WO2015076250A1 - Optical film, polarizing plate and liquid crystal display device - Google Patents

Optical film, polarizing plate and liquid crystal display device Download PDF

Info

Publication number
WO2015076250A1
WO2015076250A1 PCT/JP2014/080469 JP2014080469W WO2015076250A1 WO 2015076250 A1 WO2015076250 A1 WO 2015076250A1 JP 2014080469 W JP2014080469 W JP 2014080469W WO 2015076250 A1 WO2015076250 A1 WO 2015076250A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
resin
liquid crystal
polarizing plate
film
Prior art date
Application number
PCT/JP2014/080469
Other languages
French (fr)
Japanese (ja)
Inventor
隆 建部
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015549150A priority Critical patent/JPWO2015076250A1/en
Publication of WO2015076250A1 publication Critical patent/WO2015076250A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2431/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2431/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2431/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes

Definitions

  • the present invention relates to an optical film, a polarizing plate, and a liquid crystal display device.
  • a liquid crystal display device usually includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • the liquid crystal cell includes a transparent electrode, a liquid crystal layer, a color filter, and a pair of glass substrates that sandwich them;
  • the polarizing plate includes a polarizer and a pair of polarizing plate protective films that sandwich the polarizer.
  • a cellulose triacetate film As a polarizing plate protective film, a cellulose triacetate film (TAC) is often used because it is transparent and has low birefringence and is easily adhered to a polarizer using water glue.
  • TAC cellulose triacetate film
  • an extruded film of a composition comprising a vinyl acetate resin and cellulose acetate butyrate or cellulose acetate propionate is disclosed (for example, Patent Document 1).
  • the glass substrate constituting the liquid crystal cell has been made thinner. Further, an LED backlight is used as a light source of the liquid crystal display device. Along with these, bending of the liquid crystal display panel (polarizing plate / liquid crystal cell / polarizing plate laminate) is likely to occur.
  • Panel bend is likely to occur after the backlight of a liquid crystal display device immediately after manufacturing or immediately after transportation is turned on for a certain period of time. This is considered to be because water escapes from the polarizer containing water during production or transportation, and the polarizer contracts due to the heat of the backlight.
  • a liquid crystal display device using an LED backlight has a smaller distance between the backlight and the panel than a liquid crystal display device using a conventional backlight, so that the polarizer is more susceptible to the heat of the backlight. Panel bend is likely to occur.
  • Such a panel bend is likely to cause display unevenness of the liquid crystal display device. Further, when panel bend occurs, the panel comes into contact with the diffusion plate, which may further cause egg unevenness.
  • This invention is made
  • [7] A step of casting a dope containing the resin (A) and the resin (B) and a solvent on a metal support plate and then drying to obtain a film-like material; and It is obtained through a step of stretching in both the transport direction and the direction orthogonal to the transport direction so that the sum of the stretch ratios in both the transport direction and the direction orthogonal to the transport direction is 110 to 400%.
  • [1] to [6] The optical film according to any one of [6].
  • [8] The optical film according to any one of [1] to [7], wherein the resin (A) is a cellulose ester.
  • the resin (B) contains at least one selected from the group consisting of polyvinyl acetate, polylactic acid, polyacetal, polyurethane, ethylene-vinyl acetate polymer, and rubber particles [1] to [8]
  • the optical film in any one of. [10] The optical film according to any one of [1] to [9], wherein the CHE / CTE of the optical film is 0.2 to 0.6. [11] The optical film according to any one of [1] to [10], wherein the weight average molecular weight of the resin (A) and the weight average molecular weight of the resin (B) are both 150,000 to 500,000. [12] The optical film according to any one of [1] to [11], which is a polarizing plate protective film.
  • a polarizing plate comprising a polarizer and the optical film according to any one of [1] to [12].
  • a liquid crystal display device including a first polarizing plate, a liquid crystal cell, a second polarizing plate, and a backlight in this order, wherein the first polarizing plate includes a first polarizer, A polarizing plate protective film F1 disposed on the surface of the first polarizer opposite to the liquid crystal cell, and a polarizing plate protective film F2 disposed on the surface of the first polarizer on the liquid crystal cell side
  • the second polarizing plate is a second polarizer, a polarizing plate protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the second polarizer.
  • a liquid crystal display device which is the optical film described in 1.
  • the liquid crystal cell includes a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, and the pair of substrates is a glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm.
  • [17] The liquid crystal display device according to [15] or [16], wherein at least the polarizing plate protective film F1 is the optical film according to any one of [1] to [12].
  • the panel bend is caused by contraction of the polarizer due to the escape of water from the polarizer containing water at the time of manufacture or transportation, due to the heat of the backlight.
  • the present inventors have found that the panel bend can be suppressed by expanding the optical film so as to counteract the contraction of the polarizer when receiving the heat of the backlight.
  • an optical film that has received heat from a backlight tends to simultaneously expand due to heat and shrink due to the removal of water. It has been found that the optical film as a whole can be easily expanded by making the “expansion force due to heat” in the optical film relatively larger than the “shrinkage force due to the removal of water”.
  • thermal expansion coefficient in any one direction X in the plane of the optical film is CTE (unit: ppm / ° C.) and the hygroscopic expansion coefficient in direction X is CHE (unit: ppm /% RH)
  • these ratios CHE / CTE is preferably not more than a certain value, specifically 0.6 or less.
  • any one direction X in the plane of the optical film is preferably a direction parallel to the absorption axis of the polarizer when the optical film and the polarizer are superimposed; (MD direction), that is, the longitudinal direction of the optical film in the wound body of the optical film is more preferable.
  • “any one direction X in the plane of the optical film” is preferably at least one of the in-plane slow axis direction of the optical film and the direction orthogonal thereto.
  • the in-plane slow axis of the optical film is the slow axis in the direction in which the refractive index is maximum in the optical film plane, and can be specified by an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments) as will be described later. .
  • the optical film has a certain tensile elastic modulus under heating. This is because the thermal expansion force of the optical film is proportional to the product of the tensile elastic modulus, thickness, and dimensional change of the optical film.
  • the tensile elastic modulus at 40 ° C. in any one direction X in the plane of the optical film is 2 GPa or more.
  • the tensile elastic modulus at 40 ° C. is above a certain level, the expansion force of the optical film due to heat can be easily increased.
  • the tensile elastic modulus at 40 ° C. in the direction X of the optical film is preferably 6 GPa or less in order to improve the winding shape of the optical film (the appearance of the wound body wound up in a roll shape).
  • appearance defects such as “smooth” and “wrinkle” are likely to occur.
  • the tensile modulus at 40 ° C In order to set the CHE (Hygroscopic expansion coefficient) / CTE (Thermal expansion coefficient) in the direction X of the optical film to 0.6 or less and the tensile modulus at 40 ° C. in the direction X to 2 GPa or more, the tensile modulus at 40 ° C. It is preferable to combine a resin (A) having a high CHE / CTE and a resin (B) having a relatively low CHE / CTE. Specifically, a resin (A) having a tensile elastic modulus at 40 ° C.
  • the CHE / CTE in the direction X of the optical film can be adjusted mainly by the types of the resin (A) and the resin (B), their content ratio, stretching in the direction X, and the stretching ratio in the direction X.
  • the tensile elastic modulus at 40 ° C. in the direction X of the optical film is mainly the type and molecular weight of the resin (A) and the resin (B), the content ratio of the resin (A) and the resin (B), and stretching in the direction X. And it can be adjusted by the draw ratio in the direction X.
  • the optical film of the present invention contains a resin (A) having a high tensile elastic modulus under heating and a relatively high CHE / CTE and a resin (B) having a relatively low CHE / CTE.
  • the resin (A) can function not only as the main polymer of the optical film, but also has a function of increasing the tensile elastic modulus under heating.
  • the tensile elastic modulus of the resin (A) in a 40 ° C., 20% RH environment is preferably 2 GPa or more, and more preferably 3 GPa or more in order to increase the expansion force under heating.
  • the tensile elastic modulus of the resin (A) in a 40 ° C., 20% RH environment is preferably 6 GPa or less in order not to impair the rolled form of the optical film (appearance of the roll-shaped wound body). More preferably, it is 5 GPa or less.
  • the tensile elastic modulus of the resin (A) under a 40 ° C. and 20% RH environment can be measured by the following method. That is, 1) A 40 ⁇ m thick film made of the resin (A) is prepared.
  • the film production method is preferably a solution casting film forming method from the viewpoint of easy handling of the high molecular weight resin (A).
  • the obtained film is cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) to obtain a test piece.
  • the test piece is measured for tensile elastic modulus in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd. with a distance between chucks of 50 mm.
  • the MD direction represents the film forming direction of the film made of the resin (A) (the longitudinal direction of the film in the film winding body); the TD direction represents the width direction of the film.
  • the measurement is performed at 40 ° C. and 20% RH.
  • the CHE / CTE of the resin (A) is preferably 0.6 or more, more preferably 0.8 or more, further preferably 1.0 or more, and 1.2 or more. Particularly preferred.
  • the upper limit of the CHE / CTE of the resin (A) can be about 2.0, preferably about 1.5.
  • the CHE / CTE of the resin (A) can be obtained, for example, by the following procedure. 1) A film having a thickness of 40 ⁇ m made of resin (A) is prepared by the solution casting method, and cut into a predetermined size as a test piece, in the same manner as the film used for measurement of the tensile modulus. Then, the CTE of the test piece is measured by the TMA method in accordance with ASTM E-831 or JIS K7197 to obtain the CTE (unit: ppm / ° C.) of the resin (A). 2) The dimension in the MD direction after storing a test piece of 40 ⁇ m thickness made of resin (A) for 24 hours in an environment of 23 ° C. and 20% RH and 23 ° C.
  • CHE (ppm /% RH) ⁇ (MD direction dimension of specimen after storage at 23 ° C. and 80% RH ⁇ MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen after storage under MD ⁇ / (80% RH-20% RH) 3)
  • the CHE / CTE of the resin (A) is calculated from the CTE and CHE of the resin (A) obtained in 1) and 2) above.
  • Examples of the resin (A) in which the tensile modulus at 40 ° C. and the CHE / CTE satisfy the above range include cellulose ester and (meth) acrylic resin, etc. is there.
  • Cellulose ester is a compound obtained by esterifying cellulose and at least one of aliphatic carboxylic acid and aromatic carboxylic acid. That is, the cellulose ester contains at least one of an aliphatic acyl group and an aromatic acyl group, and preferably contains an aliphatic acyl group.
  • the number of carbon atoms in the aliphatic acyl group is preferably 2 to 7, and more preferably 2 to 4.
  • Examples of the aliphatic acyl group include acetyl group, propionyl group, butanoyl group and the like.
  • cellulose ester examples include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate and the like, and cellulose acetate and cellulose acetate propionate are preferable because they have appropriate hydrophobicity.
  • the total substitution degree of the acyl group of the cellulose ester is 2.0 or more, preferably 2.5 or more, more preferably 2.6 or more, and further preferably 2.8 or more. By increasing the total substitution degree of the acyl group, it is possible to make it difficult to express the retardation of the film.
  • the upper limit of the total substitution degree of the acyl group can be, for example, 3.0, preferably 2.99.
  • the acyl group of the cellulose ester preferably contains an acetyl group.
  • the acyl group of the cellulose ester may further contain an acyl group having 3 or more carbon atoms, and the degree of substitution may be 2.7 or less.
  • the degree of substitution of the acyl group of the cellulose ester can be measured by the method prescribed in ASTM-D817-96.
  • the (meth) acrylic resin can be a homopolymer of (meth) acrylic acid ester; or a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith.
  • the (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester, and more preferably methyl methacrylate.
  • Examples of other monomers copolymerizable with methyl methacrylate include: alkyl methacrylates having 2 to 18 carbon atoms in the alkyl moiety; alkyl alkyl esters having 1 to 18 carbon atoms in the alkyl moiety; acrylic acid ⁇ , ⁇ -unsaturated acids such as methacrylic acid; unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; aromatic vinyl compounds such as styrene, ⁇ -methylstyrene and nucleus-substituted styrene; acrylonitrile And ⁇ , ⁇ -unsaturated nitriles such as methacrylonitrile; maleic anhydride; maleimide, N-substituted maleimide; glutaric anhydride and the like.
  • the alkyl group in the acrylic acid alkyl ester and methacrylic acid alkyl ester may be cyclic or chain-like.
  • the content ratio of the structural unit derived from methyl methacrylate with respect to all the structural units constituting the copolymer is preferably 50% by mass or more, and more preferably 70% by mass or more.
  • the weight average molecular weight of the resin (A) is preferably 90,000 or more and more preferably 150,000 or more in order to easily increase the tensile elastic modulus of the film under heating.
  • the upper limit of the weight average molecular weight of the resin (A) is preferably 1 million, preferably 500,000 so that compatibility with the resin (B) is easily obtained and the moldability to the film is not impaired. Is more preferable.
  • the weight average molecular weight of the resin (A) can be measured by gel permeation chromatography (GPC).
  • the measurement conditions are as follows. Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
  • the glass transition temperature Ta of the resin (A) preferably satisfies the expressions (1) to (3) described later.
  • the glass transition temperature Ta of the resin (A) can be about 105 to 180 ° C.
  • the glass transition temperature Ta of the resin (A) is a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) as a midpoint glass transition temperature (Tmg). Can be measured.
  • the heating rate can be 20 ° C./min.
  • the resin (B) has a function of making the optical film easily stretched (or easily expanded) under heating. Accordingly, the CHE / CTE of the resin (B) is preferably relatively low, preferably less than 0.6, more preferably 0.5 or less, and further preferably 0.4 or less. .
  • the lower limit of the CHE / CTE of the resin (B) can be about 0 or about 0.05.
  • the CHE / CTE of the resin (B) can be measured in the same manner as the CHE / CTE of the resin (A) described above.
  • the tensile elastic modulus of the resin (B) under a 40 ° C. and 20% RH environment may be such that the tensile elastic modulus of the obtained optical film falls within the above range.
  • the tensile elastic modulus of the resin (B) in a 40 ° C., 20% RH environment can be 6 GPa or less, preferably 4.5 GPa or less.
  • the tensile elastic modulus of the resin (B) under a 40 ° C. and 20% RH environment can be measured in the same manner as the tensile elastic modulus of the resin (A) under a 40 ° C. and 20% RH environment.
  • the glass transition temperature Tb of the resin (B) is preferably lower than the glass transition temperature Ta of the resin (A) by a certain level or more in order to make the optical film easily stretched under heating. Specifically, it is preferable to satisfy the following formula (2).
  • Tb is preferably lower than Ta by 100 ° C. or more.
  • Tb can be, for example, in the range of ⁇ 50 ° C. to 70 ° C.
  • the glass transition temperature Tb of the resin (B) can be measured by the same method as the glass transition temperature Ta of the resin (A).
  • Examples of the resin (B) satisfying the above CHE / CTE range include vinyl acetate resin, polylactic acid, polyacetal, polyurethane, and rubber particles.
  • the vinyl acetate resin is a polymer containing a repeating unit derived from vinyl acetate, and examples thereof include polyvinyl acetate (a homopolymer of vinyl acetate), an ethylene-vinyl acetate copolymer, and the like.
  • Polyacetal is a polymer containing oxymethylene repeating units, and may further contain a small amount (for example, 5% or less) of oxyethylene repeating units.
  • Polyurethane is a resin obtained by reacting polyol and polyisocyanate.
  • polyols include alkylene diols, polyester polyols, polyether polyols, and the like, preferably alkylene diols and polyester polyols.
  • polyisocyanate include alkylene diisocyanate and arylene diisocyanate, and alkylene diisocyanate is preferable.
  • Preferable examples of the polyurethane include a polymer of alkylene diisocyanate and alkylene diol.
  • the rubber particles are preferably fine particles having a core-shell structure, and examples thereof include acrylic fine particles; and styrene-butadiene copolymer fine particles.
  • acrylic fine particles having a core-shell structure a mixture of 80 to 98.9% by mass of methyl methacrylate, 1 to 20% by mass of alkyl acrylate and 0.01 to 0.3% by mass of a polyfunctional grafting agent is polymerized.
  • Examples of fine particles of a styrene-butadiene copolymer having a core-shell structure include: a core portion made of a soft polymer; and a shell portion covering the periphery of the core portion made of another polymer. Includes fine particles.
  • the soft polymer includes a structural unit derived from a conjugated diene monomer and, if necessary, a structural unit derived from another monomer.
  • conjugated diene monomers include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, myrcene, etc. Of these, butadiene and isoprene are preferred.
  • examples of other monomers include styrene components such as styrene and ⁇ -methylstyrene.
  • the content ratio of the structural unit derived from the conjugated diene monomer in the soft polymer is usually 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
  • Examples of other polymers include copolymers of acrylonitrile and styrene, and polymers mainly composed of methacrylic acid esters such as methyl methacrylate.
  • the volume average particle diameter of the elastic organic fine particles is 0.350 ⁇ m or less, preferably 0.010 to 0.350 ⁇ m, more preferably 0.050 to 0.300 ⁇ m. If the particle size is above a certain value, the film can be easily stretched under heating; if the particle size is below a certain value, it is difficult to impair the transparency of the resulting film.
  • the weight average molecular weight of the resin (B) is preferably 90,000 or more and is preferably 150,000 or more in order to facilitate the compatibility with the resin (A) or to increase the tensile elastic modulus of the film. More preferably.
  • the upper limit of the weight average molecular weight of the resin (B) is preferably 1,000,000 and more preferably 500,000 in order not to impair the compatibility with the resin (A) and the moldability to a film. In particular, when the weight average molecular weight of the resin (B) exceeds 1,000,000, the compatibility with the resin (A) is deteriorated, and it is difficult to obtain a desired physical property value.
  • the weight average molecular weight of the resin (B) can be measured by the same method as described above.
  • the optical film can be easily stretched (easily expanded) under heating.
  • the optical film of the present invention may further contain various additives such as a plasticizer, a peeling aid, an ultraviolet absorber, and fine particles (matting agent) for imparting slipperiness, if necessary.
  • various additives such as a plasticizer, a peeling aid, an ultraviolet absorber, and fine particles (matting agent) for imparting slipperiness, if necessary.
  • plasticizer examples include sugar ester compounds, polyester compounds, phthalate ester compounds, phosphate ester compounds and the like. These may be used alone or in combination of two or more.
  • the sugar ester compound is a compound obtained by reacting a hydroxyl group contained in sugar with a monocarboxylic acid. That is, the sugar ester compound includes a structure derived from sugar and an acyl group derived from a reaction product of a hydroxyl group (contained in sugar) and a monocarboxylic acid.
  • the sugar-derived structure contained in the sugar ester compound is preferably a structure in which one to both of the furanose structure and the pyranose structure are bonded to 1 to 12; one to both of the furanose structure and the pyranose structure is 1 to 3, A structure in which two are bonded is preferable. Especially, what contains both a pyranose structure and a furanose structure is preferable.
  • sugar-derived structures include monosaccharides such as glucose, galactose, mannose, fructose, xylose and arabinose; disaccharides such as lactose, sucrose, maltitol, cellobiose and maltose; derived from trisaccharides such as cellotriose and raffinose Structure to be included.
  • the acyl group contained in the sugar ester compound may be an aliphatic acyl group or an aromatic acyl group.
  • the number of carbon atoms in the aliphatic acyl group can be 1 to 22, more preferably 2 to 12, and particularly preferably 2 to 8.
  • Examples of the aliphatic acyl group include acetyl group, propionyl group, butyryl group, pentanoyl group, hexanoyl group, octanoyl group and the like.
  • Examples of the aromatic acyl group include a benzoyl group, a toluyl group, and a phthalyl group.
  • the acyl group contained in the sugar ester compound preferably contains at least a benzoyl group in order to enhance compatibility with the cellulose ester that can be used as the resin (A).
  • the plurality of acyl groups contained in the sugar ester compound may be the same as or different from each other.
  • an unreacted hydroxyl group that is not substituted with an acyl group may usually remain as a hydroxyl group.
  • the sugar ester compound may be a mixture of a plurality of sugar ester compounds having the same type of acyl group and different degrees of substitution. Such a mixture may contain an unsubstituted form.
  • the average ester substitution rate in the mixture is preferably 62 to 94%.
  • sugar ester compound examples include the following.
  • the polyester compound contains a repeating unit derived from a condensate of dicarboxylic acid and diol.
  • the dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid.
  • the number of carbon atoms in the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
  • the number of carbon atoms in the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12.
  • aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acid, 1,4-xylidene dicarboxylic acid and the like are included, and 1,4-benzenedicarboxylic acid (terephthalic acid) is preferable.
  • the number of carbon atoms of the alicyclic dicarboxylic acid is preferably 6 to 20, and more preferably 6 to 12.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclobutane dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,4-cyclohexane diacetic acid and the like.
  • the dicarboxylic acid for obtaining the polyester compound may be one type or two or more types.
  • the dicarboxylic acid for obtaining the polyester compound preferably contains an aromatic dicarboxylic acid in order to enhance the compatibility with the cellulose ester that can be used as the resin (A).
  • the aromatic dicarboxylic acid and the aliphatic dicarboxylic acid are preferably included. More preferably, both acids are included.
  • the diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol or an aromatic diol.
  • the carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12.
  • the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, and the like.
  • the number of carbon atoms of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol and polypropylene ether glycol.
  • the number of carbon atoms of the alicyclic diol is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
  • the number of carbon atoms in the aromatic diol is preferably 6 to 20, and more preferably 6 to 12.
  • aromatic diols include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and the like.
  • the diol for obtaining the polyester compound may be one kind or two or more kinds.
  • the diol for obtaining the polyester compound preferably contains an aliphatic diol.
  • the polyester compound containing a repeating unit derived from a condensate of an aliphatic diol and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid is preferable because the transparency of the film containing the polyester compound is good. ,preferable.
  • the molecular terminal of the polyester compound may be sealed with monocarboxylic acid or monoalcohol as necessary.
  • the monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid.
  • the number of carbon atoms of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4.
  • Examples of the aliphatic carboxylic acid include acetic acid, propionic acid and the like.
  • Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid.
  • aromatic monocarboxylic acids examples include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
  • the monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol or an aromatic monoalcohol.
  • the number of carbon atoms of the aliphatic monoalcohol is 1 to 30, preferably 1 to 3.
  • Examples of the aliphatic monoalcohol include methanol, ethanol, propanol, isopropanol and the like.
  • Examples of the alicyclic monoalcohol include cyclohexyl alcohol and the like.
  • the aromatic monoalcohol include benzyl alcohol, 3-phenylpropanol and the like.
  • polyester compound examples include the following.
  • TPA terephthalic acid
  • PA phthalic acid
  • SA succinic acid
  • AA adipic acid
  • phthalic acid ester compound examples include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
  • phosphate compound examples include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
  • the content of the plasticizer is preferably 5 to 30% by mass and more preferably 5 to 20% by mass with respect to the total of the resin (A) and the resin (B).
  • the content of the plasticizer is a certain level or more, a sufficient plasticizing effect is easily obtained.
  • the content of the plasticizer is below a certain level, precipitation on the film surface after stretching can be highly suppressed.
  • the peeling aid or antistatic agent can be an organic or inorganic acidic compound, a surfactant, a chelating agent, and the like.
  • acidic compounds include organic acids, partial alcohol esters of polyvalent carboxylic acids (for example, oxalic acid and citric acid), and the like.
  • partial alcohol ester of polyvalent carboxylic acid include the compounds described in paragraph (0049) of JP-A-2006-45497.
  • surfactants include phosphate ester surfactants, carboxylic acid or carboxylate surfactants, sulfonic acid or sulfonate surfactants, sulfate ester surfactants, etc. It is.
  • examples of the phosphate ester-based surfactant include the compounds described in paragraph (0050) of JP-A-2006-45497.
  • the chelating agent is a compound capable of coordinating (chelating) multivalent ions such as metal ions such as iron ions and alkaline earth metal ions such as calcium ions.
  • Examples of the chelating agents include Japanese Patent Publication No. 6-8956, Includes compounds described in JP-A-11-190892, JP-A-2000-18038, JP-A-2010-158640, JP-A-2006-328203, JP-A-2005-68246, and JP-A-2006-306969. It is.
  • Examples of commercially available peeling aids or antistatic agents include Hostastat HS-1, manufactured by Clariant Japan, Elecut S-412-2, Elecut S-418, manufactured by Takemoto Yushi Co., Ltd., and Kao Co., Ltd. Neoperex G65 and the like are included.
  • the content of the peeling aid or antistatic agent is preferably 0.005 to 1% by mass, more preferably 0.05 to 0.5% by mass with respect to the total amount of the resin (A) and the resin (B). %.
  • the ultraviolet absorber may be a benzotriazole compound, a 2-hydroxybenzophenone compound, a salicylic acid phenyl ester compound, or the like.
  • 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-benzotriazole, 2- Triazoles such as (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4 -Benzophenones such as methoxybenzophenone.
  • the UV absorber may be a commercially available product.
  • examples thereof include Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, and Tinuvin 928 manufactured by BASF Japan, or 2, 2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are manufactured by ADEKA Corporation LA31) and the like.
  • the content of the ultraviolet light inhibitor is preferably from 1 ppm to 1000 ppm, more preferably from 10 to 1000 ppm, by mass with respect to the optical film.
  • the matting agent can impart slipperiness to the polarizing plate protective film.
  • the matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
  • inorganic compounds constituting the matting agent include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. , Aluminum silicate, magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
  • silicon dioxide examples include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), nip seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs) and the like.
  • the particle shape of the matting agent is indefinite, needle-like, flat or spherical, and may preferably be spherical in view of easy transparency of the resulting film.
  • the size of the particles of the matting agent is preferably smaller than the wavelength of visible light. / 2 or less is preferable. However, if the size of the particles is too small, the effect of improving slipperiness may not be manifested. Therefore, the size of the particles is preferably in the range of 80 to 180 nm.
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles.
  • the size of the particles means the diameter of a circle corresponding to the projected area.
  • the content of the matting agent can be about 0.05 to 1.0% by mass, preferably 0.1 to 0.8% by mass with respect to the total amount of the resin (A) and the resin (B). sell.
  • the thickness of the optical film is preferably 10 to 60 ⁇ m and more preferably 20 to 40 ⁇ m in order to make the polarizing plate thinner.
  • the tensile elastic modulus of the optical film in the in-plane direction X under the environment of 40 ° C. and 20% RH is preferably 2 GPa or more in order to increase the expansion force due to heat, and is 3 GPa or more. Is more preferably 3.5 GPa or more.
  • the tensile modulus of elasticity in the direction X in the optical film plane at 40 ° C. and 20% RH is , 6 GPa or less is preferable, and 5.5 GPa or less is more preferable.
  • the direction X in the optical film plane is preferably the MD direction of the optical film; more preferably at least one of the in-plane slow axis direction and the direction orthogonal thereto.
  • the tensile elastic modulus at 40 ° C. and 20% RH in the direction X of the optical film can be measured by the same method as described above.
  • the MD direction of the optical film is known, 1) An optical film is cut out to a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) to obtain a test piece.
  • the MD direction represents the long direction of the optical film in the wound body of the long optical film; the TD direction represents the width direction of the optical film.
  • this test piece was pulled in the MD direction of the test piece using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction was measured. To do. The measurement is performed at 40 ° C. and 20% RH.
  • the optical film is pulled in any one measurement direction within the surface of the test piece, and the tensile elastic modulus in the direction is measured. While changing the measurement direction by 10 ° from 0 ° to 180 °, the sample is pulled in each measurement direction in the same manner as described above, and the tensile elastic modulus in each measurement direction is measured. Of the obtained measurement values, the measurement direction in which the tensile modulus is 2 GPa or more is defined as direction X. At least one of the directions X may be the MD direction described above.
  • CHE / CTE The ratio CHE / CTE between the hygroscopic expansion coefficient CHE (unit: ppm /% RH) in the direction X of the optical film and the thermal expansion coefficient CTE (unit: ppm / ° C.) in the direction X is, as described above, “ In order to make the “expansion force due to water” relatively larger than “the contraction force due to water removal”, it is preferably 0.6 or less, more preferably 0.57 or less, and 0.55 or less. More preferably. CHE / CTE can be 0 or more, preferably 0.2 or more.
  • the CHE / CTE in the direction X of the optical film can be obtained by the following procedure as described above.
  • the in-plane MD direction CTE (unit: ppm / ° C.) of the test piece is measured by the TMA method according to ASTM E-831 or JIS K7197.
  • 2) The optical film test piece prepared in the same manner as described above was stored in the MD direction after being stored at 23 ° C. and 20% RH for a certain period of time (24 hours). ) Measure the dimensions in the MD direction after storage.
  • the obtained measured value is applied to the following formula to obtain CHE (unit: ppm /% RH) in the MD direction of the optical film (see the following formula).
  • CHE (ppm /% RH) ⁇ (MD direction dimension of specimen after storage at 23 ° C. and 80% RH ⁇ MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen in MD direction after storage ⁇ (ppm) / (80-20) (% RH) 3)
  • the CHE / CTE in the MD direction of the optical film is calculated from the CTE and CHE of the optical film obtained in 1) and 2) above.
  • CTE and CHE in any one direction within the surface of the test piece are measured, and CHE / CTE is calculated. While changing the measurement direction by 10 ° from 0 ° to 180 °, CTE and CHE in each measurement direction are measured in the same manner as described above to calculate CHE / CTE. Among the obtained measurement values, a measurement direction in which CHE / CTE is 0.6 or less is defined as direction X. At least one of the directions X may be the MD direction described above.
  • the glass transition temperature Tg of the optical film preferably satisfies the following formulas (1) to (3) at the same time. This is because an optical film having a Tg of 100 ° C. or higher has good heat resistance.
  • Tg glass transition temperature
  • Tg of the optical film is a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) as a midpoint glass transition temperature (Tmg). Can be measured.
  • the heating rate can be 20 ° C./min.
  • the retardation R 0 in the in-plane direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the optical film is preferably 0 nm or more and 20 nm or less, and more preferably 0 nm or more and 10 nm or less. .
  • the thickness direction retardation Rth of the optical film measured under conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH is preferably 0 nm or more and 80 nm or less, and more preferably 0 nm or more and 50 nm or less.
  • the optical film having such a retardation value is preferably used as a polarizing plate protective film (F1 or F4) for a liquid crystal display device, as will be described later.
  • Retardation R0 and Rth are defined by the following equations, respectively.
  • Formula (I): R 0 (nx ⁇ ny) ⁇ d (nm)
  • Formula (II): Rth ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film
  • ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film
  • nz represents the refractive index in the thickness direction z of the film
  • d (nm) represents the thickness of the film)
  • the retardations R0 and Rth can be determined by the following method, for example. 1) The optical film is conditioned at 23 ° C. and 55% RH. The average refractive index of the optical film after humidity adjustment is measured with an Abbe refractometer or the like. The optical film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation. 3) With KOBRA21ADH, the in-plane slow axis of the optical film is used as the tilt axis (rotation axis), and light with a measurement wavelength of 590 nm is incident from the angle of ⁇ (incident angle ( ⁇ )) with respect to the normal of the optical film surface.
  • the retardation value R ( ⁇ ) when measured is measured.
  • the in-plane slow axis of the optical film refers to a slow axis in the direction in which the refractive index is maximum in the optical film plane, and may preferably be the MD direction.
  • the retardation value R ( ⁇ ) can be measured at 6 points every 10 ° in the range of 0 ° to 50 °.
  • the in-plane slow axis of the optical film can be confirmed by KOBRA21ADH. 4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R ( ⁇ ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated.
  • the measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
  • the angle ⁇ 1 (orientation angle) formed by the in-plane slow axis of the optical film and the width direction of the optical film is preferably ⁇ 1 ° to + 1 °, more preferably ⁇ 0.5 ° to + 0.5 °. It is.
  • the orientation angle ⁇ 1 of the optical film can be measured using an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments).
  • the haze of the optical film is preferably 1.0% or less, and more preferably 0.5% or less.
  • the haze of the optical film can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
  • the total light transmittance of the optical film is preferably 90% or more, and more preferably 93% or more.
  • the optical film can be preferably used as a polarizing plate protective film.
  • the polarizing plate protective film include not only a protective film having no retardation control function but also a retardation film having a retardation control function.
  • the optical film of the present invention may be produced by a solution casting method or by a melt casting method. It is preferable that the optical film of the present invention is produced by a solution casting film forming method because melting at a high temperature is unnecessary and it is easy to form a film with a relatively high molecular weight resin (A) or (B). .
  • the production process of the optical film of the present invention by the solution casting film forming method includes 1) a process of obtaining the dope by dissolving each of the above components in a solvent, and 2) casting the dope on an endless metal support. After that, the method includes a step of drying to obtain a film-like material, 3) a step of peeling the obtained film-like material from the metal support, and 4) a step of stretching the peeled film-like material.
  • a dope is prepared by stirring and dissolving the above-mentioned components in an organic solvent while adding them.
  • the organic solvent used for the preparation of the dope can be used without limitation as long as it dissolves the above-described components including the above-described resins (A) and (B).
  • organic solvents include chlorinated organic solvents such as dichloromethane; methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2, 2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-
  • Non-chlorine organic solvents such as 2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. included.
  • dichloromethane methyl acetate, ethyl acetate and acetone are preferred.
  • the organic solvent may further contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, s-butanol, t-butanol and the like. Of these, ethanol and butanol are preferred because they contribute to the stability of the dope, have a relatively low boiling point, and have a high drying property.
  • the organic solvent is preferably a mixture of dichloromethane and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a method performed at normal pressure a method performed at a temperature lower than the boiling point of the main solvent, a method performed at a temperature higher than the boiling point of the main solvent, JP-A-9-95544, Various methods such as a method performed by applying the cooling dissolution method described in JP-A-9-95557 or JP-A-9-95538, a method performed at high pressure described in JP-A-11-21379, etc.
  • a dissolution method can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
  • the total concentration of the resins (A) and (B) in the dope can be in the range of 15 to 45% by mass with respect to the total mass of the dope.
  • the obtained dope is filtered with a filter medium.
  • the filtered dope is defoamed, and then fed by a liquid feed pump.
  • the filter medium used preferably has a collected particle diameter in the range of 0.5 to 5 ⁇ m and a drainage time in the range of 10 to 25 sec / 100 ml.
  • the obtained dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope is cast on the endless metal support from the slit of the pressure die.
  • the metal support may be, for example, a metal belt such as a stainless steel belt; it may be a rotating metal drum or the like.
  • pressure dies examples include coat hanger dies and T dies.
  • the surface of the metal support is preferably a mirror surface.
  • the cast dope is heated on a metal support, and the solvent is evaporated to obtain a film.
  • the method of evaporating the solvent includes a method of blowing air on the surface of the dope, a method of transferring heat from the back surface of the metal support by a liquid, a method of transferring heat from the front and back of the dope by radiant heat, and the like. Especially, since the drying efficiency is high, the method of transferring heat with a liquid from the back surface of the metal support is preferable.
  • the drying of the dope on the metal support is preferably performed in an atmosphere of 40 to 100 ° C.
  • the amount of the residual solvent of the film-like material upon peeling from the metal support is preferably about 50 to 120% by mass, although it depends on the strength of drying conditions and the length of the metal support.
  • the amount of the residual solvent of the film-like material upon peeling from the metal support is preferably about 50 to 120% by mass, although it depends on the strength of drying conditions and the length of the metal support.
  • Residual solvent amount (%) (mass before heat treatment of film-like material ⁇ mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 140 ° C. for 1 hour.
  • the peeling tension when peeling the film-like material from the metal support is usually preferably 196 to 245 N / m. In the case where wrinkles easily occur during peeling, the peeling tension is preferably 190 N / m or less.
  • the temperature of the film-like material at the peeling position of the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and further preferably 15 to 30 ° C.
  • the peeled film-like material is dried while being transported in the tenter stretching apparatus, or is dried while being transported by a plurality of rollers arranged in the drying apparatus.
  • the drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material is common.
  • drying at a high temperature is preferably performed under conditions where the residual solvent is 8% by mass or less.
  • the drying temperature is preferably in the range of 40-250 ° C, more preferably in the range of 40-200 ° C.
  • the stretching is preferably performed at least in the direction X described above.
  • the direction X may be either the casting direction (MD direction) or the width direction (TD direction). There may be one stretching direction or two or more stretching directions. Stretching in two directions (biaxial stretching) is preferably performed in the casting direction (MD direction) and the width direction (TD direction), respectively.
  • the biaxial stretching may be simultaneous biaxial stretching or stepwise biaxial stretching (sequential biaxial stretching).
  • Stepwise biaxial stretching includes sequentially performing stretching in different stretching directions; and performing stretching in the same direction in multiple stages.
  • Examples of stepwise biaxial stretching include the following. a) Stretch in the casting direction ⁇ Stretch in the width direction ⁇ Stretch in the casting direction ⁇ Stretch in the casting direction ⁇ Stretch in the casting direction b) Stretch in the width direction ⁇ Stretch in the width direction ⁇ Stretch in the casting direction ⁇ Stretch in the casting direction ⁇ Stretch in the casting direction
  • the stretching ratio is the total of the casting direction (MD direction) and the width direction (TD direction), preferably in the range of 110% to 400%, more preferably in the range of 120 to 300%, and still more preferably It is in the range of 130 to 250%.
  • the draw ratio (%) is defined as the length of the film-like product after stretching (in the drawing direction) / the length of the film-like material before drawing (in the drawing direction) ⁇ 100.
  • the stretching temperature is preferably Tg to (Tg + 50) ° C. of the optical film, and more preferably Tg to (Tg + 40) ° C. Specifically, when an optical film containing cellulose ester as a main component is obtained, the stretching temperature can be about 100 to 200 ° C.
  • the residual solvent amount of the film-like material at the start of tenter stretching is preferably 20 to 100% by mass. Furthermore, it is preferable to dry until the amount of residual solvent in the film-like material is 10% by mass or less, preferably 5% by mass or less.
  • the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
  • the optical film may be provided in a long shape or in a single sheet shape.
  • the long optical film can usually be wound into a roll in the long direction to form a wound body.
  • the film winding method may be a commonly used one, such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. Or in combination.
  • the length of the long optical film can be in the range of 100 to 10,000 m.
  • the width of the long optical film can be in the range of 1 to 4 m, preferably in the range of 1.4 to 3 m.
  • Polarizing plate contains a polarizer and a polarizing plate protective film.
  • a polarizer is an element that passes only light having a plane of polarization in a certain direction
  • a typical polarizer known at present is a polyvinyl alcohol polarizing film.
  • the polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
  • the polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
  • the thickness of the polarizer is preferably 2 to 30 ⁇ m, and more preferably 5 to 25 ⁇ m in order to reduce the thickness of the polarizing plate.
  • the polarizing plate protective film may be disposed directly or via another layer on at least one surface of the polarizer.
  • the polarizing plate protective film can be used as the optical film of the present invention.
  • the lamination of the polarizing plate protective film and the polarizer is preferably performed so that the in-plane direction X of the polarizing plate protective film and the absorption axis direction of the polarizer are parallel to each other.
  • the in-plane direction X of the polarizing plate protective film is “the direction in which the CHE / CTE of the polarizing plate protective film is 0.6 or less and the tensile elastic modulus at 40 ° C. is 2 to 6 GPa”; It is preferably the MD direction of the film, and more preferably at least one of the in-plane slow axis direction and the direction orthogonal thereto.
  • a retardation film may be further disposed on the other surface of the polarizer where the polarizing plate protective film is not disposed.
  • the retardation film is not particularly limited, and may be, for example, a cellulose ester film.
  • cellulose esters contained in the cellulose ester film include cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose propionate, and cellulose butyrate.
  • the cellulose ester preferably has a total acyl group substitution degree of 1.5 or more and 2.5 or less, and more preferably satisfies the following formulas (a) and (b).
  • Formula (b) 0 ⁇ Y ⁇ 1.5 (wherein X represents the degree of substitution of the acetyl group, and Y represents the degree of substitution of the propionyl group or butyryl group, or a mixture thereof)
  • the weight average molecular weight (Mw) of the cellulose ester is preferably 75,000 or more, more preferably 100,000 to 1,000,000, from the viewpoints of film strength and appropriate viscosity during film formation. It is particularly preferable that it is ⁇ 500,000.
  • the retardation film may be a commercially available product.
  • examples of the retardation film for vertical alignment include Konica Minoltak KC8UCR3, KC8UCR4, KC8UCR5, KC4FR, KC4KR, KC4DR, KC4SR (above, manufactured by Konica Minolta Co., Ltd.).
  • KC4UE, KC8UE, KC8UX, KC5UX, KC8UY, KC4UY, KC4CZ, KC6UA, KC4UA (above, manufactured by Konica Minolta Co., Ltd.) and the like can be used. .
  • the cellulose ester film may be a single layer film or a laminated film.
  • the cellulose ester film is a laminated film, it is a laminate of a core layer mainly composed of a cellulose ester having a low degree of substitution and a skin layer mainly composed of a cellulose ester having a high degree of substitution disposed on both sides thereof. It is preferable.
  • the cellulose ester having a low degree of substitution preferably satisfies the above formulas (a) and (b), and the cellulose ester having a high degree of substitution preferably has a total acyl group substitution degree of more than 2.5, and preferably 2.7. It is preferable that it is 2.98 or less, and it is preferable that all acyl groups contained in the cellulose ester are acetyl groups.
  • the retardation of the retardation film can be set according to the type of liquid crystal cell to be combined.
  • the retardation Ro (590) in the in-plane direction measured at a wavelength of 590 nm at 23 ° C. and 55% RH is preferably in the range of 30 to 150 nm
  • a retardation film having a retardation in the above range can be preferably used as a retardation film such as a VA liquid crystal cell.
  • the retardation Ro in the in-plane direction and the retardation Rt in the thickness direction can be defined and measured in the same manner as described above.
  • the thickness of the retardation film is not particularly limited, but is preferably 10 to 250 ⁇ m, more preferably 10 to 100 ⁇ m, and particularly preferably 30 to 60 ⁇ m.
  • the polarizing plate of the present invention is preferably used for a liquid crystal display device.
  • the polarizing plate of the present invention can be used by being disposed so that the polarizing plate protective film is on the side opposite to the liquid crystal cell (side not bonded to the liquid crystal cell).
  • the polarizing plate can be obtained through a step of bonding a polarizing plate protective film and a polarizer.
  • the polarizing plate protective film and the polarizer may be bonded using a completely saponified polyvinyl alcohol adhesive, an acetoacetyl group-modified polyvinyl alcohol adhesive, an active energy ray-curable adhesive, or the like. it can.
  • the thickness of the cured layer of the active energy ray-curable adhesive is usually in the range of 0.01 to 10 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m.
  • the liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. And at least one of a pair of polarizing plates can be used as the polarizing plate of the present invention.
  • FIG. 1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device.
  • the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
  • the liquid crystal cell 30 has a pair of transparent substrates 31 and 33 and a liquid crystal layer 35 sandwiched between them.
  • the transparent substrates 31 and 33 are preferably glass substrates.
  • the thickness of the glass substrate is preferably not more than a certain value in order to reduce the thickness of the liquid crystal display device, preferably not less than 0.3 mm and less than 0.7 mm, and preferably 0.3 to 0.5 mm. More preferred.
  • the display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS.
  • the VA (MVA, PVA) mode is used. It is preferable that
  • a pixel electrode for applying a voltage to the liquid crystal molecules is disposed on one of the pair of transparent substrates.
  • the counter electrode may be disposed on the one transparent substrate (where the pixel electrode is disposed) or may be disposed on the other transparent substrate.
  • the liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy.
  • the liquid crystal molecules are liquid crystal molecules when no voltage is applied (when an electric field is not generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate.
  • the first polarizing plate 50 is disposed on the viewing side surface of the liquid crystal cell 30, and is disposed on the first polarizer 51 and the surface of the first polarizer 51 opposite to the liquid crystal cell 30.
  • a polarizing plate protective film 53 (F1) and a retardation film 55 (F2) disposed on the surface of the first polarizer 51 on the liquid crystal cell 30 side are included.
  • the second polarizing plate 70 is disposed on the surface of the liquid crystal cell 30 on the backlight 90 side, and is disposed on the surface of the second polarizer 71 and the surface of the second polarizer 71 on the liquid crystal cell 30 side.
  • positioned at the surface on the opposite side to the liquid crystal cell 30 of the 2nd polarizer 71 are included.
  • the polarizing plate protective film 53 (F1) and the polarizing plate protective film 75 (F4); preferably, the polarizing plate protective film 53 (F1) can be used as the optical film of the present invention.
  • FIG. 2 is a schematic diagram showing the relationship between the absorption axis of the polarizer and the direction X of the protective film in the liquid crystal display device.
  • the absorption axis of the first polarizer 51 and the absorption axis of the second polarizer 71 can be arranged to be orthogonal to each other.
  • the polarizing plate protective film 53 (F1) and the polarizing plate protective film 75 (F4); preferably, the polarizing plate protective film 53 (F1) can be used as the optical film of the present invention.
  • the direction X in the plane of the polarizing plate protective film 53 (F1) and the first polarizer 51 is preferably parallel to each other; the direction X in the plane of the polarizing plate protective film 75 (F4) and the absorption axis of the second polarizer 71 are preferably parallel to each other (see FIG. 2).
  • the direction X of the optical film to be the polarizing plate protective film 53 (F1) coincides with the longitudinal direction of the optical film.
  • the absorption axis of the first polarizer 51 is often parallel to the long axis direction of the display (display screen) of the liquid crystal display device. Therefore, when the first polarizer 51 receives heat from the backlight, the first polarizer 51 easily contracts in the major axis direction of the display (display screen).
  • the absorption axis of the second polarizer 71 is often parallel to the minor axis direction of the display (display screen). Therefore, the second polarizer 71 tends to contract in the short axis direction of the display (display screen).
  • the contraction force of the first polarizer 51 can be canceled by the expansion force of the polarizing plate protective film 53 (F1); the contraction force of the second polarizer 71 is the expansion force of the polarizing plate protective film 75 (F4). Can be countered by.
  • the contraction force of the first polarizer 51 contracting in the major axis direction of the display (display screen) is larger than the contraction force of the second polarizer 71 contracting in the minor axis direction of the display (display screen). Therefore, it is preferable to apply the optical film of the present invention to the polarizing plate protective film 53 (F1).
  • Comparative resin (X-1): CAB381-20 (cellulose acetate butyrate having an acetyl group substitution degree of 1.08, a butyryl group substitution degree of 1.84, and a total acyl group substitution degree of 2.92, weight average molecular weight Mw 200,000 )
  • the hygroscopic expansion coefficient CHE, thermal expansion coefficient CTE, tensile elastic modulus and Tg of these resins were measured by the following methods. The results are shown in Table 2.
  • the CHE / CTE of the resin (A) was determined by the following procedure. 1) A film made of resin (A) having a thickness of 40 ⁇ m was produced by a solution casting film forming method. In the production of the film, intentional stretching was not performed. The obtained film was cut into a predetermined size and used as a test piece. And the CTE of MD direction of the said test piece was measured by TMA method based on JISK7197, and CTE (unit: ppm / degreeC) of resin (A) was obtained. 2) In the same manner, a test piece made of resin (A) and having a thickness of 40 ⁇ m was stored for 24 hours in an environment of 23 ° C.
  • CHE (ppm /% RH) ⁇ (MD direction dimension of specimen after storage at 23 ° C. and 80% RH ⁇ MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen after storage under MD ⁇ / (80% RH-20% RH) 3) CHE / CTE was calculated from CTE and CHE of the resin (A) obtained in 1) and 2) above.
  • Glass transition temperature of resin Ta The glass transition temperature Ta of the resin (A) was determined as a midpoint glass transition temperature (Tmg) by a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer). It was measured. The heating rate was 20 ° C./min.
  • the prepared dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
  • the solvent was evaporated from the peeled film at 35 ° C., and the film was slit to a width of 1 m. Then, it was dried at a drying temperature of 135 ° C. while stretching 10% in the transport direction (MD direction) by zone stretching and 20% stretching in the width direction (TD direction) by tenter stretching (the total stretching ratio was 130%). .
  • the residual solvent amount at the start of stretching by the tenter was 8.0%.
  • Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3 Optical films 102 to 112 were obtained in the same manner as in Example 1-1 except that the resins (B), (A) / (B) and the stretching conditions were changed as shown in Table 4.
  • Example 1-10 Optical film 113 was obtained in the same manner as in Example 1-1 except that resin (A) and resin (A) / resin (B) were changed as shown in Table 4.
  • Example 1-16 Optical film 120 was obtained in the same manner as in Example 1-1 except that resin (A) and resin (A) / resin (B) were changed as shown in Table 4.
  • Example 1-17 to 1-21 Optical films 121 to 125 were obtained in the same manner as in Example 1-16, except that the resin (B) was changed as shown in Table 4.
  • the tensile modulus and CHE / CTE of the obtained optical film at 40 ° C. in the MD direction (direction X) were measured by the following methods. Further, the glass transition temperature Tg of the obtained optical film was measured in the same manner as described above.
  • Test modulus of optical film 1) The optical film was cut into a size of 100 mm (MD direction) ⁇ 10 mm (TD direction) to obtain a test piece. 2) In accordance with JIS K7127, the test piece was pulled in the MD direction (direction X) of the test piece using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd. ) Was measured. The measurement was performed at 40 ° C. and 20% RH.
  • the optical film was cut out to a predetermined size to obtain a test piece.
  • the CTE in the MD direction (direction X) of the test piece was measured by the TMA method according to ASTM E-831 or JIS K7197.
  • the test piece of the optical film prepared in the same manner as described above was stored for 24 hours in an environment of 23 ° C. and 20% RH, and the dimension in the MD direction (direction X) and in an environment of 23 ° C. and 80% RH.
  • the dimension in the MD direction (direction X) after storage for 24 hours was measured.
  • CHE (ppm /% RH) ⁇ (MD direction dimension of specimen after storage at 23 ° C. and 80% RH ⁇ MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen in MD direction after storage ⁇ (ppm) / (80-20) (% RH) 3) CHE / CTE in the MD direction (direction X) of the optical film was calculated from the CTE and CHE of the optical film obtained in 1) and 2) above.
  • the film of Comparative Example 1-2 in which the content of the resin (B) is too large has a low tensile elastic modulus; It can be seen that the film of Comparative Example 1-1 in which the content of) is too low has a high CHE / CTE, and none of them satisfies the scope of the present invention.
  • a resin (CHE / CTE of 0.6 or less) ( It can be seen that it is effective to include B) in an appropriate amount or to stretch at a certain ratio or more.
  • the films of Examples 1-1 and 1-2 in which the molecular weight of the resin (B) is large are higher in CHE / CTE than the film of Example 1-3 in which the molecular weight of the resin (B) is small. It can be seen that the range is easily set to an appropriate range.
  • the stretched film of Example 1-1 can lower the CHE / CTE and increase the tensile elastic modulus than the film of Example 1-9 that has not been stretched.
  • retardation film C Production of retardation film (retardation film C) The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion 1.
  • Fine particle dispersion 1 Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.): 11 parts by mass Ethanol: 89 parts by mass
  • Fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride and sufficiently stirred. The resulting solution was dispersed with an attritor so that the secondary particles had a predetermined particle size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1 did.
  • Fine particle addition liquid 1 Methylene chloride: 99 parts by mass Fine particle dispersion 1: 5 parts by mass
  • a main dope solution having the following composition was prepared. First, after adding methylene chloride and ethanol to the pressure dissolution tank, the cellulose acetate, sugar ester compound, polycondensation ester, retardation increasing agent and fine particle additive liquid 1 having an acetyl group substitution degree of 2.40 are added with stirring. did. This was heated and dissolved completely with stirring. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope solution was prepared by filtration using 244.
  • the obtained main dope solution was evaporated on a stainless belt support until the amount of residual solvent in the cast film was 75%.
  • the obtained film was peeled from the stainless steel belt support with a peeling tension of 130 N / m.
  • the film-like material obtained by peeling was stretched 30% in the width direction using a tenter while applying heat at 150 ° C.
  • the residual solvent at the start of stretching was 15%.
  • drying was terminated while the drying zone was conveyed by a number of rolls.
  • the drying temperature was 130 ° C. and the transport tension was 100 N / m.
  • a retardation film C having a dry film thickness of 35 ⁇ m was obtained.
  • optical film 101 prepared above was prepared as a polarizing plate protective film. Then, as shown below, the optical film 101 was alkali saponified and then washed with water, neutralized and washed with water. Saponification step 2M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10% HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds Thereafter, the obtained optical film 101 was dried at 80 ° C. . Similarly, the produced retardation film C was also subjected to alkali saponification treatment.
  • the above-mentioned optical film 101 subjected to alkali saponification treatment was bonded to one surface of the produced polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive.
  • the retardation film C subjected to alkali saponification treatment was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive.
  • the bonding was performed so that the MD direction of the optical film 101 serving as the protective film F1 on the viewing side is parallel to the absorption axis of the polarizer (first polarizer).
  • the laminated laminate was dried at 60 ° C. to obtain a polarizing plate 201 on the viewing side.
  • the optical film 130 which is the protective film F4 on the backlight side, which has been subjected to alkali saponification treatment, on one surface of the produced polarizer, its MD direction and the absorption axis of the polarizer (second polarizer).
  • the optical film 130 which is the protective film F4 on the backlight side, which has been subjected to alkali saponification treatment, on one surface of the produced polarizer, its MD direction and the absorption axis of the polarizer (second polarizer).
  • a retardation film C subjected to alkali saponification treatment on the other surface of this polarizer is laminated and bonded together through a 5% aqueous solution of completely saponified polyvinyl alcohol, and a polarizing plate 228 (second polarization) on the backlight side is laminated. Plate).
  • liquid crystal display panel As a liquid crystal cell, a VA liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the polarizing plate 201 on the viewing side and the polarizing plate 228 on the backlight side were prepared on both sides of the prepared liquid crystal cell via a 25 ⁇ m-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec. Were bonded together to obtain a liquid crystal display panel.
  • baseless tape MO-3005C baseless tape MO-3005C
  • the absorption axis of the polarizer of the polarizing plate 201 on the viewing side is orthogonal to the absorption axis of the polarizer of the polarizing plate 228 on the backlight side, and the MD direction of the optical film 101 of the polarizing plate 201 on the viewing side is
  • the long axis direction of the liquid crystal display panel was set (see FIG. 2). Moreover, it performed so that the phase difference film C of the polarizing plates 201 and 228 might contact
  • liquid crystal display device After removing the liquid crystal display panel (polarizing plate / liquid crystal cell / laminate of polarizing plate) from the 40-inch display BRAVIA KLV-40J3000 (VA method) manufactured by SONY, the liquid crystal display produced above A panel was arranged to obtain a liquid crystal display device 301. Further, in the liquid crystal display panel, the slow axis of the retardation film C and the slow axis of the polarizing plate attached in advance were made parallel.
  • Polarizing plates 202 to 227 were produced in the same manner as in Example 2-1, except that the type of the polarizing plate protective film F1 was changed as shown in Table 5, and liquid crystal display devices 302 to 327 were obtained.
  • the warpage amount, display unevenness and color shift of the liquid crystal display panel in the obtained liquid crystal display device were evaluated by the following methods.
  • the produced liquid crystal display device was treated for 24 hours in an environment of 40 ° C. and 95% RH, and then treated for 2 hours in an environment of 40 ° C. and 20% RH. Thereafter, the amount of warpage of the liquid crystal display panel of the liquid crystal display device was measured using a laser displacement meter. The measured values were obtained by measuring the heights of the four corners of the display surface with the center of the display as the zero point, and calculating the average value. The case where the four corners of the display surface are on the viewing side is defined as +, and the case where the four corners on the display side are exposed is denoted as-.
  • the display screen of the liquid crystal display device after the above treatment (after treatment for 24 hours in an environment of 40 ° C. and 95% RH and then for 2 hours in an environment of 40 ° C. and 20% RH) was observed from the front of the screen.
  • the display unevenness was evaluated based on the following criteria. ⁇ : No unevenness ⁇ : Slightly uneven ⁇ : Some weak unevenness ⁇ : Strong regularity unevenness
  • the liquid crystal display panels of Examples 2-1 to 2-21 including the optical film in which the CHE / CTE and the tensile elastic modulus at 40 ° C. are both adjusted to a predetermined range are warped. It can be seen that it has been reduced. Thereby, it can be seen that the display unevenness of the liquid crystal display device of this example is reduced.
  • liquid crystal display panels of Comparative Examples 2-1 to 2-6 including the optical film in which at least one of CHE / CTE and the tensile elastic modulus at 40 ° C. is not within the predetermined range are greatly warped. Thereby, it can be seen that display unevenness of the liquid crystal display device of the comparative example occurs.
  • An object of the present invention is to provide an optical film that can suppress panel bend and reduce display unevenness.
  • Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1) 55 Retardation film (F2) 70 Second Polarizer 71 Second Polarizer 73 Retardation Film (F3) 75 Protective film (F4) 90 backlight

Abstract

The purpose of the present invention is to provide an optical film which is capable of suppressing panel bending, thereby decreasing display unevenness caused by panel bending. An optical film according to the present invention contains: a resin (A) that has a CHE/CTE of 0.6 or more, if CHE is the coefficient of moisture-absorption expansion thereof and CTE is the coefficient of thermal expansion thereof, and a tensile modulus of elasticity of 2GPa or more in an environment at 40°C at 20% RH; and a resin (B) that has a CHE/CTE of less than 0.6. The ratio of the coefficient of moisture-absorption expansion (CHE) of the optical film in an arbitrary in-plane direction (X) to the coefficient of thermal expansion (CTE) thereof in the direction (X), namely CHE/CTE is 0.6 or less, and the tensile modulus of elasticity in the direction (X) in an environment at 40°C at 20% RH is 2-6 GPa.

Description

光学フィルム、偏光板および液晶表示装置Optical film, polarizing plate, and liquid crystal display device
 本発明は、光学フィルム、偏光板および液晶表示装置に関する。 The present invention relates to an optical film, a polarizing plate, and a liquid crystal display device.
 液晶表示装置は、テレビやパソコンの液晶ディスプレイなどとして幅広く用いられている。液晶表示装置は、通常、液晶セルと、それを挟持する一対の偏光板とを含む。液晶セルは、透明電極、液晶層およびカラーフィルタと、それらを挟持する一対のガラス基板とを含み;偏光板は、偏光子と、それを挟持する一対の偏光板保護フィルムとを含む。 Liquid crystal display devices are widely used as liquid crystal displays for televisions and personal computers. A liquid crystal display device usually includes a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell. The liquid crystal cell includes a transparent electrode, a liquid crystal layer, a color filter, and a pair of glass substrates that sandwich them; the polarizing plate includes a polarizer and a pair of polarizing plate protective films that sandwich the polarizer.
 偏光板保護フィルムとしては、透明で複屈折性が小さく、水糊を用いて偏光子と接着させやすいことなどから、セルローストリアセテートフィルム(TAC)が多く用いられている。透明フィルムとしては、酢酸ビニル系樹脂と、セルロースアセテートブチレートまたはセルロースアセテートプロピオネートとからなる組成物の押出成形フィルムなどが開示されている(例えば特許文献1)。 As a polarizing plate protective film, a cellulose triacetate film (TAC) is often used because it is transparent and has low birefringence and is easily adhered to a polarizer using water glue. As the transparent film, an extruded film of a composition comprising a vinyl acetate resin and cellulose acetate butyrate or cellulose acetate propionate is disclosed (for example, Patent Document 1).
 近年では、液晶セルを構成するガラス基板の薄型化が進んでいる。また、液晶表示装置の光源として、LEDのバックライトが用いられている。これらに伴い、液晶表示パネル(偏光板/液晶セル/偏光板の積層物)のベンドが生じやすくなっている。 In recent years, the glass substrate constituting the liquid crystal cell has been made thinner. Further, an LED backlight is used as a light source of the liquid crystal display device. Along with these, bending of the liquid crystal display panel (polarizing plate / liquid crystal cell / polarizing plate laminate) is likely to occur.
特許第5182778号公報Japanese Patent No. 5182778
 パネルベンドは、製造直後または輸送直後の液晶表示装置のバックライトを一定時間点灯させた後に生じやすい。製造時または輸送時に含水した偏光子から、バックライトの熱によって水が抜けて、偏光子が収縮するためであると考えられる。 Panel bend is likely to occur after the backlight of a liquid crystal display device immediately after manufacturing or immediately after transportation is turned on for a certain period of time. This is considered to be because water escapes from the polarizer containing water during production or transportation, and the polarizer contracts due to the heat of the backlight.
 そして、液晶セルを構成するガラス基板が薄いと、ガラス基板が偏光子の収縮しようとする力に耐えられず、パネルベンドが生じやすい。また、LEDバックライトを用いた液晶表示装置は、従来のバックライトを用いた液晶表示装置よりもバックライトとパネルとの距離が小さくなっていることから、偏光子がバックライトの熱を受けやすく、パネルベンドが生じやすい。 If the glass substrate constituting the liquid crystal cell is thin, the glass substrate cannot withstand the force of the polarizer trying to contract, and panel bend is likely to occur. In addition, a liquid crystal display device using an LED backlight has a smaller distance between the backlight and the panel than a liquid crystal display device using a conventional backlight, so that the polarizer is more susceptible to the heat of the backlight. Panel bend is likely to occur.
 このようなパネルベンドは、液晶表示装置の表示ムラを生じる原因となりやすい。また、パネルベンドが生じると、パネルが拡散板と接触するため、エッグムラなどをさらに生じるおそれがある。 Such a panel bend is likely to cause display unevenness of the liquid crystal display device. Further, when panel bend occurs, the panel comes into contact with the diffusion plate, which may further cause egg unevenness.
 本発明は、上記事情に鑑みてなされたものであり、パネルベンドを抑制でき、それによる表示ムラを低減しうる光学フィルムを提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the optical film which can suppress a panel bend and can reduce the display nonuniformity by it.
 [1] 吸湿膨張係数をCHE、熱膨張係数をCTEとしたとき、CHE/CTEが0.6以上であり、かつ40℃20%RH環境下での引張弾性率が2GPa以上である樹脂(A)と、CHE/CTEが0.6未満である樹脂(B)とを含む光学フィルムであって、前記光学フィルムの面内の任意の一方向Xの吸湿膨脹係数CHEと、前記方向Xの熱膨脹係数CTEとの比CHE/CTEが0.6以下であり、かつ40℃20%RH環境下における前記方向Xの引張弾性率が2~6GPaである、光学フィルム。
 [2] 前記方向Xは、前記光学フィルムの面内遅相軸方向と、前記面内遅相軸と直交する方向の少なくとも一方である、[1]に記載の光学フィルム。
 [3] 前記方向Xと、前記光学フィルムの長手方向とが一致する、[1]または[2]に記載の光学フィルム。
 [4] 前記樹脂(A)のガラス転移温度をTa、前記樹脂(B)のガラス転移温度をTb、前記光学フィルムのガラス転移温度をTgとしたとき、下記式(1)~(3)を満たす、[1]~[3]のいずれかに記載の光学フィルム。
 (式1)Ta>Tg>Tb
 (式2)Ta≧Tb+80
 (式3)150≧Tg≧100
 [5] 前記樹脂(A)の重量平均分子量と前記樹脂(B)の重量平均分子量が、いずれも9万以上100万以下である、[1]~[4]のいずれかに記載の光学フィルム。
 [6] 前記樹脂(A)と前記樹脂(B)の含有質量比が、(A):(B)=30:70~90:10である、[1]~[5]のいずれかに記載の光学フィルム。
 [7] 前記樹脂(A)および前記樹脂(B)と、溶剤とを含むドープを、金属支持板上に流延した後、乾燥させて膜状物を得る工程と、前記膜状物を、搬送方向と該搬送方向と直交する方向との両方の延伸倍率の合計が110~400%となるように、搬送方向と該搬送方向と直交する方向との両方に延伸する工程とを経て得られる、[1]~[6]のいずれかに記載の光学フィルム。
 [8] 前記樹脂(A)が、セルロースエステルである、[1]~[7]のいずれかに記載の光学フィルム。
 [9] 前記樹脂(B)が、ポリ酢酸ビニル、ポリ乳酸、ポリアセタール、ポリウレタン、エチレン-酢酸ビニル重合体、およびゴム粒子からなる群より選ばれる少なくとも一以上を含む、[1]~[8]のいずれかに記載の光学フィルム。
 [10] 前記光学フィルムの前記CHE/CTEが0.2~0.6である、[1]~[9]のいずれかに記載の光学フィルム。
 [11] 前記樹脂(A)の重量平均分子量と前記樹脂(B)の重量平均分子量が、いずれも15万~50万である、[1]~[10]のいずれかに記載の光学フィルム。
 [12] 偏光板保護フィルムである、[1]~[11]のいずれかに記載の光学フィルム。
[1] Resin having a CHE / CTE of 0.6 or more and a tensile modulus of elasticity of 2 GPa or more in a 40 ° C., 20% RH environment when the hygroscopic expansion coefficient is CHE and the thermal expansion coefficient is CTE (A ) And a resin (B) having a CHE / CTE of less than 0.6, wherein the hygroscopic expansion coefficient CHE in any one direction X in the plane of the optical film and the thermal expansion in the direction X An optical film having a ratio CHE / CTE to a coefficient CTE of 0.6 or less and a tensile elastic modulus in the direction X of 2 to 6 GPa in a 40 ° C., 20% RH environment.
[2] The optical film according to [1], wherein the direction X is at least one of an in-plane slow axis direction of the optical film and a direction orthogonal to the in-plane slow axis direction.
[3] The optical film according to [1] or [2], wherein the direction X matches the longitudinal direction of the optical film.
[4] When the glass transition temperature of the resin (A) is Ta, the glass transition temperature of the resin (B) is Tb, and the glass transition temperature of the optical film is Tg, the following formulas (1) to (3) are satisfied. The optical film according to any one of [1] to [3], which is satisfied.
(Formula 1) Ta>Tg> Tb
(Formula 2) Ta ≧ Tb + 80
(Formula 3) 150 ≧ Tg ≧ 100
[5] The optical film according to any one of [1] to [4], wherein a weight average molecular weight of the resin (A) and a weight average molecular weight of the resin (B) are both 90,000 to 1,000,000. .
[6] The content mass ratio between the resin (A) and the resin (B) is (A) :( B) = 30: 70 to 90:10, any one of [1] to [5] Optical film.
[7] A step of casting a dope containing the resin (A) and the resin (B) and a solvent on a metal support plate and then drying to obtain a film-like material; and It is obtained through a step of stretching in both the transport direction and the direction orthogonal to the transport direction so that the sum of the stretch ratios in both the transport direction and the direction orthogonal to the transport direction is 110 to 400%. [1] to [6] The optical film according to any one of [6].
[8] The optical film according to any one of [1] to [7], wherein the resin (A) is a cellulose ester.
[9] The resin (B) contains at least one selected from the group consisting of polyvinyl acetate, polylactic acid, polyacetal, polyurethane, ethylene-vinyl acetate polymer, and rubber particles [1] to [8] The optical film in any one of.
[10] The optical film according to any one of [1] to [9], wherein the CHE / CTE of the optical film is 0.2 to 0.6.
[11] The optical film according to any one of [1] to [10], wherein the weight average molecular weight of the resin (A) and the weight average molecular weight of the resin (B) are both 150,000 to 500,000.
[12] The optical film according to any one of [1] to [11], which is a polarizing plate protective film.
 [13] 偏光子と、[1]~[12]のいずれかに記載の光学フィルムとを含む、偏光板。
 [14] 前記光学フィルムの面内の方向Xと前記偏光子の吸収軸とは互いに平行である、[13]に記載の偏光板。
 [15] 第一の偏光板と、液晶セルと、第二の偏光板と、バックライトとをこの順に含む液晶表示装置であって、前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置された偏光板保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置された偏光板保護フィルムF2とを含み、前記第二の偏光板が、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置された偏光板保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置された偏光板保護フィルムF4とを含み、前記偏光板保護フィルムF1と前記偏光板保護フィルムF4の一方または両方が、[1]~[12]のいずれかに記載の光学フィルムである、液晶表示装置。
 [16] 前記液晶セルは、液晶層と、前記液晶層を挟持する一対の基板とを含み、前記一対の基板が、厚み0.3mm以上0.7mm未満のガラス基板である、[15]に記載の液晶表示装置。
 [17] 少なくとも前記偏光板保護フィルムF1が、[1]~[12]のいずれかに記載の光学フィルムである、[15]または[16]に記載の液晶表示装置。
 [18] 前記偏光板保護フィルムF1の面内の方向Xと前記第一の偏光子の吸収軸とは互いに平行である、[17]に記載の液晶表示装置。
[13] A polarizing plate comprising a polarizer and the optical film according to any one of [1] to [12].
[14] The polarizing plate according to [13], wherein an in-plane direction X of the optical film and an absorption axis of the polarizer are parallel to each other.
[15] A liquid crystal display device including a first polarizing plate, a liquid crystal cell, a second polarizing plate, and a backlight in this order, wherein the first polarizing plate includes a first polarizer, A polarizing plate protective film F1 disposed on the surface of the first polarizer opposite to the liquid crystal cell, and a polarizing plate protective film F2 disposed on the surface of the first polarizer on the liquid crystal cell side The second polarizing plate is a second polarizer, a polarizing plate protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the second polarizer. A polarizing plate protective film F4 disposed on a surface opposite to the liquid crystal cell, and one or both of the polarizing plate protective film F1 and the polarizing plate protective film F4 are any one of [1] to [12] A liquid crystal display device, which is the optical film described in 1.
[16] The liquid crystal cell includes a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer, and the pair of substrates is a glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm. The liquid crystal display device described.
[17] The liquid crystal display device according to [15] or [16], wherein at least the polarizing plate protective film F1 is the optical film according to any one of [1] to [12].
[18] The liquid crystal display device according to [17], wherein an in-plane direction X of the polarizing plate protective film F1 and an absorption axis of the first polarizer are parallel to each other.
 本発明によれば、パネルベンドを抑制でき、それによる表示ムラを低減しうる光学フィルムを提供することができる。 According to the present invention, it is possible to provide an optical film that can suppress panel bend and thereby reduce display unevenness.
液晶表示装置の基本的な構成の一例を示す模式図である。It is a schematic diagram which shows an example of the fundamental structure of a liquid crystal display device. 液晶表示装置における偏光子の吸収軸と保護フィルムの方向Xとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the absorption axis of the polarizer and the direction X of a protective film in a liquid crystal display device.
 前述の通り、パネルベンドは、製造時または輸送時に含水した偏光子から、バックライトの熱を受けて水が抜けて、偏光子が収縮することにより生じると考えられる。これに対して本発明者らは、バックライトの熱を受けたときに、光学フィルムを、偏光子の収縮と対抗するように膨脹させることで、パネルベンドを抑制できることを見出した。 As described above, it is considered that the panel bend is caused by contraction of the polarizer due to the escape of water from the polarizer containing water at the time of manufacture or transportation, due to the heat of the backlight. On the other hand, the present inventors have found that the panel bend can be suppressed by expanding the optical film so as to counteract the contraction of the polarizer when receiving the heat of the backlight.
 具体的には、バックライトからの熱を受けた光学フィルムは、熱による膨脹と、水が抜けることによる収縮とを同時に生じやすい。光学フィルムにおける「熱による膨脹力」を「水が抜けることによる収縮力」よりも相対的に大きくすることで、光学フィルム全体として膨脹させやすくしうることを見出した。 Specifically, an optical film that has received heat from a backlight tends to simultaneously expand due to heat and shrink due to the removal of water. It has been found that the optical film as a whole can be easily expanded by making the “expansion force due to heat” in the optical film relatively larger than the “shrinkage force due to the removal of water”.
 即ち、光学フィルムの面内の任意の一方向Xの熱膨脹係数をCTE(単位:ppm/℃)、方向Xの吸湿膨脹係数をCHE(単位:ppm/%RH)としたときに、これらの比CHE/CTEが一定以下であることが好ましく、具体的には0.6以下とすることが好ましい。 That is, when the thermal expansion coefficient in any one direction X in the plane of the optical film is CTE (unit: ppm / ° C.) and the hygroscopic expansion coefficient in direction X is CHE (unit: ppm /% RH), these ratios CHE / CTE is preferably not more than a certain value, specifically 0.6 or less.
 「光学フィルムの面内の任意の一方向X」は、光学フィルムと偏光子とを重ね合わせたときに、偏光子の吸収軸と平行となる方向であることが好ましく;光学フィルムの製膜方向(MD方向)、即ち、光学フィルムの巻き取り体における光学フィルムの長手方向であることがより好ましい。具体的には、「光学フィルムの面内の任意の一方向X」は、光学フィルムの面内遅相軸方向とそれと直交する方向の少なくとも一方であることが好ましい。光学フィルムの面内遅相軸とは、光学フィルム面内で屈折率が最大となる方向の遅相軸をいい、後述するように自動複屈折計KOBRA-WR(王子計測機器)によって特定されうる。 “Any one direction X in the plane of the optical film” is preferably a direction parallel to the absorption axis of the polarizer when the optical film and the polarizer are superimposed; (MD direction), that is, the longitudinal direction of the optical film in the wound body of the optical film is more preferable. Specifically, “any one direction X in the plane of the optical film” is preferably at least one of the in-plane slow axis direction of the optical film and the direction orthogonal thereto. The in-plane slow axis of the optical film is the slow axis in the direction in which the refractive index is maximum in the optical film plane, and can be specified by an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments) as will be described later. .
 また、光学フィルムの「熱による膨脹力」を大きくするためには、光学フィルムが加熱下で一定以上の引張弾性率を有することが好ましい。光学フィルムの熱による膨脹力は、光学フィルムの引張弾性率と厚みと寸法変化量の積に比例するからである。 Also, in order to increase the “thermal expansion force” of the optical film, it is preferable that the optical film has a certain tensile elastic modulus under heating. This is because the thermal expansion force of the optical film is proportional to the product of the tensile elastic modulus, thickness, and dimensional change of the optical film.
 即ち、光学フィルムの面内の任意の一方向Xの40℃における引張弾性率が2GPa以上であることが好ましい。40℃での引張弾性率が一定以上であると、光学フィルムの熱による膨脹力を大きくしやすい。一方、光学フィルムの巻き姿(ロール状に巻き取った巻き取り体の外観)を良くするためなどから、光学フィルムの方向Xの40℃における引張弾性率は、6GPa以下であることが好ましい。40℃における引張弾性率が6GPaを越える光学フィルムを巻き取ると、「ツレ」や「皺」といった外観不良を起こしやすくなる。 That is, it is preferable that the tensile elastic modulus at 40 ° C. in any one direction X in the plane of the optical film is 2 GPa or more. When the tensile elastic modulus at 40 ° C. is above a certain level, the expansion force of the optical film due to heat can be easily increased. On the other hand, the tensile elastic modulus at 40 ° C. in the direction X of the optical film is preferably 6 GPa or less in order to improve the winding shape of the optical film (the appearance of the wound body wound up in a roll shape). When an optical film having a tensile modulus of elasticity exceeding 6 GPa at 40 ° C. is wound, appearance defects such as “smooth” and “wrinkle” are likely to occur.
 光学フィルムの方向XのCHE(吸湿膨脹係数)/CTE(熱膨脹係数)を0.6以下とし、かつ方向Xの40℃における引張弾性率を2GPa以上とするためには、40℃における引張弾性率が高く、かつCHE/CTEが相対的に高い樹脂(A)と;CHE/CTEが相対的に低い樹脂(B)とを組み合わせることが好ましい。具体的には、40℃での引張弾性率が2GPa以上であり、かつCHE/CTEが0.6以上である樹脂(A)と、CHE/CTEが0.6未満である樹脂(B)とを組み合わせ、かつこれらの含有比、樹脂(B)の分子量および延伸条件の一以上をさらに調整することが好ましい。 In order to set the CHE (Hygroscopic expansion coefficient) / CTE (Thermal expansion coefficient) in the direction X of the optical film to 0.6 or less and the tensile modulus at 40 ° C. in the direction X to 2 GPa or more, the tensile modulus at 40 ° C. It is preferable to combine a resin (A) having a high CHE / CTE and a resin (B) having a relatively low CHE / CTE. Specifically, a resin (A) having a tensile elastic modulus at 40 ° C. of 2 GPa or more and a CHE / CTE of 0.6 or more, and a resin (B) having a CHE / CTE of less than 0.6 It is preferable to further adjust the content ratio, the molecular weight of the resin (B), and one or more stretching conditions.
 光学フィルムの方向XのCHE/CTEは、主に樹脂(A)と樹脂(B)の種類やそれらの含有比、方向Xに延伸すること、および当該方向Xの延伸倍率などによって調整されうる。光学フィルムの方向Xの40℃における引張弾性率は、主に樹脂(A)と樹脂(B)の種類や分子量、樹脂(A)と樹脂(B)の含有比、方向Xに延伸すること、および当該方向Xの延伸倍率などによって調整されうる。 The CHE / CTE in the direction X of the optical film can be adjusted mainly by the types of the resin (A) and the resin (B), their content ratio, stretching in the direction X, and the stretching ratio in the direction X. The tensile elastic modulus at 40 ° C. in the direction X of the optical film is mainly the type and molecular weight of the resin (A) and the resin (B), the content ratio of the resin (A) and the resin (B), and stretching in the direction X. And it can be adjusted by the draw ratio in the direction X.
 1.光学フィルム
 本発明の光学フィルムは、加熱下での引張弾性率が高く、かつCHE/CTEが相対的に高い樹脂(A)と、CHE/CTEが相対的に低い樹脂(B)とを含む。
1. Optical Film The optical film of the present invention contains a resin (A) having a high tensile elastic modulus under heating and a relatively high CHE / CTE and a resin (B) having a relatively low CHE / CTE.
 <樹脂(A)について>
 樹脂(A)は、光学フィルムのメインポリマーとして機能しうるだけでなく、加熱下での引張弾性率を高める機能を有しうる。
<About Resin (A)>
The resin (A) can function not only as the main polymer of the optical film, but also has a function of increasing the tensile elastic modulus under heating.
 樹脂(A)の40℃20%RH環境下での引張弾性率は、加熱下での膨脹力を大きくするためなどから、2GPa以上であることが好ましく、3GPa以上であることがより好ましい。一方、光学フィルムの巻き姿(ロール状の巻き取り体の外観)を損なわないためなどから、樹脂(A)の40℃20%RH環境下での引張弾性率は、6GPa以下であることが好ましく、5GPa以下であることがより好ましい。 The tensile elastic modulus of the resin (A) in a 40 ° C., 20% RH environment is preferably 2 GPa or more, and more preferably 3 GPa or more in order to increase the expansion force under heating. On the other hand, the tensile elastic modulus of the resin (A) in a 40 ° C., 20% RH environment is preferably 6 GPa or less in order not to impair the rolled form of the optical film (appearance of the roll-shaped wound body). More preferably, it is 5 GPa or less.
 樹脂(A)の40℃20%RH環境下での引張弾性率は、以下の方法で測定されうる。即ち、
 1)樹脂(A)からなる厚み40μmのフィルムを作製する。フィルムの作製方法は、高分子量の樹脂(A)を扱いやすい観点から、溶液流延製膜法であることが好ましい。得られたフィルムを、100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片を得る。
 2)この試験片を、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片のMD方向の引張弾性率を測定する。MD方向とは、樹脂(A)からなるフィルムの製膜方向(フィルムの巻き取り体におけるフィルムの長手方向)を表し;TD方向とは、当該フィルムの幅手方向を表す。測定は、40℃20%RH下で行う。
The tensile elastic modulus of the resin (A) under a 40 ° C. and 20% RH environment can be measured by the following method. That is,
1) A 40 μm thick film made of the resin (A) is prepared. The film production method is preferably a solution casting film forming method from the viewpoint of easy handling of the high molecular weight resin (A). The obtained film is cut into a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a test piece.
2) In accordance with JIS K7127, the test piece is measured for tensile elastic modulus in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd. with a distance between chucks of 50 mm. The MD direction represents the film forming direction of the film made of the resin (A) (the longitudinal direction of the film in the film winding body); the TD direction represents the width direction of the film. The measurement is performed at 40 ° C. and 20% RH.
 樹脂(A)のCHE/CTEは、0.6以上であることが好ましく、0.8以上であることがより好ましく、1.0以上であることがさらに好ましく、1.2以上であることが特に好ましい。樹脂(A)のCHE/CTEの上限は、2.0程度、好ましくは1.5程度としうる。 The CHE / CTE of the resin (A) is preferably 0.6 or more, more preferably 0.8 or more, further preferably 1.0 or more, and 1.2 or more. Particularly preferred. The upper limit of the CHE / CTE of the resin (A) can be about 2.0, preferably about 1.5.
 樹脂(A)のCHE/CTEは、例えば以下の手順で求めることができる。
 1)前述の引張弾性率の測定に用いるフィルムと同様に、樹脂(A)からなる厚み40μmのフィルムを、溶液流延製膜法で作製し、所定の大きさに切り出して試験片とする。そして、当該試験片のCTEを、ASTM E-831またはJIS K7197に準拠して、TMA法によって測定し、樹脂(A)のCTE(単位:ppm/℃)を得る。
 2)前述と同様にして作製した、樹脂(A)からなる厚み40μmの試験片を、23℃20%RHの環境下で24時間保存した後のMD方向の寸法と、23℃80%RHの環境下で24時間保存した後のMD方向の寸法とを測定する。得られた測定値を下記式に当てはめて、樹脂(A)のCHE(単位:ppm/%RH)を得る(下記式参照)。
 CHE(ppm/%RH)={(23℃80%RH下で保存後の試験片のMD方向寸法-23℃20%RH下で保存後の試験片のMD方向寸法)/23℃20%RH下で保存後の試験片のMD方向寸法}/(80%RH-20%RH)
 3)前記1)および2)で得られた樹脂(A)のCTEとCHEから、樹脂(A)のCHE/CTEを算出する。
The CHE / CTE of the resin (A) can be obtained, for example, by the following procedure.
1) A film having a thickness of 40 μm made of resin (A) is prepared by the solution casting method, and cut into a predetermined size as a test piece, in the same manner as the film used for measurement of the tensile modulus. Then, the CTE of the test piece is measured by the TMA method in accordance with ASTM E-831 or JIS K7197 to obtain the CTE (unit: ppm / ° C.) of the resin (A).
2) The dimension in the MD direction after storing a test piece of 40 μm thickness made of resin (A) for 24 hours in an environment of 23 ° C. and 20% RH and 23 ° C. and 80% RH The dimension in the MD direction after storage for 24 hours under the environment is measured. The obtained measured value is applied to the following formula to obtain CHE (unit: ppm /% RH) of the resin (A) (see the following formula).
CHE (ppm /% RH) = {(MD direction dimension of specimen after storage at 23 ° C. and 80% RH−MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen after storage under MD} / (80% RH-20% RH)
3) The CHE / CTE of the resin (A) is calculated from the CTE and CHE of the resin (A) obtained in 1) and 2) above.
 40℃における引張弾性率とCHE/CTEが上記範囲を満たす樹脂(A)の例には、セルロースエステルや(メタ)アクリル樹脂などが含まれ、耐熱性が高いことなどから、好ましくはセルロースエステルである。 Examples of the resin (A) in which the tensile modulus at 40 ° C. and the CHE / CTE satisfy the above range include cellulose ester and (meth) acrylic resin, etc. is there.
 セルロースエステル
 セルロースエステルは、セルロースと、脂肪族カルボン酸と芳香族カルボン酸の少なくとも一方とをエステル化反応させて得られる化合物である。即ち、セルロースエステルは、脂肪族アシル基と芳香族アシル基の少なくとも一方を含み、好ましくは脂肪族アシル基を含む。
Cellulose ester Cellulose ester is a compound obtained by esterifying cellulose and at least one of aliphatic carboxylic acid and aromatic carboxylic acid. That is, the cellulose ester contains at least one of an aliphatic acyl group and an aromatic acyl group, and preferably contains an aliphatic acyl group.
 脂肪族アシル基の炭素原子数は、2~7であることが好ましく、2~4であることがより好ましい。脂肪族アシル基の例には、アセチル基、プロピオニル基、ブタノイル基などが含まれる。 The number of carbon atoms in the aliphatic acyl group is preferably 2 to 7, and more preferably 2 to 4. Examples of the aliphatic acyl group include acetyl group, propionyl group, butanoyl group and the like.
 セルロースエステルの具体例には、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートなどが含まれ、適度な疎水性を有することから、セルロースアセテートおよびセルロースアセテートプロピオネートなどが好ましい。 Specific examples of the cellulose ester include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate and the like, and cellulose acetate and cellulose acetate propionate are preferable because they have appropriate hydrophobicity.
 セルロースエステルのアシル基の総置換度は2.0以上、好ましくは2.5以上、より好ましくは2.6以上、さらに好ましくは2.8以上である。アシル基の総置換度を高めることで、フィルムの位相差を発現しにくくしうる。アシル基の総置換度の上限は、例えば3.0、好ましくは2.99としうる。 The total substitution degree of the acyl group of the cellulose ester is 2.0 or more, preferably 2.5 or more, more preferably 2.6 or more, and further preferably 2.8 or more. By increasing the total substitution degree of the acyl group, it is possible to make it difficult to express the retardation of the film. The upper limit of the total substitution degree of the acyl group can be, for example, 3.0, preferably 2.99.
 セルロースエステルのアシル基は、アセチル基を含むことが好ましい。セルロースエステルのアシル基は、炭素原子数3以上のアシル基をさらに含んでもよく、その置換度は2.7以下としうる。 The acyl group of the cellulose ester preferably contains an acetyl group. The acyl group of the cellulose ester may further contain an acyl group having 3 or more carbon atoms, and the degree of substitution may be 2.7 or less.
 セルロースエステルのアシル基の置換度は、ASTM-D817-96に規定の方法で測定することができる。 The degree of substitution of the acyl group of the cellulose ester can be measured by the method prescribed in ASTM-D817-96.
 (メタ)アクリル樹脂
 (メタ)アクリル樹脂は、(メタ)アクリル酸エステルの単独重合体;または(メタ)アクリル酸エステルとそれと共重合可能な他のモノマーとの共重合体でありうる。
(Meth) acrylic resin The (meth) acrylic resin can be a homopolymer of (meth) acrylic acid ester; or a copolymer of (meth) acrylic acid ester and another monomer copolymerizable therewith.
 (メタ)アクリル酸エステルは、好ましくは(メタ)アクリル酸アルキルエステルであり、より好ましくはメタクリル酸メチルである。 The (meth) acrylic acid ester is preferably a (meth) acrylic acid alkyl ester, and more preferably methyl methacrylate.
 メタクリル酸メチルと共重合可能な他のモノマーの例には、アルキル部分の炭素原子数が2~18のメタクリル酸アルキルエステル;アルキル部分の炭素原子数が1~18のアクリル酸アルキルエステル;アクリル酸、メタクリル酸等のα,β-不飽和酸;マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸;スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物;アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル;無水マレイン酸;マレイミド、N-置換マレイミド;グルタル酸無水物などが含まれる。アクリル酸アルキルエステルおよびメタクリル酸アルキルエステルにおけるアルキル基は、環状であっても鎖状であってもよい。これらの他のモノマーは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of other monomers copolymerizable with methyl methacrylate include: alkyl methacrylates having 2 to 18 carbon atoms in the alkyl moiety; alkyl alkyl esters having 1 to 18 carbon atoms in the alkyl moiety; acrylic acid Α, β-unsaturated acids such as methacrylic acid; unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid and itaconic acid; aromatic vinyl compounds such as styrene, α-methylstyrene and nucleus-substituted styrene; acrylonitrile And α, β-unsaturated nitriles such as methacrylonitrile; maleic anhydride; maleimide, N-substituted maleimide; glutaric anhydride and the like. The alkyl group in the acrylic acid alkyl ester and methacrylic acid alkyl ester may be cyclic or chain-like. These other monomers may be used alone or in combination of two or more.
 上記共重合体を構成する全構成単位に対する、メタクリル酸メチル由来の構造単位の含有割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。 The content ratio of the structural unit derived from methyl methacrylate with respect to all the structural units constituting the copolymer is preferably 50% by mass or more, and more preferably 70% by mass or more.
 樹脂(A)の重量平均分子量は、加熱下でのフィルムの引張弾性率を高めやすくするためには、9万以上であることが好ましく、15万以上であることがより好ましい。樹脂(A)の重量平均分子量の上限は、樹脂(B)との相溶性が得られやすく、フィルムへの成形性を損なわないためには、100万であることが好ましく、50万であることがより好ましい。 The weight average molecular weight of the resin (A) is preferably 90,000 or more and more preferably 150,000 or more in order to easily increase the tensile elastic modulus of the film under heating. The upper limit of the weight average molecular weight of the resin (A) is preferably 1 million, preferably 500,000 so that compatibility with the resin (B) is easily obtained and the moldability to the film is not impaired. Is more preferable.
 樹脂(A)の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されうる。測定条件は以下の通りである。
 溶媒:メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工(株)製)を3本接続して使用する。
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所(株)製)
 流量:1.0ml/min
 校正曲線:標準ポリスチレンSTK standardポリスチレン(東ソー(株)製)Mw=1.0×10~5.0×10までの13サンプルによる校正曲線を使用する。13サンプルは、分子量がほぼ等間隔となるように選択することが好ましい。
The weight average molecular weight of the resin (A) can be measured by gel permeation chromatography (GPC). The measurement conditions are as follows.
Solvent: Methylene chloride Column: Three Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used.
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 1.0 × 10 6 to 5.0 × 10 2 13 calibration curves are used. The 13 samples are preferably selected so that the molecular weights are approximately equidistant.
 樹脂(A)のガラス転移温度Taは、後述する式(1)~(3)を同時満たすことが好ましい。例えば、樹脂(A)のガラス転移温度Taは、105~180℃程度としうる。 The glass transition temperature Ta of the resin (A) preferably satisfies the expressions (1) to (3) described later. For example, the glass transition temperature Ta of the resin (A) can be about 105 to 180 ° C.
 樹脂(A)のガラス転移温度Taは、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、JIS K7121(1987)に準拠した方法で、中間点ガラス転移温度(Tmg)として測定されうる。昇温速度は、20℃/分としうる。 The glass transition temperature Ta of the resin (A) is a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer) as a midpoint glass transition temperature (Tmg). Can be measured. The heating rate can be 20 ° C./min.
 <樹脂(B)について>
 樹脂(B)は、光学フィルムを加熱下で伸びやすくする(または膨脹させやすくする)機能を有する。従って、樹脂(B)のCHE/CTEは相対的に低いことが好ましく、0.6未満であることが好ましく、0.5以下であることがより好ましく、0.4以下であることがさらに好ましい。樹脂(B)のCHE/CTEの下限は、0または0.05程度としうる。樹脂(B)のCHE/CTEは、前述の樹脂(A)のCHE/CTEと同様にして測定されうる。
<About Resin (B)>
The resin (B) has a function of making the optical film easily stretched (or easily expanded) under heating. Accordingly, the CHE / CTE of the resin (B) is preferably relatively low, preferably less than 0.6, more preferably 0.5 or less, and further preferably 0.4 or less. . The lower limit of the CHE / CTE of the resin (B) can be about 0 or about 0.05. The CHE / CTE of the resin (B) can be measured in the same manner as the CHE / CTE of the resin (A) described above.
 樹脂(B)の40℃20%RH環境下での引張弾性率は、得られる光学フィルムの引張弾性率が上記範囲となる程度であればよい。具体的には、樹脂(B)の40℃20%RH環境下での引張弾性率は、6GPa以下とし、好ましくは4.5GPa以下としうる。樹脂(B)の40℃20%RH環境下での引張弾性率は、前述の樹脂(A)の40℃20%RH環境下での引張弾性率と同様にして測定されうる。 The tensile elastic modulus of the resin (B) under a 40 ° C. and 20% RH environment may be such that the tensile elastic modulus of the obtained optical film falls within the above range. Specifically, the tensile elastic modulus of the resin (B) in a 40 ° C., 20% RH environment can be 6 GPa or less, preferably 4.5 GPa or less. The tensile elastic modulus of the resin (B) under a 40 ° C. and 20% RH environment can be measured in the same manner as the tensile elastic modulus of the resin (A) under a 40 ° C. and 20% RH environment.
 樹脂(B)のガラス転移温度Tbは、光学フィルムを加熱下で伸びやすくするためなどから、樹脂(A)のガラス転移温度Taよりも一定以上低いことが好ましい。具体的には、下記式(2)を満たすことが好ましい。
 式(2) Ta≧Tb+80
The glass transition temperature Tb of the resin (B) is preferably lower than the glass transition temperature Ta of the resin (A) by a certain level or more in order to make the optical film easily stretched under heating. Specifically, it is preferable to satisfy the following formula (2).
Formula (2) Ta ≧ Tb + 80
 Tbは、Taよりも100℃以上低いことが好ましい。Tbは、例えば-50℃~70℃の範囲としうる。 Tb is preferably lower than Ta by 100 ° C. or more. Tb can be, for example, in the range of −50 ° C. to 70 ° C.
 樹脂(B)のガラス転移温度Tbは、樹脂(A)のガラス転移温度Taと同様の方法で測定されうる。 The glass transition temperature Tb of the resin (B) can be measured by the same method as the glass transition temperature Ta of the resin (A).
 上記のようなCHE/CTEの範囲を満たす樹脂(B)の例には、酢酸ビニル系樹脂、ポリ乳酸、ポリアセタール、ポリウレタン、およびゴム粒子などが含まれる。 Examples of the resin (B) satisfying the above CHE / CTE range include vinyl acetate resin, polylactic acid, polyacetal, polyurethane, and rubber particles.
 酢酸ビニル系樹脂は、酢酸ビニル由来の繰り返し単位を含む重合体であり、その例には、ポリ酢酸ビニル(酢酸ビニルの単独重合体)やエチレン-酢酸ビニル共重合体などが含まれる。 The vinyl acetate resin is a polymer containing a repeating unit derived from vinyl acetate, and examples thereof include polyvinyl acetate (a homopolymer of vinyl acetate), an ethylene-vinyl acetate copolymer, and the like.
 ポリアセタールは、オキシメチレンの繰り返し単位を含む重合体であり、少量(例えば5%以下)のオキシエチレンの繰り返し単位をさらに含みうる。 Polyacetal is a polymer containing oxymethylene repeating units, and may further contain a small amount (for example, 5% or less) of oxyethylene repeating units.
 ポリウレタンは、ポリオールとポリイソシアネートとを反応させて得られる樹脂である。ポリオールの例には、アルキレンジオール、ポリエステルポリオール、ポリエーテルポリオールなどが含まれ、好ましくはアルキレンジオール、ポリエステルポリオールでありうる。ポリイソシアネートの例には、アルキレンジイソシアネートやアリーレンジイソシアネートなどが含まれ、好ましくはアルキレンジイソシアネートである。ポリウレタンの好ましい例には、アルキレンジイソシアナートとアルキレンジオールの重合物などが含まれる。 Polyurethane is a resin obtained by reacting polyol and polyisocyanate. Examples of polyols include alkylene diols, polyester polyols, polyether polyols, and the like, preferably alkylene diols and polyester polyols. Examples of the polyisocyanate include alkylene diisocyanate and arylene diisocyanate, and alkylene diisocyanate is preferable. Preferable examples of the polyurethane include a polymer of alkylene diisocyanate and alkylene diol.
 ゴム粒子は、コア-シェル構造を有する微粒子であることが好ましく、その例には、アクリル系微粒子や;スチレン-ブタジエン系共重合体の微粒子などが含まれる。 The rubber particles are preferably fine particles having a core-shell structure, and examples thereof include acrylic fine particles; and styrene-butadiene copolymer fine particles.
 コア-シェル構造を有するアクリル系微粒子の例には、メチルメタクリレート80~98.9質量%、アルキルアクリレート1~20質量%および多官能性グラフト剤0.01~0.3質量%の混合物を重合して得られる最内硬質層と;アルキルアクリレート75~98.5質量%、多官能性架橋剤0.01~5質量%、および多官能性グラフト剤0.5~5質量%の混合物を重合して得られる軟質層と;メチルメタクリレート80~99質量%、アルキルアクリレート1~20質量%の混合物を重合して得られる最外硬質層とを有することが好ましい。 As an example of acrylic fine particles having a core-shell structure, a mixture of 80 to 98.9% by mass of methyl methacrylate, 1 to 20% by mass of alkyl acrylate and 0.01 to 0.3% by mass of a polyfunctional grafting agent is polymerized. A mixture of 75-98.5% by mass of alkyl acrylate, 0.01-5% by mass of polyfunctional crosslinking agent, and 0.5-5% by mass of polyfunctional grafting agent. And a soft layer obtained by polymerization; and an outermost hard layer obtained by polymerizing a mixture of 80 to 99% by mass of methyl methacrylate and 1 to 20% by mass of alkyl acrylate.
 コア-シェル構造を有するスチレン-ブタジエン系共重合体の微粒子の例には、コア部が、軟質重合体で構成され;コア部の周囲を覆うシェル部が、他の重合体で構成された弾性微粒子などが含まれる。 Examples of fine particles of a styrene-butadiene copolymer having a core-shell structure include: a core portion made of a soft polymer; and a shell portion covering the periphery of the core portion made of another polymer. Includes fine particles.
 軟質重合体は、共役ジエン単量体由来の構造単位と、必要に応じて他の単量体由来の構造単位とを含む。共役ジエン単量体の例には、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、ミルセンなどが含まれ、好ましくはブタジエン、イソプレンである。他の単量体の例には、スチレン、α-メチルスチレンなどのスチレン成分が含まれる。軟質重合体における共役ジエン単量体由来の構造単位の含有割合は、通常、50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。 The soft polymer includes a structural unit derived from a conjugated diene monomer and, if necessary, a structural unit derived from another monomer. Examples of conjugated diene monomers include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, myrcene, etc. Of these, butadiene and isoprene are preferred. Examples of other monomers include styrene components such as styrene and α-methylstyrene. The content ratio of the structural unit derived from the conjugated diene monomer in the soft polymer is usually 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
 他の重合体の例には、アクリロニトリルとスチレンの共重合体や、メタクリル酸メチル等のメタクリル酸エステルを主成分とする重合体などが含まれる。 Examples of other polymers include copolymers of acrylonitrile and styrene, and polymers mainly composed of methacrylic acid esters such as methyl methacrylate.
 弾性有機微粒子の体積平均粒子径は0.350μm以下であり、好ましくは0.010~0.350μmであり、より好ましくは0.050~0.300μmである。粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき;粒子径を一定以下であれば、得られるフィルムの透明性を損ないにくい。 The volume average particle diameter of the elastic organic fine particles is 0.350 μm or less, preferably 0.010 to 0.350 μm, more preferably 0.050 to 0.300 μm. If the particle size is above a certain value, the film can be easily stretched under heating; if the particle size is below a certain value, it is difficult to impair the transparency of the resulting film.
 樹脂(B)の重量平均分子量は、樹脂(A)と相溶させやすくしたり、フィルムの引張弾性率を高めたりしやすくするためには、9万以上であることが好ましく、15万以上であることがより好ましい。樹脂(B)の重量平均分子量の上限は、樹脂(A)との相溶性やフィルムへの成形性を損なわないためには、100万であることが好ましく、50万であることがより好ましい。特に、樹脂(B)の重量平均分子量が100万を超えると、樹脂(A)との相溶性が悪くなり、所望の物性値が得られにくい。樹脂(B)の重量平均分子量は、前述と同様の方法で測定されうる。 The weight average molecular weight of the resin (B) is preferably 90,000 or more and is preferably 150,000 or more in order to facilitate the compatibility with the resin (A) or to increase the tensile elastic modulus of the film. More preferably. The upper limit of the weight average molecular weight of the resin (B) is preferably 1,000,000 and more preferably 500,000 in order not to impair the compatibility with the resin (A) and the moldability to a film. In particular, when the weight average molecular weight of the resin (B) exceeds 1,000,000, the compatibility with the resin (A) is deteriorated, and it is difficult to obtain a desired physical property value. The weight average molecular weight of the resin (B) can be measured by the same method as described above.
 樹脂(A)と樹脂(B)の含有比は、(A):(B)=10:90~95:5(質量比)であることが好ましく、(A):(B)=30:70~90:10(質量比)であることがより好ましく、(A):(B)=50:50~90:10(質量比)であることがさらに好ましい。樹脂(B)の含有比を一定以上とすることで、光学フィルムを加熱下で伸びやすく(膨脹しやすく)しうる。樹脂(B)の含有比を一定以下とすることで、光学フィルムの加熱下における高い引張弾性率を維持しやすい。 The content ratio of the resin (A) to the resin (B) is preferably (A) :( B) = 10: 90 to 95: 5 (mass ratio), and (A) :( B) = 30: 70 More preferably, it is ˜90: 10 (mass ratio), and more preferably (A) :( B) = 50: 50 to 90:10 (mass ratio). By setting the content ratio of the resin (B) to a certain value or more, the optical film can be easily stretched (easily expanded) under heating. By setting the content ratio of the resin (B) to a certain value or less, it is easy to maintain a high tensile elastic modulus under heating of the optical film.
 本発明の光学フィルムは、必要に応じて可塑剤、剥離助剤、紫外線吸収剤、滑り性を付与するための微粒子(マット剤)などの各種添加剤をさらに含みうる。 The optical film of the present invention may further contain various additives such as a plasticizer, a peeling aid, an ultraviolet absorber, and fine particles (matting agent) for imparting slipperiness, if necessary.
 <可塑剤について>
 可塑剤の例には、糖エステル化合物、ポリエステル化合物、フタル酸エステル化合物、リン酸エステル化合物などが含まれる。これらは単独で用いても、二種類以上を組み合わせて用いてもよい。
<About plasticizer>
Examples of the plasticizer include sugar ester compounds, polyester compounds, phthalate ester compounds, phosphate ester compounds and the like. These may be used alone or in combination of two or more.
 (糖エステル化合物)
 糖エステル化合物は、糖に含まれる水酸基とモノカルボン酸とを反応させて得られる化合物である。即ち、糖エステル化合物は、糖由来の構造と、(糖に含まれる)水酸基とモノカルボン酸との反応物由来のアシル基とを含む。
(Sugar ester compound)
The sugar ester compound is a compound obtained by reacting a hydroxyl group contained in sugar with a monocarboxylic acid. That is, the sugar ester compound includes a structure derived from sugar and an acyl group derived from a reaction product of a hydroxyl group (contained in sugar) and a monocarboxylic acid.
 糖エステル化合物に含まれる糖由来の構造は、フラノース構造とピラノース構造の一方または両方が1~12個結合した構造であることが好ましく;フラノース構造とピラノース構造の一方または両方が1~3個、好ましくは2個結合した構造であることが好ましい。なかでも、ピラノース構造とフラノース構造の両方を含むものが好ましい。 The sugar-derived structure contained in the sugar ester compound is preferably a structure in which one to both of the furanose structure and the pyranose structure are bonded to 1 to 12; one to both of the furanose structure and the pyranose structure is 1 to 3, A structure in which two are bonded is preferable. Especially, what contains both a pyranose structure and a furanose structure is preferable.
 糖由来の構造の例には、グルコース、ガラクトース、マンノース、フルクトース、キシロースおよびアラビノースなどの単糖;ラクトース、スクロース、マルチトール、セロビオース、マルトースなどの二糖;セロトリオース、ラフィノースなどの三糖などに由来する構造が含まれる。 Examples of sugar-derived structures include monosaccharides such as glucose, galactose, mannose, fructose, xylose and arabinose; disaccharides such as lactose, sucrose, maltitol, cellobiose and maltose; derived from trisaccharides such as cellotriose and raffinose Structure to be included.
 糖エステル化合物に含まれるアシル基は、脂肪族アシル基であっても、芳香族基アシル基であってもよい。 The acyl group contained in the sugar ester compound may be an aliphatic acyl group or an aromatic acyl group.
 脂肪族アシル基の炭素原子数は1~22、より好ましくは2~12、特に好ましくは2~8でありうる。脂肪族アシル基の例には、アセチル基、プロピオニル基、ブチリル基、ペンタノイル基、ヘキサノイル基、オクタノイル基などが含まれる。芳香族アシル基の例には、ベンゾイル基、トルイル基、フタリル基が含まれる。 The number of carbon atoms in the aliphatic acyl group can be 1 to 22, more preferably 2 to 12, and particularly preferably 2 to 8. Examples of the aliphatic acyl group include acetyl group, propionyl group, butyryl group, pentanoyl group, hexanoyl group, octanoyl group and the like. Examples of the aromatic acyl group include a benzoyl group, a toluyl group, and a phthalyl group.
 中でも、糖エステル化合物に含まれるアシル基は、樹脂(A)として用いられうるセルロースエステルとの相溶性を高めるためなどから、少なくともベンゾイル基を含むことが好ましい。糖エステル化合物に含まれる複数のアシル基は、互いに同じであっても異なっていてもよい。 Among them, the acyl group contained in the sugar ester compound preferably contains at least a benzoyl group in order to enhance compatibility with the cellulose ester that can be used as the resin (A). The plurality of acyl groups contained in the sugar ester compound may be the same as or different from each other.
 糖エステル化合物において、アシル基で置換されていない未反応の水酸基は、通常、そのまま水酸基として残っていてもよい。 In the sugar ester compound, an unreacted hydroxyl group that is not substituted with an acyl group may usually remain as a hydroxyl group.
 糖エステル化合物は、アシル基の種類が同一で、かつ置換度が異なる複数の糖エステル化合物の混合物でありうる。そのような混合物は、無置換体が含まれていてもよい。上記混合物における平均エステル置換率は、62~94%であることが好ましい。上記混合物における平均エステル置換率は、下記式で定義されうる。
 平均エステル置換率=100%×(混合物中の各糖エステル化合物の含有率)×(混合物中の各糖エステル化合物一分子中のエステル化されたOHの数)/(無置換糖の一分子中のOHの総数)
The sugar ester compound may be a mixture of a plurality of sugar ester compounds having the same type of acyl group and different degrees of substitution. Such a mixture may contain an unsubstituted form. The average ester substitution rate in the mixture is preferably 62 to 94%. The average ester substitution rate in the mixture can be defined by the following formula.
Average ester substitution rate = 100% × (content of each sugar ester compound in the mixture) × (number of esterified OH in each molecule of sugar ester compound in the mixture) / (in one molecule of unsubstituted sugar) Total number of OH)
 糖エステル化合物の具体例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Specific examples of the sugar ester compound include the following.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 ポリエステル化合物は、ジカルボン酸とジオールとの縮合物に由来する繰り返し単位を含む。 The polyester compound contains a repeating unit derived from a condensate of dicarboxylic acid and diol.
 ジカルボン酸は、脂肪族ジカルボン酸、脂環式ジカルボン酸または芳香族ジカルボン酸でありうる。脂肪族ジカルボン酸の炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。脂肪族ジカルボン酸の例には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等が含まれる。 The dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid. The number of carbon atoms in the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12. Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
 芳香族ジカルボン酸の炭素原子数は、好ましくは8~20であり、より好ましくは8~12である。芳香族ジカルボン酸の例には、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸(イソフタル酸)、1,4-ベンゼンジカルボン酸(テレフタル酸)、1,5-ナフタレンジカルボン酸、1,4-キシリデンジカルボン酸等が含まれ、好ましくは1,4-ベンゼンジカルボン酸(テレフタル酸)である。 The number of carbon atoms in the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12. Examples of aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acid, 1,4-xylidene dicarboxylic acid and the like are included, and 1,4-benzenedicarboxylic acid (terephthalic acid) is preferable.
 脂環式ジカルボン酸の炭素原子数は、好ましくは6~20であり、より好ましくは6~12である。脂環式ジカルボン酸の例には、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸等が含まれる。 The number of carbon atoms of the alicyclic dicarboxylic acid is preferably 6 to 20, and more preferably 6 to 12. Examples of the alicyclic dicarboxylic acid include 1,3-cyclobutane dicarboxylic acid, 1,3-cyclopentane dicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 1,4-cyclohexane diacetic acid and the like.
 ポリエステル化合物を得るためのジカルボン酸は、一種類であっても、二種類以上あってもよい。ポリエステル化合物を得るためのジカルボン酸は、樹脂(A)として用いられうるセルロースエステルとの相溶性を高めたりするためなどから、芳香族ジカルボン酸を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸の両方を含むことがより好ましい。 The dicarboxylic acid for obtaining the polyester compound may be one type or two or more types. The dicarboxylic acid for obtaining the polyester compound preferably contains an aromatic dicarboxylic acid in order to enhance the compatibility with the cellulose ester that can be used as the resin (A). The aromatic dicarboxylic acid and the aliphatic dicarboxylic acid are preferably included. More preferably, both acids are included.
 ジオールは、脂肪族ジオール、アルキルエーテルジオール、脂環式ジオールまたは芳香族ジオールでありうる。 The diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol or an aromatic diol.
 脂肪族ジオールの炭素数は、好ましくは2~20であり、より好ましくは2~12である。脂肪族ジオールの例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオールなどが含まれる。アルキルエーテルジオールの炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。アルキルエーテルジオールの例には、ポリテトラメチレンエーテルグリコール、ポリエチレンエーテルグリコールおよびポリプロピレンエーテルグリコールなどが含まれる。 The carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12. Examples of the aliphatic diol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, and the like. The number of carbon atoms of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12. Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol and polypropylene ether glycol.
 脂環式ジオールの炭素原子数は、好ましくは4~20であり、より好ましくは4~12である。脂環式ジオールの例には、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが含まれる。 The number of carbon atoms of the alicyclic diol is preferably 4 to 20, and more preferably 4 to 12. Examples of the alicyclic diol include 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and the like.
 芳香族ジオールの炭素原子数は、好ましくは6~20であり、より好ましくは6~12である。芳香族ジオールの例には、1,2-ジヒドロキシベンゼン(カテコール)、1,3-ジヒドロキシベンゼン(レゾルシノール)、1,4-ジヒドロキシベンゼン(ヒドロキノン)などが含まれる。ポリエステル化合物を得るためのジオールは、一種類であっても、二種類以上あってもよい。ポリエステル化合物を得るためのジオールは、脂肪族ジオールを含むことが好ましい。 The number of carbon atoms in the aromatic diol is preferably 6 to 20, and more preferably 6 to 12. Examples of aromatic diols include 1,2-dihydroxybenzene (catechol), 1,3-dihydroxybenzene (resorcinol), 1,4-dihydroxybenzene (hydroquinone), and the like. The diol for obtaining the polyester compound may be one kind or two or more kinds. The diol for obtaining the polyester compound preferably contains an aliphatic diol.
 なかでも、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、脂肪族ジオールとの縮合物に由来する繰り返し単位を含むポリエステル化合物が、それを含むフィルムの透明性が良好である点から、好ましい。 Among them, the polyester compound containing a repeating unit derived from a condensate of an aliphatic diol and a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid is preferable because the transparency of the film containing the polyester compound is good. ,preferable.
 ポリエステル化合物の分子末端は、必要に応じてモノカルボン酸またはモノアルコールで封止されていてもよい。 The molecular terminal of the polyester compound may be sealed with monocarboxylic acid or monoalcohol as necessary.
 モノカルボン酸は、脂肪族モノカルボン酸、脂環式モノカルボン酸または芳香族モノカルボン酸でありうる。脂肪族モノカルボン酸の炭素原子数は、好ましくは2~30、より好ましくは2~4でありうる。脂肪族カルボン酸の例には、酢酸、プロピオン酸などが含まれる。脂環式モノカルボン酸の例には、シクロヘキシルモノカルボン酸などが含まれる。芳香族モノカルボン酸の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸などが含まれる。 The monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid. The number of carbon atoms of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4. Examples of the aliphatic carboxylic acid include acetic acid, propionic acid and the like. Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid. Examples of aromatic monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
 モノアルコールは、脂肪族モノアルコール、脂環式モノアルコールまたは芳香族モノアルコールでありうる。脂肪族モノアルコールの炭素原子数は1~30であり、好ましくは1~3でありうる。脂肪族モノアルコールの例には、メタノール、エタノール、プロパノール、イソプロパノールなどが含まれる。脂環式モノアルコールの例には、シクロヘキシルアルコールなどが含まれる。芳香族モノアルコールの例には、ベンジルアルコール、3-フェニルプロパノールなどが含まれる。 The monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol or an aromatic monoalcohol. The number of carbon atoms of the aliphatic monoalcohol is 1 to 30, preferably 1 to 3. Examples of the aliphatic monoalcohol include methanol, ethanol, propanol, isopropanol and the like. Examples of the alicyclic monoalcohol include cyclohexyl alcohol and the like. Examples of the aromatic monoalcohol include benzyl alcohol, 3-phenylpropanol and the like.
 ポリエステル化合物の具体例には、以下のものが含まれる。表1において、TPA:テレフタル酸、PA:フタル酸、SA:コハク酸、AA:アジピン酸を示す。
Figure JPOXMLDOC01-appb-T000004
Specific examples of the polyester compound include the following. In Table 1, TPA: terephthalic acid, PA: phthalic acid, SA: succinic acid, AA: adipic acid are shown.
Figure JPOXMLDOC01-appb-T000004
 フタル酸エステル化合物の例には、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート、ジオクチルフタレート、ジシクロヘキシルフタレート、ジシクロヘキシルテレフタレート等が含まれる。 Examples of the phthalic acid ester compound include diethyl phthalate, dimethoxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, dioctyl phthalate, dicyclohexyl phthalate, dicyclohexyl terephthalate and the like.
 リン酸エステル化合物の例には、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、およびトリブチルホスフェート等が含まれる。 Examples of the phosphate compound include triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, and the like.
 可塑剤の含有量は、樹脂(A)と樹脂(B)の合計に対して5~30質量%であることが好ましく、5~20質量%であることがより好ましい。可塑剤の含有量が一定以上であると、十分な可塑化効果が得られやすい。一方、可塑剤の含有量が一定以下であると、延伸後のフィルム表面への析出を高度に抑制しやすい。 The content of the plasticizer is preferably 5 to 30% by mass and more preferably 5 to 20% by mass with respect to the total of the resin (A) and the resin (B). When the content of the plasticizer is a certain level or more, a sufficient plasticizing effect is easily obtained. On the other hand, when the content of the plasticizer is below a certain level, precipitation on the film surface after stretching can be highly suppressed.
 <剥離助剤について>
 剥離助剤または帯電防止剤の一部は、膜状物の金属支持体側の面に凝集しやすいことから、膜状物の金属支持体からの剥離性を高めうる。剥離助剤または帯電防止剤は、有機または無機の酸性化合物、界面活性剤、キレート剤などでありうる。
<About peeling aid>
Since a part of the peeling aid or antistatic agent easily aggregates on the surface of the film-like material on the metal support side, the peelability of the film-like material from the metal support can be improved. The peeling aid or antistatic agent can be an organic or inorganic acidic compound, a surfactant, a chelating agent, and the like.
 酸性化合物の例には、有機酸、多価カルボン酸(例えば蓚酸やクエン酸など)の部分アルコールエステルなどが含まれる。多価カルボン酸の部分アルコールエステルの具体例には、特開2006-45497号公報の段落(0049)に記載の化合物が含まれる。 Examples of acidic compounds include organic acids, partial alcohol esters of polyvalent carboxylic acids (for example, oxalic acid and citric acid), and the like. Specific examples of the partial alcohol ester of polyvalent carboxylic acid include the compounds described in paragraph (0049) of JP-A-2006-45497.
 界面活性剤の例には、燐酸エステル系の界面活性剤、カルボン酸あるいはカルボン酸塩系の界面活性剤、スルホン酸あるいはスルホン酸塩系の界面活性剤、硫酸エステル系の界面活性剤などが含まれる。燐酸エステル系界面活性剤の例には、特開2006-45497号公報の段落(0050)に記載の化合物が含まれる。 Examples of surfactants include phosphate ester surfactants, carboxylic acid or carboxylate surfactants, sulfonic acid or sulfonate surfactants, sulfate ester surfactants, etc. It is. Examples of the phosphate ester-based surfactant include the compounds described in paragraph (0050) of JP-A-2006-45497.
 キレート剤は、鉄イオンなど金属イオンやカルシウムイオンなどのアルカリ土類金属イオンなどの多価イオンを配位(キレート)できる化合物であり、前記キレート剤の例には、特公平6-8956号、特開平11-190892号、特開2000-18038号、特開2010-158640号、特開2006-328203号、特開2005―68246号、特開2006-306969号の各公報に記載の化合物が含まれる。 The chelating agent is a compound capable of coordinating (chelating) multivalent ions such as metal ions such as iron ions and alkaline earth metal ions such as calcium ions. Examples of the chelating agents include Japanese Patent Publication No. 6-8956, Includes compounds described in JP-A-11-190892, JP-A-2000-18038, JP-A-2010-158640, JP-A-2006-328203, JP-A-2005-68246, and JP-A-2006-306969. It is.
 剥離助剤または帯電防止剤の市販品の例には、クラリアントジャパン(株)製ホスタスタットHS-1、竹本油脂(株)製エレカットS-412-2、エレカットS-418、花王(株)製ネオペレックスG65等が含まれる。 Examples of commercially available peeling aids or antistatic agents include Hostastat HS-1, manufactured by Clariant Japan, Elecut S-412-2, Elecut S-418, manufactured by Takemoto Yushi Co., Ltd., and Kao Co., Ltd. Neoperex G65 and the like are included.
 剥離助剤または帯電防止剤の含有量は、樹脂(A)と樹脂(B)の合計量に対して好ましくは0.005~1質量%であり、より好ましくは0.05~0.5質量%である。 The content of the peeling aid or antistatic agent is preferably 0.005 to 1% by mass, more preferably 0.05 to 0.5% by mass with respect to the total amount of the resin (A) and the resin (B). %.
 <紫外線吸収剤について>
 紫外線吸収剤は、ベンゾトリアゾール系化合物、2-ヒドロキシベンゾフェノン系化合物またはサリチル酸フェニルエステル系化合物などでありうる。具体的には、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類が挙げられる。
<About UV absorber>
The ultraviolet absorber may be a benzotriazole compound, a 2-hydroxybenzophenone compound, a salicylic acid phenyl ester compound, or the like. Specifically, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, 2- Triazoles such as (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2,2'-dihydroxy-4 -Benzophenones such as methoxybenzophenone.
 紫外線吸収剤は、市販品であってもよく、その例にはBASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズ、あるいは2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては、株式会社ADEKA製のLA31)などが含まれる。 The UV absorber may be a commercially available product. Examples thereof include Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, and Tinuvin 928 manufactured by BASF Japan, or 2, 2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are manufactured by ADEKA Corporation LA31) and the like.
 紫外線防止剤の含有量は、光学フィルムに対して質量割合で1ppm~1000ppmであることが好ましく、10~1000ppmであることがさらに好ましい。 The content of the ultraviolet light inhibitor is preferably from 1 ppm to 1000 ppm, more preferably from 10 to 1000 ppm, by mass with respect to the optical film.
 <マット剤について>
 マット剤は、偏光板保護フィルムに滑り性を付与しうる。マット剤は、得られるフィルムの透明性を損なうことがなく、製膜工程においての耐熱性を有する無機化合物または有機化合物からなる微粒子でありうる。
<About matting agent>
The matting agent can impart slipperiness to the polarizing plate protective film. The matting agent may be fine particles made of an inorganic compound or an organic compound having heat resistance in the film forming process without impairing the transparency of the resulting film.
 マット剤を構成する無機化合物の例には、二酸化珪素(シリカ)、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウムおよびリン酸カルシウムなどが含まれる。なかでも、二酸化珪素や酸化ジルコニウムが好ましく、得られるフィルムのヘイズの増大を少なくするためには、より好ましくは二酸化珪素である。 Examples of inorganic compounds constituting the matting agent include silicon dioxide (silica), titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, and hydrated calcium silicate. , Aluminum silicate, magnesium silicate and calcium phosphate. Of these, silicon dioxide and zirconium oxide are preferable, and silicon dioxide is more preferable in order to reduce an increase in haze of the obtained film.
 二酸化ケイ素の具体例には、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上、日本アエロジル(株)製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)などが含まれる。 Specific examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP -30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), nip seal E220A (manufactured by Nippon Silica Kogyo), Admafine SO (manufactured by Admatechs) and the like.
 マット剤の粒子形状は、不定形、針状、扁平または球状であり、得られるフィルムの透明性が良好にしやすい点などから、好ましくは球状でありうる。 The particle shape of the matting agent is indefinite, needle-like, flat or spherical, and may preferably be spherical in view of easy transparency of the resulting film.
 マット剤の粒子の大きさは、当該大きさが可視光の波長に近いと、光が散乱して透明性が低下するので、可視光の波長より小さいことが好ましく、更に可視光の波長の1/2以下であることが好ましい。ただし、粒子の大きさが小さすぎると、滑り性の改善効果が発現しない場合があるので、粒子の大きさは、80~180nmの範囲であることが好ましい。 When the size of the matting agent particles is close to the wavelength of visible light, the light is scattered and the transparency is lowered. Therefore, the size of the particles of the matting agent is preferably smaller than the wavelength of visible light. / 2 or less is preferable. However, if the size of the particles is too small, the effect of improving slipperiness may not be manifested. Therefore, the size of the particles is preferably in the range of 80 to 180 nm.
 粒子の大きさとは、粒子が一次粒子の凝集体の場合は凝集体の大きさを意味する。粒子が球状でない場合、粒子の大きさは、その投影面積に相当する円の直径を意味する。 The particle size means the size of the aggregate when the particle is an aggregate of primary particles. When the particles are not spherical, the size of the particles means the diameter of a circle corresponding to the projected area.
 マット剤の含有量は、樹脂(A)と樹脂(B)の合計量に対して0.05~1.0質量%程度とすることができ、好ましくは0.1~0.8質量%としうる。 The content of the matting agent can be about 0.05 to 1.0% by mass, preferably 0.1 to 0.8% by mass with respect to the total amount of the resin (A) and the resin (B). sell.
 <光学フィルムの物性>
 (厚み)
 光学フィルムの厚みは、偏光板保護フィルムとして用いられる場合、偏光板を薄型化するためなどから、10~60μmであることが好ましく、20~40μmであることがより好ましい。
<Physical properties of optical film>
(Thickness)
When used as a polarizing plate protective film, the thickness of the optical film is preferably 10 to 60 μm and more preferably 20 to 40 μm in order to make the polarizing plate thinner.
 (引張弾性率)
 光学フィルムの、40℃20%RH環境下における面内の方向Xの引張弾性率は、前述の通り、熱による膨脹力を大きくするために、2GPa以上であることが好ましく、3GPa以上であることがより好ましく、3.5GPa以上であることがさらに好ましい。一方、長尺状の光学フィルムを巻き取った際の巻き取り体の形状を良好に維持しやすくするためなどから、光学フィルム面内の方向Xの40℃20%RH環境下における引張弾性率は、6GPa以下であることが好ましく、5.5Gpa以下であることがより好ましい。
(Tensile modulus)
As described above, the tensile elastic modulus of the optical film in the in-plane direction X under the environment of 40 ° C. and 20% RH is preferably 2 GPa or more in order to increase the expansion force due to heat, and is 3 GPa or more. Is more preferably 3.5 GPa or more. On the other hand, in order to easily maintain the shape of the wound body when winding the long optical film, the tensile modulus of elasticity in the direction X in the optical film plane at 40 ° C. and 20% RH is , 6 GPa or less is preferable, and 5.5 GPa or less is more preferable.
 光学フィルム面内の方向Xは、前述の通り、光学フィルムのMD方向であることが好ましく;面内遅相軸方向とそれと直交する方向の少なくとも一方であることがより好ましい。 As described above, the direction X in the optical film plane is preferably the MD direction of the optical film; more preferably at least one of the in-plane slow axis direction and the direction orthogonal thereto.
 光学フィルムの方向Xの40℃20%RH下における引張弾性率は、前述と同様の方法で測定されうる。例えば、光学フィルムのMD方向が既知である場合、
 1)光学フィルムを100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片を得る。MD方向とは、長尺状の光学フィルムの巻き取り体における、光学フィルムの長尺方向を表し;TD方向とは、光学フィルムの幅手方向を表す。
 2)この試験片を、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片のMD方向に引っ張り、当該MD方向の引張弾性率を測定する。測定は、40℃20%RH下で行う。
The tensile elastic modulus at 40 ° C. and 20% RH in the direction X of the optical film can be measured by the same method as described above. For example, when the MD direction of the optical film is known,
1) An optical film is cut out to a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a test piece. The MD direction represents the long direction of the optical film in the wound body of the long optical film; the TD direction represents the width direction of the optical film.
2) In accordance with JIS K7127, this test piece was pulled in the MD direction of the test piece using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction was measured. To do. The measurement is performed at 40 ° C. and 20% RH.
 光学フィルムのMD方向が既知でない場合、試験片の面内の任意の一つの測定方向に引っ張り、当該方向の引張弾性率を測定する。測定方向を0°から180°まで10°ずつ変化させながら、前述と同様にして各測定方向に引っ張り、各測定方向の引張弾性率を測定する。得られた測定値のうち、引張弾性率が2GPa以上となる測定方向を方向Xとする。方向Xの少なくとも一つが、前述のMD方向でありうる。 When the MD direction of the optical film is not known, the optical film is pulled in any one measurement direction within the surface of the test piece, and the tensile elastic modulus in the direction is measured. While changing the measurement direction by 10 ° from 0 ° to 180 °, the sample is pulled in each measurement direction in the same manner as described above, and the tensile elastic modulus in each measurement direction is measured. Of the obtained measurement values, the measurement direction in which the tensile modulus is 2 GPa or more is defined as direction X. At least one of the directions X may be the MD direction described above.
 (CHE/CTE)
 光学フィルムの方向Xの吸湿膨脹係数CHE(単位:ppm/%RH)と、方向Xの熱膨脹係数CTE(単位:ppm/℃)の比CHE/CTEは、前述の通り、加熱下において、「熱による膨脹力」を「水が抜けることによる収縮力」よりも相対的に大きくするために、0.6以下であることが好ましく、0.57以下とすることがより好ましく、0.55以下とすることがさらに好ましい。CHE/CTEは、0以上、好ましくは0.2以上としうる。
(CHE / CTE)
The ratio CHE / CTE between the hygroscopic expansion coefficient CHE (unit: ppm /% RH) in the direction X of the optical film and the thermal expansion coefficient CTE (unit: ppm / ° C.) in the direction X is, as described above, “ In order to make the “expansion force due to water” relatively larger than “the contraction force due to water removal”, it is preferably 0.6 or less, more preferably 0.57 or less, and 0.55 or less. More preferably. CHE / CTE can be 0 or more, preferably 0.2 or more.
 光学フィルムの方向XのCHE/CTEは、前述と同様に、以下の手順で求めることができる。例えば、光学フィルムのMD方向が既知である場合、
 1)光学フィルムを所定のサイズに切り出して、試験片を得る。当該試験片の面内のMD方向のCTE(単位:ppm/℃)を、ASTM E-831またはJIS K7197に準拠して、TMA法によって測定する。
 2)前述と同様にして準備した光学フィルムの試験片を、23℃20%RH下で一定時間(24時間)保存後のMD方向の寸法と、23℃80%RH下で一定時間(24時間)保存後のMD方向の寸法とをそれぞれ測定する。得られた測定値を下記式に当てはめて、光学フィルムのMD方向のCHE(単位:ppm/%RH)を得る(下記式参照)。
 CHE(ppm/%RH)={(23℃80%RH下で保存後の試験片のMD方向寸法-23℃20%RH下で保存後の試験片のMD方向寸法)/23℃20%RH下で保存後の試験片のMD方向寸法}(ppm)/(80-20)(%RH)
 3)前記1)および2)で得られた光学フィルムのCTEとCHEから、光学フィルムのMD方向のCHE/CTEを算出する。
The CHE / CTE in the direction X of the optical film can be obtained by the following procedure as described above. For example, when the MD direction of the optical film is known,
1) Cut an optical film into a predetermined size to obtain a test piece. The in-plane MD direction CTE (unit: ppm / ° C.) of the test piece is measured by the TMA method according to ASTM E-831 or JIS K7197.
2) The optical film test piece prepared in the same manner as described above was stored in the MD direction after being stored at 23 ° C. and 20% RH for a certain period of time (24 hours). ) Measure the dimensions in the MD direction after storage. The obtained measured value is applied to the following formula to obtain CHE (unit: ppm /% RH) in the MD direction of the optical film (see the following formula).
CHE (ppm /% RH) = {(MD direction dimension of specimen after storage at 23 ° C. and 80% RH−MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen in MD direction after storage} (ppm) / (80-20) (% RH)
3) The CHE / CTE in the MD direction of the optical film is calculated from the CTE and CHE of the optical film obtained in 1) and 2) above.
 光学フィルムのMD方向が既知でない場合、試験片の面内の任意の一方向のCTE、CHEをそれぞれ測定し、CHE/CTEを算出する。測定方向を0°から180°まで10°ずつ変化させながら、前述と同様にして各測定方向のCTE、CHEをそれぞれ測定し、CHE/CTEを算出する。得られた測定値のうち、CHE/CTEが0.6以下となる測定方向を方向Xとする。方向Xの少なくとも一つが、前述のMD方向でありうる。 When the MD direction of the optical film is not known, CTE and CHE in any one direction within the surface of the test piece are measured, and CHE / CTE is calculated. While changing the measurement direction by 10 ° from 0 ° to 180 °, CTE and CHE in each measurement direction are measured in the same manner as described above to calculate CHE / CTE. Among the obtained measurement values, a measurement direction in which CHE / CTE is 0.6 or less is defined as direction X. At least one of the directions X may be the MD direction described above.
 (Tg)
 光学フィルムのガラス転移温度Tgは、下記式(1)~(3)を同時に満たすことが好ましい。Tgが100℃以上である光学フィルムは、良好な耐熱性を有するからである。
 (式1)Ta>Tg>Tb
 (式2)Ta≧Tb+80
 (式3)150≧Tg≧100
(Tg)
The glass transition temperature Tg of the optical film preferably satisfies the following formulas (1) to (3) at the same time. This is because an optical film having a Tg of 100 ° C. or higher has good heat resistance.
(Formula 1) Ta>Tg> Tb
(Formula 2) Ta ≧ Tb + 80
(Formula 3) 150 ≧ Tg ≧ 100
 光学フィルムのTgは、前述と同様に、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、JIS K7121(1987)に準拠した方法で、中間点ガラス転移温度(Tmg)として測定されうる。昇温速度は、20℃/分としうる。 As described above, Tg of the optical film is a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 manufactured by Perkin Elmer) as a midpoint glass transition temperature (Tmg). Can be measured. The heating rate can be 20 ° C./min.
 (レターデーション)
 光学フィルムの、測定波長590nm、23℃55%RHの条件下で測定される面内方向のレターデーションRは、0nm以上20nm以下であることが好ましく、0nm以上10nm以下であることがより好ましい。光学フィルムの、測定波長590nm、23℃55%RHの条件下で測定される厚み方向のレターデーションRthは、0nm以上80nm以下であることが好ましく、0nm以上50nm以下であることがより好ましい。このようなレターデーション値を有する光学フィルムは、後述するように、液晶表示装置の偏光板保護フィルム(F1またはF4)として好ましく用いられる。
(Retardation)
The retardation R 0 in the in-plane direction measured under the conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH of the optical film is preferably 0 nm or more and 20 nm or less, and more preferably 0 nm or more and 10 nm or less. . The thickness direction retardation Rth of the optical film measured under conditions of a measurement wavelength of 590 nm and 23 ° C. and 55% RH is preferably 0 nm or more and 80 nm or less, and more preferably 0 nm or more and 50 nm or less. The optical film having such a retardation value is preferably used as a polarizing plate protective film (F1 or F4) for a liquid crystal display device, as will be described later.
 レターデーションRおよびRthは、それぞれ以下の式で定義される。
 式(I):R=(nx-ny)×d(nm)
 式(II):Rth={(nx+ny)/2-nz}×d(nm)
 (式(I)および(II)において、
 nxは、フィルムの面内方向において屈折率が最大になる遅相軸方向xにおける屈折率を表し;
 nyは、フィルムの面内方向において前記遅相軸方向xと直交する方向yにおける屈折率を表し;
 nzは、フィルムの厚み方向zにおける屈折率を表し;
 d(nm)は、フィルムの厚みを表す)
Retardation R0 and Rth are defined by the following equations, respectively.
Formula (I): R 0 = (nx−ny) × d (nm)
Formula (II): Rth = {(nx + ny) / 2−nz} × d (nm)
(In formulas (I) and (II),
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the in-plane direction of the film;
ny represents the refractive index in the direction y perpendicular to the slow axis direction x in the in-plane direction of the film;
nz represents the refractive index in the thickness direction z of the film;
d (nm) represents the thickness of the film)
 レターデーションRおよびRthは、例えば以下の方法によって求めることができる。
 1)光学フィルムを、23℃55%RHで調湿する。調湿後の光学フィルムの平均屈折率をアッベ屈折計などで測定する。
 2)調湿後の光学フィルムに、当該フィルム表面の法線に平行に測定波長590nmの光を入射させたときのRを、KOBRA21DH、王子計測(株)にて測定する。
 3)KOBRA21ADHにより、光学フィルムの面内遅相軸を傾斜軸(回転軸)として、光学フィルムの表面の法線に対してθの角度(入射角(θ))から測定波長590nmの光を入射させたときのレターデーション値R(θ)を測定する。光学フィルムの面内遅相軸とは、光学フィルム面内で屈折率が最大となる方向の遅相軸をいい、好ましくはMD方向でありうる。レターデーション値R(θ)の測定は、θが0°~50°の範囲で、10°毎に6点行うことができる。光学フィルムの面内遅相軸は、KOBRA21ADHにより確認することができる。
 4)測定されたRおよびR(θ)と、前述の平均屈折率と膜厚とから、KOBRA21ADHにより、nx、nyおよびnzを算出して、測定波長590nmでのRthを算出する。レターデーションの測定は、23℃55%RH条件下で行うことができる。
The retardations R0 and Rth can be determined by the following method, for example.
1) The optical film is conditioned at 23 ° C. and 55% RH. The average refractive index of the optical film after humidity adjustment is measured with an Abbe refractometer or the like.
The optical film after 2) humidity, measuring the R 0 when the light is incident in parallel to the measurement wavelength 590nm to normal of the film surface, KOBRA21DH, in Oji Scientific Corporation.
3) With KOBRA21ADH, the in-plane slow axis of the optical film is used as the tilt axis (rotation axis), and light with a measurement wavelength of 590 nm is incident from the angle of θ (incident angle (θ)) with respect to the normal of the optical film surface. The retardation value R (θ) when measured is measured. The in-plane slow axis of the optical film refers to a slow axis in the direction in which the refractive index is maximum in the optical film plane, and may preferably be the MD direction. The retardation value R (θ) can be measured at 6 points every 10 ° in the range of 0 ° to 50 °. The in-plane slow axis of the optical film can be confirmed by KOBRA21ADH.
4) nx, ny, and nz are calculated by KOBRA21ADH from the measured R 0 and R (θ) and the above-described average refractive index and film thickness, and Rth at a measurement wavelength of 590 nm is calculated. The measurement of retardation can be performed under conditions of 23 ° C. and 55% RH.
 光学フィルムの面内遅相軸と光学フィルムの幅手方向とのなす角θ1(配向角)は、好ましくは-1°~+1°であり、さらに好ましくは-0.5°~+0.5°である。光学フィルムの配向角θ1の測定は、自動複屈折計KOBRA-WR(王子計測機器)を用いて測定することができる。 The angle θ1 (orientation angle) formed by the in-plane slow axis of the optical film and the width direction of the optical film is preferably −1 ° to + 1 °, more preferably −0.5 ° to + 0.5 °. It is. The orientation angle θ1 of the optical film can be measured using an automatic birefringence meter KOBRA-WR (Oji Scientific Instruments).
 (ヘイズ)
 光学フィルムのヘイズは、1.0%以下であることが好ましく、0.5%以下であることがさらに好ましい。光学フィルムのヘイズは、JIS K-7136に準拠して、ヘイズメーター(濁度計)(型式:NDH 2000、日本電色(株)製)にて測定されうる。
(Haze)
The haze of the optical film is preferably 1.0% or less, and more preferably 0.5% or less. The haze of the optical film can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
 (全光線透過率)
 光学フィルムの全光線透過率は、好ましくは90%以上であり、より好ましくは93%以上である。
(Total light transmittance)
The total light transmittance of the optical film is preferably 90% or more, and more preferably 93% or more.
 光学フィルムは、偏光板保護フィルムとして好ましく用いられうる。偏光板保護フィルムの例には、位相差制御機能を有しない保護フィルムだけでなく、位相差制御機能を有する位相差フィルムなども含まれる。 The optical film can be preferably used as a polarizing plate protective film. Examples of the polarizing plate protective film include not only a protective film having no retardation control function but also a retardation film having a retardation control function.
 2.光学フィルムの製造方法
 本発明の光学フィルムは、溶液流延製膜法で製造されても、溶融流延製膜法で製造されてもよい。高温での溶融が不要であり、比較的分子量の大きい樹脂(A)や(B)でも製膜しやすいことから、本発明の光学フィルムは、溶液流延製膜法で製造されることが好ましい。
2. Method for Producing Optical Film The optical film of the present invention may be produced by a solution casting method or by a melt casting method. It is preferable that the optical film of the present invention is produced by a solution casting film forming method because melting at a high temperature is unnecessary and it is easy to form a film with a relatively high molecular weight resin (A) or (B). .
 即ち、本発明の光学フィルムの溶液流延製膜法による製造工程は、1)上記各成分を溶剤に溶解させてドープを得る工程、2)該ドープを無端状の金属支持体上に流延した後、乾燥させて膜状物を得る工程、3)得られた膜状物を、金属支持体から剥離する工程、4)剥離した膜状物を延伸する工程を含む。 That is, the production process of the optical film of the present invention by the solution casting film forming method includes 1) a process of obtaining the dope by dissolving each of the above components in a solvent, and 2) casting the dope on an endless metal support. After that, the method includes a step of drying to obtain a film-like material, 3) a step of peeling the obtained film-like material from the metal support, and 4) a step of stretching the peeled film-like material.
 1)溶解工程
 有機溶媒に、前述の各成分を添加しながら攪拌および溶解させてドープを調製する。
1) Dissolution Step A dope is prepared by stirring and dissolving the above-mentioned components in an organic solvent while adding them.
 ドープの調製に用いられる有機溶媒は、前述の樹脂(A)や(B)などを含む上記各成分を溶解するものであれば、制限なく用いることができる。 The organic solvent used for the preparation of the dope can be used without limitation as long as it dissolves the above-described components including the above-described resins (A) and (B).
 有機溶媒の例には、ジクロロメタンなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタンなどの非塩素系有機溶媒などが含まれる。なかでも、ジクロロメタン、酢酸メチル、酢酸エチルおよびアセトンが好ましい。 Examples of organic solvents include chlorinated organic solvents such as dichloromethane; methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2, 2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl- Non-chlorine organic solvents such as 2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, etc. included. Of these, dichloromethane, methyl acetate, ethyl acetate and acetone are preferred.
 有機溶媒には、1~40質量%の炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールがさらに含まれてもよい。これらの脂肪族アルコールをドープ中に含有させることで、膜状物がゲル化し、金属支持体からの剥離を容易にしやすい。 The organic solvent may further contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. By containing these aliphatic alcohols in the dope, the film-like material is gelled and easily peeled off from the metal support.
 炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールの例には、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、s-ブタノール、t-ブタノール等が含まれる。なかでも、ドープの安定性に寄与し、沸点も比較的低く、乾燥性が高いことなどから、エタノールやブタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, s-butanol, t-butanol and the like. Of these, ethanol and butanol are preferred because they contribute to the stability of the dope, have a relatively low boiling point, and have a high drying property.
 有機溶媒は、ジクロロメタンと炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとの混合物であることが好ましい。 The organic solvent is preferably a mixture of dichloromethane and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
 樹脂(A)または(B)の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上の温度で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載されている冷却溶解法を適用して行う方法、特開平11-21379号公報に記載されている高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For dissolution of the resin (A) or (B), a method performed at normal pressure, a method performed at a temperature lower than the boiling point of the main solvent, a method performed at a temperature higher than the boiling point of the main solvent, JP-A-9-95544, Various methods such as a method performed by applying the cooling dissolution method described in JP-A-9-95557 or JP-A-9-95538, a method performed at high pressure described in JP-A-11-21379, etc. Although a dissolution method can be used, a method in which pressure is applied at a temperature equal to or higher than the boiling point of the main solvent is particularly preferable.
 ドープ中の樹脂(A)と(B)の合計濃度は、ドープ全質量に対し15~45質量%の範囲としうる。 The total concentration of the resins (A) and (B) in the dope can be in the range of 15 to 45% by mass with respect to the total mass of the dope.
 ドープに添加剤を加えて溶解および分散させた後、得られたドープを濾材で濾過する。次いで、濾過したドープを脱泡した後、送液ポンプで送液する。用いられる濾材は、捕集粒子径が0.5~5μmの範囲内で、かつ濾水時間が10~25sec/100mlの範囲内にあるものが好ましい。上記濾材を用いることで、ドープ分散時に残存する凝集物やドープ調製時に生じる凝集物を、効率的に除去できる。 After adding and dissolving the additive in the dope, the obtained dope is filtered with a filter medium. Next, the filtered dope is defoamed, and then fed by a liquid feed pump. The filter medium used preferably has a collected particle diameter in the range of 0.5 to 5 μm and a drainage time in the range of 10 to 25 sec / 100 ml. By using the filter medium, aggregates remaining at the time of dope dispersion and aggregates generated at the time of dope preparation can be efficiently removed.
 2)流延工程
 得られたドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液する。そして、ドープを、加圧ダイのスリットから無端状の金属支持体上に流延する。金属支持体は、例えばステンレスベルトなどの金属ベルトであってもよいし;回転する金属ドラムなどであってもよい。
2) Casting step The obtained dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope is cast on the endless metal support from the slit of the pressure die. The metal support may be, for example, a metal belt such as a stainless steel belt; it may be a rotating metal drum or the like.
 加圧ダイの例には、コートハンガーダイやTダイ等が含まれる。金属支持体の表面は鏡面であることが好ましい。 Examples of pressure dies include coat hanger dies and T dies. The surface of the metal support is preferably a mirror surface.
 次いで、流延されたドープを金属支持体上で加熱し、溶媒を蒸発させて膜状物を得る。 Next, the cast dope is heated on a metal support, and the solvent is evaporated to obtain a film.
 溶媒を蒸発させる方法は、ドープの表面に風を吹かせる方法、金属支持体の裏面から液体により伝熱させる方法、輻射熱によりドープの表裏から伝熱する方法等がある。なかでも、乾燥効率が高いことから、金属支持体の裏面から液体により伝熱する方法が好ましい。 The method of evaporating the solvent includes a method of blowing air on the surface of the dope, a method of transferring heat from the back surface of the metal support by a liquid, a method of transferring heat from the front and back of the dope by radiant heat, and the like. Especially, since the drying efficiency is high, the method of transferring heat with a liquid from the back surface of the metal support is preferable.
 金属支持体上でのドープの乾燥は、40~100℃の雰囲気下で行うことが好ましい。40~100℃の雰囲気とするには、この温度の温風を、ドープ膜の表面に当てるか、赤外線を当てるなどによりドープを加熱することが好ましい。 The drying of the dope on the metal support is preferably performed in an atmosphere of 40 to 100 ° C. In order to obtain an atmosphere of 40 to 100 ° C., it is preferable to heat the dope by applying warm air of this temperature to the surface of the dope film or applying infrared rays.
 3)剥離工程
 金属支持体上で溶媒を蒸発させて得られた膜状物を、剥離位置で剥離する。得られる膜状物の面品質や剥離性を高める観点などから、流延後30~120秒以内で膜状物を金属支持体から剥離することが好ましい。
3) Stripping step The film-like material obtained by evaporating the solvent on the metal support is stripped at the stripping position. From the viewpoint of improving the surface quality and peelability of the obtained film-like material, it is preferable to peel the film-like material from the metal support within 30 to 120 seconds after casting.
 金属支持体上から剥離する際の膜状物の残留溶媒量は、乾燥の条件の強弱、金属支持体の長さなどにもよるが、概ね50~120質量%であることが好ましい。残留溶媒量がより多い時点で剥離する場合、膜状物が柔らか過ぎると、剥離時に不均一に伸びるなどして平面性を損ないやすく、剥離張力によるツレや縦スジが発生し易い。従って、平面性を損なわない範囲で剥離時の残留溶媒量が決められうる。 The amount of the residual solvent of the film-like material upon peeling from the metal support is preferably about 50 to 120% by mass, although it depends on the strength of drying conditions and the length of the metal support. When the film is peeled off when the amount of the residual solvent is larger, if the film-like material is too soft, the flatness is liable to be lost due to nonuniform elongation at the time of peeling, and slippage and vertical stripes due to peeling tension are likely to occur. Therefore, the residual solvent amount at the time of peeling can be determined within a range that does not impair the flatness.
 膜状物の残留溶媒量は、下式で定義される。
  残留溶媒量(%)=(膜状物の加熱処理前質量-膜状物の加熱処理後質量)/(膜状物の加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱処理を行うことを表す。
The amount of residual solvent in the film is defined by the following formula.
Residual solvent amount (%) = (mass before heat treatment of film-like material−mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 140 ° C. for 1 hour.
 金属支持体から膜状物を剥離する際の剥離張力は、通常、196~245N/mであることが好ましい。剥離の際に皺が入り易い場合、剥離張力は、190N/m以下とすることが好ましい。 The peeling tension when peeling the film-like material from the metal support is usually preferably 196 to 245 N / m. In the case where wrinkles easily occur during peeling, the peeling tension is preferably 190 N / m or less.
 金属支持体の剥離位置における膜状物の温度は、-50~40℃であることが好ましく、10~40℃であることがより好ましく、15~30℃であることがさらに好ましい。 The temperature of the film-like material at the peeling position of the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and further preferably 15 to 30 ° C.
 4)乾燥および延伸工程
 剥離された膜状物を、テンター延伸装置内を搬送させながら乾燥させるか、あるいは乾燥装置内に複数配置したローラーで搬送させながら乾燥させる。乾燥方法は、特に制限されないが、膜状物の両面に熱風を吹かせる方法が一般的である。
4) Drying and stretching step The peeled film-like material is dried while being transported in the tenter stretching apparatus, or is dried while being transported by a plurality of rollers arranged in the drying apparatus. The drying method is not particularly limited, but a method of blowing hot air on both surfaces of the film-like material is common.
 急激な乾燥は、得られるフィルムの平面性を損ない易いことから、高温による乾燥は、残留溶媒が8質量%以下となった条件で行うのが好ましい。乾燥工程全体を通して、乾燥温度は、好ましくは40~250℃の範囲、より好ましくは40~200℃の範囲である。 Since rapid drying tends to impair the flatness of the resulting film, drying at a high temperature is preferably performed under conditions where the residual solvent is 8% by mass or less. Throughout the drying process, the drying temperature is preferably in the range of 40-250 ° C, more preferably in the range of 40-200 ° C.
 乾燥後に得られた膜状物を、さらに延伸することが好ましい。延伸を行うことで、樹脂(A)や樹脂(B)の配向度を高め、得られるフィルムの引張弾性率を高めやすい。 It is preferable to further stretch the film-like material obtained after drying. By stretching, it is easy to increase the degree of orientation of the resin (A) or the resin (B) and to increase the tensile modulus of the resulting film.
 延伸は、少なくとも前述の方向Xに行うことが好ましい。方向Xは、流延方向(MD方向)と幅手方向(TD方向)のいずれであってもよい。延伸方向は、一つであってもよいし、二以上であってもよい。二方向への延伸(二軸延伸)は、流延方向(MD方向)と幅手方向(TD方向)にそれぞれ行うことが好ましい。二軸延伸は、同時二軸延伸であってもよいし、段階的な二軸延伸(逐次二軸延伸)であってもよい。 The stretching is preferably performed at least in the direction X described above. The direction X may be either the casting direction (MD direction) or the width direction (TD direction). There may be one stretching direction or two or more stretching directions. Stretching in two directions (biaxial stretching) is preferably performed in the casting direction (MD direction) and the width direction (TD direction), respectively. The biaxial stretching may be simultaneous biaxial stretching or stepwise biaxial stretching (sequential biaxial stretching).
 段階的な二軸延伸には、延伸方向の異なる延伸を順次行うことや;同一方向の延伸を多段階に分割して行うことが含まれる。段階的な二軸延伸の例には、次のようなものが含まれる。
 a)流延方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
 b)幅手方向に延伸→幅手方向に延伸→流延方向に延伸→流延方向に延伸
Stepwise biaxial stretching includes sequentially performing stretching in different stretching directions; and performing stretching in the same direction in multiple stages. Examples of stepwise biaxial stretching include the following.
a) Stretch in the casting direction → Stretch in the width direction → Stretch in the casting direction → Stretch in the casting direction b) Stretch in the width direction → Stretch in the width direction → Stretch in the casting direction → Stretch in the casting direction
 延伸倍率は、流延方向(MD方向)と幅手方向(TD方向)の合計で、好ましくは110%~400%の範囲であり、より好ましくは120~300%の範囲であり、さらに好ましくは130~250%の範囲である。延伸倍率を高くすることで、得られるフィルムの引張弾性率を高くしやすく;CHE/CTEを低くしやすい。延伸倍率(%)は、延伸後の膜状物の(延伸方向の)長さ/延伸前の膜状物の(延伸方向の)長さ×100で定義される。そして、延伸倍率の合計は、例えば流延方向の延伸倍率が110%、幅手方向の延伸倍率が120%である場合、それらの和;100+(10+20)=130%として定義される。 The stretching ratio is the total of the casting direction (MD direction) and the width direction (TD direction), preferably in the range of 110% to 400%, more preferably in the range of 120 to 300%, and still more preferably It is in the range of 130 to 250%. By increasing the draw ratio, it is easy to increase the tensile modulus of the resulting film; it is easy to decrease CHE / CTE. The draw ratio (%) is defined as the length of the film-like product after stretching (in the drawing direction) / the length of the film-like material before drawing (in the drawing direction) × 100. For example, when the draw ratio in the casting direction is 110% and the draw ratio in the width direction is 120%, the sum of the draw ratios is defined as the sum thereof; 100+ (10 + 20) = 130%.
 延伸温度は、光学フィルムのTg~(Tg+50)℃であることが好ましく、Tg~(Tg+40)℃であることがより好ましい。具体的には、セルロースエステルを主成分とする光学フィルムを得る場合、延伸温度は100~200℃程度としうる。 The stretching temperature is preferably Tg to (Tg + 50) ° C. of the optical film, and more preferably Tg to (Tg + 40) ° C. Specifically, when an optical film containing cellulose ester as a main component is obtained, the stretching temperature can be about 100 to 200 ° C.
 テンター延伸装置で延伸を行う場合、テンター延伸開始時の膜状物の残留溶媒量は、20~100質量%であることが好ましい。さらに、膜状物の残留溶媒量が10質量%以下になるまで、好ましくは5質量%以下になるまで乾燥を行うことが好ましい。乾燥温度は、30~160℃の範囲が好ましく、50~150℃の範囲がより好ましい。 When stretching with a tenter stretching apparatus, the residual solvent amount of the film-like material at the start of tenter stretching is preferably 20 to 100% by mass. Furthermore, it is preferable to dry until the amount of residual solvent in the film-like material is 10% by mass or less, preferably 5% by mass or less. The drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
 5)巻き取り工程
 光学フィルムは、長尺状で提供されてもよいし、枚葉状で提供されてもよい。長尺状の光学フィルムは、通常、長尺方向にロール状に巻き取って巻き取り体とされうる。フィルムの巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを適宜選択して、単独、あるいは組み合わせて行えばよい。
5) Winding process The optical film may be provided in a long shape or in a single sheet shape. The long optical film can usually be wound into a roll in the long direction to form a wound body. The film winding method may be a commonly used one, such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like. Or in combination.
 長尺状の光学フィルムの長さは100~10000mの範囲としうる。長尺状の光学フィルムの幅は、1~4mの範囲、好ましくは1.4~3mの範囲としうる。 The length of the long optical film can be in the range of 100 to 10,000 m. The width of the long optical film can be in the range of 1 to 4 m, preferably in the range of 1.4 to 3 m.
 3.偏光板
 本発明の偏光板は、偏光子と、偏光板保護フィルムとを含む。
3. Polarizing plate The polarizing plate of this invention contains a polarizer and a polarizing plate protective film.
 <偏光子について>
 偏光子は、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムである。ポリビニルアルコール系偏光フィルムには、ポリビニルアルコール系フィルムにヨウ素を染色させたものと、二色性染料を染色させたものとがある。
<About the polarizer>
A polarizer is an element that passes only light having a plane of polarization in a certain direction, and a typical polarizer known at present is a polyvinyl alcohol polarizing film. The polyvinyl alcohol polarizing film includes those obtained by dyeing iodine on a polyvinyl alcohol film and those obtained by dyeing a dichroic dye.
 ポリビニルアルコール系偏光フィルムは、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素または二色性染料で染色したフィルム(好ましくはさらにホウ素化合物で耐久性処理を施したフィルム)であってもよいし;ポリビニルアルコール系フィルムをヨウ素または二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。 The polyvinyl alcohol polarizing film may be a film (preferably a film further subjected to durability treatment with a boron compound) dyed with iodine or a dichroic dye after uniaxially stretching the polyvinyl alcohol film; A film obtained by dying an alcohol film with iodine or a dichroic dye and then uniaxially stretching (preferably a film further subjected to a durability treatment with a boron compound) may be used.
 偏光子の厚みは、2~30μmであることが好ましく、偏光板を薄型化するためなどから、5~25μmであることがより好ましい。 The thickness of the polarizer is preferably 2 to 30 μm, and more preferably 5 to 25 μm in order to reduce the thickness of the polarizing plate.
 <偏光板保護フィルムについて>
 偏光板保護フィルムは、偏光子の少なくとも一方の面に直接または他の層を介して配置されうる。偏光板保護フィルムは、本発明の光学フィルムとしうる。
<About polarizing plate protective film>
The polarizing plate protective film may be disposed directly or via another layer on at least one surface of the polarizer. The polarizing plate protective film can be used as the optical film of the present invention.
 偏光板保護フィルムと偏光子の積層は、偏光板保護フィルムの面内の方向Xと偏光子の吸収軸方向とが互いに平行になるように行うことが好ましい。偏光板保護フィルムの面内の方向Xは、「偏光板保護フィルムのCHE/CTEが0.6以下となり、かつ40℃での引張弾性率が2~6GPaとなる方向」であり;偏光板保護フィルムのMD方向であることが好ましく、面内遅相軸方向とそれと直交する方向の少なくとも一方であることがより好ましい。 The lamination of the polarizing plate protective film and the polarizer is preferably performed so that the in-plane direction X of the polarizing plate protective film and the absorption axis direction of the polarizer are parallel to each other. The in-plane direction X of the polarizing plate protective film is “the direction in which the CHE / CTE of the polarizing plate protective film is 0.6 or less and the tensile elastic modulus at 40 ° C. is 2 to 6 GPa”; It is preferably the MD direction of the film, and more preferably at least one of the in-plane slow axis direction and the direction orthogonal thereto.
 <位相差フィルムについて>
 偏光子の、偏光板保護フィルムが配置されていない他方の面には、位相差フィルムがさらに配置されうる。
<About retardation film>
A retardation film may be further disposed on the other surface of the polarizer where the polarizing plate protective film is not disposed.
 位相差フィルムは、特に制限されず、例えばセルロースエステルフィルムでありうる。セルロースエステルフィルムに含まれるセルロースエステルの例には、セルローストリアセテート、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートベンゾエート、セルロースアセテートプロピオネートベンゾエート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートビフェニレート、セルロースアセテートプロピオネートビフェニレートなどが含まれる。 The retardation film is not particularly limited, and may be, for example, a cellulose ester film. Examples of cellulose esters contained in the cellulose ester film include cellulose triacetate, cellulose diacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate benzoate, cellulose acetate propionate benzoate, cellulose propionate, and cellulose butyrate. , Cellulose acetate biphenylate, cellulose acetate propionate biphenylate, and the like.
 セルロースエステルは、総アシル基置換度が1.5以上2.5以下であることが好ましく、下記式(a)と(b)とを同時に満たすことがより好ましい。
  式(a)  2.0≦X+Y≦2.5
  式(b)  0≦Y≦1.5(式中、Xはアセチル基の置換度を示し、Yはプロピオニル基またはブチリル基、もしくはそれらの混合物の置換度を示す)
The cellulose ester preferably has a total acyl group substitution degree of 1.5 or more and 2.5 or less, and more preferably satisfies the following formulas (a) and (b).
Formula (a) 2.0 ≦ X + Y ≦ 2.5
Formula (b) 0 ≦ Y ≦ 1.5 (wherein X represents the degree of substitution of the acetyl group, and Y represents the degree of substitution of the propionyl group or butyryl group, or a mixture thereof)
 セルロースエステルの重量平均分子量(Mw)は、フィルム強度と製膜時の適正粘度との観点から、7.5万以上であることが好ましく、10万~100万であることがより好ましく、10万~50万であることが特に好ましい。 The weight average molecular weight (Mw) of the cellulose ester is preferably 75,000 or more, more preferably 100,000 to 1,000,000, from the viewpoints of film strength and appropriate viscosity during film formation. It is particularly preferable that it is ˜500,000.
 位相差フィルムは、市販品であってもよい。例えば、バーティカルアライメント(VA)用位相差フィルムとしては、コニカミノルタタック KC8UCR3、KC8UCR4、KC8UCR5、KC4FR、KC4KR、KC4DR、KC4SR(以上、コニカミノルタ(株)製)等が挙げられる。その他、VA用位相差フィルム以外で使用できるフィルムとしては、KC4UE、KC8UE、KC8UX、KC5UX、KC8UY、KC4UY、KC4CZ、KC6UA、KC4UA、KC2UA(以上、コニカミノルタ(株)製)等を用いることができる。 The retardation film may be a commercially available product. For example, examples of the retardation film for vertical alignment (VA) include Konica Minoltak KC8UCR3, KC8UCR4, KC8UCR5, KC4FR, KC4KR, KC4DR, KC4SR (above, manufactured by Konica Minolta Co., Ltd.). In addition, as a film that can be used other than the retardation film for VA, KC4UE, KC8UE, KC8UX, KC5UX, KC8UY, KC4UY, KC4CZ, KC6UA, KC4UA (above, manufactured by Konica Minolta Co., Ltd.) and the like can be used. .
 セルロースエステルフィルムは、単層フィルムであってもよいし;積層フィルムであってもよい。セルロースエステルフィルムが積層フィルムである場合、低置換度のセルロースエステルを主成分とするコア層と、その両面に配置され、高置換度のセルロースエステルを主成分とするスキン層との積層物であることが好ましい。低置換度のセルロースエステルは、上記式(a)と(b)を満たすことが好ましく、高置換度のセルロースエステルは、総アシル基置換度が2.5超であることが好ましく、2.7以上2.98以下であることが好ましく、セルロースエステルに含まれるアシル基はすべてアセチル基であることが好ましい。 The cellulose ester film may be a single layer film or a laminated film. When the cellulose ester film is a laminated film, it is a laminate of a core layer mainly composed of a cellulose ester having a low degree of substitution and a skin layer mainly composed of a cellulose ester having a high degree of substitution disposed on both sides thereof. It is preferable. The cellulose ester having a low degree of substitution preferably satisfies the above formulas (a) and (b), and the cellulose ester having a high degree of substitution preferably has a total acyl group substitution degree of more than 2.5, and preferably 2.7. It is preferable that it is 2.98 or less, and it is preferable that all acyl groups contained in the cellulose ester are acetyl groups.
 位相差フィルムのレターデーションは、組み合わされる液晶セルの種類に応じて設定されうる。例えば、位相差フィルムの、23℃RH55%下、波長590nmで測定される面内方向のレターデーションRo(590)は30~150nmの範囲であることが好ましく、厚さ方向のレターデーションRt(590)は70~300nmの範囲であることが好ましい。レターデーションが上記範囲である位相差フィルムは、例えばVA型液晶セルなどの位相差フィルムとして好ましく用いることができる。面内方向のレターデーションRoと厚さ方向のレターデーションRtは、前述と同様に定義および測定されうる。 The retardation of the retardation film can be set according to the type of liquid crystal cell to be combined. For example, the retardation Ro (590) in the in-plane direction measured at a wavelength of 590 nm at 23 ° C. and 55% RH is preferably in the range of 30 to 150 nm, and the retardation Rt (590 in the thickness direction). ) Is preferably in the range of 70 to 300 nm. A retardation film having a retardation in the above range can be preferably used as a retardation film such as a VA liquid crystal cell. The retardation Ro in the in-plane direction and the retardation Rt in the thickness direction can be defined and measured in the same manner as described above.
 位相差フィルムの厚みは、特に限定はないが、10~250μmであることが好ましく、10~100μmであることがより好ましく、30~60μmであることが特に好ましい。 The thickness of the retardation film is not particularly limited, but is preferably 10 to 250 μm, more preferably 10 to 100 μm, and particularly preferably 30 to 60 μm.
 本発明の偏光板は、液晶表示装置に好ましく用いられる。本発明の偏光板は、偏光板保護フィルムが、液晶セルとは反対側(液晶セルと接着されない側)となるように配置して用いられうる。 The polarizing plate of the present invention is preferably used for a liquid crystal display device. The polarizing plate of the present invention can be used by being disposed so that the polarizing plate protective film is on the side opposite to the liquid crystal cell (side not bonded to the liquid crystal cell).
 偏光板は、偏光板保護フィルムと偏光子とを貼り合わせるステップを経て得ることができる。偏光板保護フィルムと偏光子との貼り合わせは、完全鹸化型のポリビニルアルコ-ル系接着剤、アセトアセチル基変性ポリビニルアルコール系接着剤や、活性エネルギー線硬化性接着剤などを用いて行うことができる。活性エネルギー線硬化性接着剤を用いる場合、活性エネルギー線硬化性接着剤の硬化物層の厚みは、通常、0.01~10μmの範囲であり、好ましくは0.5~5μmの範囲である。 The polarizing plate can be obtained through a step of bonding a polarizing plate protective film and a polarizer. The polarizing plate protective film and the polarizer may be bonded using a completely saponified polyvinyl alcohol adhesive, an acetoacetyl group-modified polyvinyl alcohol adhesive, an active energy ray-curable adhesive, or the like. it can. When an active energy ray-curable adhesive is used, the thickness of the cured layer of the active energy ray-curable adhesive is usually in the range of 0.01 to 10 μm, and preferably in the range of 0.5 to 5 μm.
 4.液晶表示装置
 本発明の液晶表示装置は、液晶セルと、それを挟持する一対の偏光板とを含む。そして、一対の偏光板の少なくとも一方を本発明の偏光板としうる。
4). Liquid Crystal Display Device The liquid crystal display device of the present invention includes a liquid crystal cell and a pair of polarizing plates that sandwich the liquid crystal cell. And at least one of a pair of polarizing plates can be used as the polarizing plate of the present invention.
 図1は、液晶表示装置の基本的な構成の一例を示す模式図である。図1に示されるように、本発明の液晶表示装置10は、液晶セル30と、それを挟持する第一の偏光板50および第二の偏光板70と、バックライト90とを含む。 FIG. 1 is a schematic diagram showing an example of a basic configuration of a liquid crystal display device. As shown in FIG. 1, the liquid crystal display device 10 of the present invention includes a liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 that sandwich the liquid crystal cell 30, and a backlight 90.
 液晶セル30は、一対の透明基板31および33と、それらの間に挟持された液晶層35とを有する。透明基板31および33は、ガラス基板であることが好ましい。ガラス基板の厚みは、液晶表示装置を薄型化するためなどから、一定以下であることが好ましく、0.3mm以上0.7mm未満であることが好ましく、0.3~0.5mmであることがより好ましい。 The liquid crystal cell 30 has a pair of transparent substrates 31 and 33 and a liquid crystal layer 35 sandwiched between them. The transparent substrates 31 and 33 are preferably glass substrates. The thickness of the glass substrate is preferably not more than a certain value in order to reduce the thickness of the liquid crystal display device, preferably not less than 0.3 mm and less than 0.7 mm, and preferably 0.3 to 0.5 mm. More preferred.
 液晶セル30の表示モードは、例えばSTN、TN、OCB、HAN、VA(MVA、PVA)、IPS等の種々の表示モードであってよく、高いコントラストを得るためにはVA(MVA、PVA)モードであることが好ましい。 The display mode of the liquid crystal cell 30 may be various display modes such as STN, TN, OCB, HAN, VA (MVA, PVA), and IPS. For obtaining high contrast, the VA (MVA, PVA) mode is used. It is preferable that
 液晶セル30がVA方式の液晶セルである場合、一対の透明基板のうち一方には、液晶分子に電圧を印加するための画素電極が配置される。対向電極は、(画素電極が配置された)前記一方の透明基板に配置されてもよいし、他方の透明基板に配置されてもよい。 When the liquid crystal cell 30 is a VA liquid crystal cell, a pixel electrode for applying a voltage to the liquid crystal molecules is disposed on one of the pair of transparent substrates. The counter electrode may be disposed on the one transparent substrate (where the pixel electrode is disposed) or may be disposed on the other transparent substrate.
 液晶セル30がVA方式の液晶セルである場合、液晶層は、負または正の誘電率異方性を有する液晶分子を含む。液晶分子は、透明基板の液晶層側の面に設けられた配向膜の配向規制力により、電圧無印加時(画素電極と対向電極との間に電界が生じていない時)には、液晶分子の長軸が、透明基板の表面に対して略垂直となるように配向している。 When the liquid crystal cell 30 is a VA liquid crystal cell, the liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy. The liquid crystal molecules are liquid crystal molecules when no voltage is applied (when an electric field is not generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate. Are oriented so that their long axes are substantially perpendicular to the surface of the transparent substrate.
 そして、画素電極に画像信号(電圧)を印加することで、画素電極と対向電極との間に電界を生じさせる。これにより、透明基板の表面に対して垂直に初期配向している液晶分子を、その長軸が基板面に対して水平方向となるように配向させる。このように、液晶層を駆動し、各副画素の透過率および反射率を変化させて画像表示を行う。 Then, by applying an image signal (voltage) to the pixel electrode, an electric field is generated between the pixel electrode and the counter electrode. Thereby, the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate are aligned so that the major axis thereof is in the horizontal direction with respect to the substrate surface. In this way, the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
 第一の偏光板50は、液晶セル30の視認側の面に配置されており、第一の偏光子51と、第一の偏光子51の液晶セル30とは反対側の面に配置された偏光板保護フィルム53(F1)と、第一の偏光子51の液晶セル30側の面に配置された位相差フィルム55(F2)とを含む。 The first polarizing plate 50 is disposed on the viewing side surface of the liquid crystal cell 30, and is disposed on the first polarizer 51 and the surface of the first polarizer 51 opposite to the liquid crystal cell 30. A polarizing plate protective film 53 (F1) and a retardation film 55 (F2) disposed on the surface of the first polarizer 51 on the liquid crystal cell 30 side are included.
 第二の偏光板70は、液晶セル30のバックライト90側の面に配置されており、第二の偏光子71と、第二の偏光子71の液晶セル30側の面に配置された位相差フィルム73(F3)と、第二の偏光子71の液晶セル30とは反対側の面に配置された偏光板保護フィルム75(F4)とを含む。 The second polarizing plate 70 is disposed on the surface of the liquid crystal cell 30 on the backlight 90 side, and is disposed on the surface of the second polarizer 71 and the surface of the second polarizer 71 on the liquid crystal cell 30 side. The phase difference film 73 (F3) and the polarizing plate protective film 75 (F4) arrange | positioned at the surface on the opposite side to the liquid crystal cell 30 of the 2nd polarizer 71 are included.
 そして、偏光板保護フィルム53(F1)と偏光板保護フィルム75(F4)の少なくとも一方;好ましくは偏光板保護フィルム53(F1)を、本発明の光学フィルムとしうる。 And at least one of the polarizing plate protective film 53 (F1) and the polarizing plate protective film 75 (F4); preferably, the polarizing plate protective film 53 (F1) can be used as the optical film of the present invention.
 図2は、液晶表示装置における、偏光子の吸収軸と保護フィルムの方向Xとの関係を示す模式図である。図2に示されるように、第一の偏光子51の吸収軸と第二の偏光子71の吸収軸とは互いに直交するように配置されうる。 FIG. 2 is a schematic diagram showing the relationship between the absorption axis of the polarizer and the direction X of the protective film in the liquid crystal display device. As shown in FIG. 2, the absorption axis of the first polarizer 51 and the absorption axis of the second polarizer 71 can be arranged to be orthogonal to each other.
 そして、偏光板保護フィルム53(F1)と偏光板保護フィルム75(F4)の少なくとも一方;好ましくは偏光板保護フィルム53(F1)を、本発明の光学フィルムとしうる。例えば、偏光板保護フィルム53(F1)と偏光板保護フィルム75(F4)の両方を本発明の光学フィルムとした場合、偏光板保護フィルム53(F1)面内の方向Xと第一の偏光子51の吸収軸とは互いに平行であることが好ましく;偏光板保護フィルム75(F4)面内の方向Xと第二の偏光子71の吸収軸とが互いに平行であることが好ましい(図2参照)。偏光板保護フィルム53(F1)となる光学フィルムの方向Xは、光学フィルムの長手方向と一致する。 And at least one of the polarizing plate protective film 53 (F1) and the polarizing plate protective film 75 (F4); preferably, the polarizing plate protective film 53 (F1) can be used as the optical film of the present invention. For example, when both the polarizing plate protective film 53 (F1) and the polarizing plate protective film 75 (F4) are the optical films of the present invention, the direction X in the plane of the polarizing plate protective film 53 (F1) and the first polarizer 51 is preferably parallel to each other; the direction X in the plane of the polarizing plate protective film 75 (F4) and the absorption axis of the second polarizer 71 are preferably parallel to each other (see FIG. 2). ). The direction X of the optical film to be the polarizing plate protective film 53 (F1) coincides with the longitudinal direction of the optical film.
 第一の偏光子51の吸収軸は、液晶表示装置のディスプレイ(表示画面)の長軸方向と平行であることが多い。そのため、第一の偏光子51は、バックライトからの熱を受けると、ディスプレイ(表示画面)の長軸方向に収縮しやすい。一方、第二の偏光子71の吸収軸が、ディスプレイ(表示画面)の短軸方向と平行であることが多い。そのため、第二の偏光子71は、ディスプレイ(表示画面)の短軸方向に収縮しやすい。 The absorption axis of the first polarizer 51 is often parallel to the long axis direction of the display (display screen) of the liquid crystal display device. Therefore, when the first polarizer 51 receives heat from the backlight, the first polarizer 51 easily contracts in the major axis direction of the display (display screen). On the other hand, the absorption axis of the second polarizer 71 is often parallel to the minor axis direction of the display (display screen). Therefore, the second polarizer 71 tends to contract in the short axis direction of the display (display screen).
 第一の偏光子51の収縮力は、偏光板保護フィルム53(F1)の膨脹力によって打ち消すことができ;第二の偏光子71の収縮力は、偏光板保護フィルム75(F4)の膨脹力によって打ち消すことができる。 The contraction force of the first polarizer 51 can be canceled by the expansion force of the polarizing plate protective film 53 (F1); the contraction force of the second polarizer 71 is the expansion force of the polarizing plate protective film 75 (F4). Can be countered by.
 特に、ディスプレイ(表示画面)の長軸方向に収縮する第一の偏光子51の収縮力は、ディスプレイ(表示画面)の短軸方向に収縮する第二の偏光子71の収縮力よりも大きい。従って、本発明の光学フィルムを、偏光板保護フィルム53(F1)に適用することが好ましい。 Particularly, the contraction force of the first polarizer 51 contracting in the major axis direction of the display (display screen) is larger than the contraction force of the second polarizer 71 contracting in the minor axis direction of the display (display screen). Therefore, it is preferable to apply the optical film of the present invention to the polarizing plate protective film 53 (F1).
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 1.光学フィルムの材料
 1)樹脂(A)
 樹脂(A-1):CAP482-20(アセチル基置換度0.19、プロピオニル基置換度2.56、総アシル基置換度2.75のセルロースアセテートプロピオネート、重量平均分子量Mw=20万)
 樹脂(A-2):TAC(アセチル基置換度2.87、総アシル基置換度2.87のセルローストリアセテート、重量平均分子量Mw=30万)
 樹脂(A-3):PMMA(ポリメチルメタクリレート、重量平均分子量Mw=30万)
 比較用樹脂(X-1):CAB381-20(アセチル基置換度1.08、ブチリル基置換度1.84、総アシル基置換度2.92のセルロースアセテートブチレート、重量平均分子量Mw=20万)
1. Optical film materials 1) Resin (A)
Resin (A-1): CAP482-20 (acetyl acetate substitution degree 0.19, propionyl group substitution degree 2.56, total acyl group substitution degree 2.75 cellulose acetate propionate, weight average molecular weight Mw = 200,000)
Resin (A-2): TAC (cellulose triacetate having an acetyl group substitution degree of 2.87 and a total acyl group substitution degree of 2.87, weight average molecular weight Mw = 300,000)
Resin (A-3): PMMA (polymethyl methacrylate, weight average molecular weight Mw = 300,000)
Comparative resin (X-1): CAB381-20 (cellulose acetate butyrate having an acetyl group substitution degree of 1.08, a butyryl group substitution degree of 1.84, and a total acyl group substitution degree of 2.92, weight average molecular weight Mw = 200,000 )
 これらの樹脂の吸湿膨脹係数CHE、熱膨脹係数CTE、引張弾性率およびTgを以下の方法で測定した。その結果を表2に示す。 The hygroscopic expansion coefficient CHE, thermal expansion coefficient CTE, tensile elastic modulus and Tg of these resins were measured by the following methods. The results are shown in Table 2.
 (樹脂のCHE、CTE)
 樹脂(A)のCHE/CTEは、以下の手順で求めた。
 1)樹脂(A)からなる厚み40μmのフィルムを、溶液流延製膜法で作製した。なお、フィルムの作製において、意図的な延伸は行わなかった。得られたフィルムを、所定の大きさに切り出して試験片とした。そして、当該試験片のMD方向のCTEを、JIS K7197に準拠してTMA法によって測定し、樹脂(A)のCTE(単位:ppm/℃)を得た。
 2)同様にして作製した、樹脂(A)からなる厚み40μmの試験片を、23℃20%RHの環境下で24時間保存後のMD方向の寸法と、23℃80%RHの環境下で24時間保存後のMD方向の寸法とを測定した。得られた測定値を下記式に当てはめて、樹脂(A)のCHE(単位:ppm/%RH)を得た(下記式参照)。
 CHE(ppm/%RH)={(23℃80%RH下で保存後の試験片のMD方向寸法-23℃20%RH下で保存後の試験片のMD方向寸法)/23℃20%RH下で保存後の試験片のMD方向寸法}/(80%RH-20%RH)
 3)前記1)および2)で得られた樹脂(A)のCTEとCHEから、CHE/CTEを算出した。
(Resin CHE, CTE)
The CHE / CTE of the resin (A) was determined by the following procedure.
1) A film made of resin (A) having a thickness of 40 μm was produced by a solution casting film forming method. In the production of the film, intentional stretching was not performed. The obtained film was cut into a predetermined size and used as a test piece. And the CTE of MD direction of the said test piece was measured by TMA method based on JISK7197, and CTE (unit: ppm / degreeC) of resin (A) was obtained.
2) In the same manner, a test piece made of resin (A) and having a thickness of 40 μm was stored for 24 hours in an environment of 23 ° C. and 20% RH, in the MD direction, and in an environment of 23 ° C. and 80% RH. The dimension in the MD direction after storage for 24 hours was measured. The obtained measured value was applied to the following formula to obtain CHE (unit: ppm /% RH) of the resin (A) (see the following formula).
CHE (ppm /% RH) = {(MD direction dimension of specimen after storage at 23 ° C. and 80% RH−MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen after storage under MD} / (80% RH-20% RH)
3) CHE / CTE was calculated from CTE and CHE of the resin (A) obtained in 1) and 2) above.
 (樹脂の引張弾性率)
 1)前述と同様に、樹脂(A)からなる厚み40μmのフィルムを、溶液流延製膜法で作製した。得られたフィルムを、100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片を得た。
 2)得られた試験片を、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、MD方向に引っ張り、MD方向の引張弾性率を測定した。測定は、40℃20%RH下で行った
(Tensile modulus of resin)
1) In the same manner as described above, a film made of resin (A) having a thickness of 40 μm was prepared by a solution casting film forming method. The obtained film was cut into a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a test piece.
2) Based on JIS K7127, the obtained test piece was pulled in the MD direction using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd., and the tensile elastic modulus in the MD direction was measured. The measurement was performed at 40 ° C. and 20% RH.
 (樹脂のガラス転移温度Ta)
 樹脂(A)のガラス転移温度Taを、示差走査熱量測定器(Perkin Elmer社製DSC-7型)を用いて、JIS K7121(1987)に準拠した方法で、中間点ガラス転移温度(Tmg)として測定した。昇温速度は、20℃/分とした。
Figure JPOXMLDOC01-appb-T000005
(Glass transition temperature of resin Ta)
The glass transition temperature Ta of the resin (A) was determined as a midpoint glass transition temperature (Tmg) by a method according to JIS K7121 (1987) using a differential scanning calorimeter (DSC-7 model manufactured by Perkin Elmer). It was measured. The heating rate was 20 ° C./min.
Figure JPOXMLDOC01-appb-T000005
 2)樹脂(B)
 樹脂(B-1):ポリ酢酸ビニル(重量平均分子量Mw:10万)
 樹脂(B-2):ポリ酢酸ビニル(重量平均分子量Mw:20万)
 樹脂(B-3):ポリ酢酸ビニル(重量平均分子量Mw:8万)
 樹脂(B-4):ポリ乳酸(重量平均分子量Mw:10万)
 樹脂(B-5):ポリアセタール(重量平均分子量Mw:10万)
 樹脂(B-6):ポリウレタン(組成:MDI(ジフェニルメタンジイソシアネート)とエチレングリコールの共重合体、重量平均分子量Mw:10万)
 樹脂(B-7):EVA(組成:エチレン・酢酸ビニル(50/50モル比)共重合体、重量平均分子量Mw:10万)
 樹脂(B-8):ゴム粒子(組成:スチレン-ブタジエン共重合体、重量平均分子量Mw:50万、粒子径:10~200nm)
 比較用樹脂(Y-1):ナイロン66
2) Resin (B)
Resin (B-1): Polyvinyl acetate (weight average molecular weight Mw: 100,000)
Resin (B-2): Polyvinyl acetate (weight average molecular weight Mw: 200,000)
Resin (B-3): Polyvinyl acetate (weight average molecular weight Mw: 80,000)
Resin (B-4): Polylactic acid (weight average molecular weight Mw: 100,000)
Resin (B-5): Polyacetal (weight average molecular weight Mw: 100,000)
Resin (B-6): Polyurethane (Composition: Copolymer of MDI (diphenylmethane diisocyanate) and ethylene glycol, weight average molecular weight Mw: 100,000)
Resin (B-7): EVA (composition: ethylene / vinyl acetate (50/50 molar ratio) copolymer, weight average molecular weight Mw: 100,000)
Resin (B-8): Rubber particles (composition: styrene-butadiene copolymer, weight average molecular weight Mw: 500,000, particle diameter: 10 to 200 nm)
Resin for comparison (Y-1): Nylon 66
 これらの樹脂の吸湿膨脹係数CHE、熱膨脹係数CTE、引張弾性率およびTgを、前述と同様の方法で測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
The hygroscopic expansion coefficient CHE, thermal expansion coefficient CTE, tensile modulus and Tg of these resins were measured in the same manner as described above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
 2.光学フィルムの作製
 (実施例1-1)
 下記成分を、攪拌および加熱しながら十分に溶解させて、ドープを調製した。
 (ドープの組成)
 樹脂(A)として樹脂(A-1):60質量部
 樹脂(B)として樹脂(B-1):40質量部
 紫外線吸収剤として2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](株式会社ADEKA製のLA31、分子量659):3.0質量部
 マット剤としてR972V(日本アエロジル社製、シリカ粒子、平均粒径16nm):0.30質量部
 剥離助剤としてエレカットS412(竹本油脂社製):0.50質量部
 ジクロロメタン:300質量部
 エタノール:40質量部
2. Production of optical film (Example 1-1)
The following components were sufficiently dissolved with stirring and heating to prepare a dope.
(Composition of dope)
Resin (A-1) as resin (A): 60 parts by mass Resin (B-1) as resin (B): 40 parts by mass 2,2′-methylenebis [6- (2H-benzotriazole-2] as an ultraviolet absorber -Yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (LA31 manufactured by ADEKA, molecular weight 659): 3.0 parts by mass R972V (silica particles manufactured by Nippon Aerosil Co., Ltd.) as a matting agent , Average particle size 16 nm): 0.30 parts by mass Elecut S412 (manufactured by Takemoto Yushi Co., Ltd.) as a peeling aid: 0.50 parts by mass Dichloromethane: 300 parts by mass Ethanol: 40 parts by mass
 調製したドープを、ベルト流延装置を用い、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が100%になるまで溶媒を蒸発させ、得られた膜状物を剥離張力162N/mでステンレスバンド支持体上から剥離した。 The prepared dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. With the stainless steel band support, the solvent was evaporated until the residual solvent amount reached 100%, and the obtained film-like material was peeled off from the stainless steel band support with a peeling tension of 162 N / m.
 次いで、剥離した膜状物を35℃で溶媒を蒸発させ、1m幅にスリットした。その後、ゾーン延伸で搬送方向(MD方向)に10%、テンター延伸で幅手方向(TD方向)に20%延伸しながら(延伸倍率の合計は130%)、135℃の乾燥温度で乾燥させた。テンターによる延伸を開始したときの残留溶媒量は8.0%であった。 Next, the solvent was evaporated from the peeled film at 35 ° C., and the film was slit to a width of 1 m. Then, it was dried at a drying temperature of 135 ° C. while stretching 10% in the transport direction (MD direction) by zone stretching and 20% stretching in the width direction (TD direction) by tenter stretching (the total stretching ratio was 130%). . The residual solvent amount at the start of stretching by the tenter was 8.0%.
 テンターで延伸した後、130℃で5分間の緩和処理を施した後、120℃、140℃の乾燥ゾーンを多数のローラーで搬送させながら乾燥を終了させて、膜厚40μmの光学フィルム101を得た。 After stretching with a tenter, relaxation treatment is performed at 130 ° C. for 5 minutes, and then drying is completed while conveying a drying zone at 120 ° C. and 140 ° C. with a number of rollers to obtain an optical film 101 having a thickness of 40 μm. It was.
 (実施例1-2~1-9および比較例1-1~1-3)
 樹脂(B)、(A)/(B)および延伸条件を、表4に示されるように変更した以外は実施例1-1と同様にして光学フィルム102~112を得た。
(Examples 1-2 to 1-9 and Comparative Examples 1-1 to 1-3)
Optical films 102 to 112 were obtained in the same manner as in Example 1-1 except that the resins (B), (A) / (B) and the stretching conditions were changed as shown in Table 4.
 (実施例1-10)
 樹脂(A)および樹脂(A)/樹脂(B)を、表4に示されるように変更した以外は実施例1-1と同様にして光学フィルム113を得た。
(Example 1-10)
Optical film 113 was obtained in the same manner as in Example 1-1 except that resin (A) and resin (A) / resin (B) were changed as shown in Table 4.
 (実施例1-11~1-15、比較例1-4)
 樹脂(B)を、表4に示されるように変更した以外は実施例1-10と同様にして光学フィルム114~119を得た。
(Examples 1-11 to 1-15, Comparative Example 1-4)
Optical films 114 to 119 were obtained in the same manner as in Example 1-10 except that the resin (B) was changed as shown in Table 4.
 (実施例1-16)
 樹脂(A)および樹脂(A)/樹脂(B)を、表4に示されるように変更した以外は実施例1-1と同様にして光学フィルム120を得た。
(Example 1-16)
Optical film 120 was obtained in the same manner as in Example 1-1 except that resin (A) and resin (A) / resin (B) were changed as shown in Table 4.
 (実施例1-17~1-21)
 樹脂(B)を、表4に示されるように変更した以外は実施例1-16と同様にして光学フィルム121~125を得た。
(Examples 1-17 to 1-21)
Optical films 121 to 125 were obtained in the same manner as in Example 1-16, except that the resin (B) was changed as shown in Table 4.
 (比較例1-5~1-6)
 表5に示される種類と量の樹脂(A)と樹脂(B)、実施例1-1と同じ種類と量の紫外線吸収剤と剥離助剤を、内容積60ccのインターナルミキサー(東洋精機製作所社製)にて、200℃、回転数30rpmにて5分間混合した。得られた混合物を、小型圧縮成形機(テスター産業社製)にてフィルム状に成形して、膜厚40μmの光学フィルム126~127を得た。
(Comparative Examples 1-5 to 1-6)
The types and amounts of resin (A) and resin (B) shown in Table 5 and the same type and amount of UV absorber and stripping aid as in Example 1-1 were combined with an internal mixer (Toyo Seiki Seisakusho Co., Ltd.) with an internal volume of 60 cc. For 5 minutes at 200 ° C. and 30 rpm. The obtained mixture was molded into a film with a small compression molding machine (manufactured by Tester Sangyo Co., Ltd.) to obtain optical films 126 to 127 having a film thickness of 40 μm.
 得られた光学フィルムの、MD方向(方向X)の40℃での引張弾性率およびCHE/CTEを以下の方法で測定した。また、得られた光学フィルムのガラス転移温度Tgは、前述と同様にして測定した。 The tensile modulus and CHE / CTE of the obtained optical film at 40 ° C. in the MD direction (direction X) were measured by the following methods. Further, the glass transition temperature Tg of the obtained optical film was measured in the same manner as described above.
 (光学フィルムの引張弾性率)
 1)光学フィルムを100mm(MD方向)×10mm(TD方向)のサイズに切り出して、試験片を得た。
 2)この試験片を、JIS K7127に準拠して、オリエンテック社製テンシロンRTC-1225Aを用いて、チャック間距離を50mmとし、試験片のMD方向(方向X)に引っ張り、MD方向(方向X)の引張弾性率を測定した。測定は、40℃20%RH下で行った。
(Tensile modulus of optical film)
1) The optical film was cut into a size of 100 mm (MD direction) × 10 mm (TD direction) to obtain a test piece.
2) In accordance with JIS K7127, the test piece was pulled in the MD direction (direction X) of the test piece using a Tensilon RTC-1225A manufactured by Orientec Co., Ltd. ) Was measured. The measurement was performed at 40 ° C. and 20% RH.
 (光学フィルムのCHE/CTE)
 1)光学フィルムを所定のサイズに切り出して、試験片を得た。当該試験片のMD方向(方向X)のCTEを、ASTM E-831またはJIS K7197に準拠して、TMA法によって測定した。
 2)前述と同様にして準備した光学フィルムの試験片を、23℃20%RHの環境下で24時間保存した後のMD方向(方向X)の寸法と、23℃80%RHの環境下で24時間保存した後のMD方向(方向X)の寸法とをそれぞれ測定した。得られた測定値を下記式に当てはめて、光学フィルムのMD方向(方向X)のCHE(ppm/%RH)を得た(下記式参照)。
 CHE(ppm/%RH)={(23℃80%RH下で保存後の試験片のMD方向寸法-23℃20%RH下で保存後の試験片のMD方向寸法)/23℃20%RH下で保存後の試験片のMD方向寸法}(ppm)/(80-20)(%RH)
 3)前記1)および2)で得られた光学フィルムのCTEとCHEから、光学フィルムのMD方向(方向X)のCHE/CTEを算出した。
(CHE / CTE of optical film)
1) The optical film was cut out to a predetermined size to obtain a test piece. The CTE in the MD direction (direction X) of the test piece was measured by the TMA method according to ASTM E-831 or JIS K7197.
2) The test piece of the optical film prepared in the same manner as described above was stored for 24 hours in an environment of 23 ° C. and 20% RH, and the dimension in the MD direction (direction X) and in an environment of 23 ° C. and 80% RH. The dimension in the MD direction (direction X) after storage for 24 hours was measured. The obtained measured value was applied to the following formula to obtain CHE (ppm /% RH) in the MD direction (direction X) of the optical film (see the following formula).
CHE (ppm /% RH) = {(MD direction dimension of specimen after storage at 23 ° C. and 80% RH−MD direction dimension of specimen after storage at 23 ° C. and 20% RH) / 23 ° C. and 20% RH Dimension of specimen in MD direction after storage} (ppm) / (80-20) (% RH)
3) CHE / CTE in the MD direction (direction X) of the optical film was calculated from the CTE and CHE of the optical film obtained in 1) and 2) above.
 これらの評価結果を表4に示す。なお、各実施例/比較例において、樹脂(A)と樹脂(B)の合計量は100質量部とした。
Figure JPOXMLDOC01-appb-T000007
These evaluation results are shown in Table 4. In each example / comparative example, the total amount of the resin (A) and the resin (B) was 100 parts by mass.
Figure JPOXMLDOC01-appb-T000007
 表4に示されるように、CHE/CTEが0.6超である樹脂(Y-1)を含む比較例1-3と1-4のフィルムは、CHE/CTEが高すぎることがわかる。 As shown in Table 4, it can be seen that the films of Comparative Examples 1-3 and 1-4 containing the resin (Y-1) having a CHE / CTE of more than 0.6 have too high CHE / CTE.
 また、CHE/CTEが0.6以下である樹脂(B)を含んでいても、樹脂(B)の含有量が多すぎる比較例1-2のフィルムは、引張弾性率が低く;樹脂(B)の含有量が少なすぎる比較例1-1のフィルムは、CHE/CTEが高く、いずれも本発明の範囲を満たさないことがわかる。 Further, even if the resin (B) having CHE / CTE of 0.6 or less is contained, the film of Comparative Example 1-2 in which the content of the resin (B) is too large has a low tensile elastic modulus; It can be seen that the film of Comparative Example 1-1 in which the content of) is too low has a high CHE / CTE, and none of them satisfies the scope of the present invention.
 また、CHE/CTEが0.6以下である樹脂(B)を含んでいても、溶融製膜法で製膜し、かつ延伸を行わなかった比較例1-5および1-6のフィルムは、引張弾性率が低いことがわかる。 Further, the films of Comparative Examples 1-5 and 1-6 that were formed by the melt film forming method and were not stretched even when the resin (B) having a CHE / CTE of 0.6 or less were included, It can be seen that the tensile modulus is low.
 これらのことから、CHE/CTEが0.6以下であり、かつ40℃での引張弾性率が2~6GPaである光学フィルムを得るためには、CHE/CTEが0.6以下である樹脂(B)を適切な量で含んだり、一定以上の倍率で延伸したりすることが有効であることがわかる。 From these, in order to obtain an optical film having a CHE / CTE of 0.6 or less and a tensile elastic modulus at 40 ° C. of 2 to 6 GPa, a resin (CHE / CTE of 0.6 or less) ( It can be seen that it is effective to include B) in an appropriate amount or to stretch at a certain ratio or more.
 また、実施例のなかでも、樹脂(B)の分子量が大きい実施例1-1および1-2のフィルムは、樹脂(B)の分子量が小さい実施例1-3のフィルムよりもCHE/CTEの範囲を適切な範囲としやすいことがわかる。 In addition, among the examples, the films of Examples 1-1 and 1-2 in which the molecular weight of the resin (B) is large are higher in CHE / CTE than the film of Example 1-3 in which the molecular weight of the resin (B) is small. It can be seen that the range is easily set to an appropriate range.
 さらに、延伸を行った実施例1-1のフィルムのほうが、延伸を行わなかった実施例1-9のフィルムよりもCHE/CTEを低くし、引張弾性率を高くしうることがわかる。 Furthermore, it can be seen that the stretched film of Example 1-1 can lower the CHE / CTE and increase the tensile elastic modulus than the film of Example 1-9 that has not been stretched.
 3.位相差フィルムの作製
 (位相差フィルムC)
 下記成分を、ディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散して微粒子分散液1を得た。
 (微粒子分散液1)
 微粒子(アエロジル R812 日本アエロジル(株)製):11質量部
 エタノール:89質量部
3. Production of retardation film (retardation film C)
The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion 1.
(Fine particle dispersion 1)
Fine particles (Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.): 11 parts by mass Ethanol: 89 parts by mass
 メチレンクロライドを入れた溶解タンクに、上記作製した微粒子分散液1をゆっくりと添加しながら、十分に攪拌した。得られた溶液を、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散した後、日本精線(株)製のファインメットNFで濾過して、微粒子添加液1を調製した。
 (微粒子添加液1)
 メチレンクロライド:99質量部
 微粒子分散液1:5質量部
The above-prepared fine particle dispersion 1 was slowly added to the dissolution tank containing methylene chloride and sufficiently stirred. The resulting solution was dispersed with an attritor so that the secondary particles had a predetermined particle size, and then filtered with Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution 1 did.
(Fine particle addition liquid 1)
Methylene chloride: 99 parts by mass Fine particle dispersion 1: 5 parts by mass
 下記組成の主ドープ液を調製した。まず、加圧溶解タンクに、メチレンクロライドとエタノールを添加した後、アセチル基置換度2.40のセルロースアセテート、糖エステル化合物、重縮合エステル、レターデーション上昇剤および微粒子添加液1を攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解させた。得られた溶液を、安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。 A main dope solution having the following composition was prepared. First, after adding methylene chloride and ethanol to the pressure dissolution tank, the cellulose acetate, sugar ester compound, polycondensation ester, retardation increasing agent and fine particle additive liquid 1 having an acetyl group substitution degree of 2.40 are added with stirring. did. This was heated and dissolved completely with stirring. The obtained solution was used as Azumi filter paper No. manufactured by Azumi Filter Paper Co., Ltd. The main dope solution was prepared by filtration using 244.
 (主ドープ液の組成)
 メチレンクロライド:365質量部
 エタノール:50質量部
 セルロースアセテート(アセチル置換度2.40):84質量部
 糖エステル1:平均置換度5.5のサッカロースベンゾエート:10質量部
 重縮合エステル:(フタル酸/アジピン酸/1,2-プロパンジオール=25/75/100モル比の縮合物の両末端を安息香酸エステル基で封止したもの、分子量440):3質量部
 レターデーション調整剤(化合物A):3質量部
 微粒子添加液1:1質量部
Figure JPOXMLDOC01-appb-C000008
(Main dope composition)
Methylene chloride: 365 parts by mass Ethanol: 50 parts by mass Cellulose acetate (acetyl substitution degree 2.40): 84 parts by mass Sugar ester 1: Saccharose benzoate having an average substitution degree of 5.5: 10 parts by mass Polycondensation ester: (phthalic acid / Adipic acid / 1,2-propanediol = 25/75/100 molar condensate having both ends sealed with benzoate groups, molecular weight 440): 3 parts by mass Retardation adjuster (compound A): 3 parts by mass Particulate additive solution 1: 1 parts by mass
Figure JPOXMLDOC01-appb-C000008
 得られた主ドープ液を、ステンレスベルト支持体上で、流延(キャスト)したフィルム中の残留溶媒量が75%になるまで溶媒を蒸発させた。得られた膜状物を、剥離張力130N/mで、ステンレスベルト支持体上から剥離した。剥離して得られた膜状物を、150℃の熱をかけながらテンターを用いて幅方向に30%延伸した。延伸開始時の残留溶媒は15%であった。 The obtained main dope solution was evaporated on a stainless belt support until the amount of residual solvent in the cast film was 75%. The obtained film was peeled from the stainless steel belt support with a peeling tension of 130 N / m. The film-like material obtained by peeling was stretched 30% in the width direction using a tenter while applying heat at 150 ° C. The residual solvent at the start of stretching was 15%.
 次いで、乾燥ゾーンを多数のロールで搬送させながら乾燥を終了させた。乾燥温度は130℃で、搬送張力は100N/mとした。以上のようにして、乾燥膜厚35μmの位相差フィルムCを得た。 Next, drying was terminated while the drying zone was conveyed by a number of rolls. The drying temperature was 130 ° C. and the transport tension was 100 N / m. As described above, a retardation film C having a dry film thickness of 35 μm was obtained.
 4.バックライト側用の保護フィルムF4の作製
 バックライト側の保護フィルムF4として、コニカミノルタ社製「KC6UA」を準備し、光学フィルム130とした。
4). Preparation of Protective Film F4 for Backlight “KC6UA” manufactured by Konica Minolta Co., Ltd. was prepared as the protective film F4 for the backlight, and used as an optical film 130.
 5.偏光板および液晶表示装置の作製
 (実施例2-1)
 1)偏光子の作製
 厚さ75μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5gおよび水100gからなる水溶液に60秒間浸漬し、更にヨウ化カリウム3g、ホウ酸7.5gおよび水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率3倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ25μmの偏光子を得た。
5. Production of Polarizing Plate and Liquid Crystal Display Device (Example 2-1)
1) Production of Polarizer A polyvinyl alcohol film having a thickness of 75 μm was swollen with water at 35 ° C. The obtained film was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide and 100 g of water for 60 seconds, and further immersed in an aqueous solution at 45 ° C. consisting of 3 g of potassium iodide, 7.5 g of boric acid and 100 g of water. . The obtained film was uniaxially stretched under conditions of a stretching temperature of 55 ° C. and a stretching ratio of 3 times. This uniaxially stretched film was washed with water and dried to obtain a polarizer having a thickness of 25 μm.
 2)偏光板の作製
 偏光板保護フィルムとして上記作製した光学フィルム101を準備した。そして、以下に示されるように、光学フィルム101をアルカリケン化処理した後、水洗、中和および水洗した。
 ケン化工程  2M-NaOH  50℃  90秒
 水洗工程   水        30℃  45秒
 中和工程   10質量%HCl 30℃  45秒
 水洗工程   水        30℃  45秒
 その後、得られた光学フィルム101を80℃で乾燥させた。同様にして、上記作製した位相差フィルムCもアルカリケン化処理した。
2) Preparation of polarizing plate The optical film 101 prepared above was prepared as a polarizing plate protective film. Then, as shown below, the optical film 101 was alkali saponified and then washed with water, neutralized and washed with water.
Saponification step 2M-NaOH 50 ° C. 90 seconds Water washing step Water 30 ° C. 45 seconds Neutralization step 10% HCl 30 ° C. 45 seconds Water washing step Water 30 ° C. 45 seconds Thereafter, the obtained optical film 101 was dried at 80 ° C. . Similarly, the produced retardation film C was also subjected to alkali saponification treatment.
 そして、上記作製した偏光子の一方の面に、アルカリケン化処理した前述の光学フィルム101を、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。同様に、偏光子の他方の面に、アルカリケン化処理した位相差フィルムCを、完全ケン化型ポリビニルアルコール5%水溶液を接着剤として貼り合わせた。貼り合わせは、視認側の保護フィルムF1となる光学フィルム101のMD方向と、偏光子(第一の偏光子)の吸収軸とが平行になるように行った。貼り合わせた積層物を60℃で乾燥して、視認側の偏光板201を得た。 Then, the above-mentioned optical film 101 subjected to alkali saponification treatment was bonded to one surface of the produced polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. Similarly, the retardation film C subjected to alkali saponification treatment was bonded to the other surface of the polarizer using a 5% aqueous solution of completely saponified polyvinyl alcohol as an adhesive. The bonding was performed so that the MD direction of the optical film 101 serving as the protective film F1 on the viewing side is parallel to the absorption axis of the polarizer (first polarizer). The laminated laminate was dried at 60 ° C. to obtain a polarizing plate 201 on the viewing side.
 同様に、上記作製した偏光子の一方の面に、アルカリケン化処理した、バックライト側の保護フィルムF4である光学フィルム130を、そのMD方向と偏光子(第二の偏光子)の吸収軸とが平行となるように完全ケン化型ポリビニルアルコール5%水溶液を介して積層した。この偏光子の他方の面にアルカリケン化処理した位相差フィルムCを、完全ケン化型ポリビニルアルコール5%水溶液を介して積層して貼り合わせて、バックライト側の偏光板228(第二の偏光板)を得た。 Similarly, the optical film 130 which is the protective film F4 on the backlight side, which has been subjected to alkali saponification treatment, on one surface of the produced polarizer, its MD direction and the absorption axis of the polarizer (second polarizer). Were laminated through a 5% aqueous solution of a completely saponified polyvinyl alcohol so that they were parallel to each other. A retardation film C subjected to alkali saponification treatment on the other surface of this polarizer is laminated and bonded together through a 5% aqueous solution of completely saponified polyvinyl alcohol, and a polarizing plate 228 (second polarization) on the backlight side is laminated. Plate).
 3)液晶表示パネルの作製
 液晶セルとして、厚みが0.5mmの二枚のガラス基板と、それらの間に配置された液晶層とを有するVA方式の液晶セルを準備した。そして、上記準備した液晶セルの両面に、リンテック社製の厚さ25μmの両面テープ(基材レステープ MO-3005C)を介して上記作製した視認側の偏光板201とバックライト側の偏光板228とをそれぞれ貼り合わせて、液晶表示パネルを得た。貼り合わせは、視認側の偏光板201の偏光子の吸収軸とバックライト側の偏光板228の偏光子の吸収軸とが直交し、かつ視認側の偏光板201の光学フィルム101のMD方向が、液晶表示パネルの長軸方向となるようにした(図2参照)。また、偏光板201及び228の位相差フィルムCが液晶セルと接するように行った。
3) Production of liquid crystal display panel As a liquid crystal cell, a VA liquid crystal cell having two glass substrates having a thickness of 0.5 mm and a liquid crystal layer disposed therebetween was prepared. Then, the polarizing plate 201 on the viewing side and the polarizing plate 228 on the backlight side were prepared on both sides of the prepared liquid crystal cell via a 25 μm-thick double-sided tape (baseless tape MO-3005C) manufactured by Lintec. Were bonded together to obtain a liquid crystal display panel. In the bonding, the absorption axis of the polarizer of the polarizing plate 201 on the viewing side is orthogonal to the absorption axis of the polarizer of the polarizing plate 228 on the backlight side, and the MD direction of the optical film 101 of the polarizing plate 201 on the viewing side is The long axis direction of the liquid crystal display panel was set (see FIG. 2). Moreover, it performed so that the phase difference film C of the polarizing plates 201 and 228 might contact | connect a liquid crystal cell.
 4)液晶表示装置の作製
 そして、SONY製40型ディスプレイBRAVIA KLV-40J3000(VA方式)から、液晶表示パネル(偏光板/液晶セル/偏光板の積層物)を取り外した後、上記作製した液晶表示パネルを配置して、液晶表示装置301を得た。また、液晶表示パネルは、位相差フィルムCの遅相軸と、予め貼られていた偏光板の遅相軸とが平行となるようにした。
4) Production of liquid crystal display device After removing the liquid crystal display panel (polarizing plate / liquid crystal cell / laminate of polarizing plate) from the 40-inch display BRAVIA KLV-40J3000 (VA method) manufactured by SONY, the liquid crystal display produced above A panel was arranged to obtain a liquid crystal display device 301. Further, in the liquid crystal display panel, the slow axis of the retardation film C and the slow axis of the polarizing plate attached in advance were made parallel.
 (実施例2-2~2-21、比較例2-1~2-6)
 偏光板保護フィルムF1の種類を、表5に示されるように変更した以外は実施例2-1と同様にして偏光板202~227を作製し、液晶表示装置302~327を得た。
(Examples 2-2 to 2-21, Comparative Examples 2-1 to 2-6)
Polarizing plates 202 to 227 were produced in the same manner as in Example 2-1, except that the type of the polarizing plate protective film F1 was changed as shown in Table 5, and liquid crystal display devices 302 to 327 were obtained.
 得られた液晶表示装置における液晶表示パネルの反り量、表示ムラおよびカラーシフトを、以下の方法で評価した。 The warpage amount, display unevenness and color shift of the liquid crystal display panel in the obtained liquid crystal display device were evaluated by the following methods.
 (パネルの反り量)
 作製した液晶表示装置を40℃95%RHの環境下で24hr処理した後、40℃20%RH環境下で2hr処理した。その後、液晶表示装置の液晶表示パネルの反り量を、レーザー変位計を用いて測定した。測定値は、ディスプレイ中央部をゼロ点として、ディスプレイ表面の4隅の高さを測定し、その平均値を求めた。ディスプレイ表面の4隅が、視認側に出ている場合を+、バックライト側に出ている場合を-とした。
(Panel warpage)
The produced liquid crystal display device was treated for 24 hours in an environment of 40 ° C. and 95% RH, and then treated for 2 hours in an environment of 40 ° C. and 20% RH. Thereafter, the amount of warpage of the liquid crystal display panel of the liquid crystal display device was measured using a laser displacement meter. The measured values were obtained by measuring the heights of the four corners of the display surface with the center of the display as the zero point, and calculating the average value. The case where the four corners of the display surface are on the viewing side is defined as +, and the case where the four corners on the display side are exposed is denoted as-.
 (表示ムラ)
 上記処理(40℃95%RHの環境下で24hr処理した後、40℃20%RH環境下で2hr処理)した後の液晶表示装置の表示画面を、画面正面から観察した。そして、表示ムラを下記の基準に基づいて評価した。
 ◎:全くムラが無い
 ○:僅かにムラがある
 △:弱いムラが数個程度ある
 ×:規則性のある強いムラがある
(Display unevenness)
The display screen of the liquid crystal display device after the above treatment (after treatment for 24 hours in an environment of 40 ° C. and 95% RH and then for 2 hours in an environment of 40 ° C. and 20% RH) was observed from the front of the screen. The display unevenness was evaluated based on the following criteria.
◎: No unevenness ○: Slightly uneven △: Some weak unevenness ×: Strong regularity unevenness
 (カラーシフト)
 作製された液晶表示装置のディスプレイを、23℃55%RHの環境下で黒表示させ、ディスプレイ表面の法線に対して斜め45°の角度から色味を観察した。次いで、当該液晶表示装置を、上記条件で処理(40℃95%RHの環境下で24hr処理した後、40℃20%RH環境下で2hr処理)した後の斜め45°の角度から色味を同様にして観察した。そして、上記処理前の液晶表示装置の斜め45°の角度から観察された色味と、上記処理後の液晶表示装置の斜め45°の角度から観察された色味とを比較して、カラーシフトを以下の基準に基づいて評価した。
 ◎:色変化が全くない
 ○:色変化が僅かに認められる
 △:色変化が分かる
 ×:色変化が著しい
(Color shift)
The display of the produced liquid crystal display device was displayed in black under an environment of 23 ° C. and 55% RH, and the color was observed from an angle of 45 ° with respect to the normal to the display surface. Next, the liquid crystal display device is processed under the above-described conditions (processed for 24 hours in an environment of 40 ° C. and 95% RH, then processed for 2 hours in an environment of 40 ° C. and 20% RH). The same observation was made. Then, the color shift observed from the oblique 45 ° angle of the liquid crystal display device before the treatment is compared with the color observed from the oblique 45 ° angle of the liquid crystal display device after the treatment, and the color shift is performed. Was evaluated based on the following criteria.
◎: No color change ○: Color change is slightly recognized △: Color change is known ×: Color change is remarkable
 評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000009
The evaluation results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000009
 表5に示されるように、CHE/CTEと40℃での引張弾性率がいずれも所定の範囲に調整された光学フィルムを含む実施例2-1~2-21の液晶表示パネルは、反りが低減されていることがわかる。それにより、当該実施例の液晶表示装置の表示ムラが低減されていることがわかる。 As shown in Table 5, the liquid crystal display panels of Examples 2-1 to 2-21 including the optical film in which the CHE / CTE and the tensile elastic modulus at 40 ° C. are both adjusted to a predetermined range are warped. It can be seen that it has been reduced. Thereby, it can be seen that the display unevenness of the liquid crystal display device of this example is reduced.
 一方、CHE/CTEと40℃での引張弾性率の少なくとも一方が所定の範囲内にない光学フィルムを含む比較例2-1~2-6の液晶表示パネルは、反りが大きいことがわかる。それにより、当該比較例の液晶表示装置の表示ムラが生じることがわかる。 On the other hand, it can be seen that the liquid crystal display panels of Comparative Examples 2-1 to 2-6 including the optical film in which at least one of CHE / CTE and the tensile elastic modulus at 40 ° C. is not within the predetermined range are greatly warped. Thereby, it can be seen that display unevenness of the liquid crystal display device of the comparative example occurs.
 本出願は、2013年11月19日出願の特願2013-238943に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-238943 filed on November 19, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明によれば、パネルベンドを抑制でき、それによる表示ムラを低減しうる光学フィルムを提供することを目的とする。 An object of the present invention is to provide an optical film that can suppress panel bend and reduce display unevenness.
 10 液晶表示装置
 30 液晶セル
 50 第一の偏光板
 51 第一の偏光子
 53 保護フィルム(F1)
 55 位相差フィルム(F2)
 70 第二の偏光板
 71 第二の偏光子
 73 位相差フィルム(F3)
 75 保護フィルム(F4)
 90 バックライト
DESCRIPTION OF SYMBOLS 10 Liquid crystal display device 30 Liquid crystal cell 50 1st polarizing plate 51 1st polarizer 53 Protective film (F1)
55 Retardation film (F2)
70 Second Polarizer 71 Second Polarizer 73 Retardation Film (F3)
75 Protective film (F4)
90 backlight

Claims (18)

  1.  吸湿膨張係数をCHE、熱膨張係数をCTEとしたとき、
     CHE/CTEが0.6以上であり、かつ40℃20%RH環境下での引張弾性率が2GPa以上である樹脂(A)と、
     CHE/CTEが0.6未満である樹脂(B)とを含む光学フィルムであって、
     前記光学フィルムの面内の任意の一方向Xの吸湿膨脹係数CHEと、前記方向Xの熱膨脹係数CTEとの比CHE/CTEが0.6以下であり、かつ40℃20%RH環境下における前記方向Xの引張弾性率が2~6GPaである、光学フィルム。
    When the hygroscopic expansion coefficient is CHE and the thermal expansion coefficient is CTE,
    A resin (A) having a CHE / CTE of 0.6 or more and a tensile elastic modulus of 2 GPa or more in a 40 ° C., 20% RH environment;
    An optical film comprising a resin (B) having a CHE / CTE of less than 0.6,
    The ratio CHE / CTE between the hygroscopic expansion coefficient CHE in any one direction X in the plane of the optical film and the thermal expansion coefficient CTE in the direction X is 0.6 or less, and the 40 ° C. and 20% RH environment An optical film having a tensile elastic modulus in the direction X of 2 to 6 GPa.
  2.  前記方向Xは、前記光学フィルムの面内遅相軸方向と前記面内遅相軸方向に対して直交する方向の少なくとも一方である、請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the direction X is at least one of an in-plane slow axis direction of the optical film and a direction orthogonal to the in-plane slow axis direction.
  3.  前記方向Xと、前記光学フィルムの長手方向とが一致する、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the direction X and the longitudinal direction of the optical film coincide with each other.
  4.  前記樹脂(A)のガラス転移温度をTa、前記樹脂(B)のガラス転移温度をTb、前記光学フィルムのガラス転移温度をTgとしたとき、下記式(1)~(3)を満たす、請求項1に記載の光学フィルム。
     (式1) Ta>Tg>Tb
     (式2) Ta≧Tb+80
     (式3) 150≧Tg≧100
    When the glass transition temperature of the resin (A) is Ta, the glass transition temperature of the resin (B) is Tb, and the glass transition temperature of the optical film is Tg, the following formulas (1) to (3) are satisfied: Item 5. The optical film according to Item 1.
    (Formula 1) Ta>Tg> Tb
    (Formula 2) Ta ≧ Tb + 80
    (Formula 3) 150 ≧ Tg ≧ 100
  5.  前記樹脂(A)の重量平均分子量と前記樹脂(B)の重量平均分子量が、いずれも9万以上100万以下である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the weight average molecular weight of the resin (A) and the weight average molecular weight of the resin (B) are both from 90,000 to 1,000,000.
  6.  前記樹脂(A)と前記樹脂(B)の含有質量比が、(A):(B)=30:70~90:10である、請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the mass ratio of the resin (A) and the resin (B) is (A) :( B) = 30: 70 to 90:10.
  7.  前記樹脂(A)および前記樹脂(B)と、溶剤とを含むドープを、金属支持板上に流延した後、乾燥させて膜状物を得る工程と、
     前記膜状物を、搬送方向と該搬送方向と直交する方向との両方の延伸倍率の合計が110~400%となるように、搬送方向と該搬送方向と直交する方向との両方に延伸する工程とを経て得られる、請求項1に記載の光学フィルム。
    A step of casting a dope containing the resin (A) and the resin (B) and a solvent on a metal support plate and then drying to obtain a film-like material;
    The film-like material is stretched in both the transport direction and the direction perpendicular to the transport direction so that the total stretch ratio in both the transport direction and the direction orthogonal to the transport direction is 110 to 400%. The optical film of Claim 1 obtained through a process.
  8.  前記樹脂(A)が、セルロースエステルである、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the resin (A) is a cellulose ester.
  9.  前記樹脂(B)が、ポリ酢酸ビニル、ポリ乳酸、ポリアセタール、ポリウレタン、エチレン-酢酸ビニル重合体、およびゴム粒子からなる群より選ばれる少なくとも一以上を含む、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the resin (B) contains at least one selected from the group consisting of polyvinyl acetate, polylactic acid, polyacetal, polyurethane, ethylene-vinyl acetate polymer, and rubber particles.
  10.  前記光学フィルムの前記CHE/CTEが0.2~0.6である、請求項1に記載の光学フィルム。 The optical film according to claim 1, wherein the CHE / CTE of the optical film is 0.2 to 0.6.
  11.  前記樹脂(A)の重量平均分子量と前記樹脂(B)の重量平均分子量が、いずれも15万~50万である、請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the weight average molecular weight of the resin (A) and the weight average molecular weight of the resin (B) are both 150,000 to 500,000.
  12.  偏光板保護フィルムである、請求項1に記載の光学フィルム。 The optical film according to claim 1, which is a polarizing plate protective film.
  13.  偏光子と、請求項1に記載の光学フィルムとを含む、偏光板。 A polarizing plate comprising a polarizer and the optical film according to claim 1.
  14.  前記光学フィルムの面内の方向Xと前記偏光子の吸収軸とは互いに平行である、請求項13に記載の偏光板。 The polarizing plate according to claim 13, wherein the in-plane direction X of the optical film and the absorption axis of the polarizer are parallel to each other.
  15.  第一の偏光板と、液晶セルと、第二の偏光板と、バックライトとをこの順に含む液晶表示装置であって、
     前記第一の偏光板は、第一の偏光子と、前記第一の偏光子の前記液晶セルとは反対側の面に配置された偏光板保護フィルムF1と、前記第一の偏光子の前記液晶セル側の面に配置された偏光板保護フィルムF2とを含み、
     前記第二の偏光板が、第二の偏光子と、前記第二の偏光子の前記液晶セル側の面に配置された偏光板保護フィルムF3と、前記第二の偏光子の前記液晶セルとは反対側の面に配置された偏光板保護フィルムF4とを含み、
     前記偏光板保護フィルムF1と前記偏光板保護フィルムF4の一方または両方が、請求項1に記載の光学フィルムである、液晶表示装置。
    A liquid crystal display device including a first polarizing plate, a liquid crystal cell, a second polarizing plate, and a backlight in this order,
    The first polarizing plate includes a first polarizer, a polarizing plate protective film F1 disposed on a surface of the first polarizer opposite to the liquid crystal cell, and the first polarizer. Including a polarizing plate protective film F2 disposed on the liquid crystal cell side surface,
    The second polarizing plate is a second polarizer, a polarizing plate protective film F3 disposed on the surface of the second polarizer on the liquid crystal cell side, and the liquid crystal cell of the second polarizer. Includes a polarizing plate protective film F4 disposed on the opposite surface,
    The liquid crystal display device in which one or both of the polarizing plate protective film F1 and the polarizing plate protective film F4 is the optical film according to claim 1.
  16.  前記液晶セルは、液晶層と、前記液晶層を挟持する一対の基板とを含み、
     前記一対の基板が、厚み0.3mm以上0.7mm未満のガラス基板である、請求項15に記載の液晶表示装置。
    The liquid crystal cell includes a liquid crystal layer and a pair of substrates sandwiching the liquid crystal layer,
    The liquid crystal display device according to claim 15, wherein the pair of substrates is a glass substrate having a thickness of 0.3 mm or more and less than 0.7 mm.
  17.  少なくとも前記偏光板保護フィルムF1が、請求項1に記載の光学フィルムである、請求項15に記載の液晶表示装置。 The liquid crystal display device according to claim 15, wherein at least the polarizing plate protective film F <b> 1 is the optical film according to claim 1.
  18.  前記偏光板保護フィルムF1の面内の方向Xと前記第一の偏光子の吸収軸とは互いに平行である、請求項17に記載の液晶表示装置。 The liquid crystal display device according to claim 17, wherein the in-plane direction X of the polarizing plate protective film F1 and the absorption axis of the first polarizer are parallel to each other.
PCT/JP2014/080469 2013-11-19 2014-11-18 Optical film, polarizing plate and liquid crystal display device WO2015076250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015549150A JPWO2015076250A1 (en) 2013-11-19 2014-11-18 Optical film, polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013238943 2013-11-19
JP2013-238943 2013-11-19

Publications (1)

Publication Number Publication Date
WO2015076250A1 true WO2015076250A1 (en) 2015-05-28

Family

ID=53179512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080469 WO2015076250A1 (en) 2013-11-19 2014-11-18 Optical film, polarizing plate and liquid crystal display device

Country Status (2)

Country Link
JP (1) JPWO2015076250A1 (en)
WO (1) WO2015076250A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170064744A (en) * 2015-12-02 2017-06-12 주식회사 엘지화학 Optical device
WO2017183921A1 (en) * 2016-04-20 2017-10-26 동우화인켐 주식회사 Polarizing plate and image display device including same
JP6323605B1 (en) * 2017-09-26 2018-05-16 富士ゼロックス株式会社 Resin composition and resin molded body
JP2018127579A (en) * 2017-02-10 2018-08-16 富士ゼロックス株式会社 Resin composition and resin molding
JP6399180B1 (en) * 2017-09-26 2018-10-03 富士ゼロックス株式会社 Resin composition and resin molded body thereof
WO2019064626A1 (en) * 2017-09-26 2019-04-04 富士ゼロックス株式会社 Resin composition and molded resin object
JP2019533756A (en) * 2016-11-11 2019-11-21 イーストマン ケミカル カンパニー Compositions of cellulose esters and ethylene vinyl acetate and articles produced using these compositions
JP2019534367A (en) * 2016-11-11 2019-11-28 イーストマン ケミカル カンパニー Polymer-based resin compositions derived from cellulose and articles made using these compositions
WO2020027085A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, polarizing plate and method for producing optical film
US11827772B2 (en) 2019-12-10 2023-11-28 Ticona Llc Cellulose ester composition containing bloom resistant or bio-based plasticizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087812A1 (en) * 2003-03-28 2004-10-14 Toray Industries, Inc. Polylactic acid resin composition, process for producing the same, biaxially stretched polylactic acid film, and molded articles thereof
JP2004292696A (en) * 2003-03-27 2004-10-21 Fuji Photo Film Co Ltd Cellulose acylate film, manufacturing method therefor, and optical film using the film
JP2008088417A (en) * 2006-09-07 2008-04-17 Japan Advanced Institute Of Science & Technology Hokuriku Resin composition and molded article
JP2013124314A (en) * 2011-12-15 2013-06-24 Fujifilm Corp Cellulose acylate film, optical retardation film, polarizing plate and image display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292696A (en) * 2003-03-27 2004-10-21 Fuji Photo Film Co Ltd Cellulose acylate film, manufacturing method therefor, and optical film using the film
WO2004087812A1 (en) * 2003-03-28 2004-10-14 Toray Industries, Inc. Polylactic acid resin composition, process for producing the same, biaxially stretched polylactic acid film, and molded articles thereof
JP2008088417A (en) * 2006-09-07 2008-04-17 Japan Advanced Institute Of Science & Technology Hokuriku Resin composition and molded article
JP2013124314A (en) * 2011-12-15 2013-06-24 Fujifilm Corp Cellulose acylate film, optical retardation film, polarizing plate and image display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170064744A (en) * 2015-12-02 2017-06-12 주식회사 엘지화학 Optical device
KR102258279B1 (en) 2015-12-02 2021-05-31 주식회사 엘지화학 Optical device
US10976597B2 (en) 2015-12-02 2021-04-13 Lg Chem, Ltd. Optical device
JP2018529116A (en) * 2015-12-02 2018-10-04 エルジー・ケム・リミテッド Optical element
EP3385781A4 (en) * 2015-12-02 2018-12-05 LG Chem, Ltd. Optical element
WO2017183921A1 (en) * 2016-04-20 2017-10-26 동우화인켐 주식회사 Polarizing plate and image display device including same
JP2019534367A (en) * 2016-11-11 2019-11-28 イーストマン ケミカル カンパニー Polymer-based resin compositions derived from cellulose and articles made using these compositions
JP2019533756A (en) * 2016-11-11 2019-11-21 イーストマン ケミカル カンパニー Compositions of cellulose esters and ethylene vinyl acetate and articles produced using these compositions
JP2018127579A (en) * 2017-02-10 2018-08-16 富士ゼロックス株式会社 Resin composition and resin molding
JP2019059829A (en) * 2017-09-26 2019-04-18 富士ゼロックス株式会社 Resin composition and resin molding
WO2019064624A1 (en) * 2017-09-26 2019-04-04 富士ゼロックス株式会社 Resin composition and molded resin object
JP2019059828A (en) * 2017-09-26 2019-04-18 富士ゼロックス株式会社 Resin composition and resin molding of the same
US10472499B2 (en) 2017-09-26 2019-11-12 Fuji Xerox Co., Ltd. Resin composition and resin molded article thereof
WO2019064626A1 (en) * 2017-09-26 2019-04-04 富士ゼロックス株式会社 Resin composition and molded resin object
CN109553806A (en) * 2017-09-26 2019-04-02 富士施乐株式会社 Resin combination and its resin-formed body
JP6399180B1 (en) * 2017-09-26 2018-10-03 富士ゼロックス株式会社 Resin composition and resin molded body thereof
JP6323605B1 (en) * 2017-09-26 2018-05-16 富士ゼロックス株式会社 Resin composition and resin molded body
CN109553806B (en) * 2017-09-26 2022-06-07 伊士曼化工公司 Resin composition and resin molded body thereof
WO2020027085A1 (en) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 Optical film, polarizing plate and method for producing optical film
US11827772B2 (en) 2019-12-10 2023-11-28 Ticona Llc Cellulose ester composition containing bloom resistant or bio-based plasticizer

Also Published As

Publication number Publication date
JPWO2015076250A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015076250A1 (en) Optical film, polarizing plate and liquid crystal display device
JP4622698B2 (en) Retardation plate, polarizing plate, and liquid crystal display device
JP5875263B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
WO2015015538A1 (en) Polarizing plate protection film, polarizing plate and liquid crystal display device
JP5542086B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
US9523794B2 (en) Optical film of cellulose ester and cellulose ether for vertical alignment liquid crystal displays
KR20140015540A (en) Elongated polarization plate and liquid crystal display device
JP6007874B2 (en) Polarizing plate protective film and manufacturing method thereof, polarizing plate and liquid crystal display device
KR101709419B1 (en) Optical film, method for producing optical film, polarizing plate and liquid crystal display device
KR20160090335A (en) Cellulose-ester film, manufacturing method therefor, and polarizing plate
JPWO2012026192A1 (en) Hard coat film, polarizing plate, and liquid crystal display device
WO2015146890A1 (en) Optical film, method for producing same, polarizing plate and liquid crystal display device
WO2014148476A1 (en) Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
KR101431300B1 (en) Liquid crystal display device
JP6737287B2 (en) Optical film, polarizing plate and display device
JPWO2011114764A1 (en) Retardation film and polarizing plate provided with the same
WO2014178178A1 (en) Polarizing plate and liquid crystal display device
WO2015033556A1 (en) Polarizing plate protective film, production method therefor, polarizing plate, and liquid crystal display device
KR102117187B1 (en) Optical film, polarizing plate, and display device
JP2015132661A (en) Polarizing plate protective film, manufacturing method of the same, polarizing plate, and liquid crystal display device
WO2015076411A1 (en) Display device
JP2008102479A (en) Liquid crystal display device
JP2013202829A (en) Cellulose acylate laminated film and method of manufacturing the same, and polarizing plate and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015549150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863760

Country of ref document: EP

Kind code of ref document: A1