WO2014148476A1 - Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device - Google Patents

Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2014148476A1
WO2014148476A1 PCT/JP2014/057294 JP2014057294W WO2014148476A1 WO 2014148476 A1 WO2014148476 A1 WO 2014148476A1 JP 2014057294 W JP2014057294 W JP 2014057294W WO 2014148476 A1 WO2014148476 A1 WO 2014148476A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
polarizing plate
film
liquid crystal
polarizer
Prior art date
Application number
PCT/JP2014/057294
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 細谷
斎藤 浩一
美典 玉川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014148476A1 publication Critical patent/WO2014148476A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid

Definitions

  • the present invention relates to a polarizing plate provided with a protective film on at least one surface of a polarizer, a method for producing the polarizing plate, and a liquid crystal display device including the polarizing plate.
  • polarizing plates in which a protective film and a retardation film are respectively disposed on both sides of a polarizer using polyvinyl alcohol and iodine are widely used.
  • a cellulose ester film is preferably used because of its excellent transparency and small haze.
  • a transparent substrate used for a liquid crystal cell is thinned according to the needs of a thin liquid crystal screen.
  • display unevenness occurs when the liquid crystal display device returns to room temperature after being placed under high temperature and high humidity. It is known that the display unevenness occurs because the polarizer of the polarizing plate absorbs moisture under high temperature and high humidity and contracts when returning to room temperature.
  • the force at the time of contraction propagates to the liquid crystal cell, the entire liquid crystal cell is bent without being able to withstand the thin transparent substrate.
  • the retardation film adjacent to the liquid crystal cell is also bent, stress is applied to the retardation film, the retardation is changed, and display unevenness occurs.
  • the transparent substrate is further thinned, the bending of the liquid crystal cell is also increasing.
  • the conventional method does not sufficiently improve display unevenness, and further improvement has been demanded.
  • the present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a polarizing plate capable of suppressing display unevenness due to temperature and humidity changes, a method for manufacturing the polarizing plate, and a liquid crystal display device including the polarizing plate. That is.
  • the present inventors examined a protective film that can reduce the force acting in the absorption axis direction because the polarizer contracts in the absorption axis direction of light.
  • both the polarizer and the protective film are formed and bonded as a long film, and the absorption axis direction of the polarizer and the MD direction of the protective film (Machine Direction, the fluent direction or transport direction of the film in the manufacturing process) coincide.
  • the present inventors considered that the force by which the polarizer contracts can be reduced by increasing the elastic modulus in the MD direction of the protective film, and have reached the present invention. That is, the subject concerning this invention is solved by the following means.
  • a polarizing plate in which a protective film containing a cellulose ester is disposed on at least one surface of a polarizer The maximum value of tan ⁇ obtained when the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more, Value obtained by measuring the elastic modulus (MPa) in the MD direction and the TD direction (Transverse Direction, direction perpendicular to the MD direction) during the production of the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
  • the polarizing plate is characterized in that the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0, where E1 and E2 respectively.
  • the protective film is a film stretched in the MD direction; 2.
  • the protective film is a film stretched in the MD direction and the TD direction,
  • the MD direction stretch ratio is larger than the TD direction stretch ratio, the MD direction stretch ratio is 1.6 times or more, and the TD direction stretch ratio is 1.3 times or more.
  • styrenic polymer is a copolymer of a monomer having a hydroxy group and a monomer containing styrene.
  • a method for producing a polarizing plate in which a protective film is disposed on at least one surface of a polarizer Including a production process for producing a protective film containing cellulose ester, In the production process, the maximum value of tan ⁇ obtained when the dynamic viscoelasticity of the protective film after production is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more.
  • E1 and E2 the values obtained by measuring the elastic modulus (MPa) in the MD direction and the TD direction at the time of film production of the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55% are expressed as E1 and E2, respectively.
  • the manufacturing process includes a process of stretching the protective film in the MD direction during film manufacturing, The method for producing a polarizing plate according to item 8, wherein the MD magnification is 1.6 times or more.
  • the manufacturing process includes a step of stretching the protective film in the MD direction and the TD direction during film manufacturing,
  • the stretching ratio in the TD direction is smaller than the stretching ratio in the MD direction, the stretching ratio in the MD direction is 1.6 times or more, and the stretching ratio in the TD direction is 1.3 times or more.
  • the protective film is manufactured by a solution casting method using a dope containing the cellulose ester and a styrenic polymer. Any one of Items 8 to 10 The manufacturing method of the polarizing plate of claim
  • the polarizer is a long film
  • the protective film is manufactured as a long film
  • the method includes a bonding step of bonding the protective film and the polarizer, which are long films, so that the major axis directions thereof are matched.
  • the manufacturing method of the polarizing plate of description is a long film.
  • a liquid crystal display device comprising the polarizing plate according to any one of items 1 to 7 on at least one surface of a liquid crystal cell.
  • the liquid crystal screen composed of the liquid crystal cell is rectangular, Of the two polarizing plates respectively provided on both surfaces of the liquid crystal cell, any one of the first to seventh items is used as a polarizing plate in which at least the major axis direction of the liquid crystal screen and the absorption axis direction of the polarizer coincide.
  • Item 15 A liquid crystal display device according to item 14, comprising the polarizing plate according to item 1.
  • the polarizing plate in which the major axis direction of the liquid crystal screen coincides with the absorption axis direction of the polarizer is a polarizing plate provided on a front side surface of the liquid crystal cell.
  • the present invention it is possible to provide a polarizing plate capable of suppressing display unevenness even when there is a change in temperature and humidity, a method for manufacturing the polarizing plate, and a liquid crystal display device including the polarizing plate.
  • the present inventors considered that display unevenness due to the contraction of the polarizer can be improved by the following function.
  • the polarizer contracts in the absorption axis direction, but the protective film in the polarizing plate of the present invention has an elastic modulus E1 in the MD direction from an elastic modulus E2 in the TD direction. The stress for the force applied in the MD direction is large.
  • a polarizer and a protective film are bonded as a long film by roll-to-roll, and the MD direction of the protective film and the absorption axis direction of the polarizer coincide with each other.
  • the shrinking force can be greatly reduced by the protective film.
  • the force propagating from the polarizer to the liquid crystal cell can be reduced enough to withstand even a thin transparent substrate, and the bending of the liquid crystal cell and the retardation film adjacent to the liquid crystal cell can be suppressed. It is speculated that it is possible. If the bending of the retardation film can be suppressed, it is presumed that the change in the retardation, and thus the display unevenness, can be suppressed.
  • FIG. 6 is a cross-sectional view illustrating an example of a structure of a liquid crystal display device according to an embodiment of the present invention.
  • the polarizing plate of the present invention includes a protective film on at least one surface of the polarizer, and the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C.
  • the maximum value of tan ⁇ obtained is 0.6 or more, and the elastic modulus (MPa) in the MD direction and TD direction at the time of film production of the protective film is measured in an environment at a temperature of 23 ° C. and a relative humidity of 55%.
  • E1 and E2 the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0.
  • the protective film is a film stretched at least in the MD direction, and the stretch ratio in the MD direction is 1.6. It is preferable that it is twice or more.
  • a normal protective film for polarizing plate is often stretched in the TD direction, but in the present invention, it is particularly preferable that the protective film is largely stretched in the MD direction. Further, it is preferable that the film is also stretched in the TD direction. In order to perform stretching at such a large stretching ratio, it is necessary to adjust the tan ⁇ of the film to 0.6 or more.
  • the protective film preferably contains a styrenic polymer from the viewpoint of obtaining a maximum value of tan ⁇ of 0.6 or more.
  • the manufacturing process is an aspect including a process of stretching the protective film in the MD direction during film manufacturing, It is preferable from the viewpoint of obtaining the ratio E1 / E2 of the elastic modulus ratio within the range.
  • the polarizing plate of the present invention can be suitably provided on at least one surface of a liquid crystal cell of a liquid crystal display device. Thereby, even if there is a change in temperature and humidity, display unevenness can be suppressed.
  • the protective film having the elastic modulus ratio value E1 / E2 in the range of 1.5 to 3.0 according to the present invention may be installed on the surface of the polarizer farther from the liquid crystal cell. preferable. This is because the surface is easily affected by the external temperature, humidity, and heat of the light source, and the effects of the present invention are more easily exhibited.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • a protective film is disposed on at least one surface of the polarizer.
  • the protective film according to the present invention contains a cellulose ester, and the maximum value of tan ⁇ obtained when the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. Is 0.6 or more.
  • the ⁇ is a phase difference between the strain generated when a force that vibrates sinusoidally is applied to the sample and the applied force.
  • the real part of the complex elastic modulus which is the ratio of applied force and strain, is the storage elastic modulus E ′, and the imaginary part is the loss elastic modulus E ′′.
  • the storage elastic modulus E ′ and loss elastic modulus E ′′ of the protective film are It can be measured by a dynamic viscoelasticity measuring device RSAIII (manufactured by TI Instruments).
  • tan ⁇ is obtained as follows.
  • the sample is conditioned for 24 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%.
  • the dynamic viscoelasticity of the sample after humidity control was measured under the following measurement conditions while changing the temperature in a temperature range of 25 to 190 ° C. under 55% RH, and the maximum value of tan ⁇ obtained by the measurement was Ask.
  • Measuring device RSAIII (manufactured by TA Instruments) Sample: width 5 mm, length 50 mm (gap set to 20 mm) Measurement mode: Tensile mode Measurement temperature: Increased at a rate of 5 ° C / min within a range of 25 to 190 ° C Humidity: 55% relative humidity Frequency of force applied during measurement: 1 Hz In addition, when a protective film is extended
  • the protective film can be stretched at a high magnification, and the elastic modulus of the protective film can be easily adjusted to a desired value by stretching.
  • the maximum value of tan ⁇ of the protective film can be adjusted by selecting the type or amount of plasticizer.
  • the protective film which concerns on this invention represents the value obtained by measuring the elasticity modulus (MPa) of MD direction at the time of film manufacture and TD direction in the environment of temperature 23 degreeC and relative humidity 55% as E1 and E2, respectively.
  • the ratio value E1 / E2 of the elastic modulus in the MD direction and the TD direction is in the range of 1.5 to 3.0.
  • the MD direction means the film casting direction when the protective film is produced by the solution casting method, and the film conveying direction when the protective film is produced by the melt casting method. In either case, the MD direction coincides with the major axis direction of the protective film.
  • the TD direction refers to a direction perpendicular to the MD direction.
  • Each elastic modulus E1 and E2 can be measured as follows.
  • the sample is conditioned for 24 hours in an environment of 23 ° C. and 55% RH.
  • the tensile modulus tester Tensilon RTA-100 manufactured by Orientec Co., Ltd.
  • the shape of the sample is type 1 test piece type, and the tensile speed is 10 mm / min.
  • the protective film according to the present invention has an MD elastic modulus E1 in the range of 3.0 to 7.5 MPa, and an elastic modulus E2 in the TD direction from the viewpoint of obtaining a constant stress with respect to the applied force. It is preferably in the range of 2.0 to 5.0 MPa. More preferably, the elastic modulus E1 in the MD direction is in the range of 5.0 to 7.5 MPa, and the elastic modulus E2 in the TD direction is in the range of 2.2 to 4.0 MPa.
  • the elastic modulus ratio value E1 / E2 can be adjusted within the above range by selecting the stretching conditions.
  • the cellulose ester used in the present invention is a compound obtained by esterifying cellulose.
  • the cellulose ester is preferably a cellulose acetate having a degree of acetyl group substitution in the range of 2.80 to 2.95 because a film having good hardness and low water absorption is easily obtained.
  • the degree of acetyl group substitution is measured according to ASTM-D817-96.
  • the number average molecular weight Mn of the cellulose ester is preferably in the range of 125000 to 155000, more preferably in the range of 129000 to 152000, from the viewpoint of increasing the mechanical strength of the resulting film. From the same viewpoint, the weight average molecular weight Mw of the cellulose ester is preferably in the range of 265,000 to 310000.
  • the ratio Mw / Mn of the ratio of the number average molecular weight Mn to the weight average molecular weight Mw of the cellulose ester is preferably in the range of 1.9 to 2.1.
  • the number average molecular weight Mn and the weight average molecular weight Mw of the cellulose ester are measured using gel permeation chromatography (GPC).
  • the measurement conditions are as follows. Solvent: Methylene chloride Column: Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used Column temperature: 25 ° C Sample concentration: 0.1% by mass Detector: RI Model 504 (GL Science Co., Ltd.) Pump: L6000 (manufactured by Hitachi, Ltd.) Flow rate: 1.0 ml / min
  • the cellulose ester according to the present invention can be produced by a known method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
  • cellulose is esterified by mixing raw material cellulose with carboxylic acid, carboxylic anhydride, catalyst (such as sulfuric acid) and the like.
  • the raw material cellulose is not particularly limited, and may be cotton linter, wood pulp, kenaf or the like. You may mix and use the cellulose ester from which a raw material differs.
  • the esterification reaction proceeds until a cellulose triester is formed. In the triester, the three hydroxy groups of the glucose unit are substituted with an aliphatic carboxylic acid or an acyl acid of an aromatic carboxylic acid.
  • mixed cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate can be produced.
  • a cellulose ester having a desired acyl group substitution degree for example, a cellulose acetate having an acetyl substitution degree within the above preferred range can be synthesized.
  • a cellulose ester is obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying. Specifically, it can be synthesized with reference to the methods described in JP-A Nos. 10-45804 and 2005-281645.
  • the protective film according to the present invention can contain a plasticizer.
  • the plasticizer used in the present invention is preferably a styrenic polymer because it is easy to obtain a protective film having a maximum value of tan ⁇ of 0.6 or more, and among them, a monomer having a hydroxy group and a monomer containing styrene, It is preferable that it is a copolymer.
  • styrene monomer having a structure represented by the following general formula (1) As the monomer of the styrene polymer, a styrene monomer having a structure represented by the following general formula (1) can be used.
  • R 101 to R 103 each independently represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group.
  • R 104 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, an aryl group, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group, an alkyloxycarbonyl group having 2 to 30 carbon atoms, an aryloxycarbonyl Group, an alkylcarbonyloxy group having 2 to 30 carbon atoms, an arylcarbonyloxy group, a hydroxy group, a carboxy group, a cyano group, an amino group, an amido group or a nitro group.
  • R 104 may further have a substituent (eg, a hydroxy group, a halogen atom, an alkyl group, and the like).
  • the five R 104 may be the same or different from each other, and may be bonded to each other to form a ring.
  • styrene monomer having the structure represented by the general formula (1) examples include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene, and p-methylstyrene; 4-chlorostyrene, Halogen-substituted styrenes such as 4-bromostyrene; hydroxystyrenes such as p-hydroxystyrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene; vinylbenzyl alcohols Alkoxy-substituted styrenes such as p-methoxystyrene, p-tert-butoxystyrene and m-tert-butoxystyrene; vinylbenzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinyl
  • Nitrostyrenes such as 3-cyanostyrene and 4-cyanostyrene; vinylphenylacetonitrile; arylstyrenes such as phenylstyrene; indenes and the like.
  • the styrenic polymer may be a single homopolymer among the above styrenic monomers, or may be a copolymer in which two or more types are combined.
  • the protective film which concerns on this invention contains the said styrenic polymer
  • the cellulose ester which is a film base material is orientated by extending
  • a styrenic polymer interposes between the polymer chains of the said cellulose ester.
  • the styrene group of the styrenic polymer has a three-dimensionally bulky structure and widens the distance between the polymer chains, so that the interaction between the polymer chains is reduced and the maximum value of tan ⁇ of the protective film is 0.6. It is easy to become the above value.
  • a copolymer of a monomer having a hydroxy group and a monomer containing styrene has high compatibility with the cellulose ester, and the styrenic polymer is uniform between the polymer chains of the cellulose ester. It is preferable because it is easy to be introduced into.
  • the copolymer of a monomer having a hydroxy group and a monomer containing styrene is a homopolymer of a styrene monomer having a hydroxy group among the styrene monomers having the structure represented by the general formula (1).
  • it may be a copolymer of two or more styrene monomers including at least a styrene monomer having a hydroxy group.
  • the copolymer of the monomer having a hydroxy group and the monomer containing styrene is a copolymer of a styrene monomer having a structure represented by the general formula (1) and a monomer having a hydroxy group. You can also.
  • Examples of the monomer having a hydroxy group that can be combined with the styrenic monomer include vinyl alcohol and the like and a compound having a structure represented by the following formula (2).
  • R 105 to R 107 each independently represent a hydrogen atom, a carboxy group, or an alkyl group having 1 to 30 carbon atoms or an aryl group which may have a substituent.
  • R 105 to R 107 may combine with each other to form a ring.
  • R 108 represents a hydrogen atom or an alkyl group or aryl group having 1 to 30 carbon atoms, and the alkyl group or aryl group has a hydroxy group or a substituent containing a hydroxy group.
  • Specific examples of the compound represented by the general formula (2) include (meth) acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, maleic acid, citraconic acid, cis-1-cyclohexene-1,2-dicarboxylic acid, 3-methyl-cis-1-cyclohexene-1,2-dicarboxylic acid and 4-methyl-cis-1-cyclohexene-1,2-dicarboxylic acid are included.
  • the content ratio of the structural unit derived from the styrene monomer in the copolymer of the styrene monomer having the structure represented by the general formula (1) and the monomer having the structure represented by the general formula (2). Is preferably in the range of 30 to 80 mol%, more preferably in the range of 50 to 80 mol%, from the viewpoint of compatibility with the cellulose ester.
  • the content of the styrene polymer in the protective film is not particularly limited, but is preferably in the range of 5 to 30% by mass, and more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
  • the weight average molecular weight Mw of the styrene polymer is preferably in the range of 1500 to 12000.
  • the protective film according to the present invention can contain polyester as a plasticizer.
  • the polyester that can be used in the present invention contains a repeating unit derived from a condensate of a dicarboxylic acid and a diol.
  • the repeating unit preferably contains a non-aromatic ring structure or an aromatic ring structure. That is, at least one of the dicarboxylic acid and diol constituting the polyester preferably includes a non-aromatic ring structure or an aromatic ring structure, but more preferably the dicarboxylic acid includes a non-aromatic ring structure or an aromatic ring structure.
  • the dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid.
  • the carbon number of the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
  • the carbon number of the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12.
  • aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acids, 1,4-xylidene dicarboxylic acids and the like are included.
  • the dicarboxylic acid constituting the polyester may be one type or two or more types.
  • the dicarboxylic acid constituting the polyester preferably contains an aromatic dicarboxylic acid, and more preferably contains both an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid.
  • the aromatic dicarboxylic acid is particularly preferably 1,4-benzenedicarboxylic acid (terephthalic acid).
  • the diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol, or an aromatic diol.
  • the carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12.
  • aliphatic diols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl- 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propane Diol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol, 1, 6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol
  • the carbon number of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12.
  • Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol, polypropylene ether glycol and the like.
  • the diol constituting the polyester may be one type or two or more types.
  • the diol constituting the polyester preferably contains an aliphatic diol.
  • a polyester containing a repeating unit derived from a condensate of a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid and an aliphatic diol has good stretchability and transparency of a film containing the polyester. From this point, it is preferable.
  • the molecular terminal of the polyester may be sealed with monocarboxylic acid or monoalcohol as necessary.
  • the monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid.
  • the carbon number of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4.
  • Examples of the aliphatic carboxylic acid include acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like.
  • Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid and the like.
  • aromatic monocarboxylic acids examples include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
  • the monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol, or an aromatic monoalcohol.
  • the aliphatic monoalcohol has 1 to 30 carbon atoms, preferably 1 to 3 carbon atoms.
  • Examples of aliphatic monoalcohols are methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, octanol, isooctanol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol , Tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, dodecaoctanol, allyl alcohol, oleyl alcohol and the like.
  • Examples of the alicyclic monoalcohol include cyclohexyl alcohol
  • the polyester preferably has a weight average molecular weight Mw in the range of 300 to 3000, more preferably 400 to 2000.
  • the polyester content in the protective film is preferably in the range of 5 to 30% by mass, more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
  • sugar esters other than the above-described cellulose esters can also be used as plasticizers.
  • the sugar ester that can be used in the present invention is a compound having 1 to 12 furanose structures or pyranose structures, in which all or part of the hydroxy groups in the compound are esterified.
  • Preferable examples of such sugar esters include sucrose esters represented by the following general formula (FA).
  • R 1 to R 8 in the general formula (FA) each independently represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group.
  • R 1 to R 8 may be the same as or different from each other.
  • the substituted or unsubstituted alkylcarbonyl group is preferably a substituted or unsubstituted alkylcarbonyl group having 2 or more carbon atoms.
  • Examples of the substituted or unsubstituted alkylcarbonyl group include a methylcarbonyl group (acetyl group).
  • Examples of the substituent that the alkyl group has include an aryl group such as a phenyl group.
  • the substituted or unsubstituted arylcarbonyl group is preferably a substituted or unsubstituted arylcarbonyl group having 7 or more carbon atoms.
  • the arylcarbonyl group include a phenylcarbonyl group.
  • the substituent that the aryl group has include an alkyl group such as a methyl group and an alkoxy group such as a methoxy group.
  • the average substitution degree of the acyl group of the sucrose ester is preferably in the range of 3.0 to 7.5. When the average substitution degree of the acyl group is within this range, sufficient compatibility with the cellulose ester as the film substrate is easily obtained.
  • sugar ester examples include the compounds described in JP-A-62-42996 and JP-A-10-237084.
  • the content of the sugar ester in the protective film is preferably in the range of 5 to 30% by mass, more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
  • the protective film according to the present invention may contain an ultraviolet absorber.
  • the ultraviolet absorber include benzotriazole compounds, 2-hydroxybenzophenone compounds, salicylic acid phenyl ester compounds, and the like.
  • UV absorbers having a molecular weight of 400 or more are difficult to sublimate or volatilize at a high boiling point, and are difficult to disperse even when the film is dried at high temperature. Therefore, the weather resistance is effectively improved by adding a relatively small amount. From the viewpoint of being able to do so.
  • Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1 , 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis Hindered amines such as (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl
  • hindered phenol and hindered amine can be used alone or in combination of two or more.
  • 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
  • the UV absorber may be a commercially available product, for example, Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 928, etc. manufactured by BASF Japan, LA31 manufactured by ADEKA Such 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659) can be preferably used.
  • the content of the ultraviolet light inhibitor in the protective film is preferably in the range of 1 to 1000 ppm, more preferably in the range of 10 to 1000 ppm by mass ratio.
  • the protective film according to the present invention may further contain a matting agent in order to impart slipperiness to the film.
  • the matting agent may be an inorganic compound or an organic compound as long as it does not impair the transparency of the resulting film and has heat resistance during film production.
  • a matting agent may be used independently and may use 2 or more types together.
  • silicon dioxide having a refractive index close to that of cellulose ester and excellent in transparency (haze) of the film is preferably used.
  • Specific examples of silicon dioxide include commercially available products such as Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Seahoster KEP-10, Seahoster KEP-30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Industry), Admafine SO (manufactured by Admatechs) It can be preferably used.
  • the shape of the particles is not particularly limited, such as an indefinite shape, a needle shape, a flat shape, and a spherical shape.
  • Use of spherical particles is preferable because the resulting film can have good transparency.
  • the particle size is preferably smaller than the wavelength of visible light, and more preferably 1 ⁇ 2 or less of the wavelength of visible light. .
  • the particle size is preferably in the range of 80 to 180 nm.
  • the size of the particle means the size of the aggregate when the particle is an aggregate of primary particles.
  • a particle when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
  • the content of the matting agent can be in the range of about 0.05 to 1.00% by mass with respect to the cellulose ester, and preferably in the range of 0.10 to 0.80% by mass.
  • the protective film according to the present invention can also contain a peeling aid.
  • the peeling aid is present on the surface and absorbs moisture in the air, has a function of increasing the electrical conductivity and greatly reducing the surface resistance, and further partially agglomerates on the metal belt surface, Improve peelability.
  • Examples of the peeling aid include alkyl sulfonates and alkyl benzene sulfonates.
  • Examples of the salt include sodium salt, potassium salt, amine salt, ammonium salt, phosphonium salt and the like.
  • Specific examples include sodium decyl sulfonate, sodium decyl benzene sulfonate, potassium decyl benzene sulfonate, sodium dodecyl sulfonate, potassium dodecyl sulfonate, sodium dodecyl benzene sulfonate, potassium dodecyl benzene sulfonate, tetrabutyl dodecyl benzene sulfonate.
  • the protective film according to the present invention can be produced by a solution casting method or a melt casting method from the viewpoints of suppressing coloring, suppressing foreign matter defects, and suppressing optical defects such as die lines.
  • the solution casting method is preferred because the flatness of the film obtained, failure resistance such as streaks, and the accuracy of the film thickness are improved.
  • the production of a protective film by the solution casting method includes 1) a step of preparing a dope by dissolving or dispersing a cellulose ester and other additives such as a plasticizer in a solvent, if necessary, and 2) endless the dope.
  • a step of casting on a metal support 3) a step of removing a film obtained by drying the cast dope from the metal support to obtain a film, and 4) stretching the obtained film. It is preferable to carry out through the step of 5) the step of winding up the stretched film.
  • the organic solvent useful for the preparation of the dope can be used without limitation as long as it dissolves or disperses cellulose ester, additives and the like simultaneously.
  • a methylene chloride (dichloromethane) is mentioned as a chlorinated organic solvent.
  • Non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2, 2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1, Examples include 1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane. Of these, methylene chloride, methyl acetate, ethyl acetate, and acetone are preferable.
  • the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because the stability of the dope is obtained, the boiling point is relatively low, and the drying property is good.
  • cellulose ester and additives it is preferable to dissolve or disperse at least 15 to 45 mass% of the total amount of cellulose ester and additives in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • Dissolution or dispersion of cellulose ester or the like is carried out at normal pressure, carried out below the boiling point of the main solvent, carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557.
  • There are various methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using high pressure as described in JP-A-11-21379.
  • a method in which pressure is applied at a boiling point or higher is preferred.
  • the prepared dope may contain aggregates.
  • the prepared dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt, a rotating metal drum, etc.) that is transferred infinitely.
  • the pressure die is preferably a pressure die that can adjust the slit shape of the die portion and can easily control the film thickness uniformly. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope flow rate may be divided to be stacked. Or you may obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • the dope cast on the metal support is heated on the metal support to evaporate the solvent in the dope to obtain a film.
  • evaporate the solvent there are a method of blowing air from the liquid surface side of the dope, a method of transferring heat from the back surface of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc.
  • the drying efficiency is preferable.
  • the method of combining these is also preferably used.
  • the dope on the metal support is preferably dried on the support in an atmosphere within a range of 40 to 100 ° C. In order to maintain the atmosphere in the range of 40 to 100 ° C., it is preferable to apply hot air at this temperature to the liquid surface of the dope on the metal support or to heat by means such as infrared rays.
  • the film-like material obtained by evaporating the solvent on the metal support is peeled off at the peeling position to obtain a film.
  • the temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
  • the amount of residual solvent in the film-like material on the metal support at the time of peeling is preferably in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like.
  • the amount of residual solvent at the time of peeling is determined from the balance between production speed and quality.
  • the peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, the peeling tension should be 190 N / m or less. Is preferred.
  • Drying is generally performed by applying hot air to both sides of the film, but may be heated by applying microwaves instead of hot air. Too rapid drying tends to impair the flatness of the resulting film. Drying at a high temperature is preferably performed after the amount of residual solvent is reduced to about 8% by mass or less. Throughout, the drying is generally carried out within the range of 40-250 ° C. In particular, it is preferable to dry within the range of 40 to 200 ° C.
  • the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C.
  • the temperature distribution of the atmosphere is small in the TD direction from the viewpoint of improving the uniformity of the film. Therefore, the temperature distribution in the TD direction in the tenter stretching apparatus is preferably within ⁇ 5 ° C., more preferably within ⁇ 2 ° C., and most preferably within ⁇ 1 ° C.
  • Stretching at least in the MD direction of the protective film in the MD direction and the TD direction results in a ratio value E1 / E2 of the elastic modulus E1 in the MD direction and the elastic modulus E2 in the TD direction of 1.5 to 3 It is preferable because it is easy to adjust within the range of 0.0.
  • the draw ratio in the MD direction is preferably 1.6 times or more, and more preferably in the range of 1.6 to 3.0 times.
  • biaxial stretching that performs stretching in the TD direction is also preferable from the viewpoint of obtaining the strength of the film.
  • the stretching ratio in the MD direction is larger than the stretching ratio in the TD direction, the stretching ratio in the MD direction is 1.6 times or more, and the stretching ratio in the TD direction is 1.3 times or more.
  • the draw ratio in the MD direction is preferably in the range of 1.6 to 3.0 times.
  • the draw ratio in the TD direction is preferably in the range of 1.3 to 4.0 times, and more preferably in the range of 1.5 to 3.0 times.
  • the draw ratio of the said MD direction and TD direction is calculated
  • stretching of each direction. Stretch ratio length of film after stretching / length of film before stretching
  • Biaxial stretching may be performed simultaneously or stepwise. Simultaneous biaxial stretching includes stretching in one direction and reducing the tension in the other direction to cause contraction.
  • stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. For example, the following stretching steps are possible. -Stretch in MD direction-> Stretch in TD direction-Stretch in TD direction-> Stretch in MD direction-Stretch in MD direction-> Stretch in TD direction-> Stretch in TD direction-Stretch in TD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in TD direction-> Stretch in TD direction-> Stretch in MD direction-> Stretch in MD direction-> Stretch in
  • the stretching can be performed within a temperature range of 25 to 190 ° C.
  • the residual solvent amount of the film at the start of stretching is preferably in the range of 20 to 100% by mass.
  • the film obtained after completion of stretching is preferably dried until the residual solvent amount is 5% by mass or less, preferably 1% by mass or less.
  • Winding process The film after stretching and drying is wound into a roll with a winder.
  • a winding method a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
  • the protective film according to the present invention can be a long film.
  • a long film having a winding length in the range of about 100 to 10,000 m and a length in the TD direction of 1.0 to 4.0 m, preferably in the range of 1.4 to 3.0 m can be obtained.
  • a long film can be preserve
  • a knurling like embossing Processing may be applied to both ends in the TD direction.
  • the knurling process can be performed by heating or pressurizing the film with a metal ring having an uneven pattern on the side surface.
  • the thickness of the protective film according to the present invention is preferably in the range of 15 to 35 ⁇ m, more preferably in the range of 15 to 30 ⁇ m. If the film thickness is within the above range, the film has sufficient strength, can suppress the bending of the liquid crystal cell to improve display unevenness, and when the roll body is stored so that the core is horizontal, the TD of the film It is also possible to suppress deformation (change in winding shape) such that the central portion in the direction is recessed by its own weight.
  • the haze value of the protective film according to the present invention is preferably 1.0% or less, and more preferably 0.5% or less. When using the protective film of this invention as a scattering film, haze value may exceed said range.
  • the haze can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
  • the protective film according to the present invention may further have functional layers such as a hard coat layer, an antistatic layer, a back coat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
  • functional layers such as a hard coat layer, an antistatic layer, a back coat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer.
  • the polarizer may be an iodine polarizing film, a dye polarizing film using a dichroic dye, or a polyene polarizing film.
  • the iodine polarizing film and the dye polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol film and then dyeing with iodine or a dichroic dye. After the film is dyed with iodine or a dichroic dye, it may be a uniaxially stretched film (preferably a film further subjected to a durability treatment with a boron compound).
  • the polyvinyl alcohol film may be a film formed from a polyvinyl alcohol aqueous solution.
  • the polyvinyl alcohol film is preferably an ethylene-modified polyvinyl alcohol film because it is excellent in polarizing performance and durability performance and has few color spots.
  • dichroic dyes include azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes, anthraquinone dyes, and the like.
  • the thickness of the polarizer is preferably in the range of 5 to 30 ⁇ m, and more preferably in the range of 10 to 20 ⁇ m.
  • ⁇ Phase difference film> When the protective film according to the present invention is disposed on one surface of the polarizer, a retardation film is disposed on the other surface of the polarizer.
  • the angle at which the slow axis in the plane of the retardation film intersects with the absorption axis of the polarizer may be an appropriate angle depending on the purpose. For example, in the case of a ⁇ / 4 retardation film, it is preferably within a range of 40 to 50 °, and more preferably 45 °.
  • the retardation value of the retardation film can be set according to the type of liquid crystal cell to be combined.
  • Ro (590) and Rt (590) are Ro (590) and Rt (590), respectively
  • Ro (590) is preferably in the range of 30 to 150 nm
  • Rt (590) is preferably in the range of 70 to 300 nm.
  • a retardation film having retardation values Ro (590) and Rt (590) in the above range can be preferably used for, for example, a VA liquid crystal cell.
  • the retardation value of the protective film according to the present invention may be adjusted to function as the retardation film.
  • the method for producing a polarizing plate of the present invention includes a production process for producing the above-described protective film, and in the production process, the maximum value of tan ⁇ of the produced protective film is 0.6 or more, and the protective film The protective film is manufactured so that the value E1 / E2 of the ratio of the elastic modulus in the MD direction and the TD direction is in the range of 1.5 to 3.0. Furthermore, the polarizing plate of this invention can be obtained through the process of bonding the protective film after manufacture to a polarizer.
  • an adhesive used for bonding for example, a completely saponified polyvinyl alcohol aqueous solution is preferable.
  • the absorption axis of the polarizer is the stretching direction of the polarizer. Since it is parallel, the absorption axis direction of a polarizer and MD direction of a protective film correspond.
  • that the major axis direction coincides or that the absorption axis direction coincides with the MD direction means that the angle formed by each direction is within a range of about ⁇ 5 °.
  • the liquid crystal display device of the present invention comprises the polarizing plate described above on at least one surface of the liquid crystal cell. Thereby, a liquid crystal display device with less display unevenness due to temperature and humidity changes can be provided.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of the liquid crystal display device of the present invention.
  • the liquid crystal display device 100 includes a liquid crystal cell 40, two polarizing plates 50 and 60 disposed on both surfaces of the liquid crystal cell 40, and a backlight 70.
  • the display method of the liquid crystal cell 40 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, an IPS (In-Plane Switching) method, an OCB (Optically Compensated Birefringence) method, and VA (Vertical Alignment).
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • IPS In-Plane Switching
  • OCB Optically Compensated Birefringence
  • VA Vertical Alignment
  • MVA Multi-domain Vertical Alignment
  • PVA Patterned Vertical Alignment
  • HAN Hybrid Aligned Nematic
  • a VA liquid crystal cell includes a pair of transparent substrates and a liquid crystal layer sandwiched between the pair of transparent substrates.
  • the transparent substrate is, for example, a glass substrate.
  • the film thickness of the transparent substrate is preferably in the range of 0.2 to 0.5 mm from the viewpoint of thinning the liquid crystal screen.
  • one transparent substrate is provided with a pixel electrode for applying a voltage to the liquid crystal molecules.
  • the counter electrode may be disposed on one transparent substrate (transparent substrate on which the pixel electrode is disposed) or may be disposed on the other transparent substrate.
  • the liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy.
  • Liquid crystal molecules are liquid crystal molecules when no voltage is applied (when no electric field is generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate. Are oriented so that their long axes are substantially perpendicular to the surface of the transparent substrate.
  • the liquid crystal cell 40 when a voltage corresponding to an image signal is applied to the pixel electrode, an electric field is generated between the pixel electrode and the counter electrode. Thereby, the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate can be aligned so that the major axis thereof is in the horizontal direction with respect to the surface of the transparent substrate. In this way, the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
  • the polarizing plate 50 is disposed on the surface of the liquid crystal cell 40 on the front side (viewing side), and includes a protective film 51, a polarizer 52, and a retardation film 53 in order from the front side.
  • the front side is a side on which the liquid crystal screen is visually recognized by the user 80.
  • the polarizing plate 60 is disposed on the surface of the liquid crystal cell 40 on the rear side, and includes a protective film 63, a polarizer 62, and a retardation film 61 in order from the rear side.
  • the rear side is the side where the backlight 70 is provided.
  • the polarizing plates 50 and 60 are arranged such that the angle formed by the respective absorption axes is 90 °.
  • FIG. 2 is a diagram hierarchically showing the liquid crystal cell 40 and the two polarizing plates 50 and 60 of FIG.
  • the polarizers 52 and 62 that have absorbed moisture contract in the respective absorption axis directions 52d and 62d.
  • this contracting force is represented by a white arrow.
  • the shrinking force propagates to the liquid crystal cell 40. If the transparent substrate of the liquid crystal cell 40 cannot withstand this force, the liquid crystal cell 40 is bent, and the retardation films 53 and 61 adjacent to the liquid crystal cell 40 are also bent. End up. Due to the bending of the phase difference films 53 and 61, the phase difference changes, causing display unevenness.
  • the polarizing plate of the present invention when used for at least one of the polarizing plates 50 or 60, the polarizing plate of the present invention has a high elastic modulus in the MD direction of the protective film, and thus is resistant to the force applied in the MD direction. Stress is large.
  • the polarizer and the protective film are bonded as a long film by roll-to-roll, and as shown in FIG. 2, the MD direction 51d of the protective film 51 and the absorption axis direction 52d of the polarizer 52 coincide with each other.
  • the MD direction 63d of 63 coincides with the absorption axis direction 62d of the polarizer 62.
  • the force propagating to the liquid crystal cell 40 can be reduced to such an extent that even a thin transparent substrate can withstand, and the liquid crystal cell 40 and the retardation films 53 and 61 adjacent to the liquid crystal cell 40 can be reduced. Bending can be suppressed. If the bending of the retardation film can be suppressed, it is possible to suppress a change in the retardation, and thus display unevenness.
  • a polarizing plate in which at least the absorption axis direction of the polarizer coincides with the long axis direction of the liquid crystal screen among the two polarizing plates used on both sides of the liquid crystal cell is preferable to use the polarizing plate of the present invention.
  • the moment of force with which the polarizer contracts increases as the length of the polarizer in the absorption axis direction increases. Therefore, when the liquid crystal screen is rectangular, the moment of force with which the polarizer of each polarizing plate contracts is not the same, and the moment is larger in the polarizing plate in which the major axis direction of the liquid crystal screen matches the absorption axis direction. . Due to the difference in moment, the liquid crystal cell is warped.
  • the polarizing plate 50 provided on the front side of the liquid crystal cell 40 is arranged so that the major axis direction of the liquid crystal screen and the absorption axis direction 52d coincide. Since the polarizing plate 50 has a larger moment of contraction force than the polarizing plate 60, the liquid crystal cell 40 warps so as to protrude to the rear side as shown in the cross-sectional view of FIG.
  • the protective film 51 located at the outermost outermost side of the front side is most bent.
  • the elastic modulus E1 of the protective film 51 in the MD direction 51d is increased, and the contracting force of the polarizer 52 can be greatly reduced.
  • the bending of the liquid crystal cell 40 that protrudes to the rear side can be effectively suppressed.
  • the polarizing plate 50 on the front side can be used as the polarizing plate of the present invention.
  • the force by which the rear-side polarizer 62 contracts in the absorption axis direction 62 d can also be greatly reduced by the protective film 63 provided on the polarizing plate 60.
  • the obtained dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. Further, the solvent in the dope was evaporated on the stainless steel band support until the residual solvent amount reached 100% by mass. The obtained film was peeled from the stainless steel band support with a peel tension of 162 N / m to obtain a film.
  • the end in the TD direction was slit so that the length in the TD direction was 1.5 m.
  • the film after the slit was stretched 2.0 times in the MD direction with a roller at a stretching temperature of 190 ° C. and stretched 1.5 times in the TD direction at a stretching temperature of 190 ° C. with a tenter stretching device.
  • the residual solvent amount at the start of stretching by the tenter stretching apparatus was 8% by mass.
  • relaxation treatment was performed at 130 ° C. for 5 minutes, and the obtained film was transported to each drying zone at 120 ° C. and 140 ° C. by a number of rollers, and dried while being transported.
  • the end in the TD direction was slit so that the length in the TD direction was 1.35 m.
  • the knurl process of width 10mm and height 5micrometer was given to the TD direction both ends of the film, and it wound up on the core, and obtained the roll body of the protective film 11.
  • the film thickness of the protective film 11 was 25 ⁇ m, and the winding length was 4000 m.
  • the protective film 12 was produced similarly to the protective film 11 except having changed the addition amount of polyester in dope as shown in Table 1 below. Similar to the protective film 11, the protective film 12 had a thickness of 25 ⁇ m and a winding length of 4000 m.
  • styrene polymer 1 SMA 2625 (copolymer of styrene and maleic acid, molar ratio of styrene and maleic acid (styrene / maleic acid) 67/33, weight average molecular weight Mw 9000), manufactured by Sartomer): 10.0 parts by mass Styrene polymer 2: SMA 17325 (copolymer of styrene and maleic acid, molar ratio of styrene and maleic acid (styrene / maleic acid) 50/50, weight average molecular weight Mw 7000), manufactured by Sartomer): 10.0 parts by mass Styrene polymer 3: Marcalinker CST50 (copolymer of styrene and maleic acid, molar ratio of styrene and maleic acid (styrene / maleic acid) 50/50, weight average molecular weight Mw 7000), manufactured by Sartomer): 10.0 parts by
  • protective films 16 and 17 were produced in the same manner as the protective film 13, except that the stretching ratio in the MD direction and the TD direction during stretching was changed as shown in Table 1 below. In addition, the protective film 17 did not extend
  • a protective film 18 was produced in the same manner as the protective film 13, except that the addition amount of the styrene polymer 1 was changed as shown in Table 1 below.
  • a protective film 19 was produced in the same manner as the protective film 14 except that the addition amount of the styrene polymer 2 was changed as shown in Table 1 below.
  • the film thickness of each protective film 18 and 19 was 25 micrometers, and the winding length was 4000 m.
  • the protective films 20 and 21 were produced in the same manner as the protective film 11 except that the stretching ratios in the MD direction and the TD direction were changed as shown in Table 1 below. Similar to the protective film 11, the protective films 20 and 21 had a film thickness of 25 ⁇ m and a winding length of 4000 m.
  • a protective film 22 was produced in the same manner as the protective film 11 except that the polyester was changed to the following sugar ester.
  • Sugar ester in the general formula (FA), R 1 to R 8 are each a benzoyl group or a hydrogen atom, and the average degree of substitution of the benzoyl group is 5.5: 10 parts by mass Similar to the protective film 11 Further, the protective film 22 had a film thickness of 25 ⁇ m and a winding length of 4000 m.
  • the protective film 31 was produced by extending the draw ratio in the MD direction and the TD direction to 1.6 and 1.3, respectively. Similar to the protective film 11, the protective film 31 had a film thickness of 25 ⁇ m and a winding length of 4000 m.
  • ⁇ Preparation of protective films 32 and 33> In the production of the protective film 11, the polyester in the dope is added in the addition amount shown in Table 1 below instead of ethylphthalylethyl glycolate, and the draw ratios in the MD direction and the TD direction at the time of drawing are shown in Table 1 below.
  • the protective films 32 and 33 were respectively produced in the same manner as the protective film 11 except that the above changes were made. In preparation of the protective films 32 and 33, when the film was broken at the same draw ratio as that of the protective film 11, the film was broken, so the draw ratio was lowered as shown in Table 1 below. Similarly to the protective film 11, the film thickness of each protective film 32 and 33 was 25 micrometers, and the winding length was 4000 m.
  • the protective film 34 and the protective film 11 were changed in the same manner as the protective film 11 except that the addition amount of the polyester in the dope and the stretching ratio in the MD direction and TD direction during stretching were changed as shown in Table 1 below. 35 were produced. Similar to the protective film 11, the protective films 34 and 35 had a film thickness of 25 ⁇ m and a winding length of 4000 m.
  • a protective film 36 was prepared in the same manner as the protective film 31 except that the protective film 31 was not stretched. Similar to the protective film 31, the protective film 36 had a thickness of 25 ⁇ m and a winding length of 4000 m.
  • protective films 37 and 38 were produced in the same manner as the protective film 13 except that the addition amount of the styrene polymer 1 and the stretching ratio were changed as shown in Table 1 below. Similar to the protective film 13, the protective films 37 and 38 had a film thickness of 25 ⁇ m and a winding length of 4000 m.
  • a polarizer was produced by the following procedure.
  • a 120 ⁇ m thick polyvinyl alcohol film was uniaxially stretched in the MD direction (temperature 110 ° C., stretch ratio 5 times). After extending
  • Step 1 One surface of the protective film was immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, washed with water, dried and saponified. The saponified surface is the bonding surface with the polarizer.
  • Step 2 The prepared polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Excess adhesive adhered to the polarizer in Step 2 was lightly wiped away, and then the polarizer was stacked on the surface of the protective film saponified in Step 1 and bonded together.
  • Step 4 On the other surface of the polarizer layered on the protective film in Step 3, Konica Minoltack KC4DR (cellulose ester film manufactured by Konica Minolta Advanced Layer) is stacked as a retardation film, and the pressure is 20 to 30 N / cm 2. Bonding was performed at a conveyance speed of about 2 m / min.
  • Step 5 The protective film, polarizer, and Konica Minoltack KC4DR bonded together in Step 4 were dried for 2 minutes in a dryer at 80 ° C. to prepare a polarizing plate.
  • the liquid crystal screen of BRAVIA KDL-52W5 was a rectangle longer in the left-right direction than in the up-down direction.
  • the polarizing plate disposed on the front side of the BRAVIA KDL-52W5 liquid crystal cell has a polarizing axis disposed on the rear side of the liquid crystal cell with the absorption axis direction coinciding with the long axis direction (left-right direction) of the liquid crystal screen.
  • the absorption axis direction of the plate coincided with the minor axis direction (vertical direction) of the liquid crystal screen. Therefore, the polarizing plate 11 was similarly formed in a rectangular shape and arranged so that the absorption axis direction coincided with the major axis direction of the liquid crystal screen.
  • the polarizing plates 12 to 22 and 31 to 38 were used to prepare the liquid crystal display devices 12 to 22 and 31 to 38, respectively.
  • Tan ⁇ of protective film The dynamic viscoelasticity of each of the protective films 11 to 22 and 31 to 38 was measured, and the maximum value of tan ⁇ in the temperature range of 25 to 190 ° C. was obtained. In addition, about the protective film produced by extending
  • Measurement mode Tensile mode Measurement temperature: Temperature rising within a temperature range of 25 to 190 ° C at a rate of 5 ° C / min Humidity: 55% relative humidity Temperature increase rate: 5 ° C / min Frequency of force applied during measurement: 1 Hz
  • the present invention can be applied to reduce display unevenness of a liquid crystal display device having a thin liquid crystal screen.

Abstract

The purpose of the present invention is to provide a polarizing plate that can mitigate uneven display resulting from changes in temperature and humidity, a method for manufacturing the polarizing plate, and a liquid crystal display device provided with the polarizing plate. This polarizing plate has a protective film containing a cellulose ester disposed on at least one surface of a polarizing element, the polarizing plate being characterized in that a maximum value for tanδ is 0.6 or greater when tanδ is obtained by measuring the dynamic viscoelasticity of the protective film at a frequency of 1Hz while the temperature is changed within a range of 25-190˚C, and in that E1/E2 is 1.5 to 3.0 where values of elastic moduli (MPa) for an MD direction and a TD direction during production of the protective film are expressed respectively as E1 and E2, which are obtained through measurement at a temperature of 23˚C and a relative humidity of 55%, E1/E2 being a ratio of elastic moduli for the MD direction and the TD direction.

Description

偏光板、偏光板の製造方法及び液晶表示装置Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
 本発明は、偏光子の少なくとも一方の面に保護フィルムを備える偏光板、当該偏光板の製造方法及び当該偏光板を具備する液晶表示装置に関する。 The present invention relates to a polarizing plate provided with a protective film on at least one surface of a polarizer, a method for producing the polarizing plate, and a liquid crystal display device including the polarizing plate.
 液晶表示装置には、ポリビニルアルコールとヨウ素を用いた偏光子の両面に、保護フィルムと位相差フィルムがそれぞれ配置された偏光板が広く使用されている。保護フィルムとしては、透明性に優れ、ヘイズも小さいことから、セルロースエステルフィルムが好ましく用いられている。 In liquid crystal display devices, polarizing plates in which a protective film and a retardation film are respectively disposed on both sides of a polarizer using polyvinyl alcohol and iodine are widely used. As the protective film, a cellulose ester film is preferably used because of its excellent transparency and small haze.
 液晶表示装置では、薄型の液晶画面のニーズに応じて、液晶セルに用いられる透明基板が薄膜化されている。透明基板の薄膜化にともなって、液晶表示装置が高温高湿下におかれた後、室温に戻ると表示ムラが発生することが問題となっている。
 表示ムラが発生するのは、偏光板の偏光子が高温高湿下で水分を吸収し、室温下に戻った際に収縮するためであることが分かっている。収縮時の力が液晶セルに伝播するが、薄膜化された透明基板では耐えられずに液晶セル全体が曲がる。このとき、液晶セルに隣接する位相差フィルムも曲がることから、位相差フィルムに応力が加わって位相差が変化し、表示ムラが発生する。
In a liquid crystal display device, a transparent substrate used for a liquid crystal cell is thinned according to the needs of a thin liquid crystal screen. As the thickness of the transparent substrate is reduced, display unevenness occurs when the liquid crystal display device returns to room temperature after being placed under high temperature and high humidity.
It is known that the display unevenness occurs because the polarizer of the polarizing plate absorbs moisture under high temperature and high humidity and contracts when returning to room temperature. Although the force at the time of contraction propagates to the liquid crystal cell, the entire liquid crystal cell is bent without being able to withstand the thin transparent substrate. At this time, since the retardation film adjacent to the liquid crystal cell is also bent, stress is applied to the retardation film, the retardation is changed, and display unevenness occurs.
 表示ムラの問題に対しては、位相差フィルムの光弾性係数を小さくすることが、表示ムラの改善に有効であることが知られている。
 また、弾性率が高いセルロースエステルフィルムを保護フィルムとして用いることにより、収縮の力を低減し、液晶セルの曲がりを抑制する方法が提案されている(例えば、特許文献1参照)。
 セルロースエステルフィルムに、スチレン/無水マレイン酸コポリマーを含有させて、湿度変動による位相差の変化を抑制する方法も提案されている(例えば、特許文献2参照)。
For the problem of display unevenness, it is known that reducing the photoelastic coefficient of the retardation film is effective in improving display unevenness.
Moreover, the method of reducing the force of shrinkage | contraction and suppressing the bending of a liquid crystal cell is proposed by using a cellulose-ester film with a high elasticity modulus as a protective film (for example, refer patent document 1).
There has also been proposed a method in which a cellulose ester film is allowed to contain a styrene / maleic anhydride copolymer to suppress a change in phase difference due to humidity fluctuations (see, for example, Patent Document 2).
 しかしながら、透明基板のさらなる薄膜化が進むにつれて、液晶セルの曲がりも大きくなっている。従来の方法では表示ムラの改善が十分ではなく、さらなる改良が求められていた。 However, as the transparent substrate is further thinned, the bending of the liquid crystal cell is also increasing. The conventional method does not sufficiently improve display unevenness, and further improvement has been demanded.
特開2007-119717号公報JP 2007-119717 A 特開2007-304376号公報JP 2007-304376 A
 本発明は上記問題・状況に鑑みてなされ、その解決課題は、温湿度変化による表示ムラを抑えることができる偏光板、当該偏光板の製造方法及び当該偏光板を具備する液晶表示装置を提供することである。 The present invention has been made in view of the above problems and situations, and a solution to the problem is to provide a polarizing plate capable of suppressing display unevenness due to temperature and humidity changes, a method for manufacturing the polarizing plate, and a liquid crystal display device including the polarizing plate. That is.
 本発明者らは、偏光子が光の吸収軸方向に収縮することから、この吸収軸方向に働く力を低減できる保護フィルムを検討した。一般に、偏光子も保護フィルムも長尺フィルムとして形成されて貼り合わされており、偏光子の吸収軸方向と保護フィルムのMD方向(Machine Direction、製造工程におけるフィルムの流涎方向又は搬送方向)が一致している。このことから、本発明者らは保護フィルムのMD方向の弾性率を高めることにより、偏光子が収縮する力を低減できると考え、本発明に至った。
 すなわち、本発明に係る課題は、以下の手段によって解決される。
The present inventors examined a protective film that can reduce the force acting in the absorption axis direction because the polarizer contracts in the absorption axis direction of light. In general, both the polarizer and the protective film are formed and bonded as a long film, and the absorption axis direction of the polarizer and the MD direction of the protective film (Machine Direction, the fluent direction or transport direction of the film in the manufacturing process) coincide. ing. From this, the present inventors considered that the force by which the polarizer contracts can be reduced by increasing the elastic modulus in the MD direction of the protective film, and have reached the present invention.
That is, the subject concerning this invention is solved by the following means.
 1.偏光子の少なくとも一方の面に、セルロースエステルを含有する保護フィルムが配置された偏光板であって、
 前記保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上であり、
 前記保護フィルムのフィルム製造時のMD方向及びTD方向(Transverse Direction、MD方向と垂直の方向)の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあることを特徴とする偏光板。
1. A polarizing plate in which a protective film containing a cellulose ester is disposed on at least one surface of a polarizer,
The maximum value of tan δ obtained when the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more,
Value obtained by measuring the elastic modulus (MPa) in the MD direction and the TD direction (Transverse Direction, direction perpendicular to the MD direction) during the production of the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55%. The polarizing plate is characterized in that the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0, where E1 and E2 respectively.
 2.前記保護フィルムが、前記MD方向に延伸されたフィルムであり、
 前記MD方向の延伸倍率が、1.6倍以上であることを特徴とする第1項に記載の偏光板。
2. The protective film is a film stretched in the MD direction;
2. The polarizing plate according to item 1, wherein a stretching ratio in the MD direction is 1.6 times or more.
 3.前記保護フィルムが、前記MD方向及び前記TD方向に延伸されたフィルムであり、
 前記MD方向の延伸倍率が前記TD方向の延伸倍率より大きく、前記MD方向の延伸倍率が1.6倍以上であり、前記TD方向の延伸倍率が1.3倍以上であることを特徴とする第1項に記載の偏光板。
3. The protective film is a film stretched in the MD direction and the TD direction,
The MD direction stretch ratio is larger than the TD direction stretch ratio, the MD direction stretch ratio is 1.6 times or more, and the TD direction stretch ratio is 1.3 times or more. 2. A polarizing plate according to item 1.
 4.前記保護フィルムが、スチレン系重合体を含有することを特徴とする第1項から第3項までのいずれか一項に記載の偏光板。 4. The polarizing plate according to any one of Items 1 to 3, wherein the protective film contains a styrene polymer.
 5.前記スチレン系重合体が、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体であることを特徴とする第4項に記載の偏光板。 5. 5. The polarizing plate according to item 4, wherein the styrenic polymer is a copolymer of a monomer having a hydroxy group and a monomer containing styrene.
 6.前記保護フィルム及び前記偏光子が長尺フィルムであり、それぞれの長軸方向が一致するように貼り合わされていることを特徴とする第1項から第5項までのいずれか一項に記載の偏光板。 6. The polarizing film according to any one of items 1 to 5, wherein the protective film and the polarizer are long films, and are bonded so that the major axis directions thereof coincide with each other. Board.
 7.前記保護フィルムのMD方向が、前記偏光子の吸収軸方向と一致していることを特徴とする第1項から第6項までのいずれか一項に記載の偏光板。 7. The polarizing plate according to any one of claims 1 to 6, wherein an MD direction of the protective film coincides with an absorption axis direction of the polarizer.
 8.偏光子の少なくとも一方の面に、保護フィルムを配置する偏光板の製造方法であって、
 セルロースエステルを含有する保護フィルムを製造する製造工程を含み、
 前記製造工程では、製造後の保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上であり、かつ当該保護フィルムのフィルム製造時のMD方向及びTD方向の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあるように、前記保護フィルムを製造することを特徴とする偏光板の製造方法。
8). A method for producing a polarizing plate in which a protective film is disposed on at least one surface of a polarizer,
Including a production process for producing a protective film containing cellulose ester,
In the production process, the maximum value of tan δ obtained when the dynamic viscoelasticity of the protective film after production is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more. When the values obtained by measuring the elastic modulus (MPa) in the MD direction and the TD direction at the time of film production of the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55% are expressed as E1 and E2, respectively. A method for producing a polarizing plate, comprising producing the protective film so that the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0.
 9.前記製造工程が、前記保護フィルムをフィルム製造時のMD方向に延伸する工程を含み、
 前記MD方向の延伸倍率が、1.6倍以上であることを特徴とする第8項に記載の偏光板の製造方法。
9. The manufacturing process includes a process of stretching the protective film in the MD direction during film manufacturing,
The method for producing a polarizing plate according to item 8, wherein the MD magnification is 1.6 times or more.
 10.前記製造工程が、前記保護フィルムをフィルム製造時のMD方向及びTD方向に延伸する工程を含み、
 前記TD方向の延伸倍率が前記MD方向の延伸倍率より小さく、前記MD方向の延伸倍率が1.6倍以上であり、前記TD方向の延伸倍率が1.3倍以上であることを特徴とする第8項に記載の偏光板の製造方法。
10. The manufacturing process includes a step of stretching the protective film in the MD direction and the TD direction during film manufacturing,
The stretching ratio in the TD direction is smaller than the stretching ratio in the MD direction, the stretching ratio in the MD direction is 1.6 times or more, and the stretching ratio in the TD direction is 1.3 times or more. The manufacturing method of the polarizing plate of claim | item 8.
 11.前記製造工程では、前記セルロースエステルとスチレン系重合体とを含有するドープを用いて、溶液流延法により前記保護フィルムを製造することを特徴とする第8項から第10項までのいずれか一項に記載の偏光板の製造方法。 11. In the manufacturing process, the protective film is manufactured by a solution casting method using a dope containing the cellulose ester and a styrenic polymer. Any one of Items 8 to 10 The manufacturing method of the polarizing plate of claim | item.
 12.前記スチレン系重合体が、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体であることを特徴とする第11項に記載の偏光板の製造方法。 12. 12. The method for producing a polarizing plate according to item 11, wherein the styrenic polymer is a copolymer of a monomer having a hydroxy group and a monomer containing styrene.
 13.前記偏光子は、長尺フィルムであり、
 前記製造工程では、前記保護フィルムを長尺フィルムとして製造し、
 長尺フィルムである前記保護フィルムと前記偏光子を、それぞれの長軸方向が一致するように貼り合わせる貼合工程を含むことを特徴とする第8項から第12項までのいずれか一項に記載の偏光板の製造方法。
13. The polarizer is a long film,
In the manufacturing process, the protective film is manufactured as a long film,
In any one of the eighth to twelfth aspects, the method includes a bonding step of bonding the protective film and the polarizer, which are long films, so that the major axis directions thereof are matched. The manufacturing method of the polarizing plate of description.
 14.液晶セルの少なくとも一方の面に、第1項から第7項までのいずれか一項に記載の偏光板を具備することを特徴とする液晶表示装置。 14. A liquid crystal display device comprising the polarizing plate according to any one of items 1 to 7 on at least one surface of a liquid crystal cell.
 15.前記液晶セルで構成された液晶画面が長方形であり、
 前記液晶セルの両面にそれぞれ設けられる二つの偏光板のうち、少なくとも前記液晶画面の長軸方向と偏光子の吸収軸方向が一致する偏光板として、前記第1項から第7項までのいずれか一項に記載の偏光板を具備することを特徴とする第14項に記載の液晶表示装置。
15. The liquid crystal screen composed of the liquid crystal cell is rectangular,
Of the two polarizing plates respectively provided on both surfaces of the liquid crystal cell, any one of the first to seventh items is used as a polarizing plate in which at least the major axis direction of the liquid crystal screen and the absorption axis direction of the polarizer coincide. Item 15. A liquid crystal display device according to item 14, comprising the polarizing plate according to item 1.
 16.前記液晶画面の長軸方向と偏光子の吸収軸方向が一致する偏光板が、前記液晶セルのフロント側の面に設けられる偏光板であることを特徴とする第15項に記載の液晶表示装置。 16. 16. The liquid crystal display device according to item 15, wherein the polarizing plate in which the major axis direction of the liquid crystal screen coincides with the absorption axis direction of the polarizer is a polarizing plate provided on a front side surface of the liquid crystal cell. .
 本発明の上記手段により、温湿度変化があっても表示ムラを抑えることができる偏光板、当該偏光板の製造方法及び当該偏光板を具備する液晶表示装置を提供できる。
 本発明者らは、偏光子の収縮による表示ムラを下記の作用機能により改良できるものと考えた。
 高温高湿下から室温下へと変化すると、偏光子が吸収軸方向に収縮する力が生じるが、本発明の偏光板における保護フィルムは、MD方向の弾性率E1がTD方向の弾性率E2よりも高く、MD方向に加えられる力に対する応力が大きい。一般に、偏光子と保護フィルムは長尺フィルムとしてロール・トゥ・ロール(roll to roll)で貼り合わせられ、保護フィルムのMD方向と偏光子の吸収軸方向は一致していることから、偏光子が収縮する力を保護フィルムによって大きく低減することができる。これにより、偏光子から液晶セルに伝播する力を、薄膜化された透明基板であっても十分耐えられる程度に低減することができ、液晶セル及び液晶セルに隣接する位相差フィルムの曲がりを抑えることができると推察される。位相差フィルムの曲がりを抑えることができれば、位相差の変化ひいては表示ムラを抑えることが可能になるものと推察される。
By the above means of the present invention, it is possible to provide a polarizing plate capable of suppressing display unevenness even when there is a change in temperature and humidity, a method for manufacturing the polarizing plate, and a liquid crystal display device including the polarizing plate.
The present inventors considered that display unevenness due to the contraction of the polarizer can be improved by the following function.
When the temperature changes from high temperature and high humidity to room temperature, the polarizer contracts in the absorption axis direction, but the protective film in the polarizing plate of the present invention has an elastic modulus E1 in the MD direction from an elastic modulus E2 in the TD direction. The stress for the force applied in the MD direction is large. In general, a polarizer and a protective film are bonded as a long film by roll-to-roll, and the MD direction of the protective film and the absorption axis direction of the polarizer coincide with each other. The shrinking force can be greatly reduced by the protective film. As a result, the force propagating from the polarizer to the liquid crystal cell can be reduced enough to withstand even a thin transparent substrate, and the bending of the liquid crystal cell and the retardation film adjacent to the liquid crystal cell can be suppressed. It is speculated that it is possible. If the bending of the retardation film can be suppressed, it is presumed that the change in the retardation, and thus the display unevenness, can be suppressed.
本実施の形態に係る液晶表示装置の構成の一例を示す断面図。FIG. 6 is a cross-sectional view illustrating an example of a structure of a liquid crystal display device according to an embodiment of the present invention. 図1の液晶セルと液晶セルの両面にそれぞれ配置された二つの偏光板を階層的に表した図。The figure which represented two polarizing plates each arrange | positioned on both surfaces of the liquid crystal cell of FIG. 1, and a liquid crystal cell hierarchically. 図1の液晶セルの曲がりを表す断面図。Sectional drawing showing the bending of the liquid crystal cell of FIG.
 本発明の偏光板は、偏光子の少なくとも一方の面に保護フィルムを備え、当該保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上であり、当該保護フィルムのフィルム製造時のMD方向及びTD方向の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあることを特徴とする。この特徴は請求項1から請求項16までの各請求項に係る発明に共通の技術的特徴である。 The polarizing plate of the present invention includes a protective film on at least one surface of the polarizer, and the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. The maximum value of tan δ obtained is 0.6 or more, and the elastic modulus (MPa) in the MD direction and TD direction at the time of film production of the protective film is measured in an environment at a temperature of 23 ° C. and a relative humidity of 55%. When the values obtained in this way are expressed as E1 and E2, respectively, the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0. This feature is a technical feature common to the inventions according to claims 1 to 16.
 本発明の実施態様としては、上記範囲内の弾性率の比の値E1/E2を得る観点から、保護フィルムが少なくともMD方向に延伸されたフィルムであり、MD方向の延伸倍率が、1.6倍以上であることが好ましい。通常の偏光板用保護フィルムは、TD方向に延伸されていることが多いが、本発明では特にMD方向に大きく延伸されていることが好ましい。さらにTD方向にも延伸されていることが好ましい。
 このように大きな延伸倍率で延伸を行うためには、フィルムのtanδを0.6以上に調整することが必要である。保護フィルムがスチレン系重合体を含有することが、0.6以上のtanδの最大値を得る観点からは好ましい。
As an embodiment of the present invention, from the viewpoint of obtaining the value E1 / E2 of the elastic modulus ratio within the above range, the protective film is a film stretched at least in the MD direction, and the stretch ratio in the MD direction is 1.6. It is preferable that it is twice or more. A normal protective film for polarizing plate is often stretched in the TD direction, but in the present invention, it is particularly preferable that the protective film is largely stretched in the MD direction. Further, it is preferable that the film is also stretched in the TD direction.
In order to perform stretching at such a large stretching ratio, it is necessary to adjust the tan δ of the film to 0.6 or more. The protective film preferably contains a styrenic polymer from the viewpoint of obtaining a maximum value of tan δ of 0.6 or more.
 本発明の偏光板の製造方法としては、上記保護フィルムを製造する製造工程を含み、さらに当該製造工程が、保護フィルムをフィルム製造時のMD方向に延伸する工程を含む態様であることが、上記範囲内の弾性率の比の値E1/E2を得る観点から好ましい。 As a manufacturing method of the polarizing plate of the present invention, including the manufacturing process for manufacturing the protective film, the manufacturing process is an aspect including a process of stretching the protective film in the MD direction during film manufacturing, It is preferable from the viewpoint of obtaining the ratio E1 / E2 of the elastic modulus ratio within the range.
 本発明の偏光板は、液晶表示装置の液晶セルの少なくとも一方の面に、好適に具備され得る。これにより、温湿度変化があっても、表示ムラを抑えることができる。本発明では、本発明に係る弾性率の比の値E1/E2が1.5~3.0の範囲内にある保護フィルムを、液晶セルからより遠い側の偏光子の面に設置することが好ましい。この面は外界の温度、湿度及び光源の熱の影響を受けやすい面であり、本発明の効果をより発揮しやすいためである。 The polarizing plate of the present invention can be suitably provided on at least one surface of a liquid crystal cell of a liquid crystal display device. Thereby, even if there is a change in temperature and humidity, display unevenness can be suppressed. In the present invention, the protective film having the elastic modulus ratio value E1 / E2 in the range of 1.5 to 3.0 according to the present invention may be installed on the surface of the polarizer farther from the liquid crystal cell. preferable. This is because the surface is easily affected by the external temperature, humidity, and heat of the light source, and the effects of the present invention are more easily exhibited.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
<偏光板>
 本発明の偏光板は、偏光子の少なくとも一方の面に保護フィルムが配置されている。
<Polarizing plate>
In the polarizing plate of the present invention, a protective film is disposed on at least one surface of the polarizer.
 <保護フィルム>
 本発明に係る保護フィルムは、セルロースエステルを含有し、当該保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上である。
<Protective film>
The protective film according to the present invention contains a cellulose ester, and the maximum value of tan δ obtained when the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. Is 0.6 or more.
 tanδは、損失正接と呼ばれ、保護フィルムの動的粘弾性を測定して得られる貯蔵弾性率及び損失弾性率をそれぞれE′及びE″と表すとき、tanδ=E′/E″として定義される。
 δは、試料に正弦波状に振動する力を加えたときに生じたひずみと加えた力との位相差である。加えた力とひずみの比である複素弾性率の実数部が貯蔵弾性率E′であり、虚数部が損失弾性率E″である。保護フィルムの貯蔵弾性率E′及び損失弾性率E″は、動的粘弾性測定装置RSAIII(ティーエイインスツルメント社製)により測定することができる。
Tan δ is called loss tangent and is defined as tan δ = E ′ / E ″, where E ′ and E ″ represent the storage elastic modulus and loss elastic modulus obtained by measuring the dynamic viscoelasticity of the protective film, respectively. The
δ is a phase difference between the strain generated when a force that vibrates sinusoidally is applied to the sample and the applied force. The real part of the complex elastic modulus, which is the ratio of applied force and strain, is the storage elastic modulus E ′, and the imaginary part is the loss elastic modulus E ″. The storage elastic modulus E ′ and loss elastic modulus E ″ of the protective film are It can be measured by a dynamic viscoelasticity measuring device RSAIII (manufactured by TI Instruments).
 具体的には、次のようにしてtanδを求める。
 試料を温度23℃・相対湿度55%の雰囲気下に24時間おいて、調湿する。調湿後の試料の動的粘弾性を、55%RHの下、25~190℃の温度範囲で温度を変化させながら下記測定条件により測定し、測定により得られたtanδのうちの最大値を求める。
 測定装置:RSAIII(ティーエイインスツルメント社製)
 試料  :幅5mm、長さ50mm(ギャップを20mmに設定)
 測定モード:引張モード
 測定温度:25~190℃の範囲内で、5℃/minの速度で昇温
 湿度  :相対湿度55%
 測定時に加えた力の周波数 :1Hz
 なお、保護フィルムが延伸されて製造される場合は、延伸前に上記tanδの測定を行う。
Specifically, tan δ is obtained as follows.
The sample is conditioned for 24 hours in an atmosphere at a temperature of 23 ° C. and a relative humidity of 55%. The dynamic viscoelasticity of the sample after humidity control was measured under the following measurement conditions while changing the temperature in a temperature range of 25 to 190 ° C. under 55% RH, and the maximum value of tan δ obtained by the measurement was Ask.
Measuring device: RSAIII (manufactured by TA Instruments)
Sample: width 5 mm, length 50 mm (gap set to 20 mm)
Measurement mode: Tensile mode Measurement temperature: Increased at a rate of 5 ° C / min within a range of 25 to 190 ° C Humidity: 55% relative humidity
Frequency of force applied during measurement: 1 Hz
In addition, when a protective film is extended | stretched and manufactured, the said tan-delta is measured before extending | stretching.
 本発明に係る保護フィルムのtanδの最大値が0.6以上であれば、保護フィルムの高倍率延伸が可能であり、延伸によって保護フィルムの弾性率を所望の値に調整しやすい。
 保護フィルムのtanδの最大値は、可塑剤の種類又は添加量を選択することによって調整することができる。
If the maximum value of tan δ of the protective film according to the present invention is 0.6 or more, the protective film can be stretched at a high magnification, and the elastic modulus of the protective film can be easily adjusted to a desired value by stretching.
The maximum value of tan δ of the protective film can be adjusted by selecting the type or amount of plasticizer.
 本発明に係る保護フィルムは、フィルム製造時のMD方向及びTD方向の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にある。
 MD方向は、保護フィルムを、溶液流延法により製造する場合はフィルムの流延方向をいい、溶融流延法により製造する場合はフィルムの搬送方向をいう。いずれの場合もMD方向は、保護フィルムの長軸方向に一致する。
 TD方向は、MD方向に垂直な方向をいう。
The protective film which concerns on this invention represents the value obtained by measuring the elasticity modulus (MPa) of MD direction at the time of film manufacture and TD direction in the environment of temperature 23 degreeC and relative humidity 55% as E1 and E2, respectively. The ratio value E1 / E2 of the elastic modulus in the MD direction and the TD direction is in the range of 1.5 to 3.0.
The MD direction means the film casting direction when the protective film is produced by the solution casting method, and the film conveying direction when the protective film is produced by the melt casting method. In either case, the MD direction coincides with the major axis direction of the protective film.
The TD direction refers to a direction perpendicular to the MD direction.
 各弾性率E1及びE2は、次のようにして測定することができる。
 試料を23℃・55%RHの環境下で24時間調湿する。JIS K7127に記載の方法に準じて、調湿時と同じ環境下において、引張試験機テンシロンRTA-100(オリエンテック社製)により、調湿後の試料のMD方向及びTD方向それぞれの弾性率(MPa)を測定する。試料の形状を1号形試験片タイプとし、引張速度を10mm/minとする。
Each elastic modulus E1 and E2 can be measured as follows.
The sample is conditioned for 24 hours in an environment of 23 ° C. and 55% RH. According to the method described in JIS K7127, the tensile modulus tester Tensilon RTA-100 (manufactured by Orientec Co., Ltd.) under the same environment as the humidity control, the modulus of elasticity of each sample in the MD direction and TD direction ( MPa). The shape of the sample is type 1 test piece type, and the tensile speed is 10 mm / min.
 本発明に係る保護フィルムは、加えられた力に対する一定の応力を得る観点から、MD方向の弾性率E1が、3.0~7.5MPaの範囲内にあり、TD方向の弾性率E2が、2.0~5.0MPaの範囲内にあることが好ましい。より好ましくは、MD方向の弾性率E1が、5.0~7.5MPaの範囲内にあり、TD方向の弾性率E2が、2.2~4.0MPaの範囲内にあることである。
 弾性率の比の値E1/E2は、延伸条件を選択することによって、上記範囲内に調整することができる。
The protective film according to the present invention has an MD elastic modulus E1 in the range of 3.0 to 7.5 MPa, and an elastic modulus E2 in the TD direction from the viewpoint of obtaining a constant stress with respect to the applied force. It is preferably in the range of 2.0 to 5.0 MPa. More preferably, the elastic modulus E1 in the MD direction is in the range of 5.0 to 7.5 MPa, and the elastic modulus E2 in the TD direction is in the range of 2.2 to 4.0 MPa.
The elastic modulus ratio value E1 / E2 can be adjusted within the above range by selecting the stretching conditions.
(セルロースエステル)
 本発明に用いられるセルロースエステルは、セルロースをエステル化して得られる化合物である。
(Cellulose ester)
The cellulose ester used in the present invention is a compound obtained by esterifying cellulose.
 セルロースエステルは、硬度が良好で、吸水性が低いフィルムが得られやすいことから、アセチル基置換度が2.80~2.95の範囲内にあるセルロースアセテートであることが好ましい。アセチル基置換度は、ASTM-D817-96に準じて測定する。 The cellulose ester is preferably a cellulose acetate having a degree of acetyl group substitution in the range of 2.80 to 2.95 because a film having good hardness and low water absorption is easily obtained. The degree of acetyl group substitution is measured according to ASTM-D817-96.
 セルロースエステルの数平均分子量Mnは、得られるフィルムの機械的強度を高める観点から、125000~155000の範囲内であることが好ましく、129000~152000の範囲内であることがより好ましい。
 同様の観点から、セルロースエステルの重量平均分子量Mwは、265000~310000の範囲内であることが好ましい。
 セルロースエステルの重量平均分子量Mwに対する数平均分子量Mnの比の値Mw/Mnは、1.9~2.1の範囲内であることが好ましい。
The number average molecular weight Mn of the cellulose ester is preferably in the range of 125000 to 155000, more preferably in the range of 129000 to 152000, from the viewpoint of increasing the mechanical strength of the resulting film.
From the same viewpoint, the weight average molecular weight Mw of the cellulose ester is preferably in the range of 265,000 to 310000.
The ratio Mw / Mn of the ratio of the number average molecular weight Mn to the weight average molecular weight Mw of the cellulose ester is preferably in the range of 1.9 to 2.1.
 上記セルロースエステルの数平均分子量Mn及び重量平均分子量Mwは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される。測定条件は、次のとおりである。
 溶媒 :メチレンクロライド
 カラム:Shodex K806、K805、K803G(昭和電工株式会社製)を3本接続して使用
 カラム温度:25℃
 試料濃度:0.1質量%
 検出器:RI Model 504(GLサイエンス社製)
 ポンプ:L6000(日立製作所社製)
 流量 :1.0ml/min
 校正曲線:標準ポリスチレンSTK standard ポリスチレン(東ソー社製、Mw=500~1000000)の13サンプルによる校正曲線を使用する。13サンプルは、ほぼ等間隔に用いる。
The number average molecular weight Mn and the weight average molecular weight Mw of the cellulose ester are measured using gel permeation chromatography (GPC). The measurement conditions are as follows.
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (manufactured by Showa Denko KK) are connected and used Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (GL Science Co., Ltd.)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 ml / min
Calibration curve: A calibration curve with 13 samples of standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation, Mw = 500 to 1000000) is used. Thirteen samples are used at approximately equal intervals.
 本発明に係るセルロースエステルは、硫酸触媒法、酢酸法、メチレンクロライド法等の公知の方法により製造することができる。
 一般的には、原料のセルロースに、カルボン酸、無水カルボン酸、触媒(硫酸等)等を混合して、セルロースをエステル化する。原料のセルロースは特に限定されず、綿花リンター、木材パルプ、ケナフ等であり得る。原料の異なるセルロースエステルを混合して用いてもよい。エステル化の反応は、セルロースのトリエステルができるまで進める。トリエステルにおいてグルコース単位の3個のヒドロキシ基は、脂肪族カルボン酸又は芳香族カルボン酸のアシル酸で置換されている。同時に2種類の脂肪族カルボン酸又は芳香族カルボン酸を使用すると、混合型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。セルロースのトリエステルを加水分解することで、所望のアシル基置換度を有するセルロースエステル、例えばアセチル置換度が上記好ましい範囲内にあるセルロースアセテートを合成することができる。その後、濾過、沈殿、水洗、脱水、乾燥等の工程を経て、セルロースエステルを得る。
 具体的には、特開平10-45804号公報、特開2005-281645号公報等に記載の方法を参考にして合成することができる。
The cellulose ester according to the present invention can be produced by a known method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
In general, cellulose is esterified by mixing raw material cellulose with carboxylic acid, carboxylic anhydride, catalyst (such as sulfuric acid) and the like. The raw material cellulose is not particularly limited, and may be cotton linter, wood pulp, kenaf or the like. You may mix and use the cellulose ester from which a raw material differs. The esterification reaction proceeds until a cellulose triester is formed. In the triester, the three hydroxy groups of the glucose unit are substituted with an aliphatic carboxylic acid or an acyl acid of an aromatic carboxylic acid. When two types of aliphatic carboxylic acids or aromatic carboxylic acids are used at the same time, mixed cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate can be produced. By hydrolyzing the cellulose triester, a cellulose ester having a desired acyl group substitution degree, for example, a cellulose acetate having an acetyl substitution degree within the above preferred range can be synthesized. Thereafter, a cellulose ester is obtained through steps such as filtration, precipitation, washing with water, dehydration, and drying.
Specifically, it can be synthesized with reference to the methods described in JP-A Nos. 10-45804 and 2005-281645.
(可塑剤)
 本発明に係る保護フィルムは、可塑剤を含有することができる。
 本発明に用いられる可塑剤は、tanδの最大値が0.6以上の保護フィルムを得やすいことから、スチレン系重合体であることが好ましく、なかでもヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体であることが好ましい。
(Plasticizer)
The protective film according to the present invention can contain a plasticizer.
The plasticizer used in the present invention is preferably a styrenic polymer because it is easy to obtain a protective film having a maximum value of tan δ of 0.6 or more, and among them, a monomer having a hydroxy group and a monomer containing styrene, It is preferable that it is a copolymer.
 スチレン系重合体のモノマーとしては、下記一般式(1)で表される構造を有するスチレン系モノマーを用いることができる。
Figure JPOXMLDOC01-appb-C000001
As the monomer of the styrene polymer, a styrene monomer having a structure represented by the following general formula (1) can be used.
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R101~R103は、それぞれ独立に、水素原子、炭素数1~30のアルキル基又はアリール基を表す。R104は、水素原子、炭素数1~30のアルキル基、シクロアルキル基、アリール基、炭素数1~30のアルコキシ基、アリールオキシ基、炭素数2~30のアルキルオキシカルボニル基、アリールオキシカルボニル基、炭素数2~30のアルキルカルボニルオキシ基、アリールカルボニルオキシ基、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、アミド基又はニトロ基を表す。R104となり得るこれらの基は、それぞれ置換基(例えばヒドロキシ基、ハロゲン原子、アルキル基等)をさらに有してもよい。五つのR104は、それぞれ同一であっても、異なっていてもよく、互いに結合して環を形成してもよい。 In the general formula (1), R 101 to R 103 each independently represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or an aryl group. R 104 is a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group, an aryl group, an alkoxy group having 1 to 30 carbon atoms, an aryloxy group, an alkyloxycarbonyl group having 2 to 30 carbon atoms, an aryloxycarbonyl Group, an alkylcarbonyloxy group having 2 to 30 carbon atoms, an arylcarbonyloxy group, a hydroxy group, a carboxy group, a cyano group, an amino group, an amido group or a nitro group. Each of these groups that can be R 104 may further have a substituent (eg, a hydroxy group, a halogen atom, an alkyl group, and the like). The five R 104 may be the same or different from each other, and may be bonded to each other to form a ring.
 上記一般式(1)で表される構造を有するスチレン系モノマーの具体例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレン等のハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン等のヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸等のビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレン等のアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミン等のアミノスチレン類;3-ニトロスチレン、4-ニトロスチレン等のニトロスチレン類;3-シアノスチレン、4-シアノスチレン等のシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレン等のアリールスチレン類、インデン類等が含まれる。
 スチレン系重合体は、上記スチレン系モノマーのうち、1種類のみの単独重合体であってもよいし、2種類以上を組み合わせた共重合体であってもよい。
Specific examples of the styrene monomer having the structure represented by the general formula (1) include styrene; alkyl-substituted styrenes such as α-methylstyrene, β-methylstyrene, and p-methylstyrene; 4-chlorostyrene, Halogen-substituted styrenes such as 4-bromostyrene; hydroxystyrenes such as p-hydroxystyrene, α-methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene; vinylbenzyl alcohols Alkoxy-substituted styrenes such as p-methoxystyrene, p-tert-butoxystyrene and m-tert-butoxystyrene; vinylbenzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl acetate; 4 -Acetoxystyrene; 2-butylamidostyrene, 4-methylamido Amidostyrenes such as styrene and p-sulfonamidostyrene; aminostyrenes such as 3-aminostyrene, 4-aminostyrene, 2-isopropenylaniline, vinylbenzyldimethylamine; 3-nitrostyrene, 4-nitrostyrene, etc. Nitrostyrenes; cyanostyrenes such as 3-cyanostyrene and 4-cyanostyrene; vinylphenylacetonitrile; arylstyrenes such as phenylstyrene; indenes and the like.
The styrenic polymer may be a single homopolymer among the above styrenic monomers, or may be a copolymer in which two or more types are combined.
 本発明に係る保護フィルムが上記スチレン系重合体を含有することにより、フィルム基材であるセルロースエステルが延伸によって配向したとき、当該セルロースエステルの高分子鎖間にスチレン系重合体が介在することになる。スチレン系重合体のスチレン基は立体的にかさ高い構造であり、高分子鎖間の間隔を広げることから、高分子鎖間の相互作用が低減し、保護フィルムのtanδの最大値が0.6以上の値になりやすい。 When the protective film which concerns on this invention contains the said styrenic polymer, when the cellulose ester which is a film base material is orientated by extending | stretching, a styrenic polymer interposes between the polymer chains of the said cellulose ester. Become. The styrene group of the styrenic polymer has a three-dimensionally bulky structure and widens the distance between the polymer chains, so that the interaction between the polymer chains is reduced and the maximum value of tan δ of the protective film is 0.6. It is easy to become the above value.
 上記スチレン系重合体のなかでも、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体は、セルロースエステルとの相溶性が高く、当該スチレン系重合体をセルロースエステルの高分子鎖間に均一に導入しやすいため、好ましい。
 ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体は、上記一般式(1)で表される構造を有するスチレン系モノマーのうち、ヒドロキシ基を有するスチレン系モノマーの単独重合体であってもよいし、少なくともヒドロキシ基を有するスチレン系モノマーを含む2種以上のスチレン系モノマーの共重合体であってもよい。
 また、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体は、上記一般式(1)で表される構造を有するスチレン系モノマーと、ヒドロキシ基を有するモノマーとの共重合体であることもできる。
 上記スチレン系モノマーと組み合わせることができる、ヒドロキシ基を有するモノマーの例としては、ビニルアルコール等の他、下記式(2)で表される構造を有する化合物が挙げられる。
Among the styrenic polymers, a copolymer of a monomer having a hydroxy group and a monomer containing styrene has high compatibility with the cellulose ester, and the styrenic polymer is uniform between the polymer chains of the cellulose ester. It is preferable because it is easy to be introduced into.
The copolymer of a monomer having a hydroxy group and a monomer containing styrene is a homopolymer of a styrene monomer having a hydroxy group among the styrene monomers having the structure represented by the general formula (1). Alternatively, it may be a copolymer of two or more styrene monomers including at least a styrene monomer having a hydroxy group.
The copolymer of the monomer having a hydroxy group and the monomer containing styrene is a copolymer of a styrene monomer having a structure represented by the general formula (1) and a monomer having a hydroxy group. You can also.
Examples of the monomer having a hydroxy group that can be combined with the styrenic monomer include vinyl alcohol and the like and a compound having a structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)において、R105~R107は、それぞれ独立に水素原子、カルボキシ基、置換基を有してもよい炭素数1~30のアルキル基又はアリール基を表す。R105~R107は、互いに結合して環を形成してもよい。また、R108は、水素原子又は炭素数1~30のアルキル基若しくはアリール基を表し、当該アルキル基若しくはアリール基は、ヒドロキシ基又はヒドロキシ基を含む置換基を有する。 In the general formula (2), R 105 to R 107 each independently represent a hydrogen atom, a carboxy group, or an alkyl group having 1 to 30 carbon atoms or an aryl group which may have a substituent. R 105 to R 107 may combine with each other to form a ring. R 108 represents a hydrogen atom or an alkyl group or aryl group having 1 to 30 carbon atoms, and the alkyl group or aryl group has a hydroxy group or a substituent containing a hydroxy group.
 上記一般式(2)で表される化合物の具体例としては、(メタ)アクリル酸、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、マレイン酸、シトラコン酸、シス-1-シクロヘキセン-1,2-ジカルボン酸、3-メチル-シス-1-シクロヘキセン-1,2-ジカルボン酸、4-メチル-シス-1-シクロヘキセン-1,2-ジカルボン酸が含まれる。 Specific examples of the compound represented by the general formula (2) include (meth) acrylic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, maleic acid, citraconic acid, cis-1-cyclohexene-1,2-dicarboxylic acid, 3-methyl-cis-1-cyclohexene-1,2-dicarboxylic acid and 4-methyl-cis-1-cyclohexene-1,2-dicarboxylic acid are included.
 上記一般式(1)で表される構造を有するスチレン系モノマーと、上記一般式(2)で表される構造を有するモノマーとの共重合体における、当該スチレン系モノマー由来の構成単位の含有割合は、セルロースエステルとの相溶性の観点から、好ましくは30~80モル%の範囲内であり、より好ましくは50~80モル%の範囲内であることが好ましい。 The content ratio of the structural unit derived from the styrene monomer in the copolymer of the styrene monomer having the structure represented by the general formula (1) and the monomer having the structure represented by the general formula (2). Is preferably in the range of 30 to 80 mol%, more preferably in the range of 50 to 80 mol%, from the viewpoint of compatibility with the cellulose ester.
 保護フィルムにおけるスチレン系重合体の含有量は特に限定されないが、5~30質量%の範囲内であることが好ましく、より好ましくは5~20質量%の範囲内である。この範囲内であれば、フィルムの高倍率延伸が可能となり、ブリードアウトも抑えられる。
 また、スチレン系重合体の重量平均分子量Mwは、1500~12000の範囲内であることが好ましい。
The content of the styrene polymer in the protective film is not particularly limited, but is preferably in the range of 5 to 30% by mass, and more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
The weight average molecular weight Mw of the styrene polymer is preferably in the range of 1500 to 12000.
 本発明に係る保護フィルムは、可塑剤として、ポリエステルを含有することができる。
 本発明に用いることができるポリエステルは、ジカルボン酸とジオールとの縮合物に由来する繰り返し単位を含む。
 繰り返し単位は、非芳香環構造又は芳香環構造を含むことが好ましい。すなわち、ポリエステルを構成するジカルボン酸とジオールの少なくとも一方が、非芳香環構造又は芳香環構造を含むことが好ましいが、ジカルボン酸が非芳香環構造又は芳香環構造を含むことがさらに好ましい。
The protective film according to the present invention can contain polyester as a plasticizer.
The polyester that can be used in the present invention contains a repeating unit derived from a condensate of a dicarboxylic acid and a diol.
The repeating unit preferably contains a non-aromatic ring structure or an aromatic ring structure. That is, at least one of the dicarboxylic acid and diol constituting the polyester preferably includes a non-aromatic ring structure or an aromatic ring structure, but more preferably the dicarboxylic acid includes a non-aromatic ring structure or an aromatic ring structure.
 ジカルボン酸は、脂肪族ジカルボン酸、脂環式ジカルボン酸又は芳香族ジカルボン酸であり得る。
 脂肪族ジカルボン酸の炭素数は、好ましくは4~20であり、より好ましくは4~12である。
 脂肪族ジカルボン酸の例には、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸等が含まれる。
The dicarboxylic acid can be an aliphatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aromatic dicarboxylic acid.
The carbon number of the aliphatic dicarboxylic acid is preferably 4 to 20, and more preferably 4 to 12.
Examples of the aliphatic dicarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid and the like.
 芳香族ジカルボン酸の炭素数は、好ましくは8~20であり、より好ましくは8~12である。
 芳香族ジカルボン酸の例には、1,2-ベンゼンジカルボン酸(フタル酸)、1,3-ベンゼンジカルボン酸(イソフタル酸)、1,4-ベンゼンジカルボン酸(テレフタル酸)、1,5-ナフタレンジカルボン酸、1,4-キシリデンジカルボン酸等が含まれる。
The carbon number of the aromatic dicarboxylic acid is preferably 8 to 20, and more preferably 8 to 12.
Examples of aromatic dicarboxylic acids include 1,2-benzenedicarboxylic acid (phthalic acid), 1,3-benzenedicarboxylic acid (isophthalic acid), 1,4-benzenedicarboxylic acid (terephthalic acid), 1,5-naphthalene Dicarboxylic acids, 1,4-xylidene dicarboxylic acids and the like are included.
 ポリエステルを構成するジカルボン酸は、一種類であっても、二種類以上あってもよい。
 ポリエステルを構成するジカルボン酸は、芳香族ジカルボン酸を含むことが好ましく、芳香族ジカルボン酸と脂肪族ジカルボン酸の両方を含むことがより好ましい。芳香族ジカルボン酸は、1,4-ベンゼンジカルボン酸(テレフタル酸)が特に好ましい。
The dicarboxylic acid constituting the polyester may be one type or two or more types.
The dicarboxylic acid constituting the polyester preferably contains an aromatic dicarboxylic acid, and more preferably contains both an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid. The aromatic dicarboxylic acid is particularly preferably 1,4-benzenedicarboxylic acid (terephthalic acid).
 ジオールは、脂肪族ジオール、アルキルエーテルジオール、脂環式ジオール又は芳香族ジオールであり得る。
 脂肪族ジオールの炭素数は、好ましくは2~20であり、より好ましくは2~12である。
 脂肪族ジオールの例には、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,2-プロパンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3-プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール等が含まれる。アルキルエーテルジオールの炭素数は、好ましくは4~20であり、より好ましくは4~12である。アルキルエーテルジオールの例には、ポリテトラメチレンエーテルグリコール、ポリエチレンエーテルグリコール、ポリプロピレンエーテルグリコール等が含まれる。
The diol can be an aliphatic diol, an alkyl ether diol, an alicyclic diol, or an aromatic diol.
The carbon number of the aliphatic diol is preferably 2 to 20, and more preferably 2 to 12.
Examples of aliphatic diols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,2-propanediol, 2-methyl- 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propane Diol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl-1,5-pentanediol, 1, 6-hexanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1 , 10-decanediol, 1,12-oct Decanediol, and the like are included. The carbon number of the alkyl ether diol is preferably 4 to 20, and more preferably 4 to 12. Examples of the alkyl ether diol include polytetramethylene ether glycol, polyethylene ether glycol, polypropylene ether glycol and the like.
 ポリエステルを構成するジオールは、一種類であっても、二種類以上あってもよい。ポリエステルを構成するジオールは、脂肪族ジオールを含むことが好ましい。 The diol constituting the polyester may be one type or two or more types. The diol constituting the polyester preferably contains an aliphatic diol.
 これらのなかでも、芳香族ジカルボン酸と脂肪族ジカルボン酸とを含むジカルボン酸と、脂肪族ジオールとの縮合物に由来する繰り返し単位を含むポリエステルが、それを含むフィルムの延伸性と透明性が良好である点から、好ましい。 Among these, a polyester containing a repeating unit derived from a condensate of a dicarboxylic acid containing an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid and an aliphatic diol has good stretchability and transparency of a film containing the polyester. From this point, it is preferable.
 ポリエステルの分子末端は、必要に応じてモノカルボン酸又はモノアルコールで封止されていてもよい。 The molecular terminal of the polyester may be sealed with monocarboxylic acid or monoalcohol as necessary.
 モノカルボン酸は、脂肪族モノカルボン酸、脂環式モノカルボン酸又は芳香族モノカルボン酸であり得る。
 脂肪族モノカルボン酸の炭素数は、好ましくは2~30、より好ましくは2~4であり得る。
 脂肪族カルボン酸の例には、酢酸、プロピオン酸、ブタン酸、カプリル酸、カプロン酸、デカン酸、ドデカン酸、ステアリン酸、オレイン酸等が含まれる。脂環式モノカルボン酸の例には、シクロヘキシルモノカルボン酸等が含まれる。芳香族モノカルボン酸の例には、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸、フェニル酢酸、3-フェニルプロピオン酸等が含まれる。
The monocarboxylic acid can be an aliphatic monocarboxylic acid, an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid.
The carbon number of the aliphatic monocarboxylic acid can be preferably 2-30, more preferably 2-4.
Examples of the aliphatic carboxylic acid include acetic acid, propionic acid, butanoic acid, caprylic acid, caproic acid, decanoic acid, dodecanoic acid, stearic acid, oleic acid and the like. Examples of the alicyclic monocarboxylic acid include cyclohexyl monocarboxylic acid and the like. Examples of aromatic monocarboxylic acids include benzoic acid, para-tert-butyl benzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethyl benzoic acid, ethyl benzoic acid, normal propyl benzoic acid, aminobenzoic acid, acetoxybenzoic acid, Phenylacetic acid, 3-phenylpropionic acid and the like are included.
 モノアルコールは、脂肪族モノアルコール、脂環式モノアルコール又は芳香族モノアルコールであり得る。
 脂肪族モノアルコールの炭素数は1~30であり、好ましくは1~3であり得る。
 脂肪族モノアルコールの例には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタノール、イソペンタノール、ヘキサノール、イソヘキサノール、オクタノール、イソオクタノール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、tert-ノニルアルコール、デカノール、ドデカノール、ドデカヘキサノール、ドデカオクタノール、アリルアルコール、オレイルアルコール等が含まれる。脂環式モノアルコールの例には、シクロヘキシルアルコール等が含まれる。芳香族モノアルコールの例には、ベンジルアルコール、3-フェニルプロパノール等が含まれる。
The monoalcohol can be an aliphatic monoalcohol, an alicyclic monoalcohol, or an aromatic monoalcohol.
The aliphatic monoalcohol has 1 to 30 carbon atoms, preferably 1 to 3 carbon atoms.
Examples of aliphatic monoalcohols are methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentanol, isopentanol, hexanol, isohexanol, octanol, isooctanol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol , Tert-nonyl alcohol, decanol, dodecanol, dodecahexanol, dodecaoctanol, allyl alcohol, oleyl alcohol and the like. Examples of the alicyclic monoalcohol include cyclohexyl alcohol and the like. Examples of the aromatic monoalcohol include benzyl alcohol, 3-phenylpropanol and the like.
 上記ポリエステルは、重量平均分子量Mwが300~3000の範囲内であることが好ましく、より好ましくは400~2000である。
 また、保護フィルムにおけるポリエステルの含有量は、5~30質量%の範囲内であることが好ましく、より好ましくは5~20質量%の範囲内である。この範囲内であれば、フィルムの高倍率延伸が可能となり、ブリードアウトも抑えられる。
The polyester preferably has a weight average molecular weight Mw in the range of 300 to 3000, more preferably 400 to 2000.
The polyester content in the protective film is preferably in the range of 5 to 30% by mass, more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
 本発明に係る保護フィルムは、上述したセルロースエステル以外の糖エステルも可塑剤として使用することができる。
 本発明に用いることができる糖エステルは、フラノース構造又はピラノース構造を1~12個有する化合物であって、化合物中のヒドロキシ基の全部又は一部がエステル化された化合物である。
 そのような糖エステルの好ましい例には、下記一般式(FA)で表されるスクロースエステルが含まれる。
In the protective film according to the present invention, sugar esters other than the above-described cellulose esters can also be used as plasticizers.
The sugar ester that can be used in the present invention is a compound having 1 to 12 furanose structures or pyranose structures, in which all or part of the hydroxy groups in the compound are esterified.
Preferable examples of such sugar esters include sucrose esters represented by the following general formula (FA).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(FA)のR~Rは、それぞれ独立に、水素原子、置換若しくは無置換のアルキルカルボニル基、又は置換若しくは無置換のアリールカルボニル基を表す。R~Rは、互いに同じであっても、異なってもよい。
 置換若しくは無置換のアルキルカルボニル基は、炭素原子数2以上の置換若しくは無置換のアルキルカルボニル基であることが好ましい。置換若しくは無置換のアルキルカルボニル基の例には、メチルカルボニル基(アセチル基)が含まれる。アルキル基が有する置換基の例には、フェニル基等のアリール基が含まれる。
 置換若しくは無置換のアリールカルボニル基は、炭素原子数7以上の置換若しくは無置換のアリールカルボニル基であることが好ましい。アリールカルボニル基の例には、フェニルカルボニル基が含まれる。アリール基が有する置換基の例には、メチル基等のアルキル基や、メトキシ基等のアルコキシ基等が含まれる。
R 1 to R 8 in the general formula (FA) each independently represent a hydrogen atom, a substituted or unsubstituted alkylcarbonyl group, or a substituted or unsubstituted arylcarbonyl group. R 1 to R 8 may be the same as or different from each other.
The substituted or unsubstituted alkylcarbonyl group is preferably a substituted or unsubstituted alkylcarbonyl group having 2 or more carbon atoms. Examples of the substituted or unsubstituted alkylcarbonyl group include a methylcarbonyl group (acetyl group). Examples of the substituent that the alkyl group has include an aryl group such as a phenyl group.
The substituted or unsubstituted arylcarbonyl group is preferably a substituted or unsubstituted arylcarbonyl group having 7 or more carbon atoms. Examples of the arylcarbonyl group include a phenylcarbonyl group. Examples of the substituent that the aryl group has include an alkyl group such as a methyl group and an alkoxy group such as a methoxy group.
 スクロースエステルのアシル基の平均置換度は、3.0~7.5の範囲内であることが好ましい。アシル基の平均置換度がこの範囲内であると、フィルム基材であるセルロースエステルとの十分な相溶性が得られやすい。 The average substitution degree of the acyl group of the sucrose ester is preferably in the range of 3.0 to 7.5. When the average substitution degree of the acyl group is within this range, sufficient compatibility with the cellulose ester as the film substrate is easily obtained.
 糖エステルの例には、特開昭62-42996号公報及び特開平10-237084号公報に記載の化合物が含まれる。
 保護フィルムにおける糖エステルの含有量は、5~30質量%の範囲内であることが好ましく、より好ましくは5~20質量%の範囲内であることがより好ましい。この範囲内であれば、フィルムの高倍率延伸が可能となり、ブリードアウトも抑えられる。
Examples of the sugar ester include the compounds described in JP-A-62-42996 and JP-A-10-237084.
The content of the sugar ester in the protective film is preferably in the range of 5 to 30% by mass, more preferably in the range of 5 to 20% by mass. Within this range, the film can be stretched at a high magnification, and bleeding out can be suppressed.
(紫外線吸収剤)
 本発明に係る保護フィルムは、紫外線吸収剤を含有してもよい。
 紫外線吸収剤の例には、ベンゾトリアゾール系化合物、2-ヒドロキシベンゾフェノン系化合物、サリチル酸フェニルエステル系化合物等が含まれる。
(UV absorber)
The protective film according to the present invention may contain an ultraviolet absorber.
Examples of the ultraviolet absorber include benzotriazole compounds, 2-hydroxybenzophenone compounds, salicylic acid phenyl ester compounds, and the like.
 なかでも、分子量400以上の紫外線吸収剤は、昇華しにくいか、又は高沸点で揮発しにくく、フィルムの高温乾燥時にも飛散しにくいため、比較的少量の添加で効果的に耐候性を改良することができる観点から好ましい。
 分子量が400以上の紫外線吸収剤としては、例えば2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート等のヒンダードアミン系、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、1-[2-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン等の分子内にヒンダードフェノールとヒンダードアミンの構造をともに有するハイブリッド系のものが挙げられ、これらは単独で、あるいは2種以上を併用して使用することができる。
 なかでも、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2-ベンゾトリアゾールや2,2-メチレンビス[4-(1,1,3,3-テトラブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]が、特に好ましい。
Among these, UV absorbers having a molecular weight of 400 or more are difficult to sublimate or volatilize at a high boiling point, and are difficult to disperse even when the film is dried at high temperature. Therefore, the weather resistance is effectively improved by adding a relatively small amount. From the viewpoint of being able to do so.
Examples of the ultraviolet absorber having a molecular weight of 400 or more include 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole, 2,2-methylenebis [4- (1 , 1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol], bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis Hindered amines such as (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 1- [2- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine etc. in the molecule, the structure of hindered phenol and hindered amine These can be used alone or in combination of two or more.
Among them, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2-benzotriazole and 2,2-methylenebis [4- (1,1,3,3-tetrabutyl) -6- (2H-benzotriazol-2-yl) phenol] is particularly preferred.
 紫外線吸収剤は、市販品であってもよく、例えばBASFジャパン社製のチヌビン109、チヌビン171、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン928等のチヌビンシリーズ、ADEKA社製のLA31のような2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659)を好ましく使用できる。 The UV absorber may be a commercially available product, for example, Tinuvin 109, Tinuvin 171, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 928, etc. manufactured by BASF Japan, LA31 manufactured by ADEKA Such 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol] (molecular weight 659) can be preferably used.
 保護フィルムにおける紫外線防止剤の含有量は、質量割合で1~1000ppmの範囲内であることが好ましく、10~1000ppmの範囲内であることがより好ましい。 The content of the ultraviolet light inhibitor in the protective film is preferably in the range of 1 to 1000 ppm, more preferably in the range of 10 to 1000 ppm by mass ratio.
(マット剤)
 本発明に係る保護フィルムは、フィルムに滑り性を付与するためにマット剤をさらに含有してもよい。
 マット剤としては、得られるフィルムの透明性を損なわず、かつフィルム製造時の耐熱性があれば無機化合物であっても有機化合物であってもよい。マット剤は、単独で用いてもよいし、2種以上を併用してもよい。
(Matting agent)
The protective film according to the present invention may further contain a matting agent in order to impart slipperiness to the film.
The matting agent may be an inorganic compound or an organic compound as long as it does not impair the transparency of the resulting film and has heat resistance during film production. A matting agent may be used independently and may use 2 or more types together.
 なかでも、セルロースエステルと屈折率が近く、フィルムの透明性(ヘイズ)に優れる二酸化ケイ素が好ましく用いられる。
 二酸化ケイ素の具体例としては、市販品であるアエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上、日本アエロジル社製)、シーホスターKEP-10、シーホスターKEP-30、シーホスターKEP-50(以上、日本触媒社製)、サイロホービック100(富士シリシア社製)、ニップシールE220A(日本シリカ工業社製)、アドマファインSO(アドマテックス社製)等が好ましく使用できる。
Of these, silicon dioxide having a refractive index close to that of cellulose ester and excellent in transparency (haze) of the film is preferably used.
Specific examples of silicon dioxide include commercially available products such as Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (above, Nippon Aerosil Co., Ltd.), Seahoster KEP-10, Seahoster KEP-30, Seahoster KEP-50 (manufactured by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (manufactured by Fuji Silysia), Nip Seal E220A (manufactured by Nippon Silica Industry), Admafine SO (manufactured by Admatechs) It can be preferably used.
 粒子の形状は、不定形、針状、扁平、球状等、特に制限されない。球状の粒子を用いると、得られるフィルムの透明性が良好となり得るので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。滑り性を十分に改善するため、粒子の大きさは80~180nmの範囲内であることが好ましい。粒子の大きさとは、粒子が1次粒子の凝集体の場合は、凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
The shape of the particles is not particularly limited, such as an indefinite shape, a needle shape, a flat shape, and a spherical shape. Use of spherical particles is preferable because the resulting film can have good transparency.
When the particle size is close to the wavelength of visible light, light is scattered and the transparency is deteriorated. Therefore, the particle size is preferably smaller than the wavelength of visible light, and more preferably ½ or less of the wavelength of visible light. . In order to sufficiently improve the slipperiness, the particle size is preferably in the range of 80 to 180 nm. The size of the particle means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.
 マット剤の含有量は、セルロースエステルに対して0.05~1.00質量%程度の範囲内とすることができ、好ましくは0.10~0.80質量%の範囲内である。 The content of the matting agent can be in the range of about 0.05 to 1.00% by mass with respect to the cellulose ester, and preferably in the range of 0.10 to 0.80% by mass.
(剥離助剤)
 本発明に係る保護フィルムは、剥離助剤を含有することもできる。
 剥離助剤は、表面に存在して空気中の水分を吸収し、電気伝導度を高めて表面抵抗を大きく低下させる機能を有し、さらには金属ベルト面に一部凝集することで、ドープの剥離性を向上させる。
 剥離助剤としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩等が挙げられる。また、塩の種類としては、ナトリウム塩、カリウム塩、アミン塩、アンモニウム塩、ホスホニウム塩等が挙げられる。 
(Peeling aid)
The protective film according to the present invention can also contain a peeling aid.
The peeling aid is present on the surface and absorbs moisture in the air, has a function of increasing the electrical conductivity and greatly reducing the surface resistance, and further partially agglomerates on the metal belt surface, Improve peelability.
Examples of the peeling aid include alkyl sulfonates and alkyl benzene sulfonates. Examples of the salt include sodium salt, potassium salt, amine salt, ammonium salt, phosphonium salt and the like.
 具体例としては、デシルスルホン酸ナトリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、ドデシルスルホン酸ナトリウム、ドデシルスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸テトラブチルアンモニウム、ドデシルベンゼンスルホン酸テトラブチルホスホニウム、テトラデシルスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸カリウム、ヘキサデシルスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸カリウム等が挙げられる。また、これらの市販品としては、クラリアントジャパン社製ホスタスタットHS-1、竹本油脂社製エレカットS-412、エレカットS-418、花王社製ネオペレックスG65等が挙げられる。 Specific examples include sodium decyl sulfonate, sodium decyl benzene sulfonate, potassium decyl benzene sulfonate, sodium dodecyl sulfonate, potassium dodecyl sulfonate, sodium dodecyl benzene sulfonate, potassium dodecyl benzene sulfonate, tetrabutyl dodecyl benzene sulfonate. Ammonium, tetrabutylphosphonium dodecylbenzenesulfonate, sodium tetradecylsulfonate, sodium tetradecylbenzenesulfonate, potassium tetradecylbenzenesulfonate, sodium hexadecylsulfonate, sodium hexadecylbenzenesulfonate, potassium hexadecylbenzenesulfonate, etc. Is mentioned. Examples of these commercially available products include Hostastat HS-1 manufactured by Clariant Japan, Elecut S-412 and Elecut S-418 manufactured by Takemoto Yushi Co., Ltd., Neoperex G65 manufactured by Kao Corporation, and the like.
 <保護フィルムの製造方法>
 本発明に係る保護フィルムは、着色抑制、異物欠点の抑制、ダイライン等の光学欠点の抑制の観点から、溶液流延法又は溶融流延法により製造され得る。なかでも、得られるフィルムの平面性、筋等の故障耐性及び膜厚の精度が良好となることから、溶液流延法が好ましい。
<Method for producing protective film>
The protective film according to the present invention can be produced by a solution casting method or a melt casting method from the viewpoints of suppressing coloring, suppressing foreign matter defects, and suppressing optical defects such as die lines. Of these, the solution casting method is preferred because the flatness of the film obtained, failure resistance such as streaks, and the accuracy of the film thickness are improved.
 溶液流延法による保護フィルムの製造は、1)セルロースエステルと、必要に応じて可塑剤等の他の添加剤とを溶剤に溶解又は分散させてドープを調製する工程、2)当該ドープを無端状の金属支持体上に流延する工程、3)流延されたドープを乾燥させて得られる膜状物を、金属支持体から剥離してフィルムを得る工程、4)得られたフィルムを延伸する工程、5)延伸後のフィルムを巻き取る工程、を経て行われることが好ましい。 The production of a protective film by the solution casting method includes 1) a step of preparing a dope by dissolving or dispersing a cellulose ester and other additives such as a plasticizer in a solvent, if necessary, and 2) endless the dope. A step of casting on a metal support, 3) a step of removing a film obtained by drying the cast dope from the metal support to obtain a film, and 4) stretching the obtained film. It is preferable to carry out through the step of 5) the step of winding up the stretched film.
 1)ドープ調製工程
 ドープの調製に有用な有機溶媒は、セルロースエステル、添加剤等を同時に溶解又は分散するものであれば、制限無く用いることができる。
 例えば、塩素系有機溶媒としては、メチレンクロライド(ジクロロメタン)が挙げられる。非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン等が挙げられる。なかでも、メチレンクロライド、酢酸メチル、酢酸エチル、アセトンが好ましい。
1) Dope preparation process The organic solvent useful for the preparation of the dope can be used without limitation as long as it dissolves or disperses cellulose ester, additives and the like simultaneously.
For example, a methylene chloride (dichloromethane) is mentioned as a chlorinated organic solvent. Non-chlorine organic solvents include methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2, 2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1, Examples include 1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, and nitroethane. Of these, methylene chloride, methyl acetate, ethyl acetate, and acetone are preferable.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させることが好ましい。ドープ中にアルコールを含有させることで、膜状物がゲル化し、金属支持体からの剥離が容易になる。
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうち、ドープの安定性が得られ、沸点が比較的低く、乾燥性も良いことから、エタノールが好ましい。
 特に、メチレンクロライド及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、セルロースエステル及び添加剤を、少なくとも計15~45質量%溶解又は分散させることが好ましい。
In addition to the organic solvent, the dope preferably contains 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. By containing alcohol in the dope, the film-like material is gelled, and peeling from the metal support becomes easy.
Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because the stability of the dope is obtained, the boiling point is relatively low, and the drying property is good.
In particular, it is preferable to dissolve or disperse at least 15 to 45 mass% of the total amount of cellulose ester and additives in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
 セルロースエステル等の溶解又は分散は、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報又は特開平9-95538号公報に記載のような冷却溶解法で行う方法、特開平11-21379号公報に記載されている高圧で行う方法等、種々の方法があるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 Dissolution or dispersion of cellulose ester or the like is carried out at normal pressure, carried out below the boiling point of the main solvent, carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557. There are various methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using high pressure as described in JP-A-11-21379. A method in which pressure is applied at a boiling point or higher is preferred.
 調製したドープには、凝集物が含まれることがある。凝集物を除去するため、当該ドープを濾過することが好ましい。
 濾過は、捕集粒子径0.5~5.0μmの範囲内で、かつ濾水時間10~25sec/100mlの範囲内の濾材を用いることが好ましい。このような濾材を用いることにより、凝集物だけを除去できる。
The prepared dope may contain aggregates. In order to remove aggregates, it is preferable to filter the dope.
For the filtration, it is preferable to use a filter medium having a collected particle diameter of 0.5 to 5.0 μm and a drainage time of 10 to 25 sec / 100 ml. By using such a filter medium, only aggregates can be removed.
 2)流延工程
 調製したドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液する。そして、加圧ダイのスリットから、無限に移送する無端の金属支持体上(例えばステンレスベルト、回転する金属ドラム等)の流延位置に、ドープを流延する。
 加圧ダイは、口金部分のスリット形状を調整でき、膜厚を均一に制御しやすい加圧ダイとすることが好ましい。加圧ダイとしては、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために、加圧ダイを金属支持体上に2基以上設け、ドープの流量を分割して重層してもよい。又は、複数のドープを同時に流延する共流延法によって積層構造のフィルムを得てもよい。
2) Casting step The prepared dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump). Then, the dope is cast from the slit of the pressure die to a casting position on an endless metal support (for example, a stainless belt, a rotating metal drum, etc.) that is transferred infinitely.
The pressure die is preferably a pressure die that can adjust the slit shape of the die portion and can easily control the film thickness uniformly. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope flow rate may be divided to be stacked. Or you may obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発及び剥離工程
 金属支持体上に流延されたドープを金属支持体上で加熱して、ドープ中の溶媒を蒸発させ、膜状物を得る。
 溶媒を蒸発させるには、ドープの液面側から風を吹かせる方法、支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法が、乾燥効率が良く好ましい。また、これらを組み合わせる方法も好ましく用いられる。金属支持体上のドープを40~100℃の範囲内の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の範囲内の雰囲気下に維持するには、この温度の温風を、金属支持体上のドープの液面に当てるか、赤外線等の手段により加熱することが好ましい。
3) Solvent evaporation and stripping step The dope cast on the metal support is heated on the metal support to evaporate the solvent in the dope to obtain a film.
To evaporate the solvent, there are a method of blowing air from the liquid surface side of the dope, a method of transferring heat from the back surface of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. The drying efficiency is preferable. Moreover, the method of combining these is also preferably used. The dope on the metal support is preferably dried on the support in an atmosphere within a range of 40 to 100 ° C. In order to maintain the atmosphere in the range of 40 to 100 ° C., it is preferable to apply hot air at this temperature to the liquid surface of the dope on the metal support or to heat by means such as infrared rays.
 次に、金属支持体上で溶媒を蒸発させて得られる膜状物を、剥離位置で剥離し、フィルムを得る。得られるフィルムの面品質、透湿性及び剥離性の観点から、流延後30~120秒以内に、金属支持体から膜状物を剥離することが好ましい。金属支持体上の剥離位置における温度は、好ましくは10~40℃の範囲内であり、さらに好ましくは11~30℃の範囲内である。 Next, the film-like material obtained by evaporating the solvent on the metal support is peeled off at the peeling position to obtain a film. From the viewpoint of the surface quality, moisture permeability and peelability of the resulting film, it is preferable to peel the film-like material from the metal support within 30 to 120 seconds after casting. The temperature at the peeling position on the metal support is preferably in the range of 10 to 40 ° C, more preferably in the range of 11 to 30 ° C.
 剥離する時点での金属支持体上の膜状物における残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により、50~120質量%の範囲内であることが好ましい。しかしながら、残留溶媒量がより多い時点で剥離する場合、膜状物が柔らかすぎると剥離時に平面性を損ね、得られるフィルムに剥離張力によるツレや縦スジが発生しやすい。そのため、製造速度と品質との兼ね合いから剥離時の残留溶媒量が決められる。 The amount of residual solvent in the film-like material on the metal support at the time of peeling is preferably in the range of 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. However, when peeling off at a time when the amount of residual solvent is larger, if the film-like material is too soft, the flatness is impaired at the time of peeling, and the resulting film is likely to be distorted or vertical streaks due to peeling tension. Therefore, the amount of residual solvent at the time of peeling is determined from the balance between production speed and quality.
 膜状物の残留溶媒量は、下記式で定義される。
 残留溶媒量(質量%)=(膜状物の加熱処理前の質量-膜状物の加熱処理後の質量)/(膜状物の加熱処理後の質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃で1時間の加熱を行う処理を表す。
The amount of residual solvent in the film-like material is defined by the following formula.
Residual solvent amount (mass%) = (mass before heat treatment of film-like material−mass after heat treatment of film-like material) / (mass after heat treatment of film-like material) × 100
Note that the heat treatment for measuring the residual solvent amount represents a treatment for heating at 140 ° C. for 1 hour.
 金属支持体と膜状物を剥離する際の剥離張力は、通常、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。 The peeling tension when peeling the metal support from the film is usually in the range of 196 to 245 N / m. However, if wrinkles easily occur during peeling, the peeling tension should be 190 N / m or less. Is preferred.
 4)乾燥工程及び延伸工程
 剥離されたフィルムを、乾燥装置内に設けられた複数のローラーにより乾燥装置内を搬送させながら乾燥させる。次に、テンター延伸装置にて、フィルムの両端をクリップで挟みながら搬送し、フィルムを延伸する(テンター延伸法)。フィルムを搬送する複数のローラーに周速差をつけ、その周速差を利用して延伸する方法(ローラー延伸法)を用いてもよい。
4) Drying step and stretching step The peeled film is dried while being conveyed through the drying device by a plurality of rollers provided in the drying device. Next, in the tenter stretching apparatus, the film is transported while sandwiching both ends of the film with clips to stretch the film (tenter stretching method). You may use the method (roller extending | stretching method) which gives a circumferential speed difference to the several roller which conveys a film, and draws using the circumferential speed difference.
 乾燥は、フィルムの両面に熱風を当てる方法が一般的であるが、熱風の代わりにマイクロウェーブを当てて加熱してもよい。余り急激な乾燥は得られるフィルムの平面性を損ねやすい。高温による乾燥は、残留溶媒量が8質量%以下程度まで低下してから行うことが好ましい。全体を通して、乾燥はおおむね40~250℃の範囲内で行われる。特に、40~200℃の範囲内で乾燥させることが好ましい。 Drying is generally performed by applying hot air to both sides of the film, but may be heated by applying microwaves instead of hot air. Too rapid drying tends to impair the flatness of the resulting film. Drying at a high temperature is preferably performed after the amount of residual solvent is reduced to about 8% by mass or less. Throughout, the drying is generally carried out within the range of 40-250 ° C. In particular, it is preferable to dry within the range of 40 to 200 ° C.
 テンター延伸装置で乾燥させることもでき、この場合、乾燥温度は30~160℃の範囲内が好ましく、50~150℃の範囲内がさらに好ましい。テンター延伸装置において、雰囲気の温度分布がTD方向において少ないことが、フィルムの均一性を高める観点から好ましい。そのため、テンター延伸装置でのTD方向の温度分布は、±5℃以内であることが好ましく、±2℃以内であることがより好ましく、±1℃以内であることが最も好ましい。 It can also be dried with a tenter stretching apparatus. In this case, the drying temperature is preferably in the range of 30 to 160 ° C, more preferably in the range of 50 to 150 ° C. In the tenter stretching apparatus, it is preferable that the temperature distribution of the atmosphere is small in the TD direction from the viewpoint of improving the uniformity of the film. Therefore, the temperature distribution in the TD direction in the tenter stretching apparatus is preferably within ± 5 ° C., more preferably within ± 2 ° C., and most preferably within ± 1 ° C.
 保護フィルムのMD方向とTD方向のうち、少なくともMD方向に延伸することが、保護フィルムのMD方向の弾性率E1及びTD方向の弾性率E2の比の値E1/E2を、1.5~3.0の範囲内に調整しやすいことから好ましい。
 MD方向の延伸倍率は、1.6倍以上であることが好ましく、1.6~3.0倍の範囲内であることがより好ましい。
Stretching at least in the MD direction of the protective film in the MD direction and the TD direction results in a ratio value E1 / E2 of the elastic modulus E1 in the MD direction and the elastic modulus E2 in the TD direction of 1.5 to 3 It is preferable because it is easy to adjust within the range of 0.0.
The draw ratio in the MD direction is preferably 1.6 times or more, and more preferably in the range of 1.6 to 3.0 times.
 MD方向に加えて、TD方向にも延伸を実施する二軸延伸も、フィルムの強度を得る観点から好ましい。
 二軸延伸の場合、MD方向の延伸倍率がTD方向の延伸倍率より大きく、MD方向の延伸倍率が1.6倍以上であり、TD方向の延伸倍率が1.3倍以上であることが好ましい。なかでも、MD方向の延伸倍率は、1.6~3.0倍の範囲内であることが好ましい。また、TD方向の延伸倍率は、1.3~4.0倍の範囲内であることが好ましく、1.5~3.0倍の範囲内であることがより好ましい。
 なお、上記MD方向及びTD方向の延伸倍率は、それぞれの方向の延伸前後のフィルムの長さから、下記式により求められる。
 延伸倍率=延伸後のフィルムの長さ/延伸前のフィルムの長さ
In addition to the MD direction, biaxial stretching that performs stretching in the TD direction is also preferable from the viewpoint of obtaining the strength of the film.
In the case of biaxial stretching, it is preferable that the stretching ratio in the MD direction is larger than the stretching ratio in the TD direction, the stretching ratio in the MD direction is 1.6 times or more, and the stretching ratio in the TD direction is 1.3 times or more. . In particular, the draw ratio in the MD direction is preferably in the range of 1.6 to 3.0 times. Further, the draw ratio in the TD direction is preferably in the range of 1.3 to 4.0 times, and more preferably in the range of 1.5 to 3.0 times.
In addition, the draw ratio of the said MD direction and TD direction is calculated | required by a following formula from the length of the film before and behind extending | stretching of each direction.
Stretch ratio = length of film after stretching / length of film before stretching
 二軸延伸は、同時に行ってもよいし、段階的に行ってもよい。
 同時二軸延伸には、一方向に延伸し、もう一方向における張力を緩和して収縮させる場合も含まれる。
 段階的に行う二軸延伸は、例えば延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。
 例えば、次のような延伸ステップが可能である。
  ・MD方向に延伸→TD方向に延伸
  ・TD方向に延伸→MD方向に延伸
  ・MD方向に延伸→TD方向に延伸→TD方向に延伸
  ・TD方向に延伸→TD方向に延伸→MD方向に延伸
Biaxial stretching may be performed simultaneously or stepwise.
Simultaneous biaxial stretching includes stretching in one direction and reducing the tension in the other direction to cause contraction.
In biaxial stretching performed stepwise, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible.
For example, the following stretching steps are possible.
-Stretch in MD direction-> Stretch in TD direction-Stretch in TD direction-> Stretch in MD direction-Stretch in MD direction-> Stretch in TD direction-> Stretch in TD direction-Stretch in TD direction-> Stretch in TD direction-> Stretch in MD direction
 延伸は、25~190℃の温度範囲内で行うことができる。
 延伸開始時のフィルムの残留溶媒量は、20~100質量%の範囲であることが好ましい。延伸終了後に得られるフィルムは、残留溶媒量が5質量%以下、好ましくは1質量%以下となるまで乾燥させることが好ましい。
The stretching can be performed within a temperature range of 25 to 190 ° C.
The residual solvent amount of the film at the start of stretching is preferably in the range of 20 to 100% by mass. The film obtained after completion of stretching is preferably dried until the residual solvent amount is 5% by mass or less, preferably 1% by mass or less.
 5)巻き取り工程
 延伸、乾燥後のフィルムを、巻取り機でロール状に巻き取る。巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使い分ければよい。
5) Winding process The film after stretching and drying is wound into a roll with a winder. As a winding method, a generally used method may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like.
 本発明に係る保護フィルムは、長尺フィルムであることもできる。例えば、巻長が100~10000m程度の範囲内にあり、TD方向の長さが1.0~4.0m、好ましくは1.4~3.0mの範囲内にある長尺フィルムとし得る。長尺フィルムは、通常、長軸方向であるMD方向に巻き取られたロール体として保存され得る。
 巻き取る前に、製品とするときの幅に合わせて、保護フィルムのTD方向端部をスリットして裁ち落とした後、巻き内面の貼り付きや擦り傷防止のために、例えばエンボッシング加工のようなナール加工をTD方向両端部に施してもよい。ナール加工は、例えば凸凹のパターンを側面に有する金属リングでフィルムを加熱又は加圧することにより加工することができる。
The protective film according to the present invention can be a long film. For example, a long film having a winding length in the range of about 100 to 10,000 m and a length in the TD direction of 1.0 to 4.0 m, preferably in the range of 1.4 to 3.0 m can be obtained. A long film can be preserve | saved as a roll body wound up by MD direction which is a major axis direction normally.
Before winding up, after slitting off the TD direction end of the protective film in accordance with the width of the product, to prevent sticking of the wound inner surface and scratches, for example, a knurling like embossing Processing may be applied to both ends in the TD direction. For example, the knurling process can be performed by heating or pressurizing the film with a metal ring having an uneven pattern on the side surface.
 <保護フィルムの物性>
 (膜厚)
 本発明に係る保護フィルムの膜厚は、好ましくは15~35μmの範囲内であり、より好ましくは15~30μmの範囲内である。膜厚が上記範囲内であれば、フィルムの強度が十分であり、液晶セルの曲がりを抑えて表示ムラを改善でき、ロール体を巻芯が水平になるように保存した際に、フィルムのTD方向中央部が自重で凹む等の変形(巻き形状の変化)も抑制できる。
<Physical properties of protective film>
(Film thickness)
The thickness of the protective film according to the present invention is preferably in the range of 15 to 35 μm, more preferably in the range of 15 to 30 μm. If the film thickness is within the above range, the film has sufficient strength, can suppress the bending of the liquid crystal cell to improve display unevenness, and when the roll body is stored so that the core is horizontal, the TD of the film It is also possible to suppress deformation (change in winding shape) such that the central portion in the direction is recessed by its own weight.
 (ヘイズ)
 本発明に係る保護フィルムのヘイズ値は、1.0%以下であることが好ましく、0.5%以下であることがさらに好ましい。
 本発明の保護フィルムを散乱フィルムとして用いる場合は、ヘイズ値は上記の範囲を超えていてもよい。
 ヘイズは、JIS K-7136に準拠して、ヘイズメーター(濁度計)(型式:NDH 2000、日本電色社製)にて測定できる。
(Haze)
The haze value of the protective film according to the present invention is preferably 1.0% or less, and more preferably 0.5% or less.
When using the protective film of this invention as a scattering film, haze value may exceed said range.
The haze can be measured with a haze meter (turbidimeter) (model: NDH 2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS K-7136.
 本発明に係る保護フィルムは、ハードコート層、帯電防止層、バックコート層、反射防止層、易滑性層、接着層、防眩層、バリアー層等の機能性層をさらに有してもよい。 The protective film according to the present invention may further have functional layers such as a hard coat layer, an antistatic layer, a back coat layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, and a barrier layer. .
 <偏光子>
 偏光子は、ヨウ素系偏光膜、二色染料を用いた染料系偏光膜又はポリエン系偏光膜であり得る。ヨウ素系偏光膜及び染料系偏光膜は、一般的には、ポリビニルアルコール系フィルムを一軸延伸した後、ヨウ素又は二色性染料で染色して得られたフィルムであってもよいし、ポリビニルアルコール系フィルムをヨウ素又は二色性染料で染色した後、一軸延伸したフィルム(好ましくは、さらにホウ素化合物で耐久性処理を施したフィルム)であってもよい。
<Polarizer>
The polarizer may be an iodine polarizing film, a dye polarizing film using a dichroic dye, or a polyene polarizing film. In general, the iodine polarizing film and the dye polarizing film may be a film obtained by uniaxially stretching a polyvinyl alcohol film and then dyeing with iodine or a dichroic dye. After the film is dyed with iodine or a dichroic dye, it may be a uniaxially stretched film (preferably a film further subjected to a durability treatment with a boron compound).
 ポリビニルアルコール系フィルムは、ポリビニルアルコール水溶液を製膜したものであってもよい。ポリビニルアルコール系フィルムは、偏光性能及び耐久性能に優れ、色斑が少ないことから、エチレン変性ポリビニルアルコールフィルムが好ましい。
 二色性染料の例には、アゾ系色素、スチルベン系色素、ピラゾロン系色素、トリフェニルメタン系色素、キノリン系色素、オキサジン系色素、チアジン系色素、アントラキノン系色素等が含まれる。
The polyvinyl alcohol film may be a film formed from a polyvinyl alcohol aqueous solution. The polyvinyl alcohol film is preferably an ethylene-modified polyvinyl alcohol film because it is excellent in polarizing performance and durability performance and has few color spots.
Examples of dichroic dyes include azo dyes, stilbene dyes, pyrazolone dyes, triphenylmethane dyes, quinoline dyes, oxazine dyes, thiazine dyes, anthraquinone dyes, and the like.
 偏光子の厚さは、5~30μmの範囲内であることが好ましく、10~20μmの範囲内であることがより好ましい。 The thickness of the polarizer is preferably in the range of 5 to 30 μm, and more preferably in the range of 10 to 20 μm.
 <位相差フィルム>
 偏光子の一方の面に本発明に係る保護フィルムが配置される場合、偏光子の他方の面には位相差フィルムが配置される。
 位相差フィルムの面内の遅相軸と、偏光子の吸収軸とが交差する角度は、目的に応じて適切な角度を採用し得る。例えば、λ/4位相差フィルムであれば、40~50°の範囲内であることが好ましく、45°がより好ましい。
<Phase difference film>
When the protective film according to the present invention is disposed on one surface of the polarizer, a retardation film is disposed on the other surface of the polarizer.
The angle at which the slow axis in the plane of the retardation film intersects with the absorption axis of the polarizer may be an appropriate angle depending on the purpose. For example, in the case of a λ / 4 retardation film, it is preferably within a range of 40 to 50 °, and more preferably 45 °.
 位相差フィルムの位相差値は、組み合わされる液晶セルの種類に応じて設定され得る。例えば、位相差フィルムの、23℃・55%RH下、波長590nmで測定される面内方向及び厚さ方向の位相差値Roを、それぞれRo(590)及びRt(590)としたとき、Ro(590)は30~150nmの範囲内にあることが好ましく、Rt(590)は70~300nmの範囲内にあることが好ましい。位相差値Ro(590)及びRt(590)が上記範囲内にある位相差フィルムは、例えばVA型液晶セル等に好ましく用いることができる。 The retardation value of the retardation film can be set according to the type of liquid crystal cell to be combined. For example, when the retardation values Ro in the in-plane direction and the thickness direction measured at a wavelength of 590 nm under a temperature of 23 ° C. and 55% RH are Ro (590) and Rt (590), respectively, Ro (590) is preferably in the range of 30 to 150 nm, and Rt (590) is preferably in the range of 70 to 300 nm. A retardation film having retardation values Ro (590) and Rt (590) in the above range can be preferably used for, for example, a VA liquid crystal cell.
 なお、本発明に係る保護フィルムの位相差値を調整し、上記位相差フィルムとして機能させてもよい。 In addition, the retardation value of the protective film according to the present invention may be adjusted to function as the retardation film.
<偏光板の製造方法>
 本発明の偏光板の製造方法は、上述した保護フィルムを製造する製造工程を含み、当該製造工程では、製造後の保護フィルムのtanδの最大値が、0.6以上であり、かつ当該保護フィルムのMD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあるように、保護フィルムを製造する。
 さらに、製造後の保護フィルムを偏光子に貼り合わせる工程を経ることにより、本発明の偏光板を得ることができる。貼り合わせに用いられる接着剤としては、例えば完全ケン化型ポリビニルアルコール水溶液等が好ましい。
<Production method of polarizing plate>
The method for producing a polarizing plate of the present invention includes a production process for producing the above-described protective film, and in the production process, the maximum value of tan δ of the produced protective film is 0.6 or more, and the protective film The protective film is manufactured so that the value E1 / E2 of the ratio of the elastic modulus in the MD direction and the TD direction is in the range of 1.5 to 3.0.
Furthermore, the polarizing plate of this invention can be obtained through the process of bonding the protective film after manufacture to a polarizer. As an adhesive used for bonding, for example, a completely saponified polyvinyl alcohol aqueous solution is preferable.
 偏光子と保護フィルムをそれぞれ長尺フィルムとし、それぞれの長軸方向が一致するようにロール・トゥ・ロールで貼り合わせて偏光板を製造する場合、偏光子の吸収軸は偏光子の延伸方向と平行であることから、偏光子の吸収軸方向と保護フィルムのMD方向は一致する。
 なお、長軸方向が一致する、又は吸収軸方向とMD方向が一致するとは、それぞれの方向のなす角度が±5°程度の範囲内にあることをいう。
When making a polarizing plate by making a polarizer and a protective film into a long film and laminating them with roll-to-roll so that the respective major axis directions coincide, the absorption axis of the polarizer is the stretching direction of the polarizer. Since it is parallel, the absorption axis direction of a polarizer and MD direction of a protective film correspond.
In addition, that the major axis direction coincides or that the absorption axis direction coincides with the MD direction means that the angle formed by each direction is within a range of about ± 5 °.
<液晶表示装置>
 本発明の液晶表示装置は、液晶セルの少なくとも一方の面に、上述した偏光板を具備する。これにより、温湿度変化による表示ムラの少ない液晶表示装置を提供することができる。
<Liquid crystal display device>
The liquid crystal display device of the present invention comprises the polarizing plate described above on at least one surface of the liquid crystal cell. Thereby, a liquid crystal display device with less display unevenness due to temperature and humidity changes can be provided.
 図1は、本発明の液晶表示装置の構成の一例を示す断面図である。
 図1に示すように、液晶表示装置100は、液晶セル40と、液晶セル40の両面にそれぞれ配置された二つの偏光板50及び60と、バックライト70とを備えている。
FIG. 1 is a cross-sectional view showing an example of the configuration of the liquid crystal display device of the present invention.
As shown in FIG. 1, the liquid crystal display device 100 includes a liquid crystal cell 40, two polarizing plates 50 and 60 disposed on both surfaces of the liquid crystal cell 40, and a backlight 70.
 液晶セル40の表示方式は、特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、IPS(In-Plane Switching)方式、OCB(Optically Compensated Birefringence)方式、VA(Vertical Alignment)方式(MVA;Multi-domain Vertical Alignment及びPVA;Patterned Vertical Alignmentを含む)、HAN(Hybrid Aligned Nematic)方式等がある。コントラストを高めるためには、VA(MVA、PVA)方式が好ましい。 The display method of the liquid crystal cell 40 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, an IPS (In-Plane Switching) method, an OCB (Optically Compensated Birefringence) method, and VA (Vertical Alignment). There are methods (including MVA: Multi-domain Vertical Alignment and PVA: Patterned Vertical Alignment), HAN (Hybrid Aligned Nematic) method and the like. In order to increase the contrast, the VA (MVA, PVA) method is preferable.
 VA方式の液晶セルは、一対の透明基板と、当該一対の透明基板間に挟持された液晶層とを有する。
 透明基板は、例えばガラス基板である。透明基板の膜厚は、液晶画面を薄型化する観点から、0.2~0.5mmの範囲内であることが好ましい。
 一対の透明基板のうち、一方の透明基板には、液晶分子に電圧を印加するための画素電極が配置される。対向電極は、一方の透明基板(画素電極が配置された透明基板)に配置されてもよいし、他方の透明基板に配置されてもよい。
A VA liquid crystal cell includes a pair of transparent substrates and a liquid crystal layer sandwiched between the pair of transparent substrates.
The transparent substrate is, for example, a glass substrate. The film thickness of the transparent substrate is preferably in the range of 0.2 to 0.5 mm from the viewpoint of thinning the liquid crystal screen.
Of the pair of transparent substrates, one transparent substrate is provided with a pixel electrode for applying a voltage to the liquid crystal molecules. The counter electrode may be disposed on one transparent substrate (transparent substrate on which the pixel electrode is disposed) or may be disposed on the other transparent substrate.
 液晶層は、負又は正の誘電率異方性を有する液晶分子を含む。液晶分子は、透明基板の液晶層側の面に設けられた配向膜の配向規制力により、電圧無印加時(画素電極と対向電極との間に電界が生じていないとき)には、液晶分子の長軸が、透明基板の表面に対して略垂直となるように配向している。 The liquid crystal layer includes liquid crystal molecules having negative or positive dielectric anisotropy. Liquid crystal molecules are liquid crystal molecules when no voltage is applied (when no electric field is generated between the pixel electrode and the counter electrode) due to the alignment regulating force of the alignment film provided on the liquid crystal layer side surface of the transparent substrate. Are oriented so that their long axes are substantially perpendicular to the surface of the transparent substrate.
 液晶セル40において、画素電極に画像信号に応じた電圧を印加すると、画素電極と対向電極との間に電界が生じる。これにより、透明基板の表面に対して垂直に初期配向している液晶分子を、その長軸が透明基板の表面に対して水平方向となるように配向させることができる。このようにして液晶層を駆動し、各副画素の透過率及び反射率を変化させて画像表示を行う。 In the liquid crystal cell 40, when a voltage corresponding to an image signal is applied to the pixel electrode, an electric field is generated between the pixel electrode and the counter electrode. Thereby, the liquid crystal molecules initially aligned perpendicularly to the surface of the transparent substrate can be aligned so that the major axis thereof is in the horizontal direction with respect to the surface of the transparent substrate. In this way, the liquid crystal layer is driven, and the image display is performed by changing the transmittance and reflectance of each sub-pixel.
 偏光板50は、フロント側(視認側)の液晶セル40の面に配置され、フロント側から順に保護フィルム51、偏光子52及び位相差フィルム53を具備する。フロント側は、ユーザー80により液晶画面が視認される側である。
 偏光板60は、リア側の液晶セル40の面に配置され、リア側から順に保護フィルム63、偏光子62及び位相差フィルム61を具備する。リア側は、バックライト70が設けられている側である。
 各偏光板50及び60は、それぞれの吸収軸のなす角度が90°となるように配置されている。
The polarizing plate 50 is disposed on the surface of the liquid crystal cell 40 on the front side (viewing side), and includes a protective film 51, a polarizer 52, and a retardation film 53 in order from the front side. The front side is a side on which the liquid crystal screen is visually recognized by the user 80.
The polarizing plate 60 is disposed on the surface of the liquid crystal cell 40 on the rear side, and includes a protective film 63, a polarizer 62, and a retardation film 61 in order from the rear side. The rear side is the side where the backlight 70 is provided.
The polarizing plates 50 and 60 are arranged such that the angle formed by the respective absorption axes is 90 °.
 図2は、図1の液晶セル40と二つの偏光板50及び60を階層的に表した図である。
 図2に示すように、液晶表示装置100がおかれた環境の温度及び湿度に変化があると、水分を吸収した偏光子52及び62がそれぞれの吸収軸方向52d及び62dに収縮する。図2において、この収縮する力を白の矢印で表している。収縮する力は液晶セル40に伝播するが、液晶セル40の透明基板がこの力に耐えられないと、液晶セル40に曲がりが生じ、液晶セル40に隣接する位相差フィルム53及び61も曲がってしまう。位相差フィルム53及び61の曲がりによって、位相差が変化し、表示ムラを引き起こす。
FIG. 2 is a diagram hierarchically showing the liquid crystal cell 40 and the two polarizing plates 50 and 60 of FIG.
As shown in FIG. 2, when there is a change in the temperature and humidity of the environment where the liquid crystal display device 100 is placed, the polarizers 52 and 62 that have absorbed moisture contract in the respective absorption axis directions 52d and 62d. In FIG. 2, this contracting force is represented by a white arrow. The shrinking force propagates to the liquid crystal cell 40. If the transparent substrate of the liquid crystal cell 40 cannot withstand this force, the liquid crystal cell 40 is bent, and the retardation films 53 and 61 adjacent to the liquid crystal cell 40 are also bent. End up. Due to the bending of the phase difference films 53 and 61, the phase difference changes, causing display unevenness.
 しかしながら、偏光板50又は60の少なくとも一方に本発明の偏光板が用いられている場合、本発明の偏光板は、保護フィルムのMD方向の弾性率が高いことから、MD方向に加えられる力に対する応力が大きい。
 一般に、偏光子と保護フィルムは長尺フィルムとしてロール・トゥ・ロールで貼り合わせられ、図2に示すように保護フィルム51のMD方向51dと偏光子52の吸収軸方向52dが一致し、保護フィルム63のMD方向63dと偏光子62の吸収軸方向62dが一致している。そのため、偏光子52及び62が収縮する力を、それぞれに貼り合わされた保護フィルム51及び63によって大きく低減することが可能である。
 これにより、液晶セル40に伝播する力を、薄膜化された透明基板であっても十分耐えられる程度に低減することができ、液晶セル40及び液晶セル40に隣接する位相差フィルム53及び61の曲がりを抑えることができる。位相差フィルムの曲がりを抑えることができれば、位相差の変化ひいては表示ムラを抑えることが可能になる。
However, when the polarizing plate of the present invention is used for at least one of the polarizing plates 50 or 60, the polarizing plate of the present invention has a high elastic modulus in the MD direction of the protective film, and thus is resistant to the force applied in the MD direction. Stress is large.
In general, the polarizer and the protective film are bonded as a long film by roll-to-roll, and as shown in FIG. 2, the MD direction 51d of the protective film 51 and the absorption axis direction 52d of the polarizer 52 coincide with each other. The MD direction 63d of 63 coincides with the absorption axis direction 62d of the polarizer 62. Therefore, it is possible to greatly reduce the force by which the polarizers 52 and 62 contract by the protective films 51 and 63 bonded to each other.
As a result, the force propagating to the liquid crystal cell 40 can be reduced to such an extent that even a thin transparent substrate can withstand, and the liquid crystal cell 40 and the retardation films 53 and 61 adjacent to the liquid crystal cell 40 can be reduced. Bending can be suppressed. If the bending of the retardation film can be suppressed, it is possible to suppress a change in the retardation, and thus display unevenness.
 液晶セルで構成される液晶画面が長方形である場合には、液晶セルの両面にそれぞれ用いられる二つの偏光板のうち、少なくとも偏光子の吸収軸方向が液晶画面の長軸方向と一致する偏光板として、本発明の偏光板を用いることが好ましい。
 偏光子が収縮する力のモーメントは、偏光子の吸収軸方向の長さが長いほど、大きくなる。そのため、液晶画面が長方形である場合、各偏光板の偏光子が収縮する力のモーメントは同一ではなく、液晶画面の長軸方向と吸収軸方向が一致する偏光板の方が、モーメントは大きくなる。このモーメントの差によって、液晶セルには反るような曲がりが生じる。
When the liquid crystal screen composed of the liquid crystal cell is rectangular, a polarizing plate in which at least the absorption axis direction of the polarizer coincides with the long axis direction of the liquid crystal screen among the two polarizing plates used on both sides of the liquid crystal cell. It is preferable to use the polarizing plate of the present invention.
The moment of force with which the polarizer contracts increases as the length of the polarizer in the absorption axis direction increases. Therefore, when the liquid crystal screen is rectangular, the moment of force with which the polarizer of each polarizing plate contracts is not the same, and the moment is larger in the polarizing plate in which the major axis direction of the liquid crystal screen matches the absorption axis direction. . Due to the difference in moment, the liquid crystal cell is warped.
 一般的には、図2に示すように、液晶セル40のフロント側に設けられる偏光板50が、液晶画面の長軸方向と吸収軸方向52dが一致するように配置されている。偏光板50の方が、偏光板60よりも収縮の力のモーメントが大きくなるため、図3の断面図に示すように、液晶セル40はリア側に突き出るようにして反る。 Generally, as shown in FIG. 2, the polarizing plate 50 provided on the front side of the liquid crystal cell 40 is arranged so that the major axis direction of the liquid crystal screen and the absorption axis direction 52d coincide. Since the polarizing plate 50 has a larger moment of contraction force than the polarizing plate 60, the liquid crystal cell 40 warps so as to protrude to the rear side as shown in the cross-sectional view of FIG.
 このとき、フロント側の最外郭に位置する保護フィルム51は最も曲がりが大きくなる。しかし、フロント側の偏光板50として、本発明の偏光板を用いることにより、保護フィルム51のMD方向51dにおける弾性率E1が高くなり、偏光子52の収縮する力を大きく低減することができる。その結果、リア側へ突き出るような液晶セル40の曲がりを効果的に抑えることができる。 At this time, the protective film 51 located at the outermost outermost side of the front side is most bent. However, by using the polarizing plate of the present invention as the front-side polarizing plate 50, the elastic modulus E1 of the protective film 51 in the MD direction 51d is increased, and the contracting force of the polarizer 52 can be greatly reduced. As a result, the bending of the liquid crystal cell 40 that protrudes to the rear side can be effectively suppressed.
 フロント側の偏光板50だけでなく、リア側の偏光板60も、本発明の偏光板とすることも可能である。
 これにより、リア側の偏光子62が吸収軸方向62dに収縮する力も、当該偏光板60に設けられた保護フィルム63によって大きく低減することができる。
Not only the polarizing plate 50 on the front side but also the polarizing plate 60 on the rear side can be used as the polarizing plate of the present invention.
Thereby, the force by which the rear-side polarizer 62 contracts in the absorption axis direction 62 d can also be greatly reduced by the protective film 63 provided on the polarizing plate 60.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示が用いられるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless there is particular notice, it represents "mass part" or "mass%".
<保護フィルム11の作製>
 下記成分を、撹拌及び加熱しながら十分に溶解させて、ドープを調製した。
 (ドープの組成)
  セルロースエステル(アセチル基置換度2.87、重量平均分子量Mw300000):
                             100.0質量部
  ポリエステル(コハク酸、テレフタル酸及びエチレングリコールをモノマーとする縮合物の末端封止物、コハク酸/テレフタル酸/エチレングリコールのモル比は50/50/100、重量平均分子量Mw2000):          10.0質量部
  紫外線吸収剤;チヌビン928(2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール、BASFジャパン社製):             3.0質量部
  マット剤:R972V(日本アエロジル社製、シリカ粒子、平均粒径16nm):
                               0.3質量部
  剥離助剤;エレカットS412(竹本油脂社製):       0.5質量部
  メチレンクロライド:                 300.0質量部
  エタノール:                      40.0質量部
<Preparation of protective film 11>
The following components were sufficiently dissolved with stirring and heating to prepare a dope.
(Composition of dope)
Cellulose ester (acetyl group substitution degree 2.87, weight average molecular weight Mw 300000):
100.0 parts by mass Polyester (end-capped product of condensate containing succinic acid, terephthalic acid and ethylene glycol as monomers, succinic acid / terephthalic acid / ethylene glycol molar ratio 50/50/100, weight average molecular weight Mw2000) : 10.0 parts by weight UV absorber; Tinuvin 928 (2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3- Tetramethylbutyl) phenol, manufactured by BASF Japan Ltd.): 3.0 parts by weight Matting agent: R972V (manufactured by Nippon Aerosil Co., Ltd., silica particles, average particle size 16 nm):
0.3 parts by mass peeling aid; ELECUT S412 (manufactured by Takemoto Yushi Co., Ltd.): 0.5 parts by mass Methylene chloride: 300.0 parts by mass Ethanol: 40.0 parts by mass
 得られたドープを、ベルト流延装置を用いて、温度22℃、2m幅でステンレスバンド支持体に均一に流延した。さらに、ステンレスバンド支持体上で、残留溶剤量が100質量%になるまでドープ中の溶媒を蒸発させた。得られた膜状物を、剥離張力162N/mでステンレスバンド支持体上から剥離し、フィルムを得た。 The obtained dope was uniformly cast on a stainless steel band support at a temperature of 22 ° C. and a width of 2 m using a belt casting apparatus. Further, the solvent in the dope was evaporated on the stainless steel band support until the residual solvent amount reached 100% by mass. The obtained film was peeled from the stainless steel band support with a peel tension of 162 N / m to obtain a film.
 得られたフィルムを温度35℃でさらに乾燥させた後、TD方向の長さが1.5mとなるようにTD方向の端部をスリットした。スリット後のフィルムをローラーでMD方向に延伸温度190℃で2.0倍延伸し、テンター延伸装置にてTD方向に延伸温度190℃で1.5倍延伸した。テンター延伸装置による延伸開始時の残留溶媒量は8質量%であった。
 テンター延伸装置で延伸した後、130℃で5分間の緩和処理を施し、得られたフィルムを多数のローラーにより120℃及び140℃の各乾燥ゾーンに搬送し、搬送しながら乾燥させた。次に、フィルムをTD方向の長さが1.35mとなるようにTD方向の端部をスリットした。その後、フィルムのTD方向両端に幅10mm及び高さ5μmのナール加工を施して、コアに巻き取り、保護フィルム11のロール体を得た。保護フィルム11の膜厚は25μm、巻長は4000mであった。
After the obtained film was further dried at a temperature of 35 ° C., the end in the TD direction was slit so that the length in the TD direction was 1.5 m. The film after the slit was stretched 2.0 times in the MD direction with a roller at a stretching temperature of 190 ° C. and stretched 1.5 times in the TD direction at a stretching temperature of 190 ° C. with a tenter stretching device. The residual solvent amount at the start of stretching by the tenter stretching apparatus was 8% by mass.
After stretching by a tenter stretching apparatus, relaxation treatment was performed at 130 ° C. for 5 minutes, and the obtained film was transported to each drying zone at 120 ° C. and 140 ° C. by a number of rollers, and dried while being transported. Next, the end in the TD direction was slit so that the length in the TD direction was 1.35 m. Then, the knurl process of width 10mm and height 5micrometer was given to the TD direction both ends of the film, and it wound up on the core, and obtained the roll body of the protective film 11. The film thickness of the protective film 11 was 25 μm, and the winding length was 4000 m.
<保護フィルム12の作製>
 保護フィルム11の作製において、ドープ中のポリエステルの添加量を下記表1に示すように変更した以外は、保護フィルム11と同様にして保護フィルム12を作製した。
 保護フィルム11と同様に、保護フィルム12の膜厚は25μm、巻長は4000mであった。
<Preparation of protective film 12>
In preparation of the protective film 11, the protective film 12 was produced similarly to the protective film 11 except having changed the addition amount of polyester in dope as shown in Table 1 below.
Similar to the protective film 11, the protective film 12 had a thickness of 25 μm and a winding length of 4000 m.
<保護フィルム13~15の作製>
 保護フィルム11の作製において、ドープ中のポリエステルを、それぞれ下記スチレン系重合体1~3に変更した以外は、保護フィルム11と同様にして各保護フィルム13~15を作製した。
 スチレン系重合体1:SMA2625(スチレンとマレイン酸の共重合体、スチレンとマレイン酸のモル比(スチレン/マレイン酸)67/33、重量平均分子量Mw9000)、サートマー社製):                    10.0質量部
 スチレン系重合体2:SMA17325(スチレンとマレイン酸の共重合体、スチレンとマレイン酸のモル比(スチレン/マレイン酸)50/50、重量平均分子量Mw7000)、サートマー社製):                 10.0質量部
 スチレン系重合体3:マルカリンカーCST50(スチレンとヒドロキシスチレンの共重合体、スチレンとヒドロキシスチレンのモル比(スチレン/ヒドロキシスチレン)50/50、重量平均分子量Mw2000、丸善石油化学社製): 10.0質量部
 保護フィルム11と同様に、各保護フィルム13~15の膜厚は25μm、巻長(MD方向の長さ)は4000mであった。
<Preparation of protective films 13-15>
In the production of the protective film 11, the protective films 13 to 15 were produced in the same manner as the protective film 11 except that the polyester in the dope was changed to the following styrene polymers 1 to 3, respectively.
Styrene polymer 1: SMA 2625 (copolymer of styrene and maleic acid, molar ratio of styrene and maleic acid (styrene / maleic acid) 67/33, weight average molecular weight Mw 9000), manufactured by Sartomer): 10.0 parts by mass Styrene polymer 2: SMA 17325 (copolymer of styrene and maleic acid, molar ratio of styrene and maleic acid (styrene / maleic acid) 50/50, weight average molecular weight Mw 7000), manufactured by Sartomer): 10.0 parts by mass Styrene polymer 3: Marcalinker CST50 (copolymer of styrene and hydroxystyrene, molar ratio of styrene to hydroxystyrene (styrene / hydroxystyrene) 50/50, weight average molecular weight Mw2000, manufactured by Maruzen Petrochemical Co., Ltd.): 0 parts by mass Same as protective film 11 The thickness of the protective film 13-15 25 [mu] m, the winding length (length in the MD direction) was 4000 m.
<保護フィルム16及び17の作製>
 保護フィルム13の作製において、延伸時のMD方向及びTD方向の延伸倍率を下記表1に示すように変更した以外は、保護フィルム13と同様にして保護フィルム16及び17をそれぞれ作製した。なお、保護フィルム17は、TD方向の延伸を行わず、MD方向の延伸のみ行った。
 保護フィルム11と同様に、各保護フィルム16及び17の膜厚は25μm、巻長は4000mであった。
<Preparation of protective films 16 and 17>
In the production of the protective film 13, protective films 16 and 17 were produced in the same manner as the protective film 13, except that the stretching ratio in the MD direction and the TD direction during stretching was changed as shown in Table 1 below. In addition, the protective film 17 did not extend | stretch in TD direction but performed only extending | stretching of MD direction.
Similar to the protective film 11, the protective films 16 and 17 had a film thickness of 25 μm and a winding length of 4000 m.
<保護フィルム18及び19の作製>
 保護フィルム13の作製において、スチレン系重合体1の添加量を下記表1に示すように変更した以外は、保護フィルム13と同様にして保護フィルム18を作製した。
 保護フィルム14の作製において、スチレン系重合体2の添加量を下記表1に示すように変更した以外は、保護フィルム14と同様にして保護フィルム19を作製した。
 保護フィルム11と同様に、各保護フィルム18及び19の膜厚は25μm、巻長は4000mであった。
<Preparation of protective films 18 and 19>
In the production of the protective film 13, a protective film 18 was produced in the same manner as the protective film 13, except that the addition amount of the styrene polymer 1 was changed as shown in Table 1 below.
In the production of the protective film 14, a protective film 19 was produced in the same manner as the protective film 14 except that the addition amount of the styrene polymer 2 was changed as shown in Table 1 below.
Similarly to the protective film 11, the film thickness of each protective film 18 and 19 was 25 micrometers, and the winding length was 4000 m.
<保護フィルム20及び21の作製>
 保護フィルム11の作製において、MD方向及びTD方向の延伸倍率を下記表1に示すように変更した以外は、保護フィルム11と同様にして各保護フィルム20及び21を作製した。
 保護フィルム11と同様に、保護フィルム20及び21の膜厚は25μm、巻長は4000mであった。
<Preparation of protective films 20 and 21>
In the production of the protective film 11, the protective films 20 and 21 were produced in the same manner as the protective film 11 except that the stretching ratios in the MD direction and the TD direction were changed as shown in Table 1 below.
Similar to the protective film 11, the protective films 20 and 21 had a film thickness of 25 μm and a winding length of 4000 m.
<保護フィルム22の作製>
 保護フィルム11の作製において、ポリエステルを下記糖エステルに変更した以外は、保護フィルム11と同様にして保護フィルム22を作製した。
 糖エステル(上記一般式(FA)において、R~Rがそれぞれベンゾイル基か水素原子であり、当該ベンゾイル基の平均置換度が5.5の糖エステル):    10質量部
 保護フィルム11と同様に、保護フィルム22の膜厚は25μm、巻長は4000mであった。
<Preparation of protective film 22>
In the production of the protective film 11, a protective film 22 was produced in the same manner as the protective film 11 except that the polyester was changed to the following sugar ester.
Sugar ester (in the general formula (FA), R 1 to R 8 are each a benzoyl group or a hydrogen atom, and the average degree of substitution of the benzoyl group is 5.5): 10 parts by mass Similar to the protective film 11 Further, the protective film 22 had a film thickness of 25 μm and a winding length of 4000 m.
<保護フィルム31の作製>
 ドープにポリエステルを添加しなかったこと以外は、保護フィルム11と同様にしてフィルムを作製した後、保護フィルム11と同じ延伸倍率で延伸しようとしたところ、フィルムが破断した。そのため、MD方向及びTD方向の延伸倍率をそれぞれ1.6及び1.3に下げて延伸を行って、保護フィルム31を作製した。
 保護フィルム11と同様に、保護フィルム31の膜厚は25μm、巻長は4000mであった。
<Preparation of protective film 31>
When a film was prepared in the same manner as the protective film 11 except that no polyester was added to the dope, the film was broken when attempting to stretch at the same draw ratio as that of the protective film 11. Therefore, the protective film 31 was produced by extending the draw ratio in the MD direction and the TD direction to 1.6 and 1.3, respectively.
Similar to the protective film 11, the protective film 31 had a film thickness of 25 μm and a winding length of 4000 m.
<保護フィルム32及び33の作製>
 保護フィルム11の作製において、ドープ中のポリエステルをエチルフタリルエチルグリコレートに代えて下記表1に示す添加量で添加し、さらに延伸時のMD方向及びTD方向の延伸倍率を下記表1に示すように変更した以外は、保護フィルム11と同様にして保護フィルム32及び33をそれぞれ作製した。なお、保護フィルム32及び33の作製においても、保護フィルム11と同じ延伸倍率で延伸しようとしたところ、フィルムが破断したため、下記表1に示すように延伸倍率を下げている。
 保護フィルム11と同様に、各保護フィルム32及び33の膜厚は25μm、巻長は4000mであった。
<Preparation of protective films 32 and 33>
In the production of the protective film 11, the polyester in the dope is added in the addition amount shown in Table 1 below instead of ethylphthalylethyl glycolate, and the draw ratios in the MD direction and the TD direction at the time of drawing are shown in Table 1 below. The protective films 32 and 33 were respectively produced in the same manner as the protective film 11 except that the above changes were made. In preparation of the protective films 32 and 33, when the film was broken at the same draw ratio as that of the protective film 11, the film was broken, so the draw ratio was lowered as shown in Table 1 below.
Similarly to the protective film 11, the film thickness of each protective film 32 and 33 was 25 micrometers, and the winding length was 4000 m.
<保護フィルム34及び35の作製>
 保護フィルム11の作製において、ドープ中のポリエステルの添加量及び延伸時のMD方向及びTD方向の延伸倍率を下記表1に示すように変更した以外は、保護フィルム11と同様にして保護フィルム34及び35をそれぞれ作製した。
 保護フィルム11と同様に、各保護フィルム34及び35の膜厚は25μm、巻長は4000mであった。
<Preparation of protective films 34 and 35>
In the production of the protective film 11, the protective film 34 and the protective film 11 were changed in the same manner as the protective film 11 except that the addition amount of the polyester in the dope and the stretching ratio in the MD direction and TD direction during stretching were changed as shown in Table 1 below. 35 were produced.
Similar to the protective film 11, the protective films 34 and 35 had a film thickness of 25 μm and a winding length of 4000 m.
<保護フィルム36の作製>
 保護フィルム31の作製において、延伸しなかったこと以外は保護フィルム31と同様にして、保護フィルム36を作製した。
 保護フィルム31と同様に、保護フィルム36の膜厚は25μm、巻長は4000mであった。
<Preparation of protective film 36>
A protective film 36 was prepared in the same manner as the protective film 31 except that the protective film 31 was not stretched.
Similar to the protective film 31, the protective film 36 had a thickness of 25 μm and a winding length of 4000 m.
<保護フィルム37及び38の作製>
 保護フィルム13の作製において、スチレン系重合体1の添加量及び延伸倍率を下記表1に示すように変更したこと以外は、保護フィルム13と同様にして保護フィルム37及び38を作製した。
 保護フィルム13と同様に、保護フィルム37及び38の膜厚は25μm、巻長は4000mであった。
<Production of protective films 37 and 38>
In the production of the protective film 13, protective films 37 and 38 were produced in the same manner as the protective film 13 except that the addition amount of the styrene polymer 1 and the stretching ratio were changed as shown in Table 1 below.
Similar to the protective film 13, the protective films 37 and 38 had a film thickness of 25 μm and a winding length of 4000 m.
<偏光板11~22及び31~38の作製>
 下記手順で、偏光子を作製した。
 厚さ120μmのポリビニルアルコールフィルムを、MD方向に一軸延伸(温度110℃、延伸倍率5倍)した。延伸後、ヨウ素0.075質量部、ヨウ化カリウム5質量部及び水100質量部からなる水溶液に60秒間浸漬した。次いで、ヨウ化カリウム6質量部、ホウ酸7.5質量部及び水100質量部からなる68℃の水溶液に浸漬した後、水洗、乾燥して、長尺フィルムの偏光子を得た。
 得られた偏光子は、膜厚が10μmであった。
<Preparation of polarizing plates 11 to 22 and 31 to 38>
A polarizer was produced by the following procedure.
A 120 μm thick polyvinyl alcohol film was uniaxially stretched in the MD direction (temperature 110 ° C., stretch ratio 5 times). After extending | stretching, it was immersed for 60 second in the aqueous solution which consists of 0.075 mass part of iodine, 5 mass parts of potassium iodide, and 100 mass parts of water. Subsequently, after immersing in 68 degreeC aqueous solution which consists of 6 mass parts of potassium iodide, 7.5 mass parts boric acid, and 100 mass parts of water, it washed with water and dried and obtained the polarizer of a long film.
The obtained polarizer had a film thickness of 10 μm.
 次に、下記工程1~5に従って、保護フィルム11~22及び31~38をそれぞれ具備する偏光板11~22及び31~38を作製した。
 工程1:保護フィルムの一方の表面を、60℃の2モル/Lの水酸化ナトリウム溶液に90秒間浸漬し、水洗、乾燥してケン化した。ケン化された表面が偏光子との貼合面である。
 工程2:作製した偏光子を固形分2質量%のポリビニルアルコール接着剤槽中に1~2秒浸漬した。
 工程3:工程2で偏光子に付着した過剰の接着剤を軽く拭いて取り除いた後、偏光子を工程1でケン化した保護フィルムの表面上に重ね、貼り合わせた。
 工程4:工程3で保護フィルム上に重ねた偏光子の他方の面上に、位相差フィルムとしてコニカミノルタタックKC4DR(コニカミノルタアドバンストレイヤー社製のセルロースエステルフィルム)を重ね、圧力20~30N/cm2、搬送スピード約2m/分で貼り合わせた。
 工程5:80℃の乾燥機中に、工程4で貼り合わせた保護フィルム、偏光子及びコニカミノルタタックKC4DRを2分間乾燥し、偏光板を作製した。
Next, according to the following steps 1 to 5, polarizing plates 11 to 22 and 31 to 38 having protective films 11 to 22 and 31 to 38, respectively, were produced.
Step 1: One surface of the protective film was immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, washed with water, dried and saponified. The saponified surface is the bonding surface with the polarizer.
Step 2: The prepared polarizer was immersed in a polyvinyl alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
Step 3: Excess adhesive adhered to the polarizer in Step 2 was lightly wiped away, and then the polarizer was stacked on the surface of the protective film saponified in Step 1 and bonded together.
Step 4: On the other surface of the polarizer layered on the protective film in Step 3, Konica Minoltack KC4DR (cellulose ester film manufactured by Konica Minolta Advanced Layer) is stacked as a retardation film, and the pressure is 20 to 30 N / cm 2. Bonding was performed at a conveyance speed of about 2 m / min.
Step 5: The protective film, polarizer, and Konica Minoltack KC4DR bonded together in Step 4 were dried for 2 minutes in a dryer at 80 ° C. to prepare a polarizing plate.
<液晶表示装置11~22及び31~38の作製>
 VAモード型の液晶表示装置であるBRAVIA KDL-52W5(ソニー社製)において、液晶セルの両面にあらかじめ貼り合わされていた二つの偏光板のうち、液晶セルのフロント側の面に貼り合わされていた一つを剥がし、代わりに偏光板11を貼り合わせて、液晶表示装置11を作製した。偏光板11は、位相差フィルムが液晶セル側に位置するようにして貼り合わせた。
<Production of liquid crystal display devices 11 to 22 and 31 to 38>
In BRAVIA KDL-52W5 (manufactured by Sony Corporation) which is a VA mode type liquid crystal display device, one of the two polarizing plates previously bonded to both surfaces of the liquid crystal cell is bonded to the front surface of the liquid crystal cell. The liquid crystal display device 11 was produced by peeling off the one and attaching the polarizing plate 11 instead. The polarizing plate 11 was bonded so that the retardation film was positioned on the liquid crystal cell side.
 BRAVIA KDL-52W5の液晶画面は、上下方向よりも左右方向に長い長方形であった。
 また、BRAVIA KDL-52W5の液晶セルのフロント側に配置されていた偏光板は、吸収軸方向が液晶画面の長軸方向(左右方向)と一致し、液晶セルのリア側に配置されていた偏光板は、吸収軸方向が液晶画面の短軸方向(上下方向)と一致していた。よって、偏光板11も同じように長方形に形成し、吸収軸方向が液晶画面の長軸方向と一致するように配置した。
 液晶表示装置11と同様にして、各偏光板12~22及び31~38を使用し、液晶表示装置12~22及び31~38をそれぞれ作製した。
The liquid crystal screen of BRAVIA KDL-52W5 was a rectangle longer in the left-right direction than in the up-down direction.
In addition, the polarizing plate disposed on the front side of the BRAVIA KDL-52W5 liquid crystal cell has a polarizing axis disposed on the rear side of the liquid crystal cell with the absorption axis direction coinciding with the long axis direction (left-right direction) of the liquid crystal screen. The absorption axis direction of the plate coincided with the minor axis direction (vertical direction) of the liquid crystal screen. Therefore, the polarizing plate 11 was similarly formed in a rectangular shape and arranged so that the absorption axis direction coincided with the major axis direction of the liquid crystal screen.
In the same manner as in the liquid crystal display device 11, the polarizing plates 12 to 22 and 31 to 38 were used to prepare the liquid crystal display devices 12 to 22 and 31 to 38, respectively.
<液晶表示装置23の作製>
 液晶表示装置13の作製において、BRAVIA KDL-52W5の液晶セルの両面に貼り合わされていた二つの偏光板を剥がし、液晶セルの両面に二つの偏光板13をそれぞれ貼り合わせた以外は、液晶表示装置13と同様にして液晶表示装置23を作製した。二つの偏光板13は、いずれも位相差フィルムが液晶セル側に位置するように貼り合わせた。また、元の偏光板と同じようにして、液晶セルのフロント側の面に配置する偏光板13の吸収軸方向が液晶画面の長軸方向と一致し、リア側の面に配置する偏光板13の吸収軸方向が液晶画面の短軸方向と一致するように、各偏光板13を配置した。
<Production of Liquid Crystal Display Device 23>
In the production of the liquid crystal display device 13, except that the two polarizing plates attached to both surfaces of the BRAVIA KDL-52W5 liquid crystal cell were peeled off and the two polarizing plates 13 were attached to both surfaces of the liquid crystal cell, respectively. In the same manner as in Example 13, a liquid crystal display device 23 was produced. The two polarizing plates 13 were bonded together so that the retardation film was positioned on the liquid crystal cell side. Further, in the same manner as the original polarizing plate, the absorption axis direction of the polarizing plate 13 disposed on the front side surface of the liquid crystal cell coincides with the major axis direction of the liquid crystal screen, and the polarizing plate 13 disposed on the rear side surface. Each polarizing plate 13 was arranged so that the absorption axis direction of the liquid crystal coincides with the minor axis direction of the liquid crystal screen.
<評価>
 (1)保護フィルムのtanδ
 各保護フィルム11~22及び31~38の動的粘弾性を測定し、25~190℃の温度範囲におけるtanδの最大値を求めた。なお、延伸して作製された保護フィルムについては、延伸前の保護フィルムの動的粘弾性を測定し、tanδの最大値を求めた。
 最初に、各保護フィルム11~22及び31~38から試料を切り出し、23℃・55%RHの環境下に24時間おいて調湿した。調湿後の試料の動的粘弾性を、55%RH下で温度を25℃から190℃まで昇温させながら、下記測定条件により測定した。測定により得られた25~190℃の温度範囲におけるtanδの最大値を求めた。求めた最大値の小数点第二位を四捨五入した。
 測定装置:RSAIII(ティーエイインスツルメント社製)
 試料:幅5mm、長さ50mm(ギャップを20mmに設定)
 測定モード:引張モード
 測定温度:25~190℃の温度範囲内で、5℃/minの速度で昇温
 湿度:相対湿度55%
 昇温速度:5℃/min
 測定時に加えた力の周波数:1Hz
<Evaluation>
(1) Tan δ of protective film
The dynamic viscoelasticity of each of the protective films 11 to 22 and 31 to 38 was measured, and the maximum value of tan δ in the temperature range of 25 to 190 ° C. was obtained. In addition, about the protective film produced by extending | stretching, the dynamic viscoelasticity of the protective film before extending | stretching was measured, and the maximum value of tan-delta was calculated | required.
First, samples were cut out from each of the protective films 11 to 22 and 31 to 38, and conditioned in an environment of 23 ° C. and 55% RH for 24 hours. The dynamic viscoelasticity of the sample after conditioning was measured under the following measurement conditions while raising the temperature from 25 ° C. to 190 ° C. under 55% RH. The maximum value of tan δ in the temperature range of 25 to 190 ° C. obtained by measurement was determined. The second decimal place of the maximum value obtained was rounded off.
Measuring device: RSAIII (manufactured by TA Instruments)
Sample: width 5 mm, length 50 mm (gap set to 20 mm)
Measurement mode: Tensile mode Measurement temperature: Temperature rising within a temperature range of 25 to 190 ° C at a rate of 5 ° C / min Humidity: 55% relative humidity
Temperature increase rate: 5 ° C / min
Frequency of force applied during measurement: 1 Hz
 (2)保護フィルムのMD方向及びTD方向の弾性率の比の値E1/E2
 各保護フィルム11~22及び31~38の試料を、23℃・55%RHの環境下に24時間おいて調湿した。調湿後の試料のMD方向及びTD方向の各弾性率E1及びE2(MPa)を、JIS K7127に記載の方法に準じて、引張試験機テンシロンRTA-100(オリエンテック社製)により測定した。測定は、調湿時と同じ環境下で行い、試料の形状を1号形試験片タイプとし、引張速度を10mm/minとした。
 得られた弾性率E1及びE2から、弾性率の比の値E1/E2を求めた。
(2) E1 / E2 of the ratio of the elastic modulus in the MD direction and the TD direction of the protective film
The samples of the protective films 11 to 22 and 31 to 38 were conditioned for 24 hours in an environment of 23 ° C. and 55% RH. The elastic modulus E1 and E2 (MPa) in the MD direction and TD direction of the sample after humidity control were measured by a tensile tester Tensilon RTA-100 (manufactured by Orientec Co., Ltd.) according to the method described in JIS K7127. The measurement was performed in the same environment as during humidity control. The shape of the sample was No. 1 type test piece type, and the tensile speed was 10 mm / min.
From the obtained elastic moduli E1 and E2, the ratio value E1 / E2 of the elastic modulus was obtained.
 (3)液晶表示装置の表示ムラ
 各液晶表示装置11~23及び31~38を、50℃・90%RHの環境下に24時間おいて湿熱処理した。その後、23℃・55%RHの環境下において各液晶表示装置11~23及び31~38のバックライトを点灯させてから2時間後、黒表示したときの輝度ムラ及び画像を表示したときの輝度ムラを目視で確認した。この輝度ムラを、下記基準に従って表示ムラとして評価した。
 ○:黒表示時及び画像表示時のいずれも輝度ムラがほとんどない
 △:黒表示時の輝度ムラが多いが、画像表示時の輝度ムラはほとんど気にならない
 ×:黒表示時の輝度ムラが多く、画像表示時においても輝度ムラが気になる
 評価が○又は△であれば、実用上問題なく使用できるレベルである。
(3) Display unevenness of liquid crystal display device Each of the liquid crystal display devices 11 to 23 and 31 to 38 was wet-heat treated in an environment of 50 ° C. and 90% RH for 24 hours. After that, 2 hours after the backlights of the liquid crystal display devices 11 to 23 and 31 to 38 are turned on in an environment of 23 ° C. and 55% RH, the luminance unevenness when displaying black and the luminance when displaying an image are displayed. The unevenness was confirmed visually. This luminance unevenness was evaluated as display unevenness according to the following criteria.
○: There is almost no luminance unevenness during black display and image display. △: There is much luminance unevenness during black display, but there is little concern about luminance unevenness during image display ×: Many luminance unevenness during black display If the evaluation is ◯ or Δ, it is a level that can be used without any problem in practice.
 下記表1は、評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
Table 1 below shows the evaluation results.
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、実施例に係る各偏光板11~22を用いた液晶表示装置11~23は、温湿度変化による表示ムラが十分に抑えられていることが分かる。 As shown in Table 1, it can be seen that the liquid crystal display devices 11 to 23 using the polarizing plates 11 to 22 according to the examples sufficiently suppress display unevenness due to temperature and humidity changes.
 本発明は、薄型の液晶画面を備える液晶表示装置の表示ムラを減らすために適用することができる。 The present invention can be applied to reduce display unevenness of a liquid crystal display device having a thin liquid crystal screen.
100  液晶表示装置
40  液晶セル
50  偏光板
51  保護フィルム
52  偏光子
53  位相差フィルム
60  偏光板
61  位相差フィルム
62  偏光子
63  保護フィルム
DESCRIPTION OF SYMBOLS 100 Liquid crystal display device 40 Liquid crystal cell 50 Polarizing plate 51 Protective film 52 Polarizer 53 Phase difference film 60 Polarizing plate 61 Phase difference film 62 Polarizer 63 Protective film

Claims (16)

  1.  偏光子の少なくとも一方の面に、セルロースエステルを含有する保護フィルムが配置された偏光板であって、
     前記保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上であり、
     前記保護フィルムのフィルム製造時のMD方向及びTD方向の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあることを特徴とする偏光板。
    A polarizing plate in which a protective film containing a cellulose ester is disposed on at least one surface of a polarizer,
    The maximum value of tan δ obtained when the dynamic viscoelasticity of the protective film is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more,
    When the values obtained by measuring the elastic modulus (MPa) in the MD direction and TD direction at the time of manufacturing the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55% are expressed as E1 and E2, respectively, the MD direction And a ratio E1 / E2 of elastic modulus ratios in the TD direction is in the range of 1.5 to 3.0.
  2.  前記保護フィルムが、前記MD方向に延伸されたフィルムであり、
     前記MD方向の延伸倍率が、1.6倍以上であることを特徴とする請求項1に記載の偏光板。
    The protective film is a film stretched in the MD direction;
    The polarizing plate according to claim 1, wherein a stretching ratio in the MD direction is 1.6 times or more.
  3.  前記保護フィルムが、前記MD方向及び前記TD方向に延伸されたフィルムであり、
     前記MD方向の延伸倍率が前記TD方向の延伸倍率より大きく、前記MD方向の延伸倍率が1.6倍以上であり、前記TD方向の延伸倍率が1.3倍以上であることを特徴とする請求項1に記載の偏光板。
    The protective film is a film stretched in the MD direction and the TD direction,
    The MD direction stretch ratio is larger than the TD direction stretch ratio, the MD direction stretch ratio is 1.6 times or more, and the TD direction stretch ratio is 1.3 times or more. The polarizing plate according to claim 1.
  4.  前記保護フィルムが、スチレン系重合体を含有することを特徴とする請求項1から請求項3までのいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the protective film contains a styrene polymer.
  5.  前記スチレン系重合体が、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体であることを特徴とする請求項4に記載の偏光板。 The polarizing plate according to claim 4, wherein the styrenic polymer is a copolymer of a monomer having a hydroxy group and a monomer containing styrene.
  6.  前記保護フィルム及び前記偏光子が長尺フィルムであり、それぞれの長軸方向が一致するように貼り合わされていることを特徴とする請求項1から請求項5までのいずれか一項に記載の偏光板。 The polarized light according to any one of claims 1 to 5, wherein the protective film and the polarizer are long films, and are bonded so that the major axis directions thereof coincide with each other. Board.
  7.  前記保護フィルムのMD方向が、前記偏光子の吸収軸方向と一致していることを特徴とする請求項1から請求項6までのいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 6, wherein an MD direction of the protective film coincides with an absorption axis direction of the polarizer.
  8.  偏光子の少なくとも一方の面に、保護フィルムを配置する偏光板の製造方法であって、
     セルロースエステルを含有する保護フィルムを製造する製造工程を含み、
     前記製造工程では、製造後の保護フィルムの動的粘弾性を25~190℃の温度範囲内で温度を変化させながら周波数1Hzで測定したときに得られるtanδの最大値が、0.6以上であり、かつ当該保護フィルムのフィルム製造時のMD方向及びTD方向の弾性率(MPa)を、温度23℃、相対湿度55%の環境下で測定して得られる値をそれぞれE1及びE2と表すとき、MD方向及びTD方向の弾性率の比の値E1/E2が、1.5~3.0の範囲内にあるように、前記保護フィルムを製造することを特徴とする偏光板の製造方法。
    A method for producing a polarizing plate in which a protective film is disposed on at least one surface of a polarizer,
    Including a production process for producing a protective film containing cellulose ester,
    In the production process, the maximum value of tan δ obtained when the dynamic viscoelasticity of the protective film after production is measured at a frequency of 1 Hz while changing the temperature within a temperature range of 25 to 190 ° C. is 0.6 or more. When the values obtained by measuring the elastic modulus (MPa) in the MD direction and the TD direction at the time of film production of the protective film in an environment of a temperature of 23 ° C. and a relative humidity of 55% are expressed as E1 and E2, respectively. A method for producing a polarizing plate, comprising producing the protective film so that the ratio E1 / E2 of the elastic modulus ratio in the MD direction and the TD direction is in the range of 1.5 to 3.0.
  9.  前記製造工程が、前記保護フィルムをフィルム製造時のMD方向に延伸する工程を含み、
     前記MD方向の延伸倍率が、1.6倍以上であることを特徴とする請求項8に記載の偏光板の製造方法。
    The manufacturing process includes a process of stretching the protective film in the MD direction during film manufacturing,
    The method for producing a polarizing plate according to claim 8, wherein a draw ratio in the MD direction is 1.6 times or more.
  10.  前記製造工程が、前記保護フィルムをフィルム製造時のMD方向及びTD方向に延伸する工程を含み、
     前記TD方向の延伸倍率が前記MD方向の延伸倍率より小さく、前記MD方向の延伸倍率が1.6倍以上であり、前記TD方向の延伸倍率が1.3倍以上であることを特徴とする請求項8に記載の偏光板の製造方法。
    The manufacturing process includes a step of stretching the protective film in the MD direction and the TD direction during film manufacturing,
    The stretching ratio in the TD direction is smaller than the stretching ratio in the MD direction, the stretching ratio in the MD direction is 1.6 times or more, and the stretching ratio in the TD direction is 1.3 times or more. The manufacturing method of the polarizing plate of Claim 8.
  11.  前記製造工程では、前記セルロースエステルとスチレン系重合体とを含有するドープを用いて、溶液流延法により前記保護フィルムを製造することを特徴とする請求項8から請求項10までのいずれか一項に記載の偏光板の製造方法。 The said manufacturing process WHEREIN: The said protective film is manufactured by the solution casting method using the dope containing the said cellulose ester and a styrene-type polymer, The any one of Claim 8-10 characterized by the above-mentioned. The manufacturing method of the polarizing plate as described in a term.
  12.  前記スチレン系重合体が、ヒドロキシ基を有するモノマーとスチレンを含むモノマーとの共重合体であることを特徴とする請求項11に記載の偏光板の製造方法。 The method for producing a polarizing plate according to claim 11, wherein the styrenic polymer is a copolymer of a monomer having a hydroxy group and a monomer containing styrene.
  13.  前記偏光子は、長尺フィルムであり、
     前記製造工程では、前記保護フィルムを長尺フィルムとして製造し、
     長尺フィルムである前記保護フィルムと前記偏光子を、それぞれの長軸方向が一致するように貼り合わせる貼合工程を含むことを特徴とする請求項8から請求項12までのいずれか一項に記載の偏光板の製造方法。
    The polarizer is a long film,
    In the manufacturing process, the protective film is manufactured as a long film,
    The bonding process which bonds together the said protective film which is a long film, and the said polarizer so that each long-axis direction may correspond is included, The Claim 1 characterized by the above-mentioned. The manufacturing method of the polarizing plate of description.
  14.  液晶セルの少なくとも一方の面に、請求項1から請求項7までのいずれか一項に記載の偏光板を具備することを特徴とする液晶表示装置。 A liquid crystal display device comprising the polarizing plate according to any one of claims 1 to 7 on at least one surface of a liquid crystal cell.
  15.  前記液晶セルで構成された液晶画面が長方形であり、
     前記液晶セルの両面にそれぞれ設けられる二つの偏光板のうち、少なくとも前記液晶画面の長軸方向と偏光子の吸収軸方向が一致する偏光板として、前記請求項1から請求項7までのいずれか一項に記載の偏光板を具備することを特徴とする請求項14に記載の液晶表示装置。
    The liquid crystal screen composed of the liquid crystal cell is rectangular,
    Of the two polarizing plates provided on both surfaces of the liquid crystal cell, as a polarizing plate in which at least the major axis direction of the liquid crystal screen coincides with the absorption axis direction of the polarizer, any one of claims 1 to 7 The liquid crystal display device according to claim 14, comprising the polarizing plate according to claim 1.
  16.  前記液晶画面の長軸方向と偏光子の吸収軸方向が一致する偏光板が、前記液晶セルのフロント側の面に設けられる偏光板であることを特徴とする請求項15に記載の液晶表示装置。 16. The liquid crystal display device according to claim 15, wherein the polarizing plate in which the major axis direction of the liquid crystal screen and the absorption axis direction of the polarizer coincide with each other is a polarizing plate provided on a front side surface of the liquid crystal cell. .
PCT/JP2014/057294 2013-03-22 2014-03-18 Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device WO2014148476A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060638A JP2016105118A (en) 2013-03-22 2013-03-22 Polarizing plate, manufacturing method of polarizing plate, and liquid crystal display device
JP2013-060638 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148476A1 true WO2014148476A1 (en) 2014-09-25

Family

ID=51580154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057294 WO2014148476A1 (en) 2013-03-22 2014-03-18 Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2016105118A (en)
WO (1) WO2014148476A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931865A (en) * 2017-05-29 2018-12-04 住友化学株式会社 Polarize board group and liquid crystal display panel
JP2019148826A (en) * 2019-05-16 2019-09-05 住友化学株式会社 Set of polarizing plates and liquid crystal panel
CN111164499A (en) * 2017-08-10 2020-05-15 三星Sdi株式会社 Liquid crystal display device having a plurality of pixel electrodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018072533A (en) * 2016-10-28 2018-05-10 住友化学株式会社 Polarizing plate set and liquid crystal panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081299A1 (en) * 2002-03-25 2003-10-02 Zeon Corporation Optical film and process for producing the same
JP2004144942A (en) * 2002-10-23 2004-05-20 Sekisui Chem Co Ltd Method for manufacturing phase difference compensating film
JP2007304376A (en) * 2006-05-12 2007-11-22 Konica Minolta Opto Inc Polarizing plate protective film, method for manufacturing the same, polarizing plate and liquid crystal display
JP2010271619A (en) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc Roll-like polarizing plate protective film, polarizing plate, and method of manufacturing roll-like polarizing plate protective film
WO2011083690A1 (en) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 Hard coat film, polarizing plate and liquid crystal display device
WO2011158626A1 (en) * 2010-06-18 2011-12-22 コニカミノルタオプト株式会社 Hard-coating base film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081299A1 (en) * 2002-03-25 2003-10-02 Zeon Corporation Optical film and process for producing the same
JP2004144942A (en) * 2002-10-23 2004-05-20 Sekisui Chem Co Ltd Method for manufacturing phase difference compensating film
JP2007304376A (en) * 2006-05-12 2007-11-22 Konica Minolta Opto Inc Polarizing plate protective film, method for manufacturing the same, polarizing plate and liquid crystal display
JP2010271619A (en) * 2009-05-25 2010-12-02 Konica Minolta Opto Inc Roll-like polarizing plate protective film, polarizing plate, and method of manufacturing roll-like polarizing plate protective film
WO2011083690A1 (en) * 2010-01-08 2011-07-14 コニカミノルタオプト株式会社 Hard coat film, polarizing plate and liquid crystal display device
WO2011158626A1 (en) * 2010-06-18 2011-12-22 コニカミノルタオプト株式会社 Hard-coating base film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931865A (en) * 2017-05-29 2018-12-04 住友化学株式会社 Polarize board group and liquid crystal display panel
JP2018200413A (en) * 2017-05-29 2018-12-20 住友化学株式会社 Set of polarizing plates and liquid crystal panel
TWI749232B (en) * 2017-05-29 2021-12-11 日商住友化學股份有限公司 Set of polarizing plate and liquid crystal panel
CN108931865B (en) * 2017-05-29 2023-02-17 住友化学株式会社 Polarizing plate group and liquid crystal panel
CN111164499A (en) * 2017-08-10 2020-05-15 三星Sdi株式会社 Liquid crystal display device having a plurality of pixel electrodes
CN111164499B (en) * 2017-08-10 2023-03-28 三星Sdi株式会社 Liquid crystal display device having a plurality of pixel electrodes
JP2019148826A (en) * 2019-05-16 2019-09-05 住友化学株式会社 Set of polarizing plates and liquid crystal panel
JP2021144230A (en) * 2019-05-16 2021-09-24 住友化学株式会社 Set of polarizing plates and liquid crystal panel
JP7226473B2 (en) 2019-05-16 2023-02-21 住友化学株式会社 A set of polarizers and a liquid crystal panel

Also Published As

Publication number Publication date
JP2016105118A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP4337345B2 (en) Polarizing plate and liquid crystal display device using the same
KR101656117B1 (en) Cellulose acetate film, polarizing plate, and liquid-crystal display device
JP4622698B2 (en) Retardation plate, polarizing plate, and liquid crystal display device
JP2009110012A (en) Method of producing cellulose ester film
WO2015076250A1 (en) Optical film, polarizing plate and liquid crystal display device
WO2014175040A1 (en) Polarizing plate, method for producing same and liquid crystal display device
WO2014148476A1 (en) Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
KR20150115890A (en) Optical film, polarizing plate containing same and vertical alignment liquid crystal display device
TWI585474B (en) Optical film and optical film manufacturing method, polarizing film and liquid crystal display device
WO2015146890A1 (en) Optical film, method for producing same, polarizing plate and liquid crystal display device
JP6136226B2 (en) Optical film roll body and manufacturing method thereof, packaging body, polarizing plate, and liquid crystal display device
JP6020563B2 (en) Polarizer
JP5699519B2 (en) Retardation film, method for producing retardation film, polarizing plate and liquid crystal display device
JP2010197680A (en) Optical film, and polarizing plate and display apparatus using the same
JP6264373B2 (en) Manufacturing method of optical film
WO2011114764A1 (en) Retardation film and polarizing plate equipped with same
JP2013200333A (en) Cellulose acylate laminate film and manufacturing method thereof, and polarizer and liquid crystal display device using the same
JP5910722B2 (en) Liquid crystal display
JP6969555B2 (en) Optical film, polarizing plate, and display device
JP6791139B2 (en) Polarizing plate and liquid crystal display device using it
JP5957818B2 (en) Retardation film, polarizing plate and liquid crystal display device
JP5835339B2 (en) Optical film, polarizing plate including the same, and liquid crystal display device
JP4013568B2 (en) Cellulose ester film and method for producing the same
JP5772680B2 (en) Cellulose acylate laminated film, production method thereof, polarizing plate and liquid crystal display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14767663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14767663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP