue.
  • TAC cellulose triacetate film
  • the cellulose triacetate film has high moisture permeability, when exposed to high humidity, the dimensional change of the polarizer is likely to occur due to moisture that has passed through the film.
  • the dimensional change of the polarizer occurs when the polarizer contains water and expands under high humidity; and the water escapes and contracts under low humidity.
  • Such a dimensional change of the polarizer tends to cause a bend of the panel (polarizing plate / liquid crystal cell / polarizing plate laminate); in particular, it becomes more prominent as the glass plate of the liquid crystal cell is thinner. Such a panel bend tends to cause display unevenness of the liquid crystal display device.
  • a protective film having low moisture permeability for example, a cyclic olefin resin film (for example, Patent Document 1), an acrylic resin film (for example, Patent Documents 2 and 3), a film containing an acrylic resin and a cellulose ester (for example, Patent Document 4 and 5) etc. are proposed.
  • a cyclic olefin resin film for example, Patent Document 1
  • an acrylic resin film for example, Patent Documents 2 and 3
  • a film containing an acrylic resin and a cellulose ester for example, Patent Document 4 and 5 etc.
  • the polarizing plate can be obtained by bonding a protective film and a polarizer through water paste, and then drying the obtained laminate.
  • the moisture permeability of the protective film is low
  • the laminate is dried, the moisture of the water paste taken into the protective film is difficult to escape and the polarizer is liable to deteriorate.
  • a red defect called reddish is likely to occur in the obtained polarizing plate.
  • the protective film has high mechanical strength and little dimensional change due to water content; in particular, small dimensional change due to water content.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a polarizing plate protective film that has little dimensional change due to water content and can suppress deterioration of a polarizer when bonded using water paste.
  • the polarizing plate protective film according to [1] including a (meth) acrylic resin.
  • a polarizing plate comprising a polarizer and the polarizing plate protective film according to any one of [1] to [7].
  • a first glass substrate and a second glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm, and a liquid crystal layer disposed between the first glass substrate and the second glass substrate.
  • the first polarizing plate is a first polarizer, a protective film F1 disposed on a surface of the first polarizer opposite to the liquid crystal cell, and the liquid crystal cell of the first polarizer.
  • a protective film F2 disposed on the surface on the side, the second polarizing plate is a second polarizer, and a protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side
  • the protective film F4 disposed on the surface of the second polarizer opposite to the liquid crystal cell Seen, one or both of the protective film F1 and the protective film F4 is a polarizing plate protective film according to any one of [1] to [7], the liquid crystal display device.
  • a polarizing plate protective film that has little dimensional change due to water content and that can suppress deterioration of the polarizer when bonded using water paste.
  • the protective film has a mechanical strength that can withstand the shrinkage force of the polarizer; 2) the shrinkage force of the protective film is reduced.
  • the protective film preferably has a high tensile elastic modulus.
  • the shrinkage force of the protective film is proportional to the product of the tensile elastic modulus, the dimensional change amount and the film thickness of the protective film, the higher the tensile elastic modulus of the protective film, the larger the shrinkage force of the protective film. Therefore, in order to reduce the shrinkage force of the protective film while increasing the tensile elastic modulus of the protective film, it is desired to reduce the amount of dimensional change due to water content of the protective film as much as possible.
  • FIG. 1 is a diagram showing the relationship between the film elongation and the immersion time when the film is immersed in water.
  • the moisture content of the film corresponds to the initial film elongation rate; the moisture content of the film corresponds to the elongation of the film after a certain period of time.
  • the protective film is preferably not more than 0.4%, more preferably not more than 0.35%, after 30 minutes of immersion in 23 ⁇ 1 ° C. water. More preferably, it is 0.3% or less.
  • the elongation amount of the protective film is not more than a certain value, the moisture content of the film is small, so that the dimensional change amount of the film is small and panel bend is easily suppressed.
  • the lower limit of the amount of elongation of the protective film can be about 0.2% in order to make it easy for water to escape.
  • the protective film preferably has an initial elongation rate of 0.03-0.1% / min when immersed in water at 23 ⁇ 1 ° C., and preferably 0.04-0.09% / min. More preferably, it is 0.04% / min or more and less than 0.08% / min. If the elongation rate of the protective film is below a certain level, the moisture content of the film is not too high, so that the dimensional change of the film can be reduced. On the other hand, when the elongation rate of the protective film is not less than a certain level, the moisture content of the film is not too small, so that water can be easily removed moderately, and redish can be hardly generated.
  • the elongation amount and elongation rate of the protective film can be measured by the following procedure. 1) Condition the protective film for 12 hours or more under the condition of 23 ⁇ 1 ° C. and 55% RH. 2) The film equipped with the water immersion attachment is immersed in 23 ⁇ 1 ° C. pure water using TMA / SS7100 manufactured by Hitachi High-Tech, and then taken out to measure the elongation of the film. The amount of elongation is measured in the MD direction of the film. Then, the “elongation (%)” of the film 30 minutes after the start of immersion is obtained.
  • the MD direction is the film forming direction of the film and indicates the longitudinal direction of the film in the wound body; the TD direction is the direction orthogonal to the film forming direction of the film and indicates the width direction of the film. 3)
  • the measured values obtained are plotted as abscissa: immersion time (minutes) and ordinate: film elongation (%) to obtain a curve.
  • the slope of the obtained curve from the start of immersion to 2 minutes later is defined as “elongation rate (% / min)”.
  • the MD direction is preferably “the in-plane slow axis direction of the film” or “the direction perpendicular to the in-plane slow axis direction”; more preferably “in-plane slow axis direction”. It may be a “direction perpendicular to the slow axis direction”.
  • the amount of elongation of the protective film is adjusted by the film composition; the elongation rate of the protective film can be adjusted by the film composition and surface treatment.
  • a resin having a relatively high hydrophobicity and a resin having a relatively low hydrophobicity are combined; It is preferable to hydrophobize the film surface.
  • combinations of resins with relatively high hydrophobicity and resins with relatively low hydrophobicity include combinations of (meth) acrylic resins and cellulose esters described later; urethane urea resins and polyester-polyurethane plastics described below. Combinations with agents are included.
  • the tensile elastic modulus of the protective film at 23 ° C. and 55% RH is preferably 3 GPa or more, and more preferably 4 GPa or more.
  • the upper limit of the tensile elastic modulus of the protective film may be 10 GPa or less because handling becomes difficult.
  • the tensile elastic modulus of the protective film at 23 ° C. and 55% RH is preferably substantially 3 GPa to 5 GPa.
  • the tensile elastic modulus of the protective film can be measured by the following method.
  • the protective film is cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) to obtain a sample film.
  • this sample film is pulled in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction is measured. The measurement is performed at 23 ° C. and 55% RH.
  • the tensile elastic modulus of the protective film can be adjusted mainly by the film composition and production conditions.
  • the protective film of this invention contains a (meth) acrylic resin or urethane urea resin, and another resin or additive as needed.
  • the (meth) acrylic resin can be a homopolymer of (meth) acrylic acid ester; or a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith. Of these, a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith is preferable because it is easy to adjust the hydrophobicity.
  • (meth) acrylic acid ester refers to methacrylic acid ester or acrylic acid ester.
  • the (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester, and more preferably methyl methacrylate.
  • Examples of other monomers copolymerizable with methyl (meth) acrylate include (meth) acrylic acid esters other than methyl methacrylate; ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid; maleic acid, fumaric acid Divalent carboxylic acids containing unsaturated groups such as acid and itaconic acid; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and nucleus-substituted styrene; ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; maleic anhydride Maleimide, N-substituted maleimide; glutaric anhydride and the like.
  • the alkyl group in the acrylic acid alkyl ester and methacrylic acid alkyl ester may be cyclic or chain-like. These other monomers may be used alone or in combination of two or more.
  • (Meth) acrylic acid esters other than methyl methacrylate are (meth) acrylic acid chain alkyl esters having 1 to 20 carbon atoms; alicyclic alkyl esters having 6 to 20 carbon atoms; or 6 carbon atoms. ⁇ 20 aryl esters and the like.
  • Examples of the chain alkyl ester having 1 to 20 carbon atoms of (meth) acrylic acid include t-butyl methacrylate.
  • Examples of the alicyclic alkyl ester of 6 to 20 carbon atoms of (meth) acrylic acid include tert-butylcyclohexyl methacrylate, adamantyl methacrylate, isobornyl methacrylate and the like.
  • Examples of the aryl ester of (meth) acrylic acid having 6 to 20 carbon atoms include benzyl methacrylate and phenoxyethyl methacrylate.
  • the other monomer contains a monomer having relatively high hydrophobicity.
  • the monomer having relatively high hydrophobicity may be an aromatic ring-containing monomer or an alicyclic group-containing monomer.
  • the aromatic ring-containing monomer include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, and nucleus-substituted styrene.
  • the alicyclic group-containing monomer include methacrylic acid alkyl ester having a cyclic alkyl group. Of these, aromatic ring-containing monomers are preferable, and styrene is more preferable.
  • Styrene includes atactic polystyrene, isotactic polystyrene, syndiotactic polystyrene, and the like depending on its stereoregularity, and can be appropriately selected according to hydrophobicity.
  • syndiotactic polystyrene (SPS) having high heat resistance and hydrophobicity is more preferable.
  • the content of the structural unit derived from the monomer having a relatively high hydrophobicity with respect to all the structural units constituting the copolymer is preferably 20 to 90% by mass, although it depends on the required hydrophobicity. It is preferably ⁇ 80 mass%, more preferably 20 ⁇ 50 mass%. When the content ratio of the structural unit derived from the monomer having relatively high hydrophobicity is within the above range, the hydrophobicity of the (meth) acrylic resin can be easily increased appropriately.
  • the content ratio of the structural unit derived from methyl methacrylate with respect to all the structural units constituting the copolymer is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 10,000 to 2,000,000 in order to make the mechanical strength of the protective film equal to or higher than a certain level and ensure fluidity at the time of film formation. More preferably, it is 10,000 to 1,000,000.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin can be measured by gel permeation chromatography.
  • the measurement conditions can be as follows. Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
  • (Meth) acrylic resin can be combined with cellulose ester as described later from the viewpoint of adjusting the elongation rate of the protective film.
  • the solubility parameter (SP value) of Fedors of the (meth) acrylic resin is preferably close to the SP value of the cellulose ester, and is 16.6 to 20.1. Is more preferable, and 17.7 to 18.6 is more preferable.
  • the SP value can be obtained by calculation using the Fedors parameter.
  • the unit of SP value is the square root of the value obtained by dividing the cohesive energy density ⁇ E by the molar volume V, and “(cm 3 / cal) 1/2 ” can be used.
  • the parameters of Fedors are described in References: Basic Science of Coatings by Yuji Harada, Kashiwa Shoten (1977), p.
  • the (meth) acrylic resin has an appropriate hydrophobicity in order to make the elongation rate and elongation amount of the protective film within the above ranges.
  • the water-octanol distribution coefficient (Log P value) of the (meth) acrylic resin is preferably 1.2 or more, and more preferably 1.4 or more. If the LogP value of the (meth) acrylic resin is not less than a certain level, the elongation amount / elongation speed of the film is likely to be not more than a certain value. On the other hand, if the LogP value is too high, the amount of elongation and the elongation rate of the film may be too small, so that it may be 2.8 or less.
  • the monomer constituting the (meth) acrylic resin contains a monomer having a relatively high hydrophobicity such as styrene; the hydrophobicity is relatively high What is necessary is just to raise the content rate of a monomer.
  • Urethane urea resin may be a resin obtained by reacting polyol (a), polyamine (b), and polyisocyanate (c).
  • the polyol (a) preferably contains an alicyclic structure-containing polycarbonate polyol (a1) and an aromatic polyester polyol (a2).
  • the alicyclic structure-containing polycarbonate polyol (a1) can be a compound obtained by reacting a carbonate or phosgene with an alicyclic structure-containing polyol.
  • Examples of the carbonate include dimethyl carbonate and the like.
  • Examples of the alicyclic structure-containing polyol include 1,2-cyclopentanediol, 1,4-cyclohexanediol, and the like.
  • Specific examples of the alicyclic structure-containing polycarbonate polyol (a1) include UC-100 manufactured by Ube Industries, Ltd.
  • the aromatic polyester polyol (a2) is a compound obtained by esterifying an alkylene diol and an aromatic dicarboxylic acid or a dialkyl ester compound thereof.
  • alkylene diol include ethylene glycol, 1,2-propylene glycol and the like.
  • aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, and the like;
  • aromatic dicarboxylic acid dialkyl esters include dimethyl terephthalate, diethyl terephthalate, and the like.
  • the content ratio of the structural unit derived from the polyol (a) in the urethane urea resin can be 40 to 80% by mass with respect to the total of the structural units of the polyol (a), the polyamine (b) and the polyisocyanate (c).
  • Polyamine (b) is preferably an alicyclic structure-containing polyamine; examples include isophorone diamine, 4,4'-dicyclohexylmethane diamine, diaminocyclohexane, and the like.
  • the content ratio of the structural unit derived from the polyamine (b) in the urethane urea resin may be 1 to 20% by mass with respect to the total of the structural units of the polyol (a), the polyamine (b) and the polyisocyanate (c).
  • the polyisocyanate (c) is preferably an alicyclic structure-containing polyisocyanate; examples include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 2,4 or 2,6-methylcyclohexane diisocyanate. Etc. are included.
  • the content ratio of the structural unit derived from polyisocyanate (c) in the urethane urea resin can be 15 to 50% by mass with respect to the total of the structural units of polyol (a), polyamine (b) and polyisocyanate (c).
  • Urethane urea resin for example, after reacting polyol (a) with polyisocyanate (c) to obtain a urethane prepolymer containing an isocyanate group at the molecular end; reacting the urethane prepolymer with polyamine (b) Can be obtained.
  • (meth) acrylic resins are preferable because they have appropriate hydrophobicity and can easily adjust optical characteristics.
  • the protective film of the present invention may further contain other resins and additives as required.
  • the other resin preferably contains a cellulose ester because it is easy to adjust the elongation and elongation rate of the film by combining with (meth) acrylic resin.
  • Cellulose ester is a compound obtained by esterifying cellulose and at least one of aliphatic carboxylic acid and aromatic carboxylic acid. That is, the cellulose ester contains at least one of an aliphatic acyl group and an aromatic acyl group.
  • the number of carbon atoms in the aliphatic acyl group is preferably 2 to 7, and more preferably 2 to 4.
  • Examples of the aliphatic acyl group include acetyl group, propionyl group, butanoyl group and the like.
  • the aromatic acyl group preferably has 6 to 24 carbon atoms.
  • Examples of the aromatic acyl group include a benzoyl group, a 4-phenyl-benzoyl group, a trimethylbenzoyl group, a thiophene group, a naphthyl group, and the like, preferably a benzoyl group.
  • the acyl group contained in the cellulose ester preferably contains an aromatic acyl group; the hydrophobicity (LogP value) of the cellulose ester is excessively high. It is more preferable to further include an aliphatic acyl group in order to prevent it from occurring.
  • the content ratio of the aromatic acyl group in the acyl group contained in the cellulose ester can be about 5 to 25%, preferably about 10 to 20% with respect to the total acyl group.
  • cellulose esters include cellulose acetate propionate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose acetate biphenylate, cellulose acetate propionate biphenylate, etc.
  • Cellulose acetate benzoate and the like are preferable.
  • the total substitution degree of the acyl group of the cellulose ester is 2.0 or more, preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more.
  • the upper limit of the total substitution degree of the acyl group can be set to 3, for example, preferably 2.95.
  • the degree of substitution of the acyl group of the cellulose ester can be measured by the method prescribed in ASTM-D817-96.
  • the weight average molecular weight of the cellulose ester is preferably 50,000 to 500,000, more preferably 100,000 to 300,000, and more preferably 150,000 to 250,000 in order to obtain a certain level of mechanical strength. More preferably.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the cellulose ester is preferably 1.0 to 4.5.
  • the weight average molecular weight and molecular weight distribution of the cellulose ester can be measured by gel permeation chromatography (GPC) as described above.
  • the cellulose ester preferably has moderate hydrophobicity in order to make the elongation rate and elongation amount of the protective film within the above ranges.
  • the water-octanol partition coefficient (Log P value) of the cellulose ester is preferably 0 or more, more preferably 0.5 or more, and even more preferably 1.0 or more. If the LogP value of the cellulose ester is a certain level or more, for example, when combined with a (meth) acrylic resin, appropriate hydrophobicity is easily obtained. If the LogP value of the cellulose ester is too high, the compatibility with the (meth) acrylic resin may be lowered.
  • an aromatic acyl group may be contained; or the content ratio of the aromatic acyl group may be increased.
  • the absolute value of the difference between the LogP value of the cellulose ester and the LogP value of the (meth) acrylic resin is preferably 8 or less, and more preferably 6 or less.
  • the difference in the LogP value is below a certain value, the cellulose ester and the (meth) acrylic resin are easily compatible with each other, and the effect of adding the cellulose ester is easily obtained.
  • the content of cellulose ester is preferably 5 to 25% by mass, and more preferably 5 to 15% by mass with respect to the entire protective film.
  • the content of cellulose ester is preferably 5 to 25% by mass, and more preferably 5 to 15% by mass with respect to the entire protective film.
  • additives examples include plasticizers, ultraviolet absorbers, matting agents (fine particles), and the like.
  • Plasticizers include polyester plasticizers, phthalate ester plasticizers, phosphate ester plasticizers, acrylic plasticizers, and the like. These may be used alone or in combination of two or more.
  • the polyester plasticizer includes a repeating unit derived from a condensate of dicarboxylic acid and diol.
  • the dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid.
  • the number of carbon atoms in the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
  • the number of carbon atoms in the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12.
  • aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acid, 1,4-xylidene dicarboxylic acid and the like are included, and 1,4-benzenedicarboxylic acid (terephthalic acid) is preferable.
  • the number of carbon atoms of the alicyclic dicarboxylic acid is preferably 6 to 20, and more preferably 6 to 12.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclobutane dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,4-cyclohexane diacetic acid and the like.
  • the dicarboxylic acid for obtaining the polyester compound may be one type or two or more types.
  • the dicarboxylic acid for obtaining the polyester compound preferably contains an aromatic dicarboxylic acid in order to increase the hydrophobicity of the transparent substrate layer or increase the compatibility with the cellulose ester. More preferably, both aliphatic dicarboxylic acids are included.
  • the diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol or an aromatic diol.
  • the carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12.
  • the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, and the like.
  • the number of carbon atoms of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol and polypropylene ether glycol.
  • the number of carbon atoms of the alicyclic diol is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
  • the number of carbon atoms in the aromatic diol is preferably 6 to 20, and more preferably 6 to 12.
  • aromatic diols include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and the like.
  • the diol for obtaining the polyester compound may be one kind or two or more kinds.
  • the diol for obtaining the polyester compound preferably contains an aliphatic diol.
  • the polyester compound containing a repeating unit derived from a condensate of an aliphatic diol and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid is preferable because the transparency of the film containing the polyester compound is good. ,preferable.
  • the molecular terminal of the polyester compound may be sealed with monocarboxylic acid or monoalcohol as necessary.
  • the monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid.
  • the number of carbon atoms of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4.
  • Examples of the aliphatic carboxylic acid include acetic acid, propionic acid and the like.
  • Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid.
  • aromatic monocarboxylic acids examples include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
  • the monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol or an aromatic monoalcohol.
  • the number of carbon atoms of the aliphatic monoalcohol is 1 to 30, preferably 1 to 3.
  • Examples of the aliphatic monoalcohol include methanol, ethanol, propanol, isopropanol and the like.
  • Examples of the alicyclic monoalcohol include cyclohexyl alcohol and the like.
  • the aromatic monoalcohol include benzyl alcohol, 3-phenylpropanol and the like.
  • polyester compound examples include the following.
  • TPA terephthalic acid
  • PA phthalic acid
  • SA succinic acid
  • AA adipic acid
  • phthalate ester plasticizer examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
  • phosphate ester plasticizer examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the acrylic plasticizer may be a homopolymer or copolymer of a (meth) acrylic acid ester monomer having no aromatic ring in the molecule.
  • a copolymer of (meth) acrylic acid ester X having no aromatic ring and having a hydrophilic group and (meth) acrylic acid ester Y having no aromatic ring and having no hydrophilic group preferable.
  • Examples of (meth) acrylic acid ester X having no aromatic ring and having a hydrophilic group include (meth) acrylic acid (2-hydroxyethyl), (meth) acrylic acid (2-hydroxypropyl), (meta ) Acrylic acid (3-hydroxypropyl), (meth) acrylic acid (4-hydroxybutyl), (meth) acrylic acid (2-hydroxybutyl) and the like.
  • Examples of (meth) acrylic acid ester Y having no aromatic ring and no hydrophilic group include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n- , I-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (N-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl) and the like.
  • the weight average molecular weight of the acrylic plasticizer is preferably 500 to 30,000, more preferably 500 to 10,000.
  • An acrylic plasticizer having a weight average molecular weight within the above range has good compatibility with a (meth) acrylic resin and the like, and is less likely to volatilize during film formation.
  • Polyester-urethane plasticizer is preferably used as a plasticizer for urethane urea resin.
  • the polyester-urethane plasticizer is a polyester-urethane obtained by reaction of polyester and diisocyanate, and has a repeating unit represented by the following general formula (1).
  • R represents the structural unit shown below; the benzene ring in the structural unit shown below may further have a substituent such as an alkyl group.
  • the polyester for obtaining the polyester-urethane plasticizer may be a polyester having hydroxyl groups at both ends, obtained by reacting glycol and dibasic acid.
  • glycols include ethylene glycol, 1,3-propanediol and 1,4-butanediol;
  • dibasic acids include succinic acid, glutaric acid and adipic acid.
  • the degree of polymerization n of the polyester is preferably 1 to 100.
  • the molecular weight of the polyester is preferably 1000 to 4500.
  • Diisocyanates for obtaining polyester-urethane plasticizers include polymethylene isocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and p-phenylene diisocyanate. , Aromatic diisocyanates such as tolylene diisocyanate, p, p'-diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, m-xylylene diisocyanate and the like. Of these, tolylene diisocyanate, m-xylylene diisocyanate, and tetramethylene diisocyanate are preferable because they have good compatibility with the cellulose ester after polyurethane formation.
  • the weight average molecular weight of the polyester-urethane plasticizer is preferably 2000 to 50000, and more preferably 5000 to 15000.
  • the total content of these plasticizers is preferably 0.5 to 30% by mass with respect to the total of the main resin components (the total of (meth) acrylic resin and urethane urea resin). More preferably, it is 20 mass%.
  • the content of the plasticizer is within the above range, the plasticizing effect is easily obtained without causing the film to bleed out.
  • Examples of a preferable film composition for setting the amount of elongation / elongation speed of the protective film within the above range include 1) a combination of a (meth) acrylic resin having a Log P value of 1.2 or more and a cellulose ester; 2) ( A combination of a (meth) acrylic resin and a cellulose ester having a LogP value of 0 or more; and 3) a combination of a (meth) acrylic resin having a LogP value of 1.2 or more and a cellulose ester having a LogP value of 0 or more.
  • a combination of (3) a (meth) acrylic resin having a LogP value of 1.2 or more and a cellulose ester having a LogP value of 0 or more is preferable. .
  • the ultraviolet absorber may be a benzotriazole compound, a 2-hydroxybenzophenone compound, a salicylic acid phenyl ester compound, or the like.
  • Examples thereof include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2 -Triazoles such as (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy- Benzophenones such as 4-methoxybenzophenone are included.
  • UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that weather resistance can be easily obtained effectively with a relatively small amount of addition.
  • the molecular weight of the ultraviolet absorber is preferably 250 to 1,000, more preferably 400 to 800.
  • Examples of UV absorbers having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- ( 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] and the like.
  • the content of the ultraviolet light inhibitor is preferably 0.001% to 5%, more preferably 0.1 to 3% by mass in the protective film.
  • the matting agent can impart slipperiness to the protective film.
  • the matting agent can be inorganic fine particles or organic fine particles.
  • inorganic compounds constituting the inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, silicic acid.
  • Aluminum, magnesium silicate, calcium phosphate and the like are included.
  • silicon dioxide is preferred because the increase in film haze is small.
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, R202 (manufactured by Nippon Aerosil Co., Ltd.), Seahoster KEP-10, KEP-30, KEP-50 (above, Nippon Shokubai Co., Ltd.) Manufactured).
  • the shape of the particles is not particularly limited, and may be indefinite, acicular, flat, spherical, or the like. Especially, since the transparency of the transparent base material layer obtained is favorable, a spherical particle is preferable.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is preferable.
  • the size of the particle means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • the content of the matting agent can be about 0.05 to 1.0% by mass with respect to the total of the resin components as the main components (total of (meth) acrylic resin and urethane urea resin), preferably 0 .1 to 0.8 mass%.
  • the protective film may be subjected to a surface treatment as necessary in order to easily adjust the elongation rate when immersed in water to the above range.
  • a surface treatment for example, when the hydrophobicity of the base film is insufficient (for example, a (meth) acrylic resin film having a low LogP value), the surface of the film may be subjected to a hydrophobic treatment.
  • the hydrophobizing treatment can be performed, for example, by subjecting the film surface to corona treatment and then contacting with a modifier (eg, 3H-tetrafluoropropionic acid chloride) in the presence of a catalyst.
  • the thickness of the protective film is preferably not more than a certain value in order to reduce the shrinkage force of the protecting film; it is preferably not less than a certain value in order to reduce the permeation of water. Accordingly, the thickness of the protective film is preferably 10 to 80 ⁇ m, more preferably 10 to 70 ⁇ m, still more preferably 10 to 50 ⁇ m, and particularly preferably 10 to 40 ⁇ m.
  • the protective film may be a single layer film or a laminated film.
  • all layers constituting the protective film have the above-described composition (preferably a combination of a cellulose ester having a certain LogP value and a (meth) acrylic resin having a certain LogP value). Is preferred.
  • another functional layer such as an antireflection layer may be further laminated as necessary within a range not impairing the effects of the present invention.
  • the haze value of the protective film is preferably 3.0% or less, more preferably 2.0% or less, further preferably 1.0% or less, and 0.5% or less. Is particularly preferred.
  • the haze of the protective film can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
  • the in-plane retardation R 0 measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH preferably satisfies 0 ⁇ R 0 ⁇ 20 nm, and satisfies 0 nm ⁇ R 0 ⁇ 10 nm. It is more preferable.
  • the thickness direction retardation Rth of the protective film measured under conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH preferably satisfies 0 nm ⁇ Rth ⁇ 80 nm, and more preferably satisfies 0 nm ⁇ Rth ⁇ 50 nm. .
  • the protective film having such a retardation value is preferably used as a protective film (F1 or F4) for a liquid crystal display device, as will be described later.
  • R 0 and Rth can be adjusted depending on the composition of the film and stretching conditions.
  • Retardation R0 and Rth are defined by the following equations, respectively.
  • Formula (I): R 0 (nx ⁇ ny) ⁇ d (nm)
  • Formula (II): Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the protective film
  • ny is the refraction in the direction y perpendicular to the slow axis direction x in the in-plane direction of the protective film.
  • Nz represents the refractive index in the thickness direction z of the protective film
  • d (nm) represents the thickness of the protective film)
  • the retardations R0 and Rth can be determined by the following method, for example. 1) Condition the protective film at 23 ° C. and 55% RH. The average refractive index of the optical compensation film after humidity adjustment is measured with an Abbe refractometer or the like. The protective film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation.
  • the slow axis in the surface of the protective film is set as the tilt axis (rotation axis), and light with a measurement wavelength of 590 nm is obtained from the angle (incident angle ( ⁇ )) of ⁇ with respect to the normal of the surface of the protective film
  • the retardation value R ( ⁇ ) when incident is measured.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 ° in the range of 0 ° to 50 °.
  • the in-plane slow axis of the protective film can be confirmed by KOBRA21ADH.
  • nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
  • the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
  • the angle ⁇ 1 (orientation angle) formed by the in-plane slow axis of the protective film and the width direction of the film is preferably ⁇ 1 ° to + 1 °, more preferably ⁇ 0.5 ° to + 0.5 °. .
  • the orientation angle ⁇ 1 of the protective film can be measured using an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments).
  • the protective film preferably has a total light transmittance of 80% or more, more preferably 90% or more, and still more preferably 93% or more.
  • the protective film can be produced by a solution casting method or a melt casting method. Of these, the solution casting method is preferred because it is easy to obtain a film having high flatness and few streak-like failures.
  • the production of the protective film of the present invention by the solution casting method includes 1) a step of obtaining a dope solution by dissolving each of the above components in a solvent, and 2) a step of casting the dope solution on an endless metal support, 3) It is preferable that the film-like product obtained by drying the cast dope solution is removed through a step of peeling from the metal support.
  • Any organic solvent useful for preparing the dope solution can be used without limitation as long as it dissolves each of the above components such as a (meth) acrylic resin and a urethane urea resin.
  • methylene chloride is mentioned as a chlorinated organic solvent.
  • Non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2, 2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1, Examples include 1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane.
  • methylene chloride, methyl acetate, ethyl acetate, acetone and the like are preferable.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferred because of the stability of the dope, relatively low boiling point, and good drying properties.
  • Dissolution of cellulose ester and the like includes a method performed at normal pressure, a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, and a method performed under pressure above the boiling point of the main solvent. Is preferred.
  • the concentration of cellulose ester and the like in the dope solution can be in the range of 15 to 45% by mass in total.
  • the dope solution is preferably further filtered in order to remove foreign substances in the dope solution.
  • the dope solution is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope solution is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt or a rotating metal drum) that is transferred infinitely.
  • a liquid feed pump for example, a pressurized metering gear pump
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the flow rate of the dope solution may be divided and stacked. Or you may obtain the film of a laminated structure by the co-casting method which casts several dope liquid simultaneously.
  • the dope solution on the metal support is preferably dried on the support in an atmosphere within the range of 40 to 100 ° C. In order to maintain the atmosphere in the range of 40 to 100 ° C., it is preferable to apply hot air at this temperature to the dope liquid surface on the metal support or to heat by means such as infrared rays.
  • the film-like material obtained by evaporating the solvent on the metal support is peeled off at the peeling position. From the viewpoint of surface quality, moisture permeability, and peelability of the obtained film-like product, it is preferable to peel the film-like product from the metal support within 30 to 120 seconds after casting.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
  • the amount of residual solvent of the film-like material on the metal support at the time of peeling can be in the range of 50 to 120% by mass, for example.
  • Residual solvent amount (%) (mass before heat treatment of film-like material ⁇ mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) ⁇ 100
  • the heat treatment for measuring the residual solvent amount represents performing a heat treatment at 140 ° C. for 1 hour.
  • the peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, peeling with a tension of 190 N / m or less is preferable. Further, it is more preferable to peel with a tension of 80 N / m or less.
  • the peeled film may be dried while being transported by a plurality of rollers arranged in the drying apparatus as necessary.
  • the drying is generally performed by applying hot air to both surfaces of the film-like material, but may be heated by applying microwaves instead of hot air.
  • the drying is generally carried out in the range of 40-250 ° C. It is particularly preferable to dry within the range of 40 to 200 ° C.
  • the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
  • Stretching process Stretching of the obtained film may be performed in at least one of the width direction (TD direction), the transport direction (MD direction) or the oblique direction of the film.
  • stretching in both the width direction (TD direction) and the transport direction (MD direction) of the film stretching in the width direction (TD direction) of the film and stretching in the transport direction (MD direction) may be performed sequentially. You may do it simultaneously.
  • the draw ratio may be 1.01 to 3.0 times, preferably 1.1 to 2.0 times in each direction.
  • TD direction width direction
  • MD direction conveyance direction
  • it is finally 1.01 to 3.0 times, preferably 1.1 to 2.0 times in each direction. Is preferred.
  • the stretching temperature is preferably Tg to (Tg + 50) ° C., more preferably Tg to (Tg + 40) ° C. Specifically, in the case of a (meth) acrylic resin / cellulose ester mixture, the stretching temperature can be about 100 to 190 ° C.
  • the film obtained after stretching is shrunk in the transport direction (MD direction) or the width direction (TD direction) as necessary. May be.
  • MD direction transport direction
  • TD direction width direction
  • the clip gripped in the width direction may be released and relaxed in the transport direction.
  • the obtained protective film may be provided in a long shape or may be provided in a sheet form.
  • the long protective film can usually be wound in a roll shape in the longitudinal direction (MD direction) to form a wound body.
  • the length of the long protective film can be in the range of 100 to 10,000 m.
  • the width of the long protective film can be in the range of 1 to 4 m, preferably in the range of 1.4 to 3 m.
  • Polarizing plate contains a polarizer and the protective film arrange
  • the polarizer can be an iodine-based polarizing film or a dye-based polarizing film using a dichroic dye.
  • the iodine-based polarizing film and the dye-based polarizing film may be generally a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing with iodine or a dichroic dye; After the film is dyed with iodine or a dichroic dye, it may be a uniaxially stretched film (preferably a film further subjected to a durability treatment with a boron compound).
  • the absorption axis of the polarizer is parallel to the stretching direction of the film.
  • the polyvinyl alcohol film may be a film formed from a polyvinyl alcohol aqueous solution.
  • the polyvinyl alcohol film is preferably an ethylene-modified polyvinyl alcohol film because it is excellent in polarizing performance and durability performance, and has few color spots.
  • dichroic dyes examples include azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes and anthraquinone dyes.
  • the thickness of the polarizer is preferably 30 ⁇ m or less, more preferably in the range of 2 to 25 ⁇ m, in order to reduce the contraction force of the polarizer.
  • a protective film is a protective film of this invention.
  • the protective film and the polarizer of the present invention are preferably laminated so that the MD direction of the protective film coincides with the absorption axis direction of the polarizer. This is because the contraction force of the polarizer is considered to have the largest absorption axis direction.
  • the above-mentioned protective film may be further arrange
  • the retardation film is not particularly limited, and may be, for example, a cellulose ester film.
  • cellulose ester contained in the cellulose ester film include cellulose acetate, cellulose acetate propionate, and cellulose acetate propionate butyrate.
  • the cellulose ester preferably has a total acyl group substitution degree of 1.5 or more and 2.5 or less, and more preferably satisfies the following formulas (a) and (b).
  • Formula (b) 0 ⁇ Y ⁇ 1.5 (wherein X represents the degree of substitution of the acetyl group, and Y represents the degree of substitution of the propionyl group or butyryl group, or a mixture thereof)
  • the retardation of the retardation film can be set according to the type of liquid crystal cell to be combined.
  • the in-plane retardation Ro (590) measured at a wavelength of 590 nm under 23 ° C. RH 55% of the retardation film is in the range of 30 to 150 nm, and the retardation Rth (590) in the thickness direction is 70 to 300 nm.
  • a retardation film having a retardation in the above range is suitable as a retardation film such as a VA liquid crystal cell.
  • the polarizing plate can be obtained through a step of bonding a polarizer and a protective film. Bonding of the protective film and the polarizer can be performed using a completely saponified polyvinyl alcohol adhesive (water glue) or an active energy ray-curable adhesive. For example, when water paste is used for bonding, a polarizer and a protective film are bonded together through water paste; the resulting laminate can be dried to obtain a polarizing plate.
  • a completely saponified polyvinyl alcohol adhesive water glue
  • active energy ray-curable adhesive active energy ray-curable adhesive
  • the protective film and the polarizer may not be sufficiently bonded with water glue. In that case, you may further form an easily bonding layer in the bonding surface with the polarizer of a protective film.
  • the easy adhesion layer can be formed by applying a resin composition containing a urethane resin having a carboxyl group and a crosslinking agent, and then drying and curing.
  • the urethane resin having a carboxyl group can be obtained, for example, by further copolymerizing a chain extender having a free carboxyl group in addition to a polyol and a polyisocyanate.
  • Examples of the chain extender having a free carboxyl group include dihydroxycarboxylic acid, dihydroxysuccinic acid and the like.
  • the cross-linking agent is preferably a polymer having a group capable of reacting with a carboxyl group; examples thereof include an acrylic polymer or a styrene / acrylic polymer having an oxazoline group.
  • the protective film included in the polarizing plate of the present invention has both the elongation amount and the elongation speed adjusted to be above a certain level. Therefore, when drying the laminated body which bonded together the protective film and the polarizer through the water paste, the water
  • the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. And at least one of a pair of polarizing plates can be used as the polarizing plate of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a basic configuration of the liquid crystal display device.
  • the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
  • the liquid crystal cell 30 has a pair of transparent substrates 31 and 33 and a liquid crystal layer 35 sandwiched between them.
  • the transparent substrates 31 and 33 are preferably glass substrates.
  • the thickness of the glass substrate is preferably not more than a certain value in order to reduce the thickness of the liquid crystal display device, preferably not less than 0.3 mm and less than 0.7 mm, and preferably 0.3 to 0.5 mm. More preferred.
  • the display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
  • the VA (MVA, PVA) mode is used. It is preferable that
  • a pixel electrode for applying a voltage to liquid crystal molecules is disposed on one transparent substrate.
  • the counter electrode may be disposed on the one transparent substrate (where the pixel electrode is disposed) or may be disposed on the other transparent substrate.
  • the liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy.
  • the liquid crystal molecules are liquid crystal molecules when no voltage is applied (when an electric field is not generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate.
  • the liquid crystal cell configured as described above, an electric field is generated between the pixel electrode and the counter electrode by applying an image signal (voltage) to the pixel electrode.
  • the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate are aligned so that the major axis thereof is in the horizontal direction with respect to the substrate surface.
  • the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
  • the first polarizing plate 50 can be disposed on the glass substrate 31 of the liquid crystal cell 30 via an adhesive layer (not shown).
  • the first polarizing plate 50 includes a first polarizer 51, a protective film 53 (F1) disposed on the viewing side surface of the first polarizer 51, and a liquid crystal cell side of the first polarizer 51. And a protective film 55 (F2) disposed on the surface.
  • the second polarizing plate 70 can be disposed on the glass substrate 33 of the liquid crystal cell 30 via an adhesive layer (not shown).
  • the second polarizing plate 70 includes a second polarizer 71, a protective film 73 (F3) disposed on the liquid crystal cell side surface of the second polarizer 71, and the backlight side of the second polarizer 71. And a protective film 75 (F4) disposed on the surface.
  • the thickness of the pressure-sensitive adhesive layer can be about 1 to 30 ⁇ m.
  • At least one or both of the first polarizing plate 50 and the second polarizing plate 70 can be used as the polarizing plate of the present invention. That is, at least one of the protective film 53 (F1) and the protective film 75 (F4) can be used as the protective film of the present invention. It is preferable that the MD direction of the protective film 53 (F1) and the absorption axis direction of the first polarizer 51 coincide. It is preferable that the MD direction of the protective film 75 (F4) coincides with the absorption axis direction of the second polarizer 71.
  • the amount of elongation and the elongation rate are adjusted to a certain level or less.
  • the protective film of the present invention has a high tensile elastic modulus, the dimensional change of the protective film (when changed from high temperature and high humidity to high temperature and low humidity) is small; While having strength, the shrinkage force due to water content is reduced. Thereby, the panel bend which is easy to occur when the glass substrate of the liquid crystal cell is thin can be suppressed.
  • Resin components A1 to A9 (Meth) acrylic resin shown in Table 2 below
  • U1 Urethane urea resin synthesized by the following method (Synthesis of urethane urea resin U1) 1) Synthesis of aromatic polyester polyol (a2-1) In a four-necked flask with an internal volume of 3 liters equipped with a thermometer, a stirrer and a reflux condenser, 659.4 g of dimethyl 2,6-naphthalenedicarboxylate and terephthalic acid Charge 58.3 g of dimethyl, 684.8 g of 1,2-propylene glycol and 0.084 g of zinc acetate dihydrate as an esterification catalyst, and gradually increase the temperature to 210 ° C.
  • Additive 1 Actflo-UT1001 (manufactured by Soken Chemical Co., Ltd., acrylic low molecular weight, terminal hydroxyl group)
  • Additive 2 Polyester-urethane plasticizer (polyester-urethane having an average molecular weight of 7,300 obtained by reacting dihydroxy polyester consisting of adipic acid and ethylene glycol with an average molecular weight of 2125 and tolylene diisocyanate by a conventional method)
  • Plasticizer 1 ARUFON UP1170 (manufactured by Toagosei Co., Ltd., acrylic plasticizer, non-functional)
  • Plasticizer 2 Dioctyl phthalate (DOP)
  • DOP Dioctyl phthalate
  • UV absorber ADK STAB LA31RG (manufactured by Adeka, ADK STAB 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl)
  • the obtained dope was uniformly cast on a stainless steel band support at a temperature of 30 ° C. and a width of 2 m using a belt casting apparatus. On the stainless steel band support, the solvent in the dope was evaporated until the residual solvent amount reached 70%. And the obtained film-like thing was peeled from the stainless steel band support body.
  • the peeled film-like material was further dried at 45 ° C., and then the obtained film was dried while being transported by a plurality of rollers through a drying zone at 110 ° C. and 140 ° C. to obtain a film having a thickness of 40 ⁇ m. .
  • the corona treatment was performed on the surface of the obtained film under the condition of 100W. Thereafter, the corona-treated film was suspended in a separable flask, and pyridine (Wako Pure Chemical Industries) as a catalyst and 3H-tetrafluoropropionic acid chloride (Wako Pure Chemical Industries) as a modifier were placed at 60 ° C. The reaction was performed under reduced pressure for an hour. Thereby, the surface of the film was fluorinated to obtain a film 101.
  • Example 1 Comparative Example 1 Except that the film composition was changed to general-purpose PMMA, pellets were obtained in the same manner as in Example 1, and then melt-extruded to obtain a film having a thickness of 40 ⁇ m. On this film, the following vinylidene chloride solution was applied so as to have a dry thickness of 5 ⁇ m to obtain a film 104.
  • Vinylidene chloride solution Chlorine-containing polymer (Saran Resin R204 manufactured by Asahi Kasei Life & Living Co., Ltd.): 12 parts by mass Tetrahydrofuran: 63 parts by mass
  • Example 4 The following components were mixed to prepare Dope 1.
  • Dope 1 Urethane urea resin U1: 100 parts by mass
  • Additive 2 polyurethane
  • Methyl ethyl ketone 500 parts by mass
  • the obtained dope 1 was uniformly cast on a stainless steel band support at a temperature of 30 ° C. and a width of 2 m using a belt casting apparatus. On the stainless steel band support, the solvent in the dope was evaporated until the residual solvent amount reached 70%. And the obtained film-like thing was peeled from the stainless steel band support body. The obtained film was dried at 45 ° C. and further dried at 110 ° C. and 140 ° C. to obtain a film 107 having a thickness of 40 ⁇ m.
  • Example 5 The film composition was 91.4 parts by mass of (meth) acrylic resin A3, 5 parts by mass of plasticizer 1 (ARUFON UP1170 manufactured by Toagosei Co., Ltd.), 2 parts by mass of plasticizer 2 (dioctyl phthalate), UV absorber ( A film 108 having a film thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that LA31RG manufactured by Adeka Corporation was changed to 1.6 parts by mass.
  • plasticizer 1 ARUFON UP1170 manufactured by Toagosei Co., Ltd.
  • plasticizer 2 dioctyl phthalate
  • UV absorber A film 108 having a film thickness of 40 ⁇ m was obtained in the same manner as in Example 1 except that LA31RG manufactured by Adeka Corporation was changed to 1.6 parts by mass.
  • Example 8 A film obtained in the same manner as in Example 7 was stretched 1.7 times at a stretching temperature of 170 ° C., and then heat treated at 120 ° C. for 24 hours to obtain a film 112 having a thickness of 40 ⁇ m.
  • Comparative Example 5 A film 113 having a thickness of 40 ⁇ m was obtained in the same manner as in Comparative Example 1 except that the corona treatment and the application of the vinylidene chloride solution were not performed.
  • 4UA is cellulose ester film 4UA (manufactured by Konica Minolta, film thickness 40 ⁇ m); COP is cyclic olefin resin film (manufactured by Nippon Zeon, film thickness 68 ⁇ m); PET is polyethylene terephthalate film (film thickness 100 ⁇ m) Indicates.
  • Examples 9 to 12, Comparative Example 10 Films 118 to 122 having a thickness of 40 ⁇ m were obtained in the same manner as in Example 2 except that the content ratio of the cellulose ester was changed as shown in Table 5.
  • the tensile elastic modulus, elongation rate and elongation of the obtained film were measured by the following methods.
  • the obtained film was cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) to obtain a sample film.
  • the sample film was pulled in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction was measured. The measurement was performed at 23 ° C. and 55% RH.
  • the obtained film (film thickness 40 ⁇ m) was conditioned for 12 hours or more under the condition of 23 ⁇ 1 ° C. and 55% RH. Then, the film equipped with the water immersion attachment was immersed in 23 ⁇ 1 ° C. pure water using TMA / SS7100 manufactured by Hitachi High-Tech, and taken out to measure the amount of elongation of the film. The elongation amount was measured in the MD direction of the film. And the "elongation amount (%)" of the film 30 minutes after the start of immersion was determined.
  • the obtained measurement data was plotted with the immersion time (minutes) on the horizontal axis and the film elongation (%) on the vertical axis to obtain a curve.
  • the slope of the obtained curve from the start of immersion until 2 minutes later was calculated to determine “elongation rate (% / min)”.
  • Adhesiveness First, a polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched at 50 ° C. to a stretching ratio of 6 times in the transport direction to prepare a polarizer having a thickness of 25 ⁇ m. .
  • the film subjected to the alkali saponification treatment was bonded to one surface of the above prepared polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive, and then dried to obtain a laminate.
  • the adhesive properties at the interface between the polarizing plate protective film and the polarizer when the polarizing plate protective film of the obtained laminate was peeled off in the 180 ° direction were measured and evaluated based on the following criteria.
  • The polarizing plate protective film tears and does not peel at the interface between the polarizing plate protective film and the polarizer.
  • Some peeling is observed at the interface between the polarizing plate protective film and the polarizer.
  • Adhesiveness by easy-adhesive layer For 100 g of water-based urethane resin having a carboxyl group (Daiichi Kogyo Seiyaku, trade name: Superflex 210, solid content: 33%), a crosslinking agent (manufactured by Nippon Shokubai, trade name: (Epocross WS700, solid content: 25%) 20 g was added and stirred for 3 minutes to obtain an easy-adhesive composition.
  • a crosslinking agent manufactured by Nippon Shokubai, trade name: (Epocross WS700, solid content: 25%
  • the resulting easy-adhesive composition was applied to the corona discharge treated surface of the corona discharge treated film with a bar coater (# 6).
  • the obtained film was put into a hot air dryer (140 ° C.), and the easy-adhesive composition was dried for about 5 minutes to form an easy-adhesive layer (0.2 to 0.4 ⁇ m).
  • the obtained easily bonding layer and the said produced polarizer were bonded together through the completely saponified polyvinyl alcohol 5% aqueous solution, Then, it was made to dry and the laminated body was obtained.
  • the adhesiveness of the obtained laminate was evaluated in the same manner as described above.
  • Example 1 to 8 and Comparative Examples 1 to 9 are shown in Table 4
  • the evaluation results of Examples 9 to 12 and Comparative Example 10 are shown in Table 5
  • the evaluation results of Examples 13 to 19 are shown in Table 6.
  • Table 7 shows the evaluation results of Examples 20 to 25.
  • the films of Comparative Examples 1 and 8 to 9 are conventional low-moisture permeable films; or films having a low-moisture permeable layer, and at least the elongation rate is too small.
  • the films of Comparative Examples 4, 6 and 10 include the cellulose ester film, it can be seen that at least the elongation rate is too large.
  • Comparative Examples 3 and 7 contain a certain amount of cellulose ester having a low LogP value, it can be seen that the elongation rate is too high. It can be seen that the film of Comparative Example 5 has a low tensile modulus.
  • Fine particle dispersion 1 Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.): 11 parts by mass Ethanol: 89 parts by mass
  • Fine particle dispersion 1 was slowly added and further dispersed with an attritor so that the particle size of the secondary particles became a predetermined size. .
  • the obtained solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd., and a fine particle additive solution 1 was obtained.
  • Fine particle addition liquid 1 Methylene chloride: 99 parts by mass Fine particle dispersion 1: 5 parts by mass
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate having a acetyl group substitution degree of 2.00, a sugar ester compound, and a fine particle additive solution 1 were added to a pressure-dissolving tank containing a solvent while stirring, and the mixture was completely dissolved by stirring while heating. This was designated as Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope solution was prepared by filtration using 244. The above was put into a sealed main dissolution vessel 1 and dissolved with stirring to prepare a dope solution.
  • the solvent was evaporated until the residual solvent amount became 75% to obtain a web.
  • the obtained web was peeled off from the stainless belt support with a peeling tension of 130 N / m, and stretched 37% in the width direction using a tenter while applying heat at 170 ° C.
  • the residual solvent of the web at the start of stretching was 15%.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a retardation film RT1 having a dry film thickness of 25 ⁇ m was obtained.
  • the produced film was alkali saponified, then washed with water, neutralized and washed with water.
  • Saponification step 2M-NaOH 50 ° C. 90 seconds
  • Water washing step Water 30 ° C. 45 seconds
  • Water washing step Water 30 ° C. 45 seconds Then, the obtained polarizing plate protective film was dried at 80 ° C. It was.
  • the produced retardation film RT1 was also subjected to alkali saponification treatment.
  • the above-described film 101 subjected to alkali saponification treatment was bonded to one surface of the produced polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive.
  • an alkali saponified retardation film RT1 was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. The bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the film 101 were parallel.
  • the laminated laminate was dried at 60 ° C. to obtain a polarizing plate 201.
  • the film 118 having a cellulose ester content of less than 5% has a small amount of cellulose that functions for saponification adhesion, even if it is subjected to alkali saponification treatment, it adheres with water paste. There wasn't. Therefore, for the film 118, an easy-adhesive composition having the following composition was prepared, and an easy-adhesive layer was formed.
  • the obtained easy-adhesive composition was applied with a bar coater (# 6) to the corona discharge treated surface of the protective film subjected to the corona discharge treatment. Thereafter, the protective film was put into a hot air dryer (140 ° C.), and the applied easy-adhesive composition was dried for about 5 minutes to form an easy-adhesive layer (0.2 to 0.4 ⁇ m).
  • the reddish and panel bend of the obtained polarizing plate were evaluated by the following methods.
  • the obtained polarizing plate was put in a thermo at 20 ° C. and 95% RH and stored for 200 hours. After the storage, the obtained polarizing plate was visually observed whether or not a red defect (reddish) due to deterioration of the polarizer occurred, and evaluated based on the following criteria.
  • No red defect is observed on the polarizing plate
  • Red defect is slightly recognized on the polarizing plate, but there is almost no problem
  • Red defect is recognized on the polarizing plate
  • a glass plate (A4 size) having a thickness of 0.5 mm was prepared. On this glass plate, the produced polarizing plate was bonded through an adhesive to obtain a panel. The lamination was performed so that the retardation film of the polarizing plate was on the glass plate side.
  • As the pressure-sensitive adhesive a 25 ⁇ m-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec Corporation was used.
  • the obtained panel was allowed to stand in a room temperature state of 23 ° C. and 55% for half a day, and then stored in a thermostat of 40 ° C. and 90% RH for 24 hours. Thereafter, the panel was taken out and placed in a 40 ° C. dry thermo and dried for 2 hours. The amount of warpage of the panel obtained after drying was measured immediately. The amount of warpage of the panel was measured by measuring the height from the horizontal plane at the four corners of the panel, and taking the average value thereof.
  • Panel warpage is less than 1.0 mm ⁇ : Panel warpage is 1.0 mm or more and less than 2.0 mm ⁇ : Panel warpage is 2.0 mm or more and less than 3.5 mm ⁇ : Panel warpage is 3 .5mm or more and less than 5.0mm x: Panel warpage is 5mm or more
  • Example 26 to 33 and Comparative Examples 11 to 19 are shown in Table 8; the evaluation results of Examples 34 to 37 and Comparative Example 20 are shown in Table 9; The evaluation results of Examples 38 to 44 are shown in Table 10. Table 11 shows the evaluation results of Examples 45 to 50.
  • the polarizing plates of Comparative Examples 11, 18 and 19 in which at least the elongation rate of the protective film is too small do not cause panel bend but produce reddish.
  • the polarizing plates of Comparative Examples 12 to 14, 16 and 17 in which at least one of the elongation amount and the elongation speed of the protective film is too large do not cause reddish but produce panel bend.
  • the LogP value of the cellulose ester was too high, the cellulose ester and polymethyl methacrylate were not sufficiently compatible, and the effect of improving the tensile modulus due to the addition of the cellulose ester was not obtained. Conceivable.
  • liquid crystal display device As a liquid crystal cell, a VA liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the prepared polarizing plate 201 was bonded to both surfaces of the prepared liquid crystal cell via a 25 ⁇ m-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec to obtain a liquid crystal display panel. It was. The bonding was performed such that the retardation film RT1 of the polarizing plate 201 was in contact with the liquid crystal cell.
  • baseless tape MO-3005C baseless tape MO-3005C
  • liquid crystal display panel (polarizer / liquid crystal cell / laminate of the polarizer) from the 40-inch display BRAVIA KLV-40J3000 (VA method) manufactured by SONY
  • the liquid crystal display panel prepared above was placed, and the liquid crystal A display device 301 (1) was obtained.
  • the attached liquid crystal display panel was set so that the slow axis of the retardation film RT1 and the slow axis of the polarizing plate previously attached were parallel.
  • Liquid crystal display devices 301 (2) and 301 (3) were produced in the same manner except that the thicknesses of the two glass substrates constituting the liquid crystal cell were 0.2 mm and 0.7 mm, respectively.
  • Liquid crystal display devices 302 to 335 were obtained in the same manner as in Example 51 except that the polarizing plate 201 was sequentially changed to the polarizing plates 202 to 235.
  • the bend unevenness of the obtained liquid crystal display device was measured by the following method.
  • Example 51 to 58 and Comparative Examples 21 to 29 are shown in Table 12; the evaluation results of Examples 59 to 62 and Comparative Example 30 are shown in Table 13; The evaluation results of Examples 62 to 68 are shown in Table 14. Table 15 shows the evaluation results of Examples 69 to 74.
  • the protective film of this invention can suppress especially the bend nonuniformity especially when the thickness of a glass substrate is 0.3 mm or more and less than 0.7 mm.
  • the present invention it is possible to provide a polarizing plate in which the polarizer is less deteriorated by moisture permeated even when the polarizer is thin.
  • Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1) 55 Protective film (F2) 70 Second polarizing plate 71 Second polarizer 73 Protective film (F3) 75 Protective film (F4) 90 backlight

Abstract

The purpose of the present invention is to provide a polarizing plate protection film which exhibits little dimensional change due to water absorption and which even when adhered to a polarizer with a water-based adhesive, can minimize the deterioration of the polarizer. This polarizing plate protection film exhibits: a tensile elasticity of 3GPa or more at 23ºC and 55%RH; an initial rate of elongation of 0.03 to 0.1%/min when the film has been humidified at 23±1ºC and 55%RH for 12 hours or longer, and then immersed in water at 23±1ºC; and an elongation of 0.4% or less after the immersion in water for 30 minutes.

Description

偏光板保護フィルム、偏光板および液晶表示装置Polarizing plate protective film, polarizing plate and liquid crystal display device
 本発明は、偏光板保護フィルム、偏光板および液晶表示装置に関する。 The present invention relates to a polarizing plate protective film, a polarizing plate, and a liquid crystal display device.
 現在、スマートホンやタブレットなどの携帯型の液晶表示装置が広く普及している。これらの液晶表示装置には、薄型化が求められている。 Currently, portable liquid crystal display devices such as smart phones and tablets are widely used. These liquid crystal display devices are required to be thin.
 液晶表示装置は、通常、液晶セルと、それを挟持する一対の偏光板とを有する。偏光板は、偏光子と、その液晶セル側に配置される位相差フィルム(F2またはF3)と、液晶セルとは反対側に配置される保護フィルム(F1またはF4)とを有しうる。 The liquid crystal display device usually has a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell. The polarizing plate may have a polarizer, a retardation film (F2 or F3) disposed on the liquid crystal cell side, and a protective film (F1 or F4) disposed on the opposite side of the liquid crystal cell.
 保護フィルム(F1またはF4)としては、透明で複屈折性が小さく、水糊を介して偏光子と接着させやすいことなどから、セルローストリアセテートフィルム(TAC)が用いられている。しかしながら、セルローストリアセテートフィルムは透湿度が高いことから、高湿下に曝された際に、該フィルムを透過した水分によって偏光子の寸法変化を生じやすかった。偏光子の寸法変化は、高湿下で偏光子が含水して膨脹し;低湿下で偏光子から水が抜けて収縮して生じる。このような偏光子の寸法変化は、パネル(偏光板/液晶セル/偏光板の積層物)のベンドを生じやすく;特に、液晶セルのガラス板が薄いほど顕著に生じやすい。このようなパネルベンドは、液晶表示装置の表示ムラの原因となりやすい。 As the protective film (F1 or F4), a cellulose triacetate film (TAC) is used because it is transparent and has low birefringence and is easily adhered to a polarizer through water glue. However, since the cellulose triacetate film has high moisture permeability, when exposed to high humidity, the dimensional change of the polarizer is likely to occur due to moisture that has passed through the film. The dimensional change of the polarizer occurs when the polarizer contains water and expands under high humidity; and the water escapes and contracts under low humidity. Such a dimensional change of the polarizer tends to cause a bend of the panel (polarizing plate / liquid crystal cell / polarizing plate laminate); in particular, it becomes more prominent as the glass plate of the liquid crystal cell is thinner. Such a panel bend tends to cause display unevenness of the liquid crystal display device.
 そこで、透湿度が低い保護フィルムとして、例えば環状オレフィン樹脂フィルム(例えば特許文献1)、アクリル系樹脂フィルム(例えば特許文献2および3)、アクリル樹脂とセルロースエステルとを含むフィルム(例えば特許文献4および5)などが提案されている。 Therefore, as a protective film having low moisture permeability, for example, a cyclic olefin resin film (for example, Patent Document 1), an acrylic resin film (for example, Patent Documents 2 and 3), a film containing an acrylic resin and a cellulose ester (for example, Patent Document 4 and 5) etc. are proposed.
特開2004-258188号公報JP 2004-258188 A 特開2007-63541号公報JP 2007-63541 A 特開2012-180423号公報JP 2012-180423 A 特開2011-253090号公報JP 2011-253090 A 特開2009-299075号公報JP 2009-299075 A
 ところで、偏光板は、保護フィルムと偏光子とを水糊を介して貼り合わせた後、得られる積層物を乾燥させて得ることができる。しかしながら、保護フィルムの透湿度が低いと、上記積層物を乾燥させる際に、保護フィルムに取り込まれた水糊の水分が抜けにくく、偏光子を劣化させやすい。それにより、得られる偏光板にレディッシュという赤色欠陥が生じやすいという問題があった。 By the way, the polarizing plate can be obtained by bonding a protective film and a polarizer through water paste, and then drying the obtained laminate. However, when the moisture permeability of the protective film is low, when the laminate is dried, the moisture of the water paste taken into the protective film is difficult to escape and the polarizer is liable to deteriorate. As a result, there is a problem that a red defect called reddish is likely to occur in the obtained polarizing plate.
 一方で、パネルベンドの原因となる偏光子の寸法変化を少なくするためには、保護フィルムの機械的強度が高く、含水による寸法変化が少ないこと;特に含水による寸法変化が少ないことが望まれる。 On the other hand, in order to reduce the dimensional change of the polarizer that causes panel bend, it is desirable that the protective film has high mechanical strength and little dimensional change due to water content; in particular, small dimensional change due to water content.
 本発明は、上記事情に鑑みてなされたものであり、含水による寸法変化が少なく、かつ水糊を用いて接着したときの偏光子の劣化を抑制しうる偏光板保護フィルムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a polarizing plate protective film that has little dimensional change due to water content and can suppress deterioration of a polarizer when bonded using water paste. And
 [1]23℃55%RH下における引張弾性率が3GPa以上であり、23±1℃、55%RH下で12時間以上調湿した後、23±1℃の水に浸漬したときの、フィルムの初期の伸び速度が0.03~0.1%/分であり、かつフィルムを水に浸漬して30分経過後のフィルムの伸び量が0.4%以下である、偏光板保護フィルム。
 [2](メタ)アクリル樹脂を含む、[1]に記載の偏光板保護フィルム。
 [3]前記(メタ)アクリル樹脂の水-オクタノール分配係数が1.2以上である、[2]に記載の偏光板保護フィルム。
 [4]前記フィルムに対して5~25質量%のセルロースエステルをさらに含む、[1]~[3]のいずれかに記載の偏光板保護フィルム。
 [5]前記セルロースエステルの水-オクタノール分配係数が0以上である、[1]~[4]のいずれかに記載の偏光板保護フィルム。
 [6] 水-オクタノール分配係数が1.2以上である(メタ)アクリル樹脂と、水-オクタノール分配係数が0以上であるセルロースエステルとを含む、[1]~[5]のいずれかに記載の偏光板保護フィルム。
 [7] 前記偏光板保護フィルムの厚みは、10~50μmである、[1]~[6]のいずれかに記載の偏光板保護フィルム。
[1] A film having a tensile modulus of elasticity of 3 GPa or higher at 23 ° C. and 55% RH, and after being conditioned in water at 23 ± 1 ° C. and 55% RH for 12 hours or more and then immersed in water at 23 ± 1 ° C. A polarizing plate protective film having an initial elongation rate of 0.03 to 0.1% / min and a film elongation of 0.4% or less after 30 minutes of immersion of the film in water.
[2] The polarizing plate protective film according to [1], including a (meth) acrylic resin.
[3] The polarizing plate protective film according to [2], wherein the (meth) acrylic resin has a water-octanol distribution coefficient of 1.2 or more.
[4] The polarizing plate protective film according to any one of [1] to [3], further comprising 5 to 25% by mass of a cellulose ester based on the film.
[5] The polarizing plate protective film according to any one of [1] to [4], wherein the cellulose ester has a water-octanol partition coefficient of 0 or more.
[6] The method according to any one of [1] to [5], comprising a (meth) acrylic resin having a water-octanol partition coefficient of 1.2 or more and a cellulose ester having a water-octanol partition coefficient of 0 or more. Polarizing plate protective film.
[7] The polarizing plate protective film according to any one of [1] to [6], wherein the polarizing plate protective film has a thickness of 10 to 50 μm.
 [8]偏光子と、[1]~[7]のいずれかに記載の偏光板保護フィルムとを含む、偏光板。
 [9]厚み0.3mm以上0.7mm未満の第一のガラス基板および第二のガラス基板と、前記第一のガラス基板と前記第二のガラス基板の間に配置された液晶層とを含む液晶セルと、前記液晶セルの前記第一のガラス基板上に配置された第一の偏光板と、前記液晶セルの前記第二のガラス基板上に配置された第二の偏光板とを含み、前記第一の偏光板が、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置された保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置された保護フィルムF2とを含み、前記第二の偏光板が、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置された保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置された保護フィルムF4とを含み、前記保護フィルムF1と前記保護フィルムF4の一方または両方が、[1]~[7]のいずれかに記載の偏光板保護フィルムである、液晶表示装置。
[8] A polarizing plate comprising a polarizer and the polarizing plate protective film according to any one of [1] to [7].
[9] A first glass substrate and a second glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm, and a liquid crystal layer disposed between the first glass substrate and the second glass substrate. Including a liquid crystal cell, a first polarizing plate disposed on the first glass substrate of the liquid crystal cell, and a second polarizing plate disposed on the second glass substrate of the liquid crystal cell, The first polarizing plate is a first polarizer, a protective film F1 disposed on a surface of the first polarizer opposite to the liquid crystal cell, and the liquid crystal cell of the first polarizer. A protective film F2 disposed on the surface on the side, the second polarizing plate is a second polarizer, and a protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side The protective film F4 disposed on the surface of the second polarizer opposite to the liquid crystal cell Seen, one or both of the protective film F1 and the protective film F4 is a polarizing plate protective film according to any one of [1] to [7], the liquid crystal display device.
 本発明によれば、含水による寸法変化が少なく、かつ水糊を用いて接着したときの偏光子の劣化を抑制しうる偏光板保護フィルムを提供することができる。 According to the present invention, it is possible to provide a polarizing plate protective film that has little dimensional change due to water content and that can suppress deterioration of the polarizer when bonded using water paste.
フィルムを水に浸漬したときの経過時間に対するフィルムの伸び量の関係を示す図である。It is a figure which shows the relationship of the elongation amount of a film with respect to the elapsed time when a film is immersed in water. 液晶表示装置の基本的な構成の一例を示す模式図である。It is a schematic diagram which shows an example of the fundamental structure of a liquid crystal display device.
 前述の通り、ガラス基板と偏光板との積層物を、高温高湿条件から高温低湿条件に移すと、ガラス基板側が凸となるように反り(パネルベンド)が生じやすい。このようなパネルベンドを抑制するためには、1)保護フィルムが、偏光子の収縮力に耐える機械的強度を有すること;2)保護フィルムの収縮力を小さくすることが有効である。 As described above, when a laminate of a glass substrate and a polarizing plate is moved from a high temperature and high humidity condition to a high temperature and low humidity condition, warpage (panel bend) is likely to occur so that the glass substrate side becomes convex. In order to suppress such panel bends, it is effective that 1) the protective film has a mechanical strength that can withstand the shrinkage force of the polarizer; 2) the shrinkage force of the protective film is reduced.
 1)保護フィルムの機械的強度を高めるためには、保護フィルムが高い引張弾性率を有することが好ましい。ところが、保護フィルムの収縮力は、保護フィルムの引張弾性率と寸法変化量と膜厚の積に比例することから、保護フィルムの引張弾性率を高くするほど、保護フィルムの収縮力は大きくなる。従って、保護フィルムの引張弾性率を高くしながらも、2)保護フィルムの収縮力を小さくするためには、保護フィルムの含水による寸法変化量をできるだけ小さくすることが望まれる。 1) In order to increase the mechanical strength of the protective film, the protective film preferably has a high tensile elastic modulus. However, since the shrinkage force of the protective film is proportional to the product of the tensile elastic modulus, the dimensional change amount and the film thickness of the protective film, the higher the tensile elastic modulus of the protective film, the larger the shrinkage force of the protective film. Therefore, in order to reduce the shrinkage force of the protective film while increasing the tensile elastic modulus of the protective film, it is desired to reduce the amount of dimensional change due to water content of the protective film as much as possible.
 保護フィルムの含水による寸法変化量は、含水速度(初期の伸び速度)と含水量(伸び量)に依存する。図1は、フィルムを水に浸漬したときの浸漬時間に対するフィルムの伸び量の関係を示す図である。図1において、フィルムの含水速度は、初期のフィルムの伸び速度に相当し;フィルムの含水量は、一定時間経過後のフィルムの伸び量に相当する。 The amount of dimensional change due to moisture content of the protective film depends on the moisture content rate (initial elongation rate) and the moisture content (elongation amount). FIG. 1 is a diagram showing the relationship between the film elongation and the immersion time when the film is immersed in water. In FIG. 1, the moisture content of the film corresponds to the initial film elongation rate; the moisture content of the film corresponds to the elongation of the film after a certain period of time.
 含水による寸法変化量を小さくするためには、フィルムの含水量(伸び量)と含水速度(伸び速度)の両方を小さくすることが好ましい。しかしながら、含水速度(伸び速度)を小さくしすぎると、フィルムから水が抜けにくくなり、水糊を用いて作製した偏光板にレディッシュ(赤色欠陥)が生じやすい(図1の下向き矢印参照)。 In order to reduce the dimensional change due to moisture, it is preferable to reduce both the moisture content (elongation amount) and moisture content rate (elongation rate) of the film. However, if the water content rate (elongation rate) is too small, it is difficult for water to escape from the film, and reddish (red defects) is likely to occur in a polarizing plate produced using water paste (see the downward arrow in FIG. 1).
 従って、本発明では、保護フィルムを水に含浸したときのフィルムの伸び速度と伸び量を、図1の斜線部で示されるような所定の範囲に調整することが好ましい。 Therefore, in the present invention, it is preferable to adjust the elongation rate and elongation amount of the film when the protective film is impregnated with water to a predetermined range as indicated by the hatched portion in FIG.
 具体的には、保護フィルムは、23±1℃の水に浸漬して30分経過後の伸び量が0.4%以下であることが好ましく、0.35%以下であることがより好ましく、0.3%以下であることがさらに好ましい。保護フィルムの伸び量が一定以下であると、フィルムの含水量が少ないため、フィルムの寸法変化量が少なく、パネルベンドを抑制しやすい。保護フィルムの伸び量の下限は、水を適度に抜けやすくするためなどから、0.2%程度としうる。 Specifically, the protective film is preferably not more than 0.4%, more preferably not more than 0.35%, after 30 minutes of immersion in 23 ± 1 ° C. water. More preferably, it is 0.3% or less. When the elongation amount of the protective film is not more than a certain value, the moisture content of the film is small, so that the dimensional change amount of the film is small and panel bend is easily suppressed. The lower limit of the amount of elongation of the protective film can be about 0.2% in order to make it easy for water to escape.
 保護フィルムは、23±1℃の水に浸漬したときの初期の伸び速度が0.03~0.1%/分であることが好ましく、0.04~0.09%/分であることがより好ましく、0.04%/分以上0.08%/分未満であることがさらに好ましい。保護フィルムの伸び速度が一定以下であると、フィルムの含水速度が大きすぎないため、フィルムの寸法変化量を少なくしうる。一方、保護フィルムの伸び速度が一定以上であると、フィルムの含水速度が小さすぎないため、水が適度に抜けやすく、レディッシュを生じにくくしうる。 The protective film preferably has an initial elongation rate of 0.03-0.1% / min when immersed in water at 23 ± 1 ° C., and preferably 0.04-0.09% / min. More preferably, it is 0.04% / min or more and less than 0.08% / min. If the elongation rate of the protective film is below a certain level, the moisture content of the film is not too high, so that the dimensional change of the film can be reduced. On the other hand, when the elongation rate of the protective film is not less than a certain level, the moisture content of the film is not too small, so that water can be easily removed moderately, and redish can be hardly generated.
 保護フィルムの伸び量・伸び速度は、以下の手順で測定されうる。
 1)保護フィルムを、23±1℃55%RHの条件で12時間以上調湿する。
 2)水浸漬アタッチメントを装着したフィルムを、日立ハイテク社製TMA/SS7100を用いて、23±1℃の純水に浸漬し、取り出してフィルムの伸び量を測定する。伸び量の測定は、フィルムのMD方向に行う。そして、浸漬開始から30分後のフィルムの「伸び量(%)」を求める。MD方向とは、フィルムの製膜方向であり、巻き取り体におけるフィルムの長手方向を示し;TD方向とは、フィルムの製膜方向と直交する方向であり、フィルムの幅手方向を示す。
 3)得られた測定値を、横軸:浸漬時間(分)、縦軸:フィルムの伸び量(%)としてプロットして曲線を得る。得られた曲線の、浸漬開始から2分後までの傾き(浸漬時間に対する伸び量の傾き)を「伸び速度(%/min)」とする。
The elongation amount and elongation rate of the protective film can be measured by the following procedure.
1) Condition the protective film for 12 hours or more under the condition of 23 ± 1 ° C. and 55% RH.
2) The film equipped with the water immersion attachment is immersed in 23 ± 1 ° C. pure water using TMA / SS7100 manufactured by Hitachi High-Tech, and then taken out to measure the elongation of the film. The amount of elongation is measured in the MD direction of the film. Then, the “elongation (%)” of the film 30 minutes after the start of immersion is obtained. The MD direction is the film forming direction of the film and indicates the longitudinal direction of the film in the wound body; the TD direction is the direction orthogonal to the film forming direction of the film and indicates the width direction of the film.
3) The measured values obtained are plotted as abscissa: immersion time (minutes) and ordinate: film elongation (%) to obtain a curve. The slope of the obtained curve from the start of immersion to 2 minutes later (the slope of the elongation with respect to the immersion time) is defined as “elongation rate (% / min)”.
 保護フィルムが面内遅相軸を有する場合、MD方向は、好ましくは「フィルムの面内遅相軸方向」または「面内遅相軸方向と直交する方向」であり;より好ましくは「面内遅相軸方向と直交する方向」でありうる。 When the protective film has an in-plane slow axis, the MD direction is preferably “the in-plane slow axis direction of the film” or “the direction perpendicular to the in-plane slow axis direction”; more preferably “in-plane slow axis direction”. It may be a “direction perpendicular to the slow axis direction”.
 保護フィルムの伸び量は、フィルム組成によって調整され;保護フィルムの伸び速度は、フィルム組成や表面処理によって調整されうる。保護フィルムの伸び量・伸び速度を上記範囲とするためには、疎水性が相対的に高い樹脂と疎水性が相対的に低い樹脂とを組み合わせたり;疎水性が相対的に低い樹脂を主成分とするフィルム表面を疎水化処理したりすることが好ましい。疎水性が相対的に高い樹脂と疎水性が相対的に低い樹脂の組み合わせの例には、後述する(メタ)アクリル樹脂とセルロースエステルとの組み合わせや;後述するウレタンウレア樹脂とポリエステル-ポリウレタン系可塑剤との組み合わせなどが含まれる。 The amount of elongation of the protective film is adjusted by the film composition; the elongation rate of the protective film can be adjusted by the film composition and surface treatment. In order to set the elongation and elongation rate of the protective film within the above ranges, a resin having a relatively high hydrophobicity and a resin having a relatively low hydrophobicity are combined; It is preferable to hydrophobize the film surface. Examples of combinations of resins with relatively high hydrophobicity and resins with relatively low hydrophobicity include combinations of (meth) acrylic resins and cellulose esters described later; urethane urea resins and polyester-polyurethane plastics described below. Combinations with agents are included.
 保護フィルムの、23℃55%RH下における引張弾性率は、3GPa以上であることが好ましく、4GPa以上であることがより好ましい。保護フィルムの引張弾性率が一定以上であると、偏光子の収縮力に耐えうることから、パネルベンドを抑制しやすい。保護フィルムの引張弾性率の上限は、取り扱い性が困難になることから、10GPa以下としうる。保護フィルムの、23℃55%RH下における引張弾性率は、実質的には3GPa~5GPaであることが好ましい。 The tensile elastic modulus of the protective film at 23 ° C. and 55% RH is preferably 3 GPa or more, and more preferably 4 GPa or more. When the tensile elastic modulus of the protective film is a certain value or more, it can withstand the contraction force of the polarizer, so that panel bend is easily suppressed. The upper limit of the tensile elastic modulus of the protective film may be 10 GPa or less because handling becomes difficult. The tensile elastic modulus of the protective film at 23 ° C. and 55% RH is preferably substantially 3 GPa to 5 GPa.
 保護フィルムの引張弾性率は、以下の方法で測定することができる。
 保護フィルムを100mm(MD方向)×10mm(TD方向)のサイズに切り取り、サンプルフィルムを得る。このサンプルフィルムを、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、MD方向に引っ張り、MD方向の引張弾性率を測定する。測定は、23℃55%RH下で行う。
The tensile elastic modulus of the protective film can be measured by the following method.
The protective film is cut into a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a sample film. In accordance with JIS K7127, this sample film is pulled in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction is measured. The measurement is performed at 23 ° C. and 55% RH.
 保護フィルムの引張弾性率は、主にフィルム組成と製造条件によって調整されうる。保護フィルムの引張弾性率を高めるためには、例えば延伸により樹脂の配向度を高めることが好ましい。また、熱処理により樹脂を高密度化することも好ましい。 The tensile elastic modulus of the protective film can be adjusted mainly by the film composition and production conditions. In order to increase the tensile modulus of the protective film, it is preferable to increase the degree of orientation of the resin, for example, by stretching. It is also preferable to densify the resin by heat treatment.
 1.保護フィルム
 本発明の保護フィルムは、(メタ)アクリル樹脂またはウレタンウレア樹脂と、必要に応じて他の樹脂または添加剤とを含む。
1. Protective film The protective film of this invention contains a (meth) acrylic resin or urethane urea resin, and another resin or additive as needed.
 (メタ)アクリル樹脂
 (メタ)アクリル樹脂は、(メタ)アクリル酸エステルの単独重合体;または(メタ)アクリル酸エステルとそれと共重合可能な他のモノマーとの共重合体でありうる。なかでも、疎水性を調整しやすいことなどから、(メタ)アクリル酸エステルとそれと共重合可能な他のモノマーとの共重合体が好ましい。本発明において、(メタ)アクリル酸エステルは、メタクリル酸エステルまたはアクリル酸エステルをいう。
(Meth) acrylic resin The (meth) acrylic resin can be a homopolymer of (meth) acrylic acid ester; or a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith. Of these, a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith is preferable because it is easy to adjust the hydrophobicity. In the present invention, (meth) acrylic acid ester refers to methacrylic acid ester or acrylic acid ester.
 (メタ)アクリル酸エステルは、好ましくは(メタ)アクリル酸アルキルエステルであり、より好ましくはメタクリル酸メチルである。 The (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester, and more preferably methyl methacrylate.
 (メタ)アクリル酸メチルと共重合可能な他のモノマーの例には、メタクリル酸メチル以外の(メタ)アクリル酸エステル;アクリル酸、メタクリル酸等のα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸;スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル;無水マレイン酸;マレイミド、N-置換マレイミド;グルタル酸無水物などが含まれる。アクリル酸アルキルエステルおよびメタクリル酸アルキルエステルにおけるアルキル基は、環状であっても鎖状であってもよい。これらの他のモノマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of other monomers copolymerizable with methyl (meth) acrylate include (meth) acrylic acid esters other than methyl methacrylate; α, β-unsaturated acids such as acrylic acid and methacrylic acid; maleic acid, fumaric acid Divalent carboxylic acids containing unsaturated groups such as acid and itaconic acid; aromatic vinyl compounds such as styrene, α-methylstyrene and nucleus-substituted styrene; α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; maleic anhydride Maleimide, N-substituted maleimide; glutaric anhydride and the like. The alkyl group in the acrylic acid alkyl ester and methacrylic acid alkyl ester may be cyclic or chain-like. These other monomers may be used alone or in combination of two or more.
 メタクリル酸メチル以外の(メタ)アクリル酸エステルは、(メタ)アクリル酸の、炭素原子数1~20の鎖状アルキルエステル;炭素原子数6~20の脂環式アルキルエステル;または炭素原子数6~20のアリールエステルなどでありうる。(メタ)アクリル酸の炭素原子数1~20の鎖状アルキルエステルの例には、t-ブチルメタクリレートなどが含まれる。(メタ)アクリル酸の炭素原子数6~20の脂環式アルキルエステルの例には、tert-ブチルシクロヘキシルメタクリレート、アダマンチルメタクリレート、イソボルニルメタクリレートなどが含まれる。(メタ)アクリル酸の炭素原子数6~20のアリールエステルの例には、ベンジルメタクリレート、フェノキシエチルメタクリレートなどが含まれる。 (Meth) acrylic acid esters other than methyl methacrylate are (meth) acrylic acid chain alkyl esters having 1 to 20 carbon atoms; alicyclic alkyl esters having 6 to 20 carbon atoms; or 6 carbon atoms. ~ 20 aryl esters and the like. Examples of the chain alkyl ester having 1 to 20 carbon atoms of (meth) acrylic acid include t-butyl methacrylate. Examples of the alicyclic alkyl ester of 6 to 20 carbon atoms of (meth) acrylic acid include tert-butylcyclohexyl methacrylate, adamantyl methacrylate, isobornyl methacrylate and the like. Examples of the aryl ester of (meth) acrylic acid having 6 to 20 carbon atoms include benzyl methacrylate and phenoxyethyl methacrylate.
 なかでも、保護フィルムの伸び量・伸び速度を上記範囲にするためには、他のモノマーは、疎水性が相対的に高いモノマーを含むことが好ましい。 Especially, in order to make the elongation amount and elongation rate of the protective film within the above ranges, it is preferable that the other monomer contains a monomer having relatively high hydrophobicity.
 疎水性が相対的に高いモノマーは、芳香環含有モノマーであるか、脂環式基含有モノマーでありうる。芳香環含有モノマーの例には、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物が含まれる。脂環式基含有モノマーの例には、環状アルキル基を有するメタクリル酸アルキルエステルなどが含まれる。なかでも、芳香環含有モノマーが好ましく、スチレンがより好ましい。 The monomer having relatively high hydrophobicity may be an aromatic ring-containing monomer or an alicyclic group-containing monomer. Examples of the aromatic ring-containing monomer include aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene. Examples of the alicyclic group-containing monomer include methacrylic acid alkyl ester having a cyclic alkyl group. Of these, aromatic ring-containing monomers are preferable, and styrene is more preferable.
 スチレンは、その立体規則性によって、アタクチックポリスチレン、アイソタクチックポリスチレン、シンジオタクチックポリスチレンなどがあり、疎水性に応じて適宜選択されうる。なかでも、耐熱性が高く、疎水性を有するシンジオタクチックポリスチレン(SPS)がより好ましい。 Styrene includes atactic polystyrene, isotactic polystyrene, syndiotactic polystyrene, and the like depending on its stereoregularity, and can be appropriately selected according to hydrophobicity. Of these, syndiotactic polystyrene (SPS) having high heat resistance and hydrophobicity is more preferable.
 上記共重合体を構成する全構成単位に対する、疎水性が相対的に高いモノマー由来の構造単位の含有割合は、求められる疎水性にもよるが、20~90質量%であることが好ましく、20~80質量%であることが好ましく、20~50質量%であることがより好ましい。疎水性が相対的に高いモノマー由来の構造単位の含有割合が上記範囲内であると、(メタ)アクリル樹脂の疎水性を適度に高めやすい。 The content of the structural unit derived from the monomer having a relatively high hydrophobicity with respect to all the structural units constituting the copolymer is preferably 20 to 90% by mass, although it depends on the required hydrophobicity. It is preferably ˜80 mass%, more preferably 20˜50 mass%. When the content ratio of the structural unit derived from the monomer having relatively high hydrophobicity is within the above range, the hydrophobicity of the (meth) acrylic resin can be easily increased appropriately.
 上記共重合体を構成する全構成単位に対する、メタクリル酸メチル由来の構造単位の含有割合は、10~80質量%であることが好ましく、20~80質量%であることがより好ましい。 The content ratio of the structural unit derived from methyl methacrylate with respect to all the structural units constituting the copolymer is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass.
 (メタ)アクリル樹脂の重量平均分子量(Mw)は、保護フィルムの機械的強度を一定以上とし、フィルム成形時の流動性を確保するためなどから、1万~200万であることが好ましく、10万~100万であることがより好ましい。 The weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 10,000 to 2,000,000 in order to make the mechanical strength of the protective film equal to or higher than a certain level and ensure fluidity at the time of film formation. More preferably, it is 10,000 to 1,000,000.
 (メタ)アクリル樹脂の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は、以下の通りとしうる。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×10~5.0×10までの13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に選択することが好ましい。
The weight average molecular weight (Mw) of the (meth) acrylic resin can be measured by gel permeation chromatography. The measurement conditions can be as follows.
Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1.0 × 10 6 to 5.0 × 10 2 13 calibration curves are used. The 13 samples are preferably selected at approximately equal intervals.
 (メタ)アクリル樹脂は、保護フィルムの伸び速度などを調整する観点から、後述するようにセルロースエステルと組み合わされうる。セルロースエステルと良好な相溶性を得るためなどから、(メタ)アクリル樹脂のFedorsの溶解度パラメータ(SP値)は、セルロースエステルのSP値と近いことが好ましく、16.6~20.1であることが好ましく、17.7~18.6であることがより好ましい。 (Meth) acrylic resin can be combined with cellulose ester as described later from the viewpoint of adjusting the elongation rate of the protective film. In order to obtain good compatibility with the cellulose ester, the solubility parameter (SP value) of Fedors of the (meth) acrylic resin is preferably close to the SP value of the cellulose ester, and is 16.6 to 20.1. Is more preferable, and 17.7 to 18.6 is more preferable.
 SP値は、Fedorsのパラメーターを用いて計算により求めることができる。SP値の単位は、凝集エネルギー密度△Eをモル体積Vで除した値の平方根で、「(cm/cal)1/2」を用いることができる。Fedorsのパラメーターは、参考文献:コーティングの基礎科学 原田勇次著 槇書店(1977)のp54~57に記載されている。 The SP value can be obtained by calculation using the Fedors parameter. The unit of SP value is the square root of the value obtained by dividing the cohesive energy density ΔE by the molar volume V, and “(cm 3 / cal) 1/2 ” can be used. The parameters of Fedors are described in References: Basic Science of Coatings by Yuji Harada, Kashiwa Shoten (1977), p.
 (メタ)アクリル樹脂は、保護フィルムの伸び速度・伸び量などを上記範囲にするためなどから、適度な疎水性を有することが好ましい。従って、(メタ)アクリル樹脂の水-オクタノール分配係数(LogP値)が、1.2以上であることが好ましく、1.4以上であることがより好ましい。(メタ)アクリル樹脂のLogP値が一定以上であれば、フィルムの伸び量・伸び速度を一定以下としやすい。一方で、LogP値が高すぎると、フィルムの伸び量・伸び速度が小さくなりすぎることがあるため、2.8以下としうる。 It is preferable that the (meth) acrylic resin has an appropriate hydrophobicity in order to make the elongation rate and elongation amount of the protective film within the above ranges. Accordingly, the water-octanol distribution coefficient (Log P value) of the (meth) acrylic resin is preferably 1.2 or more, and more preferably 1.4 or more. If the LogP value of the (meth) acrylic resin is not less than a certain level, the elongation amount / elongation speed of the film is likely to be not more than a certain value. On the other hand, if the LogP value is too high, the amount of elongation and the elongation rate of the film may be too small, so that it may be 2.8 or less.
 (メタ)アクリル樹脂のLogP値を高めるためには、例えば(メタ)アクリル樹脂を構成するモノマーに、スチレンなどの疎水性が相対的に高いモノマーを含有させたり;当該疎水性が相対的に高いモノマーの含有割合を高めたりすればよい。 In order to increase the LogP value of the (meth) acrylic resin, for example, the monomer constituting the (meth) acrylic resin contains a monomer having a relatively high hydrophobicity such as styrene; the hydrophobicity is relatively high What is necessary is just to raise the content rate of a monomer.
 ウレタンウレア樹脂は、ポリオール(a)と、ポリアミン(b)と、ポリイソシアネート(c)とを反応させて得られる樹脂でありうる。 Urethane urea resin may be a resin obtained by reacting polyol (a), polyamine (b), and polyisocyanate (c).
 ポリオール(a)は、脂環式構造含有ポリカーボネートポリオール(a1)と、芳香族ポリエステルポリオール(a2)を含むことが好ましい。 The polyol (a) preferably contains an alicyclic structure-containing polycarbonate polyol (a1) and an aromatic polyester polyol (a2).
 脂環式構造含有ポリカーボネートポリオール(a1)は、炭酸エステルまたはホスゲンと、脂環式構造含有ポリオールとを反応させて得られる化合物でありうる。炭酸エステルの例には、ジメチルカーボネートなどが含まれる。脂環式構造含有ポリオールの例には、1,2-シクロペンタンジオール、1,4-シクロヘキサンジオールなどが含まれる。脂環式構造含有ポリカーボネートポリオール(a1)の具体例には、宇部興産社製UC-100などが含まれる。 The alicyclic structure-containing polycarbonate polyol (a1) can be a compound obtained by reacting a carbonate or phosgene with an alicyclic structure-containing polyol. Examples of the carbonate include dimethyl carbonate and the like. Examples of the alicyclic structure-containing polyol include 1,2-cyclopentanediol, 1,4-cyclohexanediol, and the like. Specific examples of the alicyclic structure-containing polycarbonate polyol (a1) include UC-100 manufactured by Ube Industries, Ltd.
 芳香族ポリエステルポリオール(a2)は、アルキレンジオールと、芳香族ジカルボン酸またはそのジアルキルエステル化合物とをエステル化反応させて得られる化合物である。アルキレンジオールの例には、エチレングリコール、1,2-プロピレングリコールなどが含まれる。芳香族ジカルボン酸の例には、テレフタル酸、ナフタレンジカルボン酸などが含まれ;芳香族ジカルボン酸のジアルキルエステルの例には、テレフタル酸ジメチル、テレフタル酸ジエチルなどが含まれる。 The aromatic polyester polyol (a2) is a compound obtained by esterifying an alkylene diol and an aromatic dicarboxylic acid or a dialkyl ester compound thereof. Examples of the alkylene diol include ethylene glycol, 1,2-propylene glycol and the like. Examples of aromatic dicarboxylic acids include terephthalic acid, naphthalenedicarboxylic acid, and the like; examples of aromatic dicarboxylic acid dialkyl esters include dimethyl terephthalate, diethyl terephthalate, and the like.
 ポリオール(a)における脂環式構造含有ポリカーボネートポリオール(a1)と芳香族ポリエステルポリオール(a2)の比は、得られる樹脂が適度な疎水性を有するためなどから、(a1)/(a2)=90/10~60/40であることが好ましく、85/15~75/25であることがより好ましい。ウレタンウレア樹脂におけるポリオール(a)由来の構造単位の含有割合は、ポリオール(a)、ポリアミン(b)およびポリイソシアネート(c)の構造単位の合計に対して40~80質量%としうる。 The ratio of the alicyclic structure-containing polycarbonate polyol (a1) to the aromatic polyester polyol (a2) in the polyol (a) is (a1) / (a2) = 90 because the resulting resin has appropriate hydrophobicity. / 10 to 60/40 is preferable, and 85/15 to 75/25 is more preferable. The content ratio of the structural unit derived from the polyol (a) in the urethane urea resin can be 40 to 80% by mass with respect to the total of the structural units of the polyol (a), the polyamine (b) and the polyisocyanate (c).
 ポリアミン(b)は、脂環式構造含有ポリアミンであることが好ましく;その例には、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、ジアミノシクロヘキサンなどが含まれる。ウレタンウレア樹脂におけるポリアミン(b)由来の構造単位の含有割合は、ポリオール(a)、ポリアミン(b)およびポリイソシアネート(c)の構造単位の合計に対して1~20質量%としうる。 Polyamine (b) is preferably an alicyclic structure-containing polyamine; examples include isophorone diamine, 4,4'-dicyclohexylmethane diamine, diaminocyclohexane, and the like. The content ratio of the structural unit derived from the polyamine (b) in the urethane urea resin may be 1 to 20% by mass with respect to the total of the structural units of the polyol (a), the polyamine (b) and the polyisocyanate (c).
 ポリイソシアネート(c)は、脂環式構造含有ポリイソシナネートであることが好ましく;その例には、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4または2,6-メチルシクロヘキサンジイソシアネートなどが含まれる。ウレタンウレア樹脂におけるポリイソシアネート(c)由来の構造単位の含有割合は、ポリオール(a)、ポリアミン(b)およびポリイソシアネート(c)の構造単位の合計に対して15~50質量%としうる。 The polyisocyanate (c) is preferably an alicyclic structure-containing polyisocyanate; examples include isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, 2,4 or 2,6-methylcyclohexane diisocyanate. Etc. are included. The content ratio of the structural unit derived from polyisocyanate (c) in the urethane urea resin can be 15 to 50% by mass with respect to the total of the structural units of polyol (a), polyamine (b) and polyisocyanate (c).
 ウレタンウレア樹脂は、例えばポリオール(a)とポリイソシアネート(c)とを反応させて、分子末端にイソシアネート基を含有するウレタンプレポリマーを得た後;該ウレタンプレポリマーとポリアミン(b)とを反応させて得ることができる。 Urethane urea resin, for example, after reacting polyol (a) with polyisocyanate (c) to obtain a urethane prepolymer containing an isocyanate group at the molecular end; reacting the urethane prepolymer with polyamine (b) Can be obtained.
 これらの樹脂のなかでも、適度な疎水性を有し、かつ光学特性を調整しやすいことなどから、(メタ)アクリル樹脂が好ましい。 Among these resins, (meth) acrylic resins are preferable because they have appropriate hydrophobicity and can easily adjust optical characteristics.
 本発明の保護フィルムは、必要に応じて他の樹脂や添加剤などをさらに含んでもよい。 The protective film of the present invention may further contain other resins and additives as required.
 他の樹脂は、(メタ)アクリル樹脂と組み合わせることで、フィルムの伸び量・伸び速度を調整しやすいことなどから、セルロースエステルを含むことが好ましい。 The other resin preferably contains a cellulose ester because it is easy to adjust the elongation and elongation rate of the film by combining with (meth) acrylic resin.
 セルロースエステル
 セルロースエステルは、セルロースと、脂肪族カルボン酸と芳香族カルボン酸の少なくとも一方とをエステル化反応させて得られる化合物である。即ち、セルロースエステルは、脂肪族アシル基と芳香族アシル基の少なくとも一方を含む。
Cellulose ester Cellulose ester is a compound obtained by esterifying cellulose and at least one of aliphatic carboxylic acid and aromatic carboxylic acid. That is, the cellulose ester contains at least one of an aliphatic acyl group and an aromatic acyl group.
 脂肪族アシル基の炭素原子数は、2~7であることが好ましく、2~4であることがより好ましい。脂肪族アシル基の例には、アセチル基、プロピオニル基、ブタノイル基などが含まれる。芳香族アシル基の炭素原子数は、6~24であることが好ましい。芳香族アシル基の例には、ベンゾイル基、4-フェニル-ベンゾイル基、トリメチルベンゾイル基、チオフェン基、ナフチル基などが含まれ、好ましくはベンゾイル基である。 The number of carbon atoms in the aliphatic acyl group is preferably 2 to 7, and more preferably 2 to 4. Examples of the aliphatic acyl group include acetyl group, propionyl group, butanoyl group and the like. The aromatic acyl group preferably has 6 to 24 carbon atoms. Examples of the aromatic acyl group include a benzoyl group, a 4-phenyl-benzoyl group, a trimethylbenzoyl group, a thiophene group, a naphthyl group, and the like, preferably a benzoyl group.
 なかでも、後述するようにセルロースエステルのLogP値を高めるためには、セルロースエステルに含まれるアシル基は、芳香族アシル基を含むことが好ましく;セルロースエステルの疎水性(LogP値)が過剰に高くならないようにするためなどから、脂肪族アシル基をさらに含むことがより好ましい。セルロースエステルに含まれるアシル基における、芳香族アシル基の含有比率は、アシル基の合計に対して5~25%、好ましくは10~20%程度としうる。 Among them, as will be described later, in order to increase the LogP value of the cellulose ester, the acyl group contained in the cellulose ester preferably contains an aromatic acyl group; the hydrophobicity (LogP value) of the cellulose ester is excessively high. It is more preferable to further include an aliphatic acyl group in order to prevent it from occurring. The content ratio of the aromatic acyl group in the acyl group contained in the cellulose ester can be about 5 to 25%, preferably about 10 to 20% with respect to the total acyl group.
 セルロースエステルの具体例には、セルロースアセテートプロピオネート、セルロースアセテートベンゾエート、セルロースアセテートプロピオネートベンゾエート、セルロースアセテートビフェニレート、セルロースアセテートプロピオネートビフェニレートなどが含まれ、適度な疎水性を有することから、セルロースアセテートベンゾエートなどが好ましい。 Specific examples of cellulose esters include cellulose acetate propionate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose acetate biphenylate, cellulose acetate propionate biphenylate, etc. Cellulose acetate benzoate and the like are preferable.
 セルロースエステルのアシル基の総置換度は2.0以上、好ましくは2.5以上、より好ましくは2.7以上、さらに好ましくは2.8以上である。アシル基の総置換度の上限は、例えば3、好ましくは2.95としうる。セルロースエステルの疎水性(LogP値を高める)ためには、例えばアシル基の総置換度を高くすることが好ましい。 The total substitution degree of the acyl group of the cellulose ester is 2.0 or more, preferably 2.5 or more, more preferably 2.7 or more, and further preferably 2.8 or more. The upper limit of the total substitution degree of the acyl group can be set to 3, for example, preferably 2.95. In order to make the cellulose ester hydrophobic (increase the LogP value), for example, it is preferable to increase the total substitution degree of acyl groups.
 セルロースエステルのアシル基の置換度は、ASTM-D817-96に規定の方法で測定することができる。 The degree of substitution of the acyl group of the cellulose ester can be measured by the method prescribed in ASTM-D817-96.
 セルロースエステルの重量平均分子量は、一定以上の機械的強度を得るためには、5万~50万であることが好ましく、10万~30万であることがより好ましく、15万~25万であることがさらに好ましい。セルロースエステルの分子量分布(重量平均分子量Mw/数平均分子量Mn)は、1.0~4.5であることが好ましい。セルロースエステルの重量平均分子量および分子量分布は、前述と同様に、ゲルパーミエーションクロマトグラフィー(GPC)により測定されうる。 The weight average molecular weight of the cellulose ester is preferably 50,000 to 500,000, more preferably 100,000 to 300,000, and more preferably 150,000 to 250,000 in order to obtain a certain level of mechanical strength. More preferably. The molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) of the cellulose ester is preferably 1.0 to 4.5. The weight average molecular weight and molecular weight distribution of the cellulose ester can be measured by gel permeation chromatography (GPC) as described above.
 セルロースエステルは、保護フィルムの伸び速度・伸び量などを上記範囲にするためなどから、適度な疎水性を有することが好ましい。従って、セルロースエステルの水-オクタノール分配係数(LogP値)は、0以上であることが好ましく、0.5以上であることがより好ましく、1.0以上であることがさらに好ましい。セルロースエステルのLogP値が一定以上であれば、例えば(メタ)アクリル樹脂と組み合わせたときに適度な疎水性が得られやすい。セルロースエステルのLogP値が高すぎると、(メタ)アクリル樹脂との相溶性が低下する可能性があることから、6.5以下としうる。 The cellulose ester preferably has moderate hydrophobicity in order to make the elongation rate and elongation amount of the protective film within the above ranges. Accordingly, the water-octanol partition coefficient (Log P value) of the cellulose ester is preferably 0 or more, more preferably 0.5 or more, and even more preferably 1.0 or more. If the LogP value of the cellulose ester is a certain level or more, for example, when combined with a (meth) acrylic resin, appropriate hydrophobicity is easily obtained. If the LogP value of the cellulose ester is too high, the compatibility with the (meth) acrylic resin may be lowered.
 セルロースエステルのLogP値を高めるためには、前述の通り、芳香族アシル基を含有させたり;当該芳香族アシル基の含有割合を高めたりすればよい。 In order to increase the LogP value of the cellulose ester, as described above, an aromatic acyl group may be contained; or the content ratio of the aromatic acyl group may be increased.
 セルロースエステルのLogP値と(メタ)アクリル樹脂のLogP値との差の絶対値は、8以下であることが好ましく、6以下であることがより好ましい。LogP値の差が一定以下であると、セルロースエステルと(メタ)アクリル樹脂とが相溶しやすく、セルロースエステルの添加効果が得られやすい。 The absolute value of the difference between the LogP value of the cellulose ester and the LogP value of the (meth) acrylic resin is preferably 8 or less, and more preferably 6 or less. When the difference in the LogP value is below a certain value, the cellulose ester and the (meth) acrylic resin are easily compatible with each other, and the effect of adding the cellulose ester is easily obtained.
 セルロースエステルの含有量は、保護フィルム全体に対して5~25質量%であることが好ましく、5~15質量%であることがより好ましい。セルロースエステルの含有量を一定以上とすることで、保護フィルムの伸び量・伸び速度(特に伸び量)を高めやすい。セルロースエステルの含有量を一定以下とすることで、保護フィルムの伸び量が過剰に高くなるのを抑制しうる。 The content of cellulose ester is preferably 5 to 25% by mass, and more preferably 5 to 15% by mass with respect to the entire protective film. By setting the content of the cellulose ester to a certain level or more, it is easy to increase the elongation amount and elongation rate (particularly the elongation amount) of the protective film. By making the content of the cellulose ester not more than a certain value, it is possible to suppress the elongation amount of the protective film from becoming excessively high.
 添加剤の例には、可塑剤、紫外線吸収剤、マット剤(微粒子)などが含まれる。 Examples of additives include plasticizers, ultraviolet absorbers, matting agents (fine particles), and the like.
 可塑剤は、ポリエステル系可塑剤、フタル酸エステル系可塑剤、リン酸エステル系可塑剤、アクリル系可塑剤などが含まれる。これらは単独で用いても、二種類以上を組み合わせて用いてもよい。 Plasticizers include polyester plasticizers, phthalate ester plasticizers, phosphate ester plasticizers, acrylic plasticizers, and the like. These may be used alone or in combination of two or more.
 ポリエステル系可塑剤は、ジカルボン酸とジオールとの縮合物に由来する繰り返し単位を含む。 The polyester plasticizer includes a repeating unit derived from a condensate of dicarboxylic acid and diol.
 ジカルボン酸は、脂肪族ジカルボン酸、脂環式ジカルボン酸または芳香族ジカルボン酸でありうる。脂肪族ジカルボン酸の炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。脂肪族ジカルボン酸の例には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等が含まれる。 The dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid. The number of carbon atoms in the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12. Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
 芳香族ジカルボン酸の炭素原子数は、好ましくは8~20であり、より好ましくは8~12である。芳香族ジカルボン酸の例には、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸(イソフタル酸)、1,4-ベンゼンジカルボン酸(テレフタル酸)、1,5-ナフタレンジカルボン酸、1,4-キシリデンジカルボン酸等が含まれ、好ましくは1,4-ベンゼンジカルボン酸(テレフタル酸)である。 The number of carbon atoms in the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12. Examples of aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acid, 1,4-xylidene dicarboxylic acid and the like are included, and 1,4-benzenedicarboxylic acid (terephthalic acid) is preferable.
 脂環式ジカルボン酸の炭素原子数は、好ましくは6~20であり、より好ましくは6~12である。脂環式ジカルボン酸の例には、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸等が含まれる。 The number of carbon atoms of the alicyclic dicarboxylic acid is preferably 6 to 20, and more preferably 6 to 12. Examples of the alicyclic dicarboxylic acid include 1,3-cyclobutane dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,4-cyclohexane diacetic acid and the like.
 ポリエステル化合物を得るためのジカルボン酸は、一種類であっても、二種類以上あってもよい。ポリエステル化合物を得るためのジカルボン酸は、透明基材層の疎水性を高めたり、セルロースエステルとの相溶性を高めたりするためなどから、芳香族ジカルボン酸を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸の両方を含むことがより好ましい。 The dicarboxylic acid for obtaining the polyester compound may be one type or two or more types. The dicarboxylic acid for obtaining the polyester compound preferably contains an aromatic dicarboxylic acid in order to increase the hydrophobicity of the transparent substrate layer or increase the compatibility with the cellulose ester. More preferably, both aliphatic dicarboxylic acids are included.
 ジオールは、脂肪族ジオール、アルキルエーテルジオール、脂環式ジオールまたは芳香族ジオールでありうる。 The diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol or an aromatic diol.
 脂肪族ジオールの炭素数は、好ましくは2~20であり、より好ましくは2~12である。脂肪族ジオールの例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオールなどが含まれる。アルキルエーテルジオールの炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。アルキルエーテルジオールの例には、ポリテトラメチレンエーテルグリコール、ポリエチレンエーテルグリコールおよびポリプロピレンエーテルグリコールなどが含まれる。 The carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12. Examples of the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, and the like. The number of carbon atoms of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12. Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol and polypropylene ether glycol.
 脂環式ジオールの炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。脂環式ジオールの例には、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが含まれる。 The number of carbon atoms of the alicyclic diol is preferably 4 to 20, and more preferably 4 to 12. Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
 芳香族ジオールの炭素原子数は、好ましくは6~20であり、より好ましくは6~12である。芳香族ジオールの例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などが含まれる。ポリエステル化合物を得るためのジオールは、一種類であっても、二種類以上あってもよい。ポリエステル化合物を得るためのジオールは、脂肪族ジオールを含むことが好ましい。 The number of carbon atoms in the aromatic diol is preferably 6 to 20, and more preferably 6 to 12. Examples of aromatic diols include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and the like. The diol for obtaining the polyester compound may be one kind or two or more kinds. The diol for obtaining the polyester compound preferably contains an aliphatic diol.
 なかでも、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、脂肪族ジオールとの縮合物に由来する繰り返し単位を含むポリエステル化合物が、それを含むフィルムの透明性が良好である点から、好ましい。 Among them, the polyester compound containing a repeating unit derived from a condensate of an aliphatic diol and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid is preferable because the transparency of the film containing the polyester compound is good. ,preferable.
 ポリエステル化合物の分子末端は、必要に応じてモノカルボン酸またはモノアルコールで封止されていてもよい。 The molecular terminal of the polyester compound may be sealed with monocarboxylic acid or monoalcohol as necessary.
 モノカルボン酸は、脂肪族モノカルボン酸、脂環式モノカルボン酸または芳香族モノカルボン酸でありうる。脂肪族モノカルボン酸の炭素原子数は、好ましくは2~30、より好ましくは2~4でありうる。脂肪族カルボン酸の例には、酢酸、プロピオン酸などが含まれる。脂環式モノカルボン酸の例には、シクロヘキシルモノカルボン酸などが含まれる。芳香族モノカルボン酸の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などが含まれる。 The monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid. The number of carbon atoms of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4. Examples of the aliphatic carboxylic acid include acetic acid, propionic acid and the like. Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid. Examples of aromatic monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
 モノアルコールは、脂肪族モノアルコール、脂環式モノアルコールまたは芳香族モノアルコールでありうる。脂肪族モノアルコールの炭素原子数は1~30であり、好ましくは1~3でありうる。脂肪族モノアルコールの例には、メタノール、エタノール、プロパノール、イソプロパノールなどが含まれる。脂環式モノアルコールの例には、シクロヘキシルアルコールなどが含まれる。芳香族モノアルコールの例には、ベンジルアルコール、3-フェニルプロパノールなどが含まれる。 The monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol or an aromatic monoalcohol. The number of carbon atoms of the aliphatic monoalcohol is 1 to 30, preferably 1 to 3. Examples of the aliphatic monoalcohol include methanol, ethanol, propanol, isopropanol and the like. Examples of the alicyclic monoalcohol include cyclohexyl alcohol and the like. Examples of the aromatic monoalcohol include benzyl alcohol, 3-phenylpropanol and the like.
 ポリエステル化合物の具体例には、以下のものが含まれる。表1において、TPA:テレフタル酸、PA:フタル酸、SA:コハク酸、AA:アジピン酸を示す。
Figure JPOXMLDOC01-appb-T000001
Specific examples of the polyester compound include the following. In Table 1, TPA: terephthalic acid, PA: phthalic acid, SA: succinic acid, AA: adipic acid are shown.
Figure JPOXMLDOC01-appb-T000001
 フタル酸エステル系可塑剤の例には、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が含まれる。 Examples of the phthalate ester plasticizer include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
 リン酸エステル系可塑剤の例には、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、およびトリブチルホスフェート等が含まれる。 Examples of the phosphate ester plasticizer include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
 アクリル系可塑剤は、分子内に芳香環を有しない(メタ)アクリル酸エステルモノマーの単独重合体または共重合体でありうる。なかでも、芳香環を有さず、親水性基を有する(メタ)アクリル酸エステルXと、芳香環を有さず、親水性基を有しない(メタ)アクリル酸エステルYとの共重合体が好ましい。 The acrylic plasticizer may be a homopolymer or copolymer of a (meth) acrylic acid ester monomer having no aromatic ring in the molecule. Among them, there is a copolymer of (meth) acrylic acid ester X having no aromatic ring and having a hydrophilic group and (meth) acrylic acid ester Y having no aromatic ring and having no hydrophilic group. preferable.
 芳香環を有さず、親水性基を有する(メタ)アクリル酸エステルXの例には、(メタ)アクリル酸(2-ヒドロキシエチル)、(メタ)アクリル酸(2-ヒドロキシプロピル)、(メタ)アクリル酸(3-ヒドロキシプロピル)、(メタ)アクリル酸(4-ヒドロキシブチル)、(メタ)アクリル酸(2-ヒドロキシブチル)などが含まれる。 Examples of (meth) acrylic acid ester X having no aromatic ring and having a hydrophilic group include (meth) acrylic acid (2-hydroxyethyl), (meth) acrylic acid (2-hydroxypropyl), (meta ) Acrylic acid (3-hydroxypropyl), (meth) acrylic acid (4-hydroxybutyl), (meth) acrylic acid (2-hydroxybutyl) and the like.
 芳香環を有さず、親水性基を有しない(メタ)アクリル酸エステルYの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i-、n-)、アクリル酸ブチル(n-、i-、s-、t-)、アクリル酸ペンチル(n-、i-、s-)、アクリル酸ヘキシル(n-、i-)、アクリル酸ヘプチル(n-、i-)、アクリル酸オクチル(n-、i-)、アクリル酸ノニル(n-、i-)、アクリル酸ミリスチル(n-、i-)、アクリル酸(2-エチルヘキシル)などが含まれる。 Examples of (meth) acrylic acid ester Y having no aromatic ring and no hydrophilic group include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), butyl acrylate (n- , I-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (N-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl) and the like.
 (メタ)アクリル酸エステルYとYの共重合体における、(メタ)アクリル酸エステルX由来の構成単位と(メタ)アクリル酸エステルY由来の構成単位の含有比率(モル比)は、X:Y=1:1~1:99でありうる。 In the copolymer of (meth) acrylic acid ester Y and Y, the content ratio (molar ratio) of the structural unit derived from (meth) acrylic acid ester X and the structural unit derived from (meth) acrylic acid ester Y is X: Y. = 1: 1 to 1:99.
 アクリル系可塑剤の重量平均分子量は、500~30000であることが好ましく、500~10000であることがより好ましい。重量平均分子量が上記範囲内であるアクリル系可塑剤は、(メタ)アクリル樹脂などとの相溶性が良好で、製膜中に揮発も起こりにくい。 The weight average molecular weight of the acrylic plasticizer is preferably 500 to 30,000, more preferably 500 to 10,000. An acrylic plasticizer having a weight average molecular weight within the above range has good compatibility with a (meth) acrylic resin and the like, and is less likely to volatilize during film formation.
 ポリエステル-ウレタン系可塑剤
 ポリエステル-ウレタン系可塑剤は、ウレタンウレア樹脂の可塑剤として好ましく用いられる。ポリエステル-ウレタン系可塑剤は、ポリエステルとジイソシアナートとの反応により得られるポリエステル-ウレタンであり、下記一般式(1)で表される繰り返し単位を有する。
Figure JPOXMLDOC01-appb-C000001
Polyester-urethane plasticizer Polyester-urethane plasticizer is preferably used as a plasticizer for urethane urea resin. The polyester-urethane plasticizer is a polyester-urethane obtained by reaction of polyester and diisocyanate, and has a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、lは2~4の整数を表し;mは2~4の整数を表し;nは1~100を表す。Rは、下記に示す構造単位を表し;下記構造単位におけるベンゼン環はアルキル基などの置換基をさらに有してもよい。
Figure JPOXMLDOC01-appb-C000002
In the general formula (1), l represents an integer of 2 to 4; m represents an integer of 2 to 4; and n represents 1 to 100. R represents the structural unit shown below; the benzene ring in the structural unit shown below may further have a substituent such as an alkyl group.
Figure JPOXMLDOC01-appb-C000002
 ポリエステル-ウレタン系可塑剤を得るためのポリエステルは、グリコールと二塩基性酸を反応させて得られる、両末端にヒドロキシル基を有するポリエステルでありうる。グリコールの例には、エチレングリコール、1,3-プロパンジオールおよび1,4-ブタンジオールなどが含まれ;二塩基性酸の例には、コハク酸、グルタル酸およびアジピン酸などが含まれる。ポリエステルの重合度nは、1~100であることが好ましい。ポリエステルの分子量は、1000~4500であることが好ましい。 The polyester for obtaining the polyester-urethane plasticizer may be a polyester having hydroxyl groups at both ends, obtained by reacting glycol and dibasic acid. Examples of glycols include ethylene glycol, 1,3-propanediol and 1,4-butanediol; examples of dibasic acids include succinic acid, glutaric acid and adipic acid. The degree of polymerization n of the polyester is preferably 1 to 100. The molecular weight of the polyester is preferably 1000 to 4500.
 ポリエステル-ウレタン系可塑剤を得るためのジイソシアナートは、エチレンジイソシアナート、トリメチレンジイソシアナート、テトラメチレンジイソシアナート、ヘキサメチレンジイソシアナート等のポリメチレンイソシアナート、p-フェニレンジイソシアナート、トリレンジイソシアナート、p,p′-ジフェニルメタンジイソシアナート、1,5-ナフチレンジイソシアナート等の芳香族ジイソシアナート、m-キシリレンジイソシアナート等が挙げられる。中でも、トリレンジイソシアナート、m-キシリレンジイソシアナート、テトラメチレンジイソシアナートが、ポリウレタン化した後のセルロースエステルとの相溶性が良好であるので好ましい。 Diisocyanates for obtaining polyester-urethane plasticizers include polymethylene isocyanates such as ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, and p-phenylene diisocyanate. , Aromatic diisocyanates such as tolylene diisocyanate, p, p'-diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, m-xylylene diisocyanate and the like. Of these, tolylene diisocyanate, m-xylylene diisocyanate, and tetramethylene diisocyanate are preferable because they have good compatibility with the cellulose ester after polyurethane formation.
 ポリエステル-ウレタン系可塑剤の重量平均分子量は、2000~50000であることが好ましく、5000~15000であることがより好ましい。 The weight average molecular weight of the polyester-urethane plasticizer is preferably 2000 to 50000, and more preferably 5000 to 15000.
 これらの可塑剤の含有量の合計は、主成分となる樹脂成分の合計((メタ)アクリル樹脂とウレタンウレア樹脂の合計)に対して0.5~30質量%であることが好ましく、5~20質量%であることがより好ましい。可塑剤の含有量が上記範囲内であると、フィルムがブリードアウトを生じることなく、可塑化効果が得られやすい。 The total content of these plasticizers is preferably 0.5 to 30% by mass with respect to the total of the main resin components (the total of (meth) acrylic resin and urethane urea resin). More preferably, it is 20 mass%. When the content of the plasticizer is within the above range, the plasticizing effect is easily obtained without causing the film to bleed out.
 保護フィルムの伸び量・伸び速度を上記範囲とするための、好ましいフィルム組成の例には、1)LogP値が1.2以上の(メタ)アクリル樹脂と、セルロースエステルとの組み合わせ;2)(メタ)アクリル樹脂と、LogP値が0以上のセルロースエステルとの組み合わせ;3)LogP値が1.2以上の(メタ)アクリル樹脂と、LogP値が0以上セルロースエステルとの組み合わせなどが含まれる。なかでも、保護フィルムの伸び量・伸び速度を好ましい範囲に調整しやすいことから、3)LogP値が1.2以上の(メタ)アクリル樹脂とLogP値が0以上のセルロースエステルとの組み合わせが好ましい。 Examples of a preferable film composition for setting the amount of elongation / elongation speed of the protective film within the above range include 1) a combination of a (meth) acrylic resin having a Log P value of 1.2 or more and a cellulose ester; 2) ( A combination of a (meth) acrylic resin and a cellulose ester having a LogP value of 0 or more; and 3) a combination of a (meth) acrylic resin having a LogP value of 1.2 or more and a cellulose ester having a LogP value of 0 or more. Especially, since it is easy to adjust the elongation amount and elongation rate of the protective film to a preferable range, a combination of (3) a (meth) acrylic resin having a LogP value of 1.2 or more and a cellulose ester having a LogP value of 0 or more is preferable. .
 紫外線吸収剤
 紫外線吸収剤は、ベンゾトリアゾール系化合物、2-ヒドロキシベンゾフェノン系化合物またはサリチル酸フェニルエステル系化合物などでありうる。それらの例には、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類が含まれる。
Ultraviolet Absorber The ultraviolet absorber may be a benzotriazole compound, a 2-hydroxybenzophenone compound, a salicylic acid phenyl ester compound, or the like. Examples thereof include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2 -Triazoles such as (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy- Benzophenones such as 4-methoxybenzophenone are included.
 なかでも、分子量が400以上の紫外線吸収剤は、高沸点で揮発しにくく、高温成形時にも飛散しにくいことから、比較的少量の添加で効果的に耐候性が得られやすい。このため、紫外線吸収剤の分子量は、250~1000であることが好ましく、400~800であることがより好ましい。分子量が400以上の紫外線吸収剤の例には、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]などが含まれる。 Among these, UV absorbers having a molecular weight of 400 or more are less likely to volatilize at a high boiling point and are difficult to disperse even during high temperature molding, so that weather resistance can be easily obtained effectively with a relatively small amount of addition. For this reason, the molecular weight of the ultraviolet absorber is preferably 250 to 1,000, more preferably 400 to 800. Examples of UV absorbers having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- ( 1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] and the like.
 紫外線防止剤の含有量は、保護フィルム中に質量割合で0.001%~5%であることが好ましく、0.1~3%であることがさらに好ましい。 The content of the ultraviolet light inhibitor is preferably 0.001% to 5%, more preferably 0.1 to 3% by mass in the protective film.
 マット剤
 マット剤は、保護フィルムに滑り性を付与しうる。マット剤は、無機微粒子または有機微粒子でありうる。
Matting agent The matting agent can impart slipperiness to the protective film. The matting agent can be inorganic fine particles or organic fine particles.
 無機微粒子を構成する無機化合物の例には、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等が含まれる。なかでも、フィルムのヘイズの増大が少ないことから、二酸化珪素が好ましい。 Examples of inorganic compounds constituting the inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, silicic acid. Aluminum, magnesium silicate, calcium phosphate and the like are included. Of these, silicon dioxide is preferred because the increase in film haze is small.
 二酸化珪素の例には、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、R202(以上日本アエロジル(株)製)、シーホスターKEP-10、KEP-30、KEP-50(以上、株式会社日本触媒製)などが含まれる。 Examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, R202 (manufactured by Nippon Aerosil Co., Ltd.), Seahoster KEP-10, KEP-30, KEP-50 (above, Nippon Shokubai Co., Ltd.) Manufactured).
 粒子の形状は、特に制限されず、不定形、針状、扁平、球状等でありうる。なかでも、得られる透明基材層の透明性が良好であることから、球状の粒子が好ましい。 The shape of the particles is not particularly limited, and may be indefinite, acicular, flat, spherical, or the like. Especially, since the transparency of the transparent base material layer obtained is favorable, a spherical particle is preferable.
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が低下するため、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。粒子の大きさが小さすぎると、滑り性が改善されない場合があるので、80nmから180nmの範囲であることが好ましい。粒子の大きさとは、粒子が1次粒子の凝集体の場合は、凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。 When the particle size is close to the wavelength of visible light, light is scattered and transparency is lowered. Therefore, the particle size is preferably smaller than the wavelength of visible light, and more preferably ½ or less of the wavelength of visible light. . If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is preferable. The size of the particle means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
 マット剤の含有量は、主成分となる樹脂成分の合計((メタ)アクリル樹脂とウレタンウレア樹脂の合計)に対して0.05~1.0質量%程度とすることができ、好ましくは0.1~0.8質量%としうる。 The content of the matting agent can be about 0.05 to 1.0% by mass with respect to the total of the resin components as the main components (total of (meth) acrylic resin and urethane urea resin), preferably 0 .1 to 0.8 mass%.
 保護フィルムは、水に浸漬したときの伸び速度を上記範囲に調整しやすくするためなどから、必要に応じて表面処理が施されていてもよい。例えば、ベースとなるフィルムの疎水性が不足する場合(例えばLogP値が低い(メタ)アクリル樹脂フィルムなどである場合)、当該フィルムの表面を疎水化処理してもよい。疎水化処理は、例えばフィルム表面をコロナ処理した後、触媒存在下で改質剤(例えば3H-テトラフルオロプロピオン酸クロリドなど)と接触させて行うことができる。 The protective film may be subjected to a surface treatment as necessary in order to easily adjust the elongation rate when immersed in water to the above range. For example, when the hydrophobicity of the base film is insufficient (for example, a (meth) acrylic resin film having a low LogP value), the surface of the film may be subjected to a hydrophobic treatment. The hydrophobizing treatment can be performed, for example, by subjecting the film surface to corona treatment and then contacting with a modifier (eg, 3H-tetrafluoropropionic acid chloride) in the presence of a catalyst.
 保護フィルムの厚みは、保護フィルムの収縮力を小さくする点では、一定以下であることが好ましく;水の透過を少なくする点では、一定以上であることが好ましい。従って、保護フィルムの厚みは、10~80μmであることが好ましく、10~70μmであることがより好ましく、10~50μmであることがさらに好ましく、10~40μmであることが特に好ましい。 The thickness of the protective film is preferably not more than a certain value in order to reduce the shrinkage force of the protecting film; it is preferably not less than a certain value in order to reduce the permeation of water. Accordingly, the thickness of the protective film is preferably 10 to 80 μm, more preferably 10 to 70 μm, still more preferably 10 to 50 μm, and particularly preferably 10 to 40 μm.
 保護フィルムは、単層フィルムであっても、積層フィルムであってもよい。保護フィルムが積層フィルムである場合、保護フィルムを構成する全ての層が、前述の組成(好ましくはLogPが一定以上のセルロースエステルとLogPが一定以上の(メタ)アクリル樹脂との組み合わせ)を有することが好ましい。 The protective film may be a single layer film or a laminated film. When the protective film is a laminated film, all layers constituting the protective film have the above-described composition (preferably a combination of a cellulose ester having a certain LogP value and a (meth) acrylic resin having a certain LogP value). Is preferred.
 本発明の保護フィルム上には、本発明の効果を損なわない範囲で、必要に応じて反射防止層などの他の機能性層がさらに積層されてもよい。 On the protective film of the present invention, another functional layer such as an antireflection layer may be further laminated as necessary within a range not impairing the effects of the present invention.
 保護フィルムの物性
 (ヘイズ)
 保護フィルムのヘイズ値は、3.0%以下であることが好ましく、2.0%以下であることがより好ましく、1.0%以下であることがさらに好ましく、0.5%以下であることが特に好ましい。保護フィルムのヘイズは、JIS K-7136に準拠して、ヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)にて測定されうる。
Physical properties of protective film (haze)
The haze value of the protective film is preferably 3.0% or less, more preferably 2.0% or less, further preferably 1.0% or less, and 0.5% or less. Is particularly preferred. The haze of the protective film can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
 (レターデーション)
 保護フィルムは、測定波長590nm、23℃55%RHの条件下で測定される面内方向のレターデーションRは、0≦R≦20nmを満たすことが好ましく、0nm≦R≦10nmを満たすことがより好ましい。保護フィルムの、測定波長590nm、23℃55%RHの条件下で測定される厚み方向のレターデーションRthは、0nm≦Rth≦80nmを満たすことが好ましく、0nm≦Rth≦50nmを満たすことがより好ましい。このようなレターデーション値を有する保護フィルムは、後述するように、液晶表示装置の保護フィルム(F1またはF4)として好ましく用いられる。RおよびRthは、フィルムの組成や延伸条件などによって調整されうる。
(Retardation)
In the protective film, the in-plane retardation R 0 measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH preferably satisfies 0 ≦ R 0 ≦ 20 nm, and satisfies 0 nm ≦ R 0 ≦ 10 nm. It is more preferable. The thickness direction retardation Rth of the protective film measured under conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH preferably satisfies 0 nm ≦ Rth ≦ 80 nm, and more preferably satisfies 0 nm ≦ Rth ≦ 50 nm. . The protective film having such a retardation value is preferably used as a protective film (F1 or F4) for a liquid crystal display device, as will be described later. R 0 and Rth can be adjusted depending on the composition of the film and stretching conditions.
 レターデーションRおよびRthは、それぞれ以下の式で定義される。
 式(I):R=(nx-ny)×d(nm)
 式(II):Rth={(nx+ny)/2-nz}×d(nm)
 (式(I)および(II)において、
 nxは、保護フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;nyは、保護フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;nzは、保護フィルムの厚み方向zにおける屈折率を表し;d(nm)は、保護フィルムの厚みを表す)
Retardation R0 and Rth are defined by the following equations, respectively.
Formula (I): R 0 = (nx−ny) × d (nm)
Formula (II): Rth = {(nx + ny) / 2−nz} × d (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the protective film; ny is the refraction in the direction y perpendicular to the slow axis direction x in the in-plane direction of the protective film. Nz represents the refractive index in the thickness direction z of the protective film; d (nm) represents the thickness of the protective film)
 レターデーションRおよびRthは、例えば以下の方法によって求めることができる。
 1)保護フィルムを、23℃55%RHで調湿する。調湿後の光学補償フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の保護フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRを、KOBRA21DH、王子計測(株)にて測定する。
 3)KOBRA21ADHにより、保護フィルムの面内の遅相軸を傾斜軸(回転軸)として、保護フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのレターデーション値R(θ)を測定する。レターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。保護フィルムの面内の遅相軸は、KOBRA21ADHにより確認することができる。
 4)測定されたRおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。レターデーションの測定は、23℃55%RH条件下で行うことができる。
The retardations R0 and Rth can be determined by the following method, for example.
1) Condition the protective film at 23 ° C. and 55% RH. The average refractive index of the optical compensation film after humidity adjustment is measured with an Abbe refractometer or the like.
The protective film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation.
3) With KOBRA21ADH, the slow axis in the surface of the protective film is set as the tilt axis (rotation axis), and light with a measurement wavelength of 590 nm is obtained from the angle (incident angle (θ)) of θ with respect to the normal of the surface of the protective film The retardation value R (θ) when incident is measured. The retardation value R (θ) can be measured at 6 points every 10 ° in the range of 0 ° to 50 °. The in-plane slow axis of the protective film can be confirmed by KOBRA21ADH.
4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated. The measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
 保護フィルムの面内遅相軸とフィルムの幅方向とのなす角θ1(配向角)は、好ましくは-1°~+1°であり、さらに好ましくは-0.5°~+0.5°である。保護フィルムの配向角θ1の測定は、自動複屈折計KOBRA-WR(王子計測機器)を用いて測定することができる。 The angle θ1 (orientation angle) formed by the in-plane slow axis of the protective film and the width direction of the film is preferably −1 ° to + 1 °, more preferably −0.5 ° to + 0.5 °. . The orientation angle θ1 of the protective film can be measured using an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments).
 保護フィルムは、全光線透過率が好ましくは、80%以上であり、より好ましくは90%以上であり、さらに好ましくは93%以上である。 The protective film preferably has a total light transmittance of 80% or more, more preferably 90% or more, and still more preferably 93% or more.
 保護フィルムは、溶液製膜法または溶融製膜法で作製されうる。なかでも、平面性が高く、筋状の故障が少ないフィルムが得られやすいことなどから、溶液流延法が好ましい。 The protective film can be produced by a solution casting method or a melt casting method. Of these, the solution casting method is preferred because it is easy to obtain a film having high flatness and few streak-like failures.
 溶液流延法による本発明の保護フィルムの製造は、1)上記各成分を溶剤に溶解させてドープ液を得る工程、2)該ドープ液を無端状の金属支持体上に流延する工程、3)流延されたドープ液を乾燥させて得られる膜状物を、金属支持体から剥離する工程を経て行われることが好ましい。 The production of the protective film of the present invention by the solution casting method includes 1) a step of obtaining a dope solution by dissolving each of the above components in a solvent, and 2) a step of casting the dope solution on an endless metal support, 3) It is preferable that the film-like product obtained by drying the cast dope solution is removed through a step of peeling from the metal support.
 1)溶解工程
 ドープ液の調製に有用な有機溶媒は、(メタ)アクリル樹脂やウレタンウレア樹脂などの上記各成分を同時に溶解するものであれば、制限なく用いることができる。
1) Dissolution Step Any organic solvent useful for preparing the dope solution can be used without limitation as long as it dissolves each of the above components such as a (meth) acrylic resin and a urethane urea resin.
 例えば、塩素系有機溶媒としては、塩化メチレンが挙げられる。非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等が挙げられる。なかでも、塩化メチレン、酢酸メチル、酢酸エチル、アセトンなどが好ましい。 For example, methylene chloride is mentioned as a chlorinated organic solvent. Non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2, 2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1, Examples include 1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane. Of these, methylene chloride, methyl acetate, ethyl acetate, acetone and the like are preferable.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ液中にアルコールを含有させることで、膜状物がゲル化し、金属支持体からの剥離が容易になる。 In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. By containing alcohol in the dope solution, the film-like material is gelled, and peeling from the metal support becomes easy.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。なかでも、ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferred because of the stability of the dope, relatively low boiling point, and good drying properties.
 セルロースエステル等の溶解は、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法などがあるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 Dissolution of cellulose ester and the like includes a method performed at normal pressure, a method performed below the boiling point of the main solvent, a method performed under pressure above the boiling point of the main solvent, and a method performed under pressure above the boiling point of the main solvent. Is preferred.
 ドープ液中のセルロースエステル等の濃度は、計15~45質量%の範囲としうる。ドープ液は、ドープ液中の異物を除去するために、さらにろ過されることが好ましい。 The concentration of cellulose ester and the like in the dope solution can be in the range of 15 to 45% by mass in total. The dope solution is preferably further filtered in order to remove foreign substances in the dope solution.
 2)流延工程
 ドープ液を、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液する。そして、加圧ダイのスリットから、無限に移送する無端の金属支持体上(例えばステンレスベルト、あるいは回転する金属ドラム等)の流延位置に、ドープ液を流延する。
2) Casting step The dope solution is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope solution is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt or a rotating metal drum) that is transferred infinitely.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために、加圧ダイを金属支持体上に2基以上設け、ドープ液の流量を分割して重層してもよい。あるいは複数のドープ液を同時に流延する共流延法によって積層構造のフィルムを得てもよい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the flow rate of the dope solution may be divided and stacked. Or you may obtain the film of a laminated structure by the co-casting method which casts several dope liquid simultaneously.
 3)溶媒蒸発・剥離工程
 金属支持体上に流延されたドープ液を金属支持体上で加熱して、ドープ液中の溶媒を蒸発させて、膜状物を得る。
3) Solvent evaporation / peeling step The dope solution cast on the metal support is heated on the metal support to evaporate the solvent in the dope solution to obtain a film-like material.
 溶媒を蒸発させるには、ドープ液面側から風を吹かせる方法、支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。金属支持体上のドープ液を40~100℃の範囲内の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の範囲内の雰囲気下に維持するには、この温度の温風を、金属支持体上のドープ液面に当てるか赤外線等の手段により加熱することが好ましい。 In order to evaporate the solvent, there are a method of blowing wind from the dope liquid surface side, a method of transferring heat from the back surface of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. The drying efficiency is good and preferable. The dope solution on the metal support is preferably dried on the support in an atmosphere within the range of 40 to 100 ° C. In order to maintain the atmosphere in the range of 40 to 100 ° C., it is preferable to apply hot air at this temperature to the dope liquid surface on the metal support or to heat by means such as infrared rays.
 金属支持体上で溶媒を蒸発させて得られる膜状物を、剥離位置で剥離する。得られる膜状物の面品質、透湿性、剥離性の観点から、流延後30~120秒以内で、膜状物を金属支持体から剥離することが好ましい。金属支持体上の剥離位置における温度は、好ましくは10~40℃の範囲であり、さらに好ましくは11~30℃の範囲である。 The film-like material obtained by evaporating the solvent on the metal support is peeled off at the peeling position. From the viewpoint of surface quality, moisture permeability, and peelability of the obtained film-like product, it is preferable to peel the film-like product from the metal support within 30 to 120 seconds after casting. The temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
 剥離時の金属支持体上での膜状物の残留溶媒量は、例えば50~120質量%の範囲としうる。 The amount of residual solvent of the film-like material on the metal support at the time of peeling can be in the range of 50 to 120% by mass, for example.
 膜状物の残留溶媒量は下記式で定義される。
 残留溶媒量(%)=(膜状物の加熱処理前質量-膜状物の加熱処理後質量)/(膜状物の加熱処理後質量)×100
 残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱処理を行うことを表す。
The amount of residual solvent in the film is defined by the following formula.
Residual solvent amount (%) = (mass before heat treatment of film-like material−mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) × 100
The heat treatment for measuring the residual solvent amount represents performing a heat treatment at 140 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、80N/m以下の張力で剥離することがさらに好ましい。 The peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, peeling with a tension of 190 N / m or less is preferable. Further, it is more preferable to peel with a tension of 80 N / m or less.
 剥離された膜状物を、必要に応じて乾燥装置内を複数配置したローラで搬送させながら乾燥させてもよい。乾燥は、膜状物の両面に熱風を当てる方法が一般的であるが、熱風の代わりにマイクロウェーブを当てて加熱してもよい。全体を通し、乾燥はおおむね40~250℃の範囲内で行われる。特に40~200℃の範囲内で乾燥させることが好ましい。テンター延伸装置で乾燥させる場合、乾燥温度は30~160℃の範囲が好ましく、50~150℃の範囲がさらに好ましい。 The peeled film may be dried while being transported by a plurality of rollers arranged in the drying apparatus as necessary. The drying is generally performed by applying hot air to both surfaces of the film-like material, but may be heated by applying microwaves instead of hot air. Throughout, the drying is generally carried out in the range of 40-250 ° C. It is particularly preferable to dry within the range of 40 to 200 ° C. When drying with a tenter stretching apparatus, the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
 前述の通り、保護フィルムの引張弾性率を高めるためには、前記3)で得られたフィルムを延伸して樹脂分子を配向させることが好ましい。従って、前記3)で得られたフィルムを延伸する工程(延伸工程)をさらに行ってもよい。 As described above, in order to increase the tensile elastic modulus of the protective film, it is preferable to orient the resin molecules by stretching the film obtained in 3) above. Therefore, you may further perform the process (stretching process) of extending | stretching the film obtained by said 3).
 4)延伸工程
 得られたフィルムの延伸は、フィルムの幅方向(TD方向)、搬送方向(MD方向)または斜め方向のうち少なくとも一方向に延伸すればよい。フィルムの幅方向(TD方向)と搬送方向(MD方向)の両方に延伸する場合、フィルムの幅方向(TD方向)の延伸と搬送方向(MD方向)の延伸とは、逐次的に行ってもよいし、同時に行ってもよい。
4) Stretching process Stretching of the obtained film may be performed in at least one of the width direction (TD direction), the transport direction (MD direction) or the oblique direction of the film. When stretching in both the width direction (TD direction) and the transport direction (MD direction) of the film, stretching in the width direction (TD direction) of the film and stretching in the transport direction (MD direction) may be performed sequentially. You may do it simultaneously.
 延伸倍率は、各方向に1.01~3.0倍、好ましくは1.1~2.0倍としうる。フィルムの幅方向(TD方向)と搬送方向(MD方向)の両方に延伸する場合、各方向に最終的に1.01~3.0倍、好ましくは1.1~2.0倍とすることが好ましい。 The draw ratio may be 1.01 to 3.0 times, preferably 1.1 to 2.0 times in each direction. When the film is stretched in both the width direction (TD direction) and the conveyance direction (MD direction), it is finally 1.01 to 3.0 times, preferably 1.1 to 2.0 times in each direction. Is preferred.
 延伸温度は、Tg~(Tg+50)℃であることが好ましく、Tg~(Tg+40)℃であることがより好ましい。具体的には、(メタ)アクリル樹脂/セルロースエステルの混合物の場合、延伸温度は、100~190℃程度としうる。 The stretching temperature is preferably Tg to (Tg + 50) ° C., more preferably Tg to (Tg + 40) ° C. Specifically, in the case of a (meth) acrylic resin / cellulose ester mixture, the stretching temperature can be about 100 to 190 ° C.
 延伸後に得られるフィルムのレターデーションを調整したり、寸法変化を少なくしたりするために、必要に応じて、延伸後に得られるフィルムを搬送方向(MD方向)または幅方向(TD方向)に収縮させてもよい。延伸後に得られるフィルムを搬送方向(MD方向)に収縮させるには、例えば幅方向に把持したクリップを解除して、搬送方向に弛緩させたりすればよい。 In order to adjust the retardation of the film obtained after stretching or to reduce the dimensional change, the film obtained after stretching is shrunk in the transport direction (MD direction) or the width direction (TD direction) as necessary. May be. In order to shrink the film obtained after stretching in the transport direction (MD direction), for example, the clip gripped in the width direction may be released and relaxed in the transport direction.
 5)巻き取り工程
 得られた保護フィルムは、長尺状で提供されてもよいし、枚葉状で提供されてもよい。長尺状の保護フィルムは、通常、長手方向(MD方向)にロール状に巻き取って巻き取り体とされうる。
5) Winding process The obtained protective film may be provided in a long shape or may be provided in a sheet form. The long protective film can usually be wound in a roll shape in the longitudinal direction (MD direction) to form a wound body.
 長尺状の保護フィルムの長さは100~10000mの範囲としうる。長尺状の保護フィルムの幅は、1~4mの範囲、好ましくは1.4~3mの範囲としうる。 The length of the long protective film can be in the range of 100 to 10,000 m. The width of the long protective film can be in the range of 1 to 4 m, preferably in the range of 1.4 to 3 m.
 2.偏光板
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された保護フィルムとを含む。
2. Polarizing plate The polarizing plate of this invention contains a polarizer and the protective film arrange | positioned at the at least one surface.
 偏光子について
 偏光子は、ヨウ素系偏光膜、または二色染料を用いた染料系偏光膜でありうる。ヨウ素系偏光膜および染料系偏光膜は、一般的には、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色して得られたフィルムであってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。偏光子の吸収軸は、フィルムの延伸方向と平行である。
About Polarizer The polarizer can be an iodine-based polarizing film or a dye-based polarizing film using a dichroic dye. The iodine-based polarizing film and the dye-based polarizing film may be generally a film obtained by uniaxially stretching a polyvinyl alcohol-based film and then dyeing with iodine or a dichroic dye; After the film is dyed with iodine or a dichroic dye, it may be a uniaxially stretched film (preferably a film further subjected to a durability treatment with a boron compound). The absorption axis of the polarizer is parallel to the stretching direction of the film.
 ポリビニルアルコール系フィルムは、ポリビニルアルコール水溶液を製膜したものであってもよい。ポリビニルアルコール系フィルムは、偏光性能および耐久性能に優れ、色斑が少ない等ことから、エチレン変性ポリビニルアルコールフィルムが好ましい。 The polyvinyl alcohol film may be a film formed from a polyvinyl alcohol aqueous solution. The polyvinyl alcohol film is preferably an ethylene-modified polyvinyl alcohol film because it is excellent in polarizing performance and durability performance, and has few color spots.
 二色性染料の例には、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素およびアントラキノン系色素等が含まれる。 Examples of dichroic dyes include azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes and anthraquinone dyes.
 偏光子の厚さは、偏光子の収縮力を小さくするためなどから、30μm以下であることが好ましく、2~25μmの範囲であることがより好ましい。 The thickness of the polarizer is preferably 30 μm or less, more preferably in the range of 2 to 25 μm, in order to reduce the contraction force of the polarizer.
 保護フィルム(F1またはF4)について
 保護フィルムは、本発明の保護フィルムであることが好ましい。本発明の保護フィルムと偏光子とは、保護フィルムのMD方向と偏光子の吸収軸方向とが一致するように積層されることが好ましい。偏光子の収縮力は、吸収軸方向が最も大きいと考えられるからである。
About a protective film (F1 or F4) It is preferable that a protective film is a protective film of this invention. The protective film and the polarizer of the present invention are preferably laminated so that the MD direction of the protective film coincides with the absorption axis direction of the polarizer. This is because the contraction force of the polarizer is considered to have the largest absorption axis direction.
 位相差フィルム(F2またはF3)について
 偏光子の、前述の保護フィルムが配置された面とは反対側の面には、さらに前述の保護フィルムが配置されてもよいし;位相差フィルムが配置されてもよい。
About retardation film (F2 or F3) The above-mentioned protective film may be further arrange | positioned on the surface on the opposite side to the surface where the above-mentioned protective film is arrange | positioned of a polarizer; May be.
 位相差フィルムは、特に制限されず、例えばセルロースエステルフィルムでありうる。セルロースエステルフィルムに含まれるセルロースエステルの例には、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートプロピオネートブチレートなどが含まれる。 The retardation film is not particularly limited, and may be, for example, a cellulose ester film. Examples of the cellulose ester contained in the cellulose ester film include cellulose acetate, cellulose acetate propionate, and cellulose acetate propionate butyrate.
 セルロースエステルは、総アシル基置換度が1.5以上2.5以下であることが好ましく、下記式(a)と(b)とを同時に満たすことがより好ましい。
  式(a)  2.0≦X+Y≦2.5
  式(b)     0≦Y≦1.5(式中、Xはアセチル基の置換度を示し、Yはプロピオニル基またはブチリル基、もしくはそれらの混合物の置換度を示す)
The cellulose ester preferably has a total acyl group substitution degree of 1.5 or more and 2.5 or less, and more preferably satisfies the following formulas (a) and (b).
Formula (a) 2.0 ≦ X + Y ≦ 2.5
Formula (b) 0 ≦ Y ≦ 1.5 (wherein X represents the degree of substitution of the acetyl group, and Y represents the degree of substitution of the propionyl group or butyryl group, or a mixture thereof)
 位相差フィルムのレターデーションは、組み合わされる液晶セルの種類に応じて設定されうる。例えば、位相差フィルムの、23℃RH55%下、波長590nmで測定される面内リターデーションRo(590)は30~150nmの範囲とし、厚さ方向のリターデーションRth(590)は70~300nmの範囲としうる。レターデーションが上記範囲である位相差フィルムは、例えばVA型液晶セルなどの位相差フィルムとして好適である。 The retardation of the retardation film can be set according to the type of liquid crystal cell to be combined. For example, the in-plane retardation Ro (590) measured at a wavelength of 590 nm under 23 ° C. RH 55% of the retardation film is in the range of 30 to 150 nm, and the retardation Rth (590) in the thickness direction is 70 to 300 nm. Can be a range. A retardation film having a retardation in the above range is suitable as a retardation film such as a VA liquid crystal cell.
 偏光板は、偏光子と保護フィルムとを貼り合わせるステップを経て得ることができる。保護フィルムと偏光子との貼り合わせは、完全鹸化型のポリビニルアルコ-ル系接着剤(水糊)や活性エネルギー線硬化性接着剤を用いて行うことができる。例えば、貼り合わせに水糊を用いる場合、偏光子と保護フィルムとを水糊を介して貼り合わせた後;得られる積層物を乾燥させて偏光板を得ることができる。 The polarizing plate can be obtained through a step of bonding a polarizer and a protective film. Bonding of the protective film and the polarizer can be performed using a completely saponified polyvinyl alcohol adhesive (water glue) or an active energy ray-curable adhesive. For example, when water paste is used for bonding, a polarizer and a protective film are bonded together through water paste; the resulting laminate can be dried to obtain a polarizing plate.
 保護フィルムに含まれるセルロースエステルの量が少ない場合、水糊では保護フィルムと偏光子とを十分には接着できないことがある。その場合、保護フィルムの偏光子との貼り合せ面に、易接着層をさらに形成してもよい。 When the amount of cellulose ester contained in the protective film is small, the protective film and the polarizer may not be sufficiently bonded with water glue. In that case, you may further form an easily bonding layer in the bonding surface with the polarizer of a protective film.
 易接着層は、カルボキシル基を有するウレタン樹脂と、架橋剤とを含む樹脂組成物を塗布した後、乾燥および硬化させて形成することができる。カルボキシル基を有するウレタン樹脂は、例えば、ポリオールとポリイソシアネートとに加えて、遊離カルボキシル基を有する鎖長剤をさらに共重合させて得られる。遊離カルボキシル基を有する鎖長剤の例には、ジヒドロキシカルボン酸、ジヒドロキシスクシン酸などが含まれる。架橋剤は、カルボキシル基と反応し得る基を有するポリマーであることが好ましく;その例には、オキサゾリン基を有するアクリル系ポリマーまたはスチレン・アクリル系ポリマー等が含まれる。 The easy adhesion layer can be formed by applying a resin composition containing a urethane resin having a carboxyl group and a crosslinking agent, and then drying and curing. The urethane resin having a carboxyl group can be obtained, for example, by further copolymerizing a chain extender having a free carboxyl group in addition to a polyol and a polyisocyanate. Examples of the chain extender having a free carboxyl group include dihydroxycarboxylic acid, dihydroxysuccinic acid and the like. The cross-linking agent is preferably a polymer having a group capable of reacting with a carboxyl group; examples thereof include an acrylic polymer or a styrene / acrylic polymer having an oxazoline group.
 本発明の偏光板に含まれる保護フィルムは、伸び量・伸び速度の両方が一定以上に調整されている。それにより、保護フィルムと偏光子とを水糊を介して貼り合わせた積層物を乾燥させる際に、保護フィルムに取り込まれた水糊の水分を適度に抜くことができる。それにより、保護フィルムに残った水分を取り除くために、加熱して乾燥させる際、偏光子が劣化して生じる偏光板のレディッシュ(赤色欠陥)を抑制できる。 The protective film included in the polarizing plate of the present invention has both the elongation amount and the elongation speed adjusted to be above a certain level. Thereby, when drying the laminated body which bonded together the protective film and the polarizer through the water paste, the water | moisture content of the water paste taken in the protective film can be extracted moderately. Thereby, in order to remove the water | moisture content which remained in the protective film, when heating and drying, the reddish (red defect) of the polarizing plate which arises because a polarizer deteriorates can be suppressed.
 3.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。そして、一対の偏光板の少なくとも一方を本発明の偏光板としうる。
3. Liquid Crystal Display Device The liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. And at least one of a pair of polarizing plates can be used as the polarizing plate of the present invention.
 図2は、液晶表示装置の基本的な構成の一例を示す模式図である。図2に示されるように、本発明の液晶表示装置10は、液晶セル30と、それを挟持する第一の偏光板50および第二の偏光板70と、バックライト90とを含む。 FIG. 2 is a schematic diagram showing an example of a basic configuration of the liquid crystal display device. As shown in FIG. 2, the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
 液晶セル30は、一対の透明基板31および33と、それらの間に挟持された液晶層35とを有する。 The liquid crystal cell 30 has a pair of transparent substrates 31 and 33 and a liquid crystal layer 35 sandwiched between them.
 透明基板31および33は、ガラス基板であることが好ましい。ガラス基板の厚みは、液晶表示装置を薄型化するためなどから、一定以下であることが好ましく、0.3mm以上0.7mm未満であることが好ましく、0.3~0.5mmであることがより好ましい。 The transparent substrates 31 and 33 are preferably glass substrates. The thickness of the glass substrate is preferably not more than a certain value in order to reduce the thickness of the liquid crystal display device, preferably not less than 0.3 mm and less than 0.7 mm, and preferably 0.3 to 0.5 mm. More preferred.
 液晶セル30の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS等の種々の表示モードであってよく、高いコントラストを得るためにはVA(MVA、PVA)モードであることが好ましい。 The display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. For obtaining high contrast, the VA (MVA, PVA) mode is used. It is preferable that
 例えば、VA方式の液晶セルでは、一方の透明基板は、液晶分子に電圧を印加するための画素電極が配置される。対向電極は、(画素電極が配置された)前記一方の透明基板に配置されてもよいし、他方の透明基板に配置されてもよい。 For example, in a VA liquid crystal cell, a pixel electrode for applying a voltage to liquid crystal molecules is disposed on one transparent substrate. The counter electrode may be disposed on the one transparent substrate (where the pixel electrode is disposed) or may be disposed on the other transparent substrate.
 液晶層は、負または正の誘電率異方性を有する液晶分子を含む。液晶分子は、透明基板の液晶層側の面に設けられた配向膜の配向規制力により、電圧無印加時(画素電極と対向電極との間に電界が生じていない時)には、液晶分子の長軸が、透明基板の表面に対して略垂直となるように配向している。 The liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy. The liquid crystal molecules are liquid crystal molecules when no voltage is applied (when an electric field is not generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate. Are oriented so that their long axes are substantially perpendicular to the surface of the transparent substrate.
 このように構成されたVA方式の液晶セルでは、画素電極に画像信号(電圧)を印加することで、画素電極と対向電極との間に電界を生じさせる。これにより、透明基板の表面に対して垂直に初期配向している液晶分子を、その長軸が基板面に対して水平方向となるように配向させる。このように、液晶層を駆動し、各副画素の透過率および反射率を変化させて画像表示を行う。 In the VA liquid crystal cell configured as described above, an electric field is generated between the pixel electrode and the counter electrode by applying an image signal (voltage) to the pixel electrode. Thereby, the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate are aligned so that the major axis thereof is in the horizontal direction with respect to the substrate surface. In this way, the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
 第一の偏光板50は、液晶セル30のガラス基板31上に粘着剤層(不図示)を介して配置されうる。第一の偏光板50は、第一の偏光子51と、第一の偏光子51の視認側の面に配置された保護フィルム53(F1)と、第一の偏光子51の液晶セル側の面に配置された保護フィルム55(F2)とを含む。 The first polarizing plate 50 can be disposed on the glass substrate 31 of the liquid crystal cell 30 via an adhesive layer (not shown). The first polarizing plate 50 includes a first polarizer 51, a protective film 53 (F1) disposed on the viewing side surface of the first polarizer 51, and a liquid crystal cell side of the first polarizer 51. And a protective film 55 (F2) disposed on the surface.
 第二の偏光板70は、液晶セル30のガラス基板33上に粘着剤層(不図示)を介して配置されうる。第二の偏光板70は、第二の偏光子71と、第二の偏光子71の液晶セル側の面に配置された保護フィルム73(F3)と、第二の偏光子71のバックライト側の面に配置された保護フィルム75(F4)とを含む。 The second polarizing plate 70 can be disposed on the glass substrate 33 of the liquid crystal cell 30 via an adhesive layer (not shown). The second polarizing plate 70 includes a second polarizer 71, a protective film 73 (F3) disposed on the liquid crystal cell side surface of the second polarizer 71, and the backlight side of the second polarizer 71. And a protective film 75 (F4) disposed on the surface.
 粘着剤層の厚みは、1~30μm程度としうる。 The thickness of the pressure-sensitive adhesive layer can be about 1 to 30 μm.
 そして、第一の偏光板50と第二の偏光板70の少なくとも一方または両方を、本発明の偏光板としうる。即ち、保護フィルム53(F1)と保護フィルム75(F4)の少なくとも一方を本発明の保護フィルムとしうる。保護フィルム53(F1)のMD方向と第一の偏光子51の吸収軸方向とは一致することが好ましい。保護フィルム75(F4)のMD方向と第二の偏光子71の吸収軸方向とは一致することが好ましい。 Then, at least one or both of the first polarizing plate 50 and the second polarizing plate 70 can be used as the polarizing plate of the present invention. That is, at least one of the protective film 53 (F1) and the protective film 75 (F4) can be used as the protective film of the present invention. It is preferable that the MD direction of the protective film 53 (F1) and the absorption axis direction of the first polarizer 51 coincide. It is preferable that the MD direction of the protective film 75 (F4) coincides with the absorption axis direction of the second polarizer 71.
 前述の通り、本発明の保護フィルムは、伸び量・伸び速度が一定以下に調整されている。それにより、本発明の保護フィルムは、高い引張弾性率を有するにも係わらず、(高温高湿下から高温低湿下に変化させたときの)保護フィルムの寸法変化が少ない;即ち、高い機械的強度を有しつつ、含水による収縮力が低減されている。それにより、液晶セルのガラス基板が薄いときに生じやすいパネルベンドを抑制できる。 As described above, in the protective film of the present invention, the amount of elongation and the elongation rate are adjusted to a certain level or less. Thereby, although the protective film of the present invention has a high tensile elastic modulus, the dimensional change of the protective film (when changed from high temperature and high humidity to high temperature and low humidity) is small; While having strength, the shrinkage force due to water content is reduced. Thereby, the panel bend which is easy to occur when the glass substrate of the liquid crystal cell is thin can be suppressed.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 1.保護フィルムの材料
 (1)樹脂成分
 A1~A9:下記表2に示される(メタ)アクリル樹脂
 U1:下記方法で合成したウレタンウレア樹脂
 (ウレタンウレア樹脂U1の合成)
 1)芳香族ポリエステルポリオール(a2-1)の合成
 温度計、攪拌器および還流冷却器を備えた内容積3リットルの四つ口フラスコに、2,6-ナフタレンジカルボン酸ジメチル659.4g、テレフタル酸ジメチル58.3g、1,2-プロピレングリコール684.8gおよびエステル化触媒として酢酸亜鉛・2水和物0.084gを仕込み、窒素気流下で攪拌しながら、210℃になるまで段階的に昇温して、合計13時間反応させた。反応後、160℃で未反応の1,2-プロピレングリコールを減圧除去して、常温固体の芳香族ポリエステルポリオール(a2-1)(酸価:0.08、水酸基価:213、数平均分子量:590)を得た。
 2)ウレタンウレア樹脂U1の合成
 温度計、攪拌機、不活性ガス導入口、および還流冷却器を備えた5リットルの四つ口フラスコに、脂肪族環式構造含有ポリカーボネートポリオール(a1-1)(宇部興産(株)製のUC-100、水酸基価:116.4mgKOH/g)300質量部と上記合成した芳香族ポリエステルポリオール(a2-1)75質量部を仕込み、4,4’-ジシクロヘキシルメタンジイソシアネート(c-1)を238.0質量部、トルエンを330.1質量部加え、発熱を抑制しながら、80℃で3時間反応させた。それにより、分子末端にイソシアネート基を有するウレタンプレポリマーのトルエン溶液を得た。
 次いで、前記トルエン溶液と、N、N-ジメチルホルムアミド(b-1)の1235.6質量部と、トルエンの287.7質量部と、sec-ブタノールの205.9質量部を混合した後、40℃まで冷却し、イソホロンジアミンの73.4質量部と混合し、70℃で3時間反応させて、ウレタンウレア樹脂U1(重量平均分子量:147000、不揮発分:25質量%)を得た。
Figure JPOXMLDOC01-appb-T000002
1. Materials for protective film (1) Resin components A1 to A9: (Meth) acrylic resin shown in Table 2 below U1: Urethane urea resin synthesized by the following method (Synthesis of urethane urea resin U1)
1) Synthesis of aromatic polyester polyol (a2-1) In a four-necked flask with an internal volume of 3 liters equipped with a thermometer, a stirrer and a reflux condenser, 659.4 g of dimethyl 2,6-naphthalenedicarboxylate and terephthalic acid Charge 58.3 g of dimethyl, 684.8 g of 1,2-propylene glycol and 0.084 g of zinc acetate dihydrate as an esterification catalyst, and gradually increase the temperature to 210 ° C. while stirring under a nitrogen stream. And it was made to react for a total of 13 hours. After the reaction, unreacted 1,2-propylene glycol was removed under reduced pressure at 160 ° C., and the room temperature solid aromatic polyester polyol (a2-1) (acid value: 0.08, hydroxyl value: 213, number average molecular weight: 590).
2) Synthesis of urethane urea resin U1 Aliphatic structure-containing polycarbonate polyol (a1-1) (Ube) was added to a 5-liter four-necked flask equipped with a thermometer, stirrer, inert gas inlet, and reflux condenser. UC-100 manufactured by Kosan Co., Ltd., 300 parts by mass of a hydroxyl value: 116.4 mg KOH / g) and 75 parts by mass of the synthesized aromatic polyester polyol (a2-1) were charged, and 4,4′-dicyclohexylmethane diisocyanate ( 238.0 parts by mass of c-1) and 330.1 parts by mass of toluene were added and reacted at 80 ° C. for 3 hours while suppressing exotherm. Thereby, a toluene solution of a urethane prepolymer having an isocyanate group at the molecular end was obtained.
Next, after mixing the toluene solution, 1235.6 parts by mass of N, N-dimethylformamide (b-1), 287.7 parts by mass of toluene, and 205.9 parts by mass of sec-butanol, The mixture was cooled to 0 ° C., mixed with 73.4 parts by mass of isophoronediamine, and reacted at 70 ° C. for 3 hours to obtain urethane urea resin U1 (weight average molecular weight: 147000, nonvolatile content: 25% by mass).
Figure JPOXMLDOC01-appb-T000002
 (2)セルロースエステル
 セルロースエステルA~I:下記表3に示されるセルロースエステル
Figure JPOXMLDOC01-appb-T000003
(2) Cellulose ester Cellulose ester A to I: Cellulose ester shown in Table 3 below
Figure JPOXMLDOC01-appb-T000003
 (3)その他添加剤
 添加剤1:アクトフロ- UT1001(綜研化学社製、アクリル系低分子量体、末端水酸基)
 添加剤2:ポリエステル-ウレタン系可塑剤(アジピン酸とエチレングリコールからなる平均分子量2125のジヒドロキシポリエステルと、トリレンジイソシアナートとを常法により反応させて得られる平均分子量7300のポリエステル-ウレタン)
 可塑剤1:ARUFON UP1170(東亞合成社製、アクリル系可塑剤、無官能)
 可塑剤2:フタル酸ジオクチル(DOP)
 UV吸収剤:アデカスタブLA31RG(アデカ社製、アデカスタブ2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1、1、3、3-テトラメチルブチル)フェノール])
(3) Other additives Additive 1: Actflo-UT1001 (manufactured by Soken Chemical Co., Ltd., acrylic low molecular weight, terminal hydroxyl group)
Additive 2: Polyester-urethane plasticizer (polyester-urethane having an average molecular weight of 7,300 obtained by reacting dihydroxy polyester consisting of adipic acid and ethylene glycol with an average molecular weight of 2125 and tolylene diisocyanate by a conventional method)
Plasticizer 1: ARUFON UP1170 (manufactured by Toagosei Co., Ltd., acrylic plasticizer, non-functional)
Plasticizer 2: Dioctyl phthalate (DOP)
UV absorber: ADK STAB LA31RG (manufactured by Adeka, ADK STAB 2,2′-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol])
 2.保護フィルムの作製
 (実施例1)
 下記成分を混合して、ドープを調製した。
 (ドープの組成)
 (メタ)アクリル樹脂A2:95質量部
 添加剤1(アクトフロ-UT1001):5質量部
 塩化メチレン:213.9質量部
 エタノール:67.6質量部
2. Production of protective film (Example 1)
The following components were mixed to prepare a dope.
(Composition of dope)
(Meth) acrylic resin A2: 95 parts by mass Additive 1 (Actoflo-UT1001): 5 parts by mass Methylene chloride: 213.9 parts by mass Ethanol: 67.6 parts by mass
 得られたドープを、ベルト流延装置を用いて、温度30℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体上で、残留溶剤量が70%になるまでドープ中の溶媒を蒸発させた。そして、得られた膜状物をステンレスバンド支持体上から剥離した。 The obtained dope was uniformly cast on a stainless steel band support at a temperature of 30 ° C. and a width of 2 m using a belt casting apparatus. On the stainless steel band support, the solvent in the dope was evaporated until the residual solvent amount reached 70%. And the obtained film-like thing was peeled from the stainless steel band support body.
 次いで、剥離した膜状物を45℃でさらに乾燥させた後、得られたフィルムを110℃、140℃の乾燥ゾーンを多数のローラで搬送させながら乾燥させて、膜厚40μmのフィルムを得た。 Next, the peeled film-like material was further dried at 45 ° C., and then the obtained film was dried while being transported by a plurality of rollers through a drying zone at 110 ° C. and 140 ° C. to obtain a film having a thickness of 40 μm. .
 得られたフィルムの表面に、100Wの条件でコロナ処理を施した。その後、コロナ処理したフィルムを、セパラブルフラスコの中につり下げて、触媒としてピリジン(和光純薬)、改質剤として3H-テトラフルオロプロピオン酸クロリド(和光純薬)を入れて、60℃24時間減圧下で反応させた。それにより、フィルムの表面をフッ素化してフィルム101を得た。 The corona treatment was performed on the surface of the obtained film under the condition of 100W. Thereafter, the corona-treated film was suspended in a separable flask, and pyridine (Wako Pure Chemical Industries) as a catalyst and 3H-tetrafluoropropionic acid chloride (Wako Pure Chemical Industries) as a modifier were placed at 60 ° C. The reaction was performed under reduced pressure for an hour. Thereby, the surface of the film was fluorinated to obtain a film 101.
 (実施例2)
 フィルム組成を、(メタ)アクリル樹脂A6/セルロースエステルE=90質量部/10質量部に変更した以外は、実施例1と同様にして膜厚40μmのフィルム102を得た。
(Example 2)
A film 102 having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the film composition was changed to (meth) acrylic resin A6 / cellulose ester E = 90 parts by mass / 10 parts by mass.
 (実施例3)
 フィルム組成を、(メタ)アクリル樹脂A1/セルロースエステルE=90質量部/10質量部に変更した以外は、実施例1と同様にして膜厚40μmのフィルム103を得た。
Example 3
A film 103 having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the film composition was changed to (meth) acrylic resin A1 / cellulose ester E = 90 parts by mass / 10 parts by mass.
 (比較例1)
 フィルム組成を、汎用PMMAに変更した以外は実施例1と同様にしてペレットを得た後、溶融押出成形して、膜厚40μmのフィルムを得た。このフィルム上に、下記の塩化ビニリデン溶液を、乾燥厚みが5μmとなるように塗布してフィルム104を得た。
 (塩化ビニリデン溶液)
 塩素含有重合体(旭化成ライフ&リビング(株)製サランレジンR204):12質量部
 テトラヒドロフラン:63質量部
(Comparative Example 1)
Except that the film composition was changed to general-purpose PMMA, pellets were obtained in the same manner as in Example 1, and then melt-extruded to obtain a film having a thickness of 40 μm. On this film, the following vinylidene chloride solution was applied so as to have a dry thickness of 5 μm to obtain a film 104.
(Vinylidene chloride solution)
Chlorine-containing polymer (Saran Resin R204 manufactured by Asahi Kasei Life & Living Co., Ltd.): 12 parts by mass Tetrahydrofuran: 63 parts by mass
 (比較例2)
 フィルム組成を、(メタ)アクリル樹脂A1/セルロースエステルI=90質量部/10質量部に変更した以外は、実施例1と同様にして膜厚40μmのフィルム105を得た。
(Comparative Example 2)
A film 105 having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the film composition was changed to (meth) acrylic resin A1 / cellulose ester I = 90 parts by mass / 10 parts by mass.
 (比較例3)
 フィルム組成を、汎用PMMA/CAP482(アセチル基置換度0.19、プロピオニル基置換度2.56、総置換度2.75のセルロースアセテートプロピオネート)=65質量部/35質量部に変更した以外は、実施例1と同様にして膜厚40μmのフィルム106を得た。
(Comparative Example 3)
The film composition was changed to general-purpose PMMA / CAP482 (cellulose acetate propionate having an acetyl group substitution degree of 0.19, a propionyl group substitution degree of 2.56, and a total substitution degree of 2.75) = 65 parts by mass / 35 parts by mass Obtained a film 106 having a thickness of 40 μm in the same manner as in Example 1.
 (実施例4)
 下記成分を混合して、ドープ1を調製した。
 (ドープ1)
 ウレタンウレア樹脂U1:100質量部
 添加剤2(ポリエステル-ポリウレタン):10質量部
 メチルエチルケトン:500質量部
Example 4
The following components were mixed to prepare Dope 1.
(Dope 1)
Urethane urea resin U1: 100 parts by mass Additive 2 (polyester-polyurethane): 10 parts by mass Methyl ethyl ketone: 500 parts by mass
 得られたドープ1を、ベルト流延装置を用いて、温度30℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体上で、残留溶剤量が70%になるまでドープ中の溶媒を蒸発させた。そして、得られた膜状物をステンレスバンド支持体上から剥離した。得られた膜状物を45℃で乾燥させた後、110℃、140℃でさらに乾燥させて、膜厚40μmのフィルム107を得た。 The obtained dope 1 was uniformly cast on a stainless steel band support at a temperature of 30 ° C. and a width of 2 m using a belt casting apparatus. On the stainless steel band support, the solvent in the dope was evaporated until the residual solvent amount reached 70%. And the obtained film-like thing was peeled from the stainless steel band support body. The obtained film was dried at 45 ° C. and further dried at 110 ° C. and 140 ° C. to obtain a film 107 having a thickness of 40 μm.
 (実施例5)
 フィルム組成を、(メタ)アクリル樹脂A3を91.4質量部、可塑剤1(東亞合成社製ARUFON UP1170)を5質量部、可塑剤2(フタル酸ジオクチル)を2質量部、UV吸収剤(アデカ社製LA31RG)を1.6質量部に変更した以外は実施例1と同様にして膜厚40μmのフィルム108を得た。
(Example 5)
The film composition was 91.4 parts by mass of (meth) acrylic resin A3, 5 parts by mass of plasticizer 1 (ARUFON UP1170 manufactured by Toagosei Co., Ltd.), 2 parts by mass of plasticizer 2 (dioctyl phthalate), UV absorber ( A film 108 having a film thickness of 40 μm was obtained in the same manner as in Example 1 except that LA31RG manufactured by Adeka Corporation was changed to 1.6 parts by mass.
 (実施例6)
 フィルム組成を、(メタ)アクリル樹脂A6/セルロースエステルA=90質量部/10質量部に変更した以外は、実施例1と同様にして膜厚40μmのフィルム109を得た。
(Example 6)
A film 109 having a thickness of 40 μm was obtained in the same manner as in Example 1 except that the film composition was changed to (meth) acrylic resin A6 / cellulose ester A = 90 parts by mass / 10 parts by mass.
 (比較例4)
 セルローストリアセテートフィルムとして4UA(コニカミノルタ社製、膜厚40μm)を準備した。このフィルムの片面に、特開2008-158483号公報に記載の下記組成のハードコート液1を乾燥厚みが5μmとなるように塗布してフィルム110を得た。
 (ハードコート液1) 
  PET-30(ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物[日本化薬(株)製]):40.0g
  DPHA(ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物[日本化薬(株)製]):10.0g
  イルガキュア184:2.0g
  SX-350(架橋ポリスチレン粒子、平均粒径3.5μm、屈折率1.60、綜研化学(株)製、30%トルエン分散液):2.0g
  架橋アクリルースチレン粒子(平均粒径3.5μm、屈折率1.55、綜研化学(株)製、30%トルエン分散液):13.0g
  FP-13(下記式のフッ素系表面改質剤):0.06g
  ゾル液a:11.0g
  トルエン:38.5g 
Figure JPOXMLDOC01-appb-C000003
(Comparative Example 4)
As a cellulose triacetate film, 4UA (manufactured by Konica Minolta, film thickness of 40 μm) was prepared. A hard coat liquid 1 having the following composition described in JP-A-2008-158483 was applied to one side of this film so as to have a dry thickness of 5 μm to obtain a film 110.
(Hard coat solution 1)
PET-30 (a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate [manufactured by Nippon Kayaku Co., Ltd.]): 40.0 g
DPHA (mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate [manufactured by Nippon Kayaku Co., Ltd.]): 10.0 g
Irgacure 184: 2.0g
SX-350 (crosslinked polystyrene particles, average particle size 3.5 μm, refractive index 1.60, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion): 2.0 g
Cross-linked acrylic-styrene particles (average particle size 3.5 μm, refractive index 1.55, manufactured by Soken Chemical Co., Ltd., 30% toluene dispersion): 13.0 g
FP-13 (fluorine surface modifier of the following formula): 0.06 g
Sol liquid a: 11.0 g
Toluene: 38.5g
Figure JPOXMLDOC01-appb-C000003
 (実施例7)
 フィルム組成を、(メタ)アクリル樹脂A6/セルロースエステルE=65質量部/35質量部に変更した以外は実施例1と同様にして膜厚40μmのフィルム111を得た。
(Example 7)
A film 111 having a film thickness of 40 μm was obtained in the same manner as in Example 1 except that the film composition was changed to (meth) acrylic resin A6 / cellulose ester E = 65 parts by mass / 35 parts by mass.
 (実施例8)
 実施例7と同様にして得たフィルムを、延伸温度170℃で1.7倍延伸した後、さらに120℃で24時間熱処理して、膜厚40μmのフィルム112を得た。
(Example 8)
A film obtained in the same manner as in Example 7 was stretched 1.7 times at a stretching temperature of 170 ° C., and then heat treated at 120 ° C. for 24 hours to obtain a film 112 having a thickness of 40 μm.
 (比較例5)
 コロナ処理と塩化ビニリデン溶液の塗布を行わなかった以外は比較例1と同様にして膜厚40μmのフィルム113を得た。
(Comparative Example 5)
A film 113 having a thickness of 40 μm was obtained in the same manner as in Comparative Example 1 except that the corona treatment and the application of the vinylidene chloride solution were not performed.
 (比較例6、8~9)
 表4に示されるフィルム114、116~117を準備した。表4において、4UAはセルロースエステルフィルム4UA(コニカミノルタ社製、膜厚40μm);COPは、環状オレフィン樹脂フィルム(日本ゼオン社製、膜厚68μm);PETは、ポリエチレンテレフタレートフィルム(膜厚100μm)を示す。
(Comparative Examples 6, 8-9)
Films 114 and 116 to 117 shown in Table 4 were prepared. In Table 4, 4UA is cellulose ester film 4UA (manufactured by Konica Minolta, film thickness 40 μm); COP is cyclic olefin resin film (manufactured by Nippon Zeon, film thickness 68 μm); PET is polyethylene terephthalate film (film thickness 100 μm) Indicates.
 (比較例7)
 フィルム組成を、汎用PMMA/CAP482=70質量部/30質量部に変更した以外は比較例2と同様にして膜厚40μmのフィルム115を得た。
(Comparative Example 7)
A film 115 having a film thickness of 40 μm was obtained in the same manner as in Comparative Example 2 except that the film composition was changed to general-purpose PMMA / CAP482 = 70 parts by mass / 30 parts by mass.
 (実施例9~12、比較例10)
 セルロースエステルの含有比率を、表5に示されるように変更した以外は実施例2と同様にして膜厚40μmのフィルム118~122を得た。
(Examples 9 to 12, Comparative Example 10)
Films 118 to 122 having a thickness of 40 μm were obtained in the same manner as in Example 2 except that the content ratio of the cellulose ester was changed as shown in Table 5.
 (実施例13~19)
 セルロースエステルの種類を、表6に示されるように変更した以外は実施例2と同様にして膜厚40μmのフィルム123~129を得た。
(Examples 13 to 19)
Films 123 to 129 having a thickness of 40 μm were obtained in the same manner as in Example 2 except that the type of cellulose ester was changed as shown in Table 6.
 (実施例20~25)
 (メタ)アクリル樹脂の種類を、表7に示されるように変更した以外は実施例13と同様にして膜厚40μmのフィルム130~135を得た。
(Examples 20 to 25)
Films 130 to 135 having a thickness of 40 μm were obtained in the same manner as in Example 13 except that the type of (meth) acrylic resin was changed as shown in Table 7.
 得られたフィルムの引張弾性率、伸び速度および伸び量を、以下の方法で測定した。 The tensile elastic modulus, elongation rate and elongation of the obtained film were measured by the following methods.
 (引張弾性率)
 得られたフィルムを100mm(MD方向)×10mm(TD方向)のサイズに切り取り、サンプルフィルムを得た。このサンプルフィルムを、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、MD方向に引っ張り、MD方向の引張弾性率を測定した。測定は、23℃55%RH下で行った。
(Tensile modulus)
The obtained film was cut into a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a sample film. In accordance with JIS K7127, the sample film was pulled in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction was measured. The measurement was performed at 23 ° C. and 55% RH.
 (伸び量・伸び速度)
 得られたフィルム(膜厚40μm)を、23±1℃55%RHの条件で12時間以上調湿した。その後、水浸漬アタッチメントを装着したフィルムを、日立ハイテク社製TMA/SS7100を用いて、23±1℃の純水に浸漬し、取り出してフィルムの伸び量を測定した。伸び量の測定は、フィルムのMD方向を測定した。そして、浸漬開始から30分後のフィルムの「伸び量(%)」を求めた。
(Elongation amount / Elongation speed)
The obtained film (film thickness 40 μm) was conditioned for 12 hours or more under the condition of 23 ± 1 ° C. and 55% RH. Then, the film equipped with the water immersion attachment was immersed in 23 ± 1 ° C. pure water using TMA / SS7100 manufactured by Hitachi High-Tech, and taken out to measure the amount of elongation of the film. The elongation amount was measured in the MD direction of the film. And the "elongation amount (%)" of the film 30 minutes after the start of immersion was determined.
 得られた測定データを、浸漬時間(分)を横軸とし、フィルムの伸び量(%)を縦軸としてプロットして曲線を得た。得られた曲線の、浸漬開始から2分後までの傾き(浸漬時間に対する伸び量の傾き)を算出して、「伸び速度(%/min)」を求めた。 The obtained measurement data was plotted with the immersion time (minutes) on the horizontal axis and the film elongation (%) on the vertical axis to obtain a curve. The slope of the obtained curve from the start of immersion until 2 minutes later (the slope of the elongation with respect to the immersion time) was calculated to determine “elongation rate (% / min)”.
 また、一部のフィルムについて、偏光子との接着性を評価した。
 (接着性)
 まず、ポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で、搬送方向の延伸倍率6倍に延伸して、厚み25μmの偏光子を準備した。
Moreover, about some films, adhesiveness with a polarizer was evaluated.
(Adhesiveness)
First, a polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched at 50 ° C. to a stretching ratio of 6 times in the transport direction to prepare a polarizer having a thickness of 25 μm. .
 1)鹸化処理による接着性
 実施例または比較例で得られたフィルムを下記条件でアルカリ鹸化処理した後、水洗、中和および水洗した。
  ケン化工程  2M-NaOH  50℃  90秒
  水洗工程   水        30℃  45秒
  中和工程   10質量%HCl 30℃  45秒
  水洗工程   水        30℃  45秒
 得られたフィルムを80℃で乾燥させた。
1) Adhesiveness by saponification treatment The films obtained in Examples or Comparative Examples were subjected to alkali saponification treatment under the following conditions, and then washed with water, neutralized and washed with water.
Saponification step 2M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10% by mass HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds The resulting film was dried at 80 ° C.
 上記アルカリ鹸化処理したフィルムを、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として、上記作製した偏光子の一方の面に貼り合わせた後、乾燥させて積層物を得た。得られた積層物の偏光板保護フィルムを180°方向に引き剥がしたときの偏光板保護フィルムと偏光子の界面の接着性を測定し、下記の基準に基づいて評価した。
 ○:偏光板保護フィルムが裂けて、偏光板保護フィルムと偏光子との界面では剥離しない
 △:偏光板保護フィルムと偏光子の界面で若干の剥離が認められる
 ×:偏光板保護フィルムと偏光子との界面で剥離する
The film subjected to the alkali saponification treatment was bonded to one surface of the above prepared polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive, and then dried to obtain a laminate. The adhesive properties at the interface between the polarizing plate protective film and the polarizer when the polarizing plate protective film of the obtained laminate was peeled off in the 180 ° direction were measured and evaluated based on the following criteria.
○: The polarizing plate protective film tears and does not peel at the interface between the polarizing plate protective film and the polarizer. Δ: Some peeling is observed at the interface between the polarizing plate protective film and the polarizer. ×: The polarizing plate protective film and the polarizer. Peel at the interface with
 2)易接着層による接着性
 カルボキシル基を有する水系ウレタン樹脂(第一工業製薬製、商品名:スーパーフレックス210、固形分:33%)100gに対して、架橋剤(日本触媒製、商品名:エポクロスWS700、固形分:25%)20gを添加し、3分間攪拌し、易接着剤組成物を得た。
2) Adhesiveness by easy-adhesive layer For 100 g of water-based urethane resin having a carboxyl group (Daiichi Kogyo Seiyaku, trade name: Superflex 210, solid content: 33%), a crosslinking agent (manufactured by Nippon Shokubai, trade name: (Epocross WS700, solid content: 25%) 20 g was added and stirred for 3 minutes to obtain an easy-adhesive composition.
 得られた易接着剤組成物を、コロナ放電処理を施したフィルムのコロナ放電処理面にバーコーター(#6)で塗布した。得られたフィルムを、熱風乾燥機(140℃)に投入し、易接着剤組成物を約5分乾燥させて、易接着層(0.2~0.4μm)を形成した。そして、得られた易接着層と上記作製した偏光子とを、完全ケン化型ポリビニルアルコール5%水溶液を介して貼り合わせた後、乾燥させて積層物を得た。得られた積層物の接着性を、前述と同様にして評価した。 The resulting easy-adhesive composition was applied to the corona discharge treated surface of the corona discharge treated film with a bar coater (# 6). The obtained film was put into a hot air dryer (140 ° C.), and the easy-adhesive composition was dried for about 5 minutes to form an easy-adhesive layer (0.2 to 0.4 μm). And the obtained easily bonding layer and the said produced polarizer were bonded together through the completely saponified polyvinyl alcohol 5% aqueous solution, Then, it was made to dry and the laminated body was obtained. The adhesiveness of the obtained laminate was evaluated in the same manner as described above.
 実施例1~8と比較例1~9の評価結果を表4に示し;実施例9~12と比較例10の評価結果を表5に示し;実施例13~19の評価結果を表6に示し;実施例20~25の評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
The evaluation results of Examples 1 to 8 and Comparative Examples 1 to 9 are shown in Table 4, the evaluation results of Examples 9 to 12 and Comparative Example 10 are shown in Table 5, and the evaluation results of Examples 13 to 19 are shown in Table 6. Table 7 shows the evaluation results of Examples 20 to 25.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4~7に示されるように、実施例1~25のフィルムは、いずれも伸び量・伸び速度が適度に低く、かつ引張弾性率が適度に高いことがわかる。これに対して比較例1~10は、いずれも適度な伸び量、伸び速度および引張弾性率を両立できないことがわかる。 As shown in Tables 4 to 7, it can be seen that all of the films of Examples 1 to 25 have a moderately low elongation amount and elongation rate and a moderately high tensile elastic modulus. On the other hand, it can be seen that Comparative Examples 1 to 10 cannot achieve an appropriate elongation amount, elongation rate, and tensile modulus.
 具体的には、比較例1および8~9のフィルムは、従来の低透湿度のフィルム;または低透湿層を有するフィルムであり、少なくとも伸び速度が小さすぎることがわかる。一方、比較例4、6および10のフィルムは、セルロースエステルフィルムを含むことから、少なくとも伸び速度が大きすぎることがわかる。比較例3と7は、LogP値が低いセルロースエステルを一定以上含むことから、伸び速度が大きすぎることがわかる。比較例5のフィルムは、引張弾性率が低いことがわかる。 Specifically, it can be seen that the films of Comparative Examples 1 and 8 to 9 are conventional low-moisture permeable films; or films having a low-moisture permeable layer, and at least the elongation rate is too small. On the other hand, since the films of Comparative Examples 4, 6 and 10 include the cellulose ester film, it can be seen that at least the elongation rate is too large. Since Comparative Examples 3 and 7 contain a certain amount of cellulose ester having a low LogP value, it can be seen that the elongation rate is too high. It can be seen that the film of Comparative Example 5 has a low tensile modulus.
 そして、表5に示されるように、透湿度が比較的高いセルロースエステルの含有量が多いほど、フィルムの伸び量・伸び速度は大きくなることがわかる。表6に示されるように、セルロースエステルの疎水性が高いほど、フィルムの水との親和性が低くなるため、伸び量・伸び速度はいずれも小さくなることがわかる。表7に示されるように、(メタ)アクリル樹脂の疎水性が高いほど、フィルムの水との親和性が低くなるため、フィルムの伸び量・伸び速度は小さくなることがわかる。 As shown in Table 5, it can be seen that the greater the content of the cellulose ester having a relatively high moisture permeability, the greater the elongation amount and elongation rate of the film. As Table 6 shows, the higher the hydrophobicity of the cellulose ester is, the lower the affinity of the film with water is. As shown in Table 7, it can be seen that the higher the hydrophobicity of the (meth) acrylic resin, the lower the affinity of the film with water, and therefore the smaller the elongation amount / elongation speed of the film.
 3.偏光板の作製
 (実施例26)
 1)偏光子の作製
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で、搬送方向の延伸倍率6倍に延伸して、厚み25μmの偏光子を得た。
3. Production of Polarizing Plate (Example 26)
1) Preparation of polarizer A 120 μm-thick long roll polyvinyl alcohol film is immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched at 50 ° C. to a stretching ratio of 6 times in the transport direction. Thus, a polarizer having a thickness of 25 μm was obtained.
 2)位相差フィルムRT1の作製
 下記成分をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散して微粒子分散液1を得た。
 (微粒子分散液1)
 微粒子(アエロジル R812 日本アエロジル(株)製):11質量部
 エタノール:89質量部
2) Preparation of retardation film RT1 The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion 1.
(Fine particle dispersion 1)
Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.): 11 parts by mass Ethanol: 89 parts by mass
 次いで、メチレンクロライドを入れた溶解タンクに十分攪拌しながら、得られた微粒子分散液1をゆっくりと添加し、更に二次粒子の粒径が所定の大きさとなるようにアトライターにて分散させた。得られた溶液を、日本精線(株)製のファインメットNFで濾過し、微粒子添加液1を得た。
 (微粒子添加液1)
 メチレンクロライド:99質量部
 微粒子分散液1:5質量部
Next, while sufficiently stirring in a dissolution tank containing methylene chloride, the obtained fine particle dispersion 1 was slowly added and further dispersed with an attritor so that the particle size of the secondary particles became a predetermined size. . The obtained solution was filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd., and a fine particle additive solution 1 was obtained.
(Fine particle addition liquid 1)
Methylene chloride: 99 parts by mass Fine particle dispersion 1: 5 parts by mass
 下記組成の主ドープ液を調製した。まず、加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクに、アセチル基置換度2.00のセルロースアセテート、糖エステル化合物および微粒子添加液1を攪拌しながら投入し、加熱しながら攪拌して完全に溶解させた。これを、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。以上を密閉されている主溶解釜1に投入し、攪拌しながら溶解してドープ液を調製した。
 (主ドープ液)
 メチレンクロライド:340質量部
 エタノール:64質量部
 セルロースアセテート(アセチル基置換度2.00):100質量部
 糖エステル化合物:平均置換度5.5のベンジルサッカロース:12質量部
 微粒子添加液1:1質量部
A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate having a acetyl group substitution degree of 2.00, a sugar ester compound, and a fine particle additive solution 1 were added to a pressure-dissolving tank containing a solvent while stirring, and the mixture was completely dissolved by stirring while heating. This was designated as Azumi Filter Paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope solution was prepared by filtration using 244. The above was put into a sealed main dissolution vessel 1 and dissolved with stirring to prepare a dope solution.
(Main dope solution)
Methylene chloride: 340 parts by mass Ethanol: 64 parts by mass Cellulose acetate (acetyl group substitution degree: 2.00): 100 parts by mass Sugar ester compound: benzyl saccharose with an average substitution degree of 5.5: 12 parts by mass Fine particle additive solution: 1: 1 mass Part
 ステンレスベルト支持体上に、前述のドープ液を流延(キャスト)した後、残留溶媒量が75%になるまで溶媒を蒸発させてウェブを得た。得られたウェブを、剥離張力130N/mでステンレスベルト支持体上から剥離し、170℃の熱をかけながらテンターを用いて幅方向に37%延伸した。延伸開始時のウェブの残留溶媒は15%であった。 After casting the above-mentioned dope solution on a stainless belt support, the solvent was evaporated until the residual solvent amount became 75% to obtain a web. The obtained web was peeled off from the stainless belt support with a peeling tension of 130 N / m, and stretched 37% in the width direction using a tenter while applying heat at 170 ° C. The residual solvent of the web at the start of stretching was 15%.
 次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。以上のようにして、乾燥膜厚25μmの位相差フィルムRT1を得た。 Next, drying was terminated while the drying zone was conveyed by a number of rolls. The drying temperature was 130 ° C. and the transport tension was 100 N / m. As described above, a retardation film RT1 having a dry film thickness of 25 μm was obtained.
 偏光板の作製
 以下に示されるように、上記作製したフィルムをアルカリケン化処理した後、水洗、中和および水洗した。
 ケン化工程  2M-NaOH  50℃  90秒
 水洗工程   水        30℃  45秒
 中和工程   10質量%HCl 30℃  45秒
 水洗工程   水        30℃  45秒
 その後、得られた偏光板保護フィルムを80℃で乾燥させた。同様にして、上記作製した位相差フィルムRT1もアルカリケン化処理した。
Production of Polarizing Plate As shown below, the produced film was alkali saponified, then washed with water, neutralized and washed with water.
Saponification step 2M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10% HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds Then, the obtained polarizing plate protective film was dried at 80 ° C. It was. Similarly, the produced retardation film RT1 was also subjected to alkali saponification treatment.
 そして、上記作製した偏光子の一方の面に、アルカリケン化処理した前述のフィルム101を、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。同様に、偏光子の他方の面に、アルカリケン化処理した位相差フィルムRT1を、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。貼り合わせは、偏光子の透過軸とフィルム101の面内遅相軸とが平行になるように行った。貼り合わせた積層物を60℃で乾燥して、偏光板201を得た。 Then, the above-described film 101 subjected to alkali saponification treatment was bonded to one surface of the produced polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. Similarly, an alkali saponified retardation film RT1 was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. The bonding was performed so that the transmission axis of the polarizer and the in-plane slow axis of the film 101 were parallel. The laminated laminate was dried at 60 ° C. to obtain a polarizing plate 201.
 (実施例27~50、比較例11~20)
 保護フィルムの種類を、表8~11に示されるように変更した以外は実施例26と同様にして偏光板202~235を得た。
(Examples 27 to 50, Comparative Examples 11 to 20)
Polarizing plates 202 to 235 were obtained in the same manner as in Example 26 except that the type of the protective film was changed as shown in Tables 8 to 11.
 このうち、表5に示されるように、セルロースエステルの含有量が5%未満であるフィルム118は、鹸化接着に機能するセルロース量が少ないため、アルカリケン化処理を施しても水糊では接着しなかった。そこで、フィルム118については、下記組成の易接着剤組成物を調製し、易接着層を形成した。
 (易接着剤組成物の調製)
 カルボキシル基を有する水系ウレタン樹脂(第一工業製薬製、商品名:スーパーフレックス210、固形分:33%)100gに対して、架橋剤(日本触媒製、商品名:エポクロスWS700、固形分:25%)20gを添加し、3分間攪拌し、易接着剤組成物を得た。
Among these, as shown in Table 5, since the film 118 having a cellulose ester content of less than 5% has a small amount of cellulose that functions for saponification adhesion, even if it is subjected to alkali saponification treatment, it adheres with water paste. There wasn't. Therefore, for the film 118, an easy-adhesive composition having the following composition was prepared, and an easy-adhesive layer was formed.
(Preparation of easy-adhesive composition)
To 100 g of an aqueous urethane resin having a carboxyl group (Daiichi Kogyo Seiyaku, trade name: Superflex 210, solid content: 33%), a crosslinking agent (manufactured by Nippon Shokubai, trade name: Epocross WS700, solid content: 25%) ) 20 g was added and stirred for 3 minutes to obtain an easy-adhesive composition.
 得られた易接着剤組成物を、コロナ放電処理を施した保護フィルムのコロナ放電処理面に、バーコーター(#6)で塗布した。その後、保護フィルムを熱風乾燥機(140℃)に投入し、塗布した易接着剤組成物を約5分乾燥させて、易接着層(0.2~0.4μm)を形成した。 The obtained easy-adhesive composition was applied with a bar coater (# 6) to the corona discharge treated surface of the protective film subjected to the corona discharge treatment. Thereafter, the protective film was put into a hot air dryer (140 ° C.), and the applied easy-adhesive composition was dried for about 5 minutes to form an easy-adhesive layer (0.2 to 0.4 μm).
 そして、得られた易接着層と偏光子とを、水糊を介して貼り合わせて、偏光板218を得た。 And the obtained easily bonding layer and polarizer were bonded together through the water paste, and the polarizing plate 218 was obtained.
 得られた偏光板のレディッシュと、パネルベンドを以下の方法で評価した。 The reddish and panel bend of the obtained polarizing plate were evaluated by the following methods.
 (レディッシュ)
 得られた偏光板を、20℃95%RHのサーモに入れて200h保存した。保存後、得られた偏光板に、偏光子の劣化に起因する赤色の欠陥(レディッシュ)が発生したかどうかを目視観察し、下記基準に基づいて評価した。
 ◎:偏光板に赤色の欠陥が全く認められない
 ○:偏光板に赤色の欠陥が若干認められるが、ほとんど問題ないレベル
 ×:偏光板に赤色の欠陥が認められる
(Reddish)
The obtained polarizing plate was put in a thermo at 20 ° C. and 95% RH and stored for 200 hours. After the storage, the obtained polarizing plate was visually observed whether or not a red defect (reddish) due to deterioration of the polarizer occurred, and evaluated based on the following criteria.
◎: No red defect is observed on the polarizing plate ○: Red defect is slightly recognized on the polarizing plate, but there is almost no problem ×: Red defect is recognized on the polarizing plate
 (パネルベンド)
 厚み0.5mmのガラス板(A4サイズ)を準備した。このガラス板上に、上記作製した偏光板を、粘着剤を介して貼り合わせてパネルを得た。貼り合わせは、偏光板の位相差フィルムがガラス板側となるように行った。粘着剤は、リンテック社製の厚さ25μmの両面テープ(基材レステープMO-3005C)を用いた。
(Panel bend)
A glass plate (A4 size) having a thickness of 0.5 mm was prepared. On this glass plate, the produced polarizing plate was bonded through an adhesive to obtain a panel. The lamination was performed so that the retardation film of the polarizing plate was on the glass plate side. As the pressure-sensitive adhesive, a 25 μm-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec Corporation was used.
 得られたパネルを、23℃55%の室温状態に半日静置した後、40℃90%RHのサーモに入れて、24時間保存した。その後、パネルを取り出して、40℃dryサーモに入れて2時間乾燥させた。乾燥後に得られたパネルの反り量をすぐに測定した。パネルの反り量は、パネル四隅の水平面からの高さを測定し、それらの平均値とした。
 ◎◎:パネルの反り量が1.0mm未満
 ◎:パネルの反り量が1.0mm以上2.0mm未満
 ○:パネルの反り量が2.0mm以上3.5mm未満
 △:パネルの反り量が3.5mm以上5.0mm未満
 ×:パネルの反り量が5mm以上
The obtained panel was allowed to stand in a room temperature state of 23 ° C. and 55% for half a day, and then stored in a thermostat of 40 ° C. and 90% RH for 24 hours. Thereafter, the panel was taken out and placed in a 40 ° C. dry thermo and dried for 2 hours. The amount of warpage of the panel obtained after drying was measured immediately. The amount of warpage of the panel was measured by measuring the height from the horizontal plane at the four corners of the panel, and taking the average value thereof.
◎: Panel warpage is less than 1.0 mm ◎: Panel warpage is 1.0 mm or more and less than 2.0 mm ○: Panel warpage is 2.0 mm or more and less than 3.5 mm △: Panel warpage is 3 .5mm or more and less than 5.0mm x: Panel warpage is 5mm or more
 実施例26~33と比較例11~19の評価結果を表8に示し;実施例34~37と比較例20の評価結果を表9に示し;実施例38~44の評価結果を表10に示し;実施例45~50の評価結果を表11に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
The evaluation results of Examples 26 to 33 and Comparative Examples 11 to 19 are shown in Table 8; the evaluation results of Examples 34 to 37 and Comparative Example 20 are shown in Table 9; The evaluation results of Examples 38 to 44 are shown in Table 10. Table 11 shows the evaluation results of Examples 45 to 50.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表8~11に示されるように、実施例26~50の偏光板は、いずれもレディッシュとパネルベンドの両方が生じないことがわかる。一方、比較例11~20の偏光板は、レディッシュまたはパネルベンドの少なくとも一方が生じることがわかる。 As shown in Tables 8 to 11, it is understood that neither the reddish nor the panel bend occurs in any of the polarizing plates of Examples 26 to 50. On the other hand, it can be seen that at least one of reddish or panel bend occurs in the polarizing plates of Comparative Examples 11 to 20.
 具体的には、保護フィルムの少なくとも伸び速度が小さすぎる比較例11、18および19の偏光板は、パネルベンドは生じないが、レディッシュは生じることがわかる。一方、保護フィルムの伸び量と伸び速度の少なくとも一方が大きすぎる比較例12~14、16および17の偏光板は、レディッシュは生じないが、パネルベンドは生じることがわかる。比較例12の偏光板は、セルロースエステルのLogP値が高すぎて、セルロースエステルとポリメチルメタクリレートとが十分に相溶せず、セルロースエステルの添加による引張弾性率の向上効果が得られなかったためと考えられる。 Specifically, it can be seen that the polarizing plates of Comparative Examples 11, 18 and 19 in which at least the elongation rate of the protective film is too small do not cause panel bend but produce reddish. On the other hand, it can be seen that the polarizing plates of Comparative Examples 12 to 14, 16 and 17 in which at least one of the elongation amount and the elongation speed of the protective film is too large do not cause reddish but produce panel bend. In the polarizing plate of Comparative Example 12, the LogP value of the cellulose ester was too high, the cellulose ester and polymethyl methacrylate were not sufficiently compatible, and the effect of improving the tensile modulus due to the addition of the cellulose ester was not obtained. Conceivable.
 さらに、表9に示されるように、フィルムの伸び量・伸び速度が適度に大きいと、偏光板のレディッシュが低減されやすいことがわかる。表10および11に示されるように、フィルムの伸び量・伸び速度が適度に小さいと、パネルベンドが低減されやすいことがわかる。 Furthermore, as shown in Table 9, it can be seen that the reddish of the polarizing plate is likely to be reduced when the elongation amount and elongation rate of the film are moderately large. As shown in Tables 10 and 11, it can be seen that the panel bend is likely to be reduced when the elongation amount and elongation rate of the film are moderately small.
 4.液晶表示装置の作製
 (実施例51)
 液晶セルとして、厚みが0.5mmの二枚のガラス基板と、それらの間に配置された液晶層とを有するVA方式の液晶セルを準備した。そして、上記準備した液晶セルの両面に、リンテック社製の厚さ25μmの両面テープ(基材レステープ MO-3005C)を介して上記作製した偏光板201をそれぞれ貼り合わせて、液晶表示パネルを得た。貼り合わせは、偏光板201の位相差フィルムRT1が、液晶セルと接するように行った。
4). Production of liquid crystal display device (Example 51)
As a liquid crystal cell, a VA liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the prepared polarizing plate 201 was bonded to both surfaces of the prepared liquid crystal cell via a 25 μm-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec to obtain a liquid crystal display panel. It was. The bonding was performed such that the retardation film RT1 of the polarizing plate 201 was in contact with the liquid crystal cell.
 そして、SONY製40型ディスプレイBRAVIA KLV-40J3000(VA方式)から、液晶表示パネル(偏光板/液晶セル/偏光板の積層物)を取り外した後、上記作製した液晶表示パネルを配置して、液晶表示装置301(1)を得た。取り付けた液晶表示パネルは、位相差フィルムRT1の遅相軸と、予め貼られていた偏光板の遅相軸とが平行となるようにした。 Then, after removing the liquid crystal display panel (polarizer / liquid crystal cell / laminate of the polarizer) from the 40-inch display BRAVIA KLV-40J3000 (VA method) manufactured by SONY, the liquid crystal display panel prepared above was placed, and the liquid crystal A display device 301 (1) was obtained. The attached liquid crystal display panel was set so that the slow axis of the retardation film RT1 and the slow axis of the polarizing plate previously attached were parallel.
 液晶セルを構成する二枚のガラス基板の厚みをそれぞれ0.2mm、0.7mmとした以外は同様にして液晶表示装置301(2)および301(3)を作製した。 Liquid crystal display devices 301 (2) and 301 (3) were produced in the same manner except that the thicknesses of the two glass substrates constituting the liquid crystal cell were 0.2 mm and 0.7 mm, respectively.
 (実施例52~76、比較例21~30)
 偏光板201を、偏光板202~235に順次変更した以外は実施例51と同様にして液晶表示装置302~335を得た。
(Examples 52 to 76, Comparative Examples 21 to 30)
Liquid crystal display devices 302 to 335 were obtained in the same manner as in Example 51 except that the polarizing plate 201 was sequentially changed to the polarizing plates 202 to 235.
 得られた液晶表示装置のベンドムラを、以下の方法で測定した。 The bend unevenness of the obtained liquid crystal display device was measured by the following method.
 (ベンドムラ)
 上記作製した液晶表示装置を、40℃95%RHの環境下で24時間放置した。次いで、40℃ドライの環境下で液晶表示装置を黒表示させた状態で、表示画面の4頂点付近の輝度と表示画面中央部付近の輝度との差(中心部と周辺部との画像ムラ)を目視観察した。そして、下記の基準に基づいて評価した。
 ○:画像ムラが認められなかった
 ×:画像ムラが認められた
(Bendmura)
The produced liquid crystal display device was left in an environment of 40 ° C. and 95% RH for 24 hours. Next, with the liquid crystal display device displaying black in a 40 ° C. dry environment, the difference between the luminance near the four vertices of the display screen and the luminance near the center of the display screen (image unevenness between the central portion and the peripheral portion) Was visually observed. And it evaluated based on the following reference | standard.
○: Image unevenness was not recognized ×: Image unevenness was recognized
 実施例51~58と比較例21~29の評価結果を表12に示し;実施例59~62と比較例30の評価結果を表13に示し;実施例62~68の評価結果を表14に示し;実施例69~74の評価結果を表15に示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
The evaluation results of Examples 51 to 58 and Comparative Examples 21 to 29 are shown in Table 12; the evaluation results of Examples 59 to 62 and Comparative Example 30 are shown in Table 13; The evaluation results of Examples 62 to 68 are shown in Table 14. Table 15 shows the evaluation results of Examples 69 to 74.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表12~15に示されるように、ガラス基板の厚みを0.5mmとした場合では、パネルベンドの評価結果が△または×であった偏光板を用いた液晶表示装置は、実用上問題となるパネルベンドムラが生じたのに対して;パネルベンドの評価結果が○以上であった偏光板を用いた液晶表示装置は、いずれも実用上問題となるベンドムラは認められなかった。 As shown in Tables 12 to 15, when the thickness of the glass substrate is 0.5 mm, a liquid crystal display device using a polarizing plate having a panel bend evaluation result of Δ or × is a problem in practice. In contrast to the occurrence of panel bend unevenness; no practically problematic bend unevenness was observed in any of the liquid crystal display devices using polarizing plates with panel bend evaluation results of ◯ or higher.
 また、ガラス基板の厚みを0.5mmとした場合ではベンドムラが生じない偏光板でも、ガラス基板の厚みを0.2mmとした場合ではベンドムラが生じる場合があることがわかった。これとは反対に、ガラス基板の厚みを0.5mmとした場合ではベンドムラが生じる偏光板でも、ガラス基板の厚みを0.7mmとした場合ではベンドムラが生じない場合があることがわかった。これらのことから、本発明の保護フィルムは、特にガラス基板の厚みが0.3mm以上0.7mm未満である場合のベンドムラを良好に抑制しうることがわかった。 In addition, it was found that even when the thickness of the glass substrate is 0.5 mm, the bend unevenness may occur when the thickness of the glass substrate is 0.2 mm, even if the polarizing plate does not generate bend unevenness. On the contrary, it has been found that even when the thickness of the glass substrate is 0.5 mm, the bend unevenness may not occur when the thickness of the glass substrate is 0.7 mm even when the polarizing plate generates the bend unevenness. From these things, it turned out that the protective film of this invention can suppress especially the bend nonuniformity especially when the thickness of a glass substrate is 0.3 mm or more and less than 0.7 mm.
 本出願は、2013年7月29日出願の特願2013-156705に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-156705 filed on July 29, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明によれば、偏光子の厚みが薄くても、透湿した水分による偏光子の劣化が少ない偏光板を提供することができる。 According to the present invention, it is possible to provide a polarizing plate in which the polarizer is less deteriorated by moisture permeated even when the polarizer is thin.
 10 液晶表示装置
 30 液晶セル
 50 第一の偏光板
 51 第一の偏光子
 53 保護フィルム(F1)
 55 保護フィルム(F2)
 70 第二の偏光板
 71 第二の偏光子
 73 保護フィルム(F3)
 75 保護フィルム(F4)
 90 バックライト
 
 
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1)
55 Protective film (F2)
70 Second polarizing plate 71 Second polarizer 73 Protective film (F3)
75 Protective film (F4)
90 backlight

Claims (9)

  1.  23℃55%RH下における引張弾性率が3GPa以上であり、
     23±1℃、55%RH下で12時間以上調湿した後、23±1℃の水に浸漬したときの、フィルムの初期の伸び速度が0.03~0.1%/分であり、かつフィルムを水に浸漬して30分経過後のフィルムの伸び量が0.4%以下である、偏光板保護フィルム。
    The tensile elastic modulus at 23 ° C. and 55% RH is 3 GPa or more,
    After adjusting the humidity at 23 ± 1 ° C. and 55% RH for 12 hours or more, the initial elongation rate of the film when immersed in water at 23 ± 1 ° C. is 0.03 to 0.1% / min. And the polarizing plate protective film whose elongation amount of the film after immersion for 30 minutes after immersing a film in water is 0.4% or less.
  2.  (メタ)アクリル樹脂を含む、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, comprising (meth) acrylic resin.
  3.  前記(メタ)アクリル樹脂の水-オクタノール分配係数が1.2以上である、請求項2に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 2, wherein the (meth) acrylic resin has a water-octanol distribution coefficient of 1.2 or more.
  4.  前記フィルムに対して5~25質量%のセルロースエステルをさらに含む、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, further comprising 5 to 25% by mass of a cellulose ester based on the film.
  5.  前記セルロースエステルの水-オクタノール分配係数が0以上である、請求項4に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 4, wherein the cellulose ester has a water-octanol distribution coefficient of 0 or more.
  6.  水-オクタノール分配係数が1.2以上である(メタ)アクリル樹脂と、水-オクタノール分配係数が0以上であるセルロースエステルとを含む、請求項1に記載の偏光板保護フィルム。 The polarizing plate protective film according to claim 1, comprising a (meth) acrylic resin having a water-octanol distribution coefficient of 1.2 or more and a cellulose ester having a water-octanol distribution coefficient of 0 or more.
  7.  前記偏光板保護フィルムの厚みは、10~50μmである、請求項1に記載の偏光板保護フィルム。 2. The polarizing plate protective film according to claim 1, wherein the polarizing plate protective film has a thickness of 10 to 50 μm.
  8.  偏光子と、請求項1に記載の偏光板保護フィルムとを含む、偏光板。 A polarizing plate comprising a polarizer and the polarizing plate protective film according to claim 1.
  9.  厚み0.3mm以上0.7mm未満の第一のガラス基板および第二のガラス基板と、前記第一のガラス基板と前記第二のガラス基板の間に配置された液晶層とを含む液晶セルと、
     前記液晶セルの前記第一のガラス基板上に配置された第一の偏光板と、
     前記液晶セルの前記第二のガラス基板上に配置された第二の偏光板とを含み、
     前記第一の偏光板が、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置された保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置された保護フィルムF2とを含み、
     前記第二の偏光板が、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置された保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置された保護フィルムF4とを含み、
     前記保護フィルムF1と前記保護フィルムF4の一方または両方が、請求項1に記載の偏光板保護フィルムである、液晶表示装置。
     
    A liquid crystal cell comprising a first glass substrate and a second glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm, and a liquid crystal layer disposed between the first glass substrate and the second glass substrate; ,
    A first polarizing plate disposed on the first glass substrate of the liquid crystal cell;
    Including a second polarizing plate disposed on the second glass substrate of the liquid crystal cell,
    The first polarizing plate is a first polarizer, a protective film F1 disposed on a surface of the first polarizer opposite to the liquid crystal cell, and the liquid crystal cell of the first polarizer. Including a protective film F2 disposed on the side surface,
    The second polarizing plate is opposite to the second polarizer, the protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the liquid crystal cell of the second polarizer. Including a protective film F4 disposed on the side surface,
    The liquid crystal display device in which one or both of the protective film F1 and the protective film F4 is the polarizing plate protective film according to claim 1.
PCT/JP2013/006495 2013-07-29 2013-11-01 Polarizing plate protection film, polarizing plate and liquid crystal display device WO2015015538A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167001479A KR20160021859A (en) 2013-07-29 2013-11-01 Polarizing plate protection film, polarizing plate and liquid crystal display device
JP2015529228A JPWO2015015538A1 (en) 2013-07-29 2013-11-01 Polarizing plate protective film, polarizing plate and liquid crystal display device
CN201380078496.8A CN105408779A (en) 2013-07-29 2013-11-01 Polarizing plate protection film, polarizing plate and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013156705 2013-07-29
JP2013-156705 2013-07-29

Publications (1)

Publication Number Publication Date
WO2015015538A1 true WO2015015538A1 (en) 2015-02-05

Family

ID=52431120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006495 WO2015015538A1 (en) 2013-07-29 2013-11-01 Polarizing plate protection film, polarizing plate and liquid crystal display device

Country Status (4)

Country Link
JP (1) JPWO2015015538A1 (en)
KR (1) KR20160021859A (en)
CN (1) CN105408779A (en)
WO (1) WO2015015538A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095516A1 (en) * 2019-11-12 2021-05-20 日東電工株式会社 Optical film set and liquid crystal panel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868343B2 (en) * 2016-04-20 2021-05-12 日東電工株式会社 Polarizing film and its manufacturing method, optical film and image display device
KR101694257B1 (en) * 2016-06-20 2017-01-10 에스케이씨 주식회사 A protective film for a polarizer, a polarizing plate comprising the same, and a display device with the polarizing plate
JP2018013769A (en) * 2016-07-08 2018-01-25 日東電工株式会社 Polarizing film with adhesive layer and production method of the polarizing film with adhesive layer
JP6969564B2 (en) * 2016-09-20 2021-11-24 コニカミノルタ株式会社 Polarizing plate and liquid crystal display device
TWI683143B (en) * 2017-07-14 2020-01-21 南韓商Lg化學股份有限公司 Polarizing plate and display device
CN107861184A (en) * 2017-11-29 2018-03-30 昆山龙腾光电有限公司 A kind of polaroid and preparation method thereof
KR102158872B1 (en) * 2017-12-05 2020-09-22 삼성에스디아이 주식회사 Polarizing plate and optical display apparatus comprising the same
JP2019174636A (en) * 2018-03-28 2019-10-10 コニカミノルタ株式会社 Oblique stretched film, polarizer, irregular shaped display and method for manufacturing oblique stretched film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037335A (en) * 1988-12-21 1991-01-14 Bayer Ag Clear laminate
JP2009271284A (en) * 2008-05-07 2009-11-19 Konica Minolta Opto Inc Polarizing plate protective film, polarizing plate and liquid crystal display
JP2010515948A (en) * 2007-01-11 2010-05-13 ピーピージー インダストリーズ オハイオ インコーポレーテツド Optical elements with properties that affect light
WO2010082397A1 (en) * 2009-01-19 2010-07-22 コニカミノルタオプト株式会社 Optical film, polarizer, and liquid-crystal display device
WO2010119730A1 (en) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 Optical element
JP2011154360A (en) * 2009-12-28 2011-08-11 Fujifilm Corp Optical film and method for manufacturing the same
JP2012018341A (en) * 2010-07-09 2012-01-26 Konica Minolta Opto Inc Polarizing plate and liquid crystal display device using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214797B2 (en) 2003-02-25 2009-01-28 日本ゼオン株式会社 Optical film and manufacturing method thereof
JP4928187B2 (en) 2005-08-04 2012-05-09 株式会社日本触媒 Low birefringence copolymer
EP2186847B1 (en) 2007-10-13 2014-09-24 Konica Minolta Opto, Inc. Optical film
US20110242077A1 (en) * 2009-01-16 2011-10-06 Nobuhiro Kuwabara Display device and portable terminal
JP5775676B2 (en) 2010-06-03 2015-09-09 株式会社日本触媒 Retardation film and image display device using the same
JP5763367B2 (en) 2011-02-28 2015-08-12 住友化学株式会社 Method for producing acrylic resin film, acrylic resin film produced by the method, and polarizing plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH037335A (en) * 1988-12-21 1991-01-14 Bayer Ag Clear laminate
JP2010515948A (en) * 2007-01-11 2010-05-13 ピーピージー インダストリーズ オハイオ インコーポレーテツド Optical elements with properties that affect light
JP2009271284A (en) * 2008-05-07 2009-11-19 Konica Minolta Opto Inc Polarizing plate protective film, polarizing plate and liquid crystal display
WO2010082397A1 (en) * 2009-01-19 2010-07-22 コニカミノルタオプト株式会社 Optical film, polarizer, and liquid-crystal display device
WO2010119730A1 (en) * 2009-04-15 2010-10-21 コニカミノルタオプト株式会社 Optical element
JP2011154360A (en) * 2009-12-28 2011-08-11 Fujifilm Corp Optical film and method for manufacturing the same
JP2012018341A (en) * 2010-07-09 2012-01-26 Konica Minolta Opto Inc Polarizing plate and liquid crystal display device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095516A1 (en) * 2019-11-12 2021-05-20 日東電工株式会社 Optical film set and liquid crystal panel

Also Published As

Publication number Publication date
CN105408779A (en) 2016-03-16
KR20160021859A (en) 2016-02-26
JPWO2015015538A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015015538A1 (en) Polarizing plate protection film, polarizing plate and liquid crystal display device
US20160209548A1 (en) Method for manufacturing polarizing plate
TWI569967B (en) A polarizing plate and a liquid crystal display device using the same
WO2015076250A1 (en) Optical film, polarizing plate and liquid crystal display device
JP5751249B2 (en) Hard coat film, method for producing the same, polarizing plate, and liquid crystal display device
JP5875263B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
JP6048419B2 (en) Method for producing hard coat film and method for producing polarizing plate
WO2012035849A1 (en) Antiglare film, antiglare film manufacturing method, polarizing plate and liquid crystal display device
JP2015179204A (en) Hard coat film, polarizing plate, and image display device
WO2011055624A1 (en) Polarizing plate and liquid crystal display device
TWI585474B (en) Optical film and optical film manufacturing method, polarizing film and liquid crystal display device
WO2012026192A1 (en) Hardcoat film, polarizing plate, and liquid crystal display device
JP6007874B2 (en) Polarizing plate protective film and manufacturing method thereof, polarizing plate and liquid crystal display device
KR101689912B1 (en) Polarizing plate and liquid crystal display device
JP5980465B2 (en) Polarizing plate and liquid crystal display device using the same
JP6048506B2 (en) Optical film
WO2014178178A1 (en) Polarizing plate and liquid crystal display device
JP2011118088A (en) Long polarizing plate and liquid crystal display device
JP2009086342A (en) Liquid crystal display device
WO2011052403A1 (en) Polarizer and liquid-crystal display device including same
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2016009743A1 (en) Optical film, polarizing plate and image display device
JP2015169677A (en) Manufacturing method of polarizing laminated film and manufacturing method of polarizing plate
JP2005350492A (en) Coated film having coated layer by using cellulose ester film as supporting body, protective film for polarized plate, combination of productive film for polarized plate and polarized plate
JP2005349580A (en) Coated film wherein coating layer is provided on cellulose ester film being support, protective film for polarizing plate, combination of protective film for polarizing plate and polarizing plate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078496.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529228

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167001479

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890376

Country of ref document: EP

Kind code of ref document: A1