WO2015014764A2 - Module de stockage électrochimique et procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module - Google Patents

Module de stockage électrochimique et procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module Download PDF

Info

Publication number
WO2015014764A2
WO2015014764A2 PCT/EP2014/066103 EP2014066103W WO2015014764A2 WO 2015014764 A2 WO2015014764 A2 WO 2015014764A2 EP 2014066103 W EP2014066103 W EP 2014066103W WO 2015014764 A2 WO2015014764 A2 WO 2015014764A2
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrochemical storage
memory cell
alternating signal
module
Prior art date
Application number
PCT/EP2014/066103
Other languages
German (de)
English (en)
Other versions
WO2015014764A3 (fr
Inventor
Jochen Bernhard GERSCHLER
Joerg Christoph WILHELM
Original Assignee
Robert Bosch Gmbh
Samsung Sdi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Samsung Sdi Co., Ltd. filed Critical Robert Bosch Gmbh
Publication of WO2015014764A2 publication Critical patent/WO2015014764A2/fr
Publication of WO2015014764A3 publication Critical patent/WO2015014764A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for examining an electrochemical storage cell in a module of a plurality
  • the present invention relates
  • the invention relates to a method for checking the state of health (SOH) of a battery or a rechargeable battery, comprising electrochemical storage cells, during operation.
  • SOH state of health
  • lithium-ion batteries are preferably installed, while other cell technologies are used.
  • single cells are connected in series and parallel to a pack in order to achieve a high energy content and high performance.
  • Accumulator technologies are used. It can be battery cells of type Pb - lead acid battery, NiCd - nickel-cadmium battery, NiH 2 - nickel-hydrogen accumulator, NiMH - nickel-metal hydride accumulator, Li-ion - lithium-ion battery, LiPo - lithium polymer Battery, LiFe - Lithium Metal Battery, LiMn - Lithium Manganese Battery, LiFeP0 4 - Lithium Iron Phosphate Battery, LiTi - Lithium Titanium Battery, RAM - Rechargeable Alkaline Manganese, Ni-Fe - Nickel Iron - Battery, Na / NiCI - Sodium Nickel Chloride High Temperature Battery SCiB - Super Charge Ion Battery, Silver Zinc Battery, Silicone Battery, Vanadium Redox Battery and / or Zinc Bromine Battery can be used. Preference is given to using batteries of the lithium-ion battery type. For monitoring, several controllers are integrated in these packs, eg the lithium
  • the cell controllers which usually monitor a single cell or modules of some cells
  • the main controller which communicates with the cell controllers and the vehicle via various interfaces, as well as various other sensor signals and drives actuators.
  • the cell controllers are usually distinguished by the fact that they are integrated with balancing algorithms, with which it is possible to compensate for the charge states of different cells in inequality. This happens principally by shifting charge from one cell to another (active balancing). For this purpose, in the main controller algorithms for
  • Performance prediction In most cases parameterised battery models are used. Disadvantage of these models is that the stored parameters change with the aging of the battery and must therefore be adapted. Aging caused by external factors, e.g. Temperature, maximum
  • EIS electrochemical impedance spectroscopy
  • the frequency range does not only depict one size (e.g., the internal resistance), but qualifies and quantifies a variety of cell-specific processes and quantities.
  • EIS electrochemical storage cells
  • Impedance spectroscopy techniques are now used in research laboratories for the characterization of electrochemical storage cells.
  • EIS has been proven in the characterization of cells in accelerated aging tests.
  • surveying with EIS is non-destructive.
  • the mapping of specific parameter variations Approximately qualitative and quantitative estimates of cell aging can be made. The aforementioned methods are described, for example, in DE 10 2009 000 336 A1 and DE 10 2009 000 337 A1.
  • the problem with the known method is that the known excitation of
  • electrochemical storage cells exclusively in the state, in other words before or after the operation of the vehicle, are applicable or the energy must be interrupted at least for a certain period of time to examine the electrochemical cells by EIS. Disclosure of the invention
  • the method may, for example, be performed by a cell controller on an electrochemical storage cell or on a module of a plurality of electrochemical storage cells.
  • the electrochemical storage cell can be based in particular on lithium-ion technology.
  • the pack of electrochemical storage cells is a battery or an accumulator for an at least partially electrically driven vehicle. The method comprises the
  • Step of equalizing a state of charge between a first memory cell and a second memory cell by means of a direct current is carried out, by means of which electrochemical energy is redirected via a flow of current from one memory cell to another memory cell.
  • a cell controller of a module and, alternatively or additionally, by a main controller of the battery.
  • the direct current is superimposed by an alternating signal according to the invention.
  • the alternating signal is an alternating current which is impressed by the cell controller or alternatively by the main controller.
  • the method according to the invention comprises examining the response of the memory cell to the alternating signal. This may be, for example, an impedance test in which the real part (Re) and the imaginary part (Im) of the impedance of the electrochemical storage cell are recorded at the frequency of the alternating signal and compared with reference values.
  • EIS electrochemical impedance spectroscopy
  • the alternating signal is a sinusoidal signal. This is the determined
  • Impedance particularly exactly the frequency used and therefore attributable to a particular cell state.
  • the fundamental frequency of the alternating signal is time-variable.
  • signals can be used which are a first
  • Time have a first frequency spectrum, which differs from a second frequency spectrum at a second time.
  • Predefined individual frequencies can be used one after the other and, alternatively or additionally, continuous frequency changes can be applied. From the synopsis of the reactions of the electrochemical memory when excited with different frequencies, extensive information on the processes and states within the memory can be obtained.
  • the alternating signal discrete, predefined
  • characteristic frequencies of which at least one is in the MHz range and another frequency in the kHz range.
  • a very broad frequency range is used for the investigation of the electrochemical storage cell.
  • the different frequencies can be generated with little effort by, for example, system-inherent frequencies (e.g., the frequency of a switching converter within the
  • electrochemical storage system can be used for excitation.
  • Electrochemical cell removed energy for the duration of the
  • the alternating signal has a current amplitude which is smaller than the amount of the direct current used for balancing.
  • Stimulation hardware (if necessary) be designed less powerful and the current-carrying hardware must not be designed (much) robust in terms of performance. According to another aspect of the present invention is a
  • electrochemical storage module a cell controller for balancing a state of charge between the first memory cell and the second
  • the cell controller is set up to compensate for this
  • the cell controller uses to generate an alternating signal which is impressed on the direct current. According to the invention, the reaction of the first
  • Impedance determined from voltage response and stimulating alternating signal. There are the same advantages as in the method according to the invention.
  • the cell controller is additionally set up to determine a temperature and, alternatively or additionally, an electrical voltage across the first and / or the second memory cell.
  • the inventive method can be limited to individual electrochemical cells, which reduces the complexity in terms of the structure and the method steps.
  • the cell controller is connected to a measuring tap over the first and alternatively or additionally over the second memory cell.
  • the measuring tap can, for example, to determine a temperature and / or a serve electrical voltage and alternatively or additionally an electric current.
  • the cell controller is also set up to determine an impedance of the first and / or the second memory cell. More preferably, the cell controller is set up, the alternating signal as a function of a
  • Alternating signal can be used.
  • a signal for this example, a
  • FIG. 1 is a schematic overview of an embodiment of an electrochemical storage module according to the present invention.
  • Figure 2 is a schematic overview of an alternative
  • FIG. 3 shows a detailed view of input and output variables of an electrochemical storage cell during cell balancing
  • Figure 4 is a schematic detail view of an electrochemical
  • FIG. 7 shows a flow chart, visualizing steps of a
  • FIG. 1 shows a schematic view of a first embodiment of an electrochemical storage 10 (e.g., a lithium-ion battery).
  • the electrochemical storage 10 is divided into electrochemical storage modules 1 1, 12, 13, 14, which are arranged in a series circuit, although the present invention could in principle also be used with cells connected in parallel.
  • the memory module 1 1 represents the first module of the series connection.
  • the memory module 14 represents the n-th module of the series connection.
  • a respective memory module 1 1, 12, 13, 14 has a cell controller 21 assigned to it and electrically connected to it. 22, 23, 24 on.
  • Left and right of the electrochemical storage 10 are the
  • Negative terminal 101 and the positive terminal 102 are arranged.
  • electrochemical storage module 1 1 comprises electrochemical storage cells 1 1 1, 1 12, 1 13, 1 14.
  • the memory cell 1 1 1 represents the first cell of the series circuit.
  • the memory cell 1 14 here represents the n-th cell of the series circuit all memory cells 1 1 1, 1 12, 1 13, 1 14 taps are connected to the first cell controller 21 for measuring a respective cell voltage.
  • the second electrochemical storage module 12 and the third electrochemical storage module 13 and fourth electrochemical storage module 14 are constructed accordingly.
  • FIG. 2 shows an alternative embodiment of the arrangement shown in FIG.
  • the cell controllers 21, 22, 23, 24 have a measuring tap only on one of the cells connected in series.
  • measuring taps over the cells 1 12, 122, 132, 142 are shown here.
  • the cost of construction and operation of the electrochemical memory 10 is reduced.
  • the selected positions for the Measuring taps are the electrochemical cells with the highest critical aging processes.
  • FIG. 3 shows a current diagram over time for the cell balancing using the example of the arrangement 10 discussed in FIG. 1.
  • the current 3 is considered to be more constant
  • DC formed through which a cell of the electrochemical storage module 1 1 can be loaded.
  • another current-time diagram is shown, which represents a negative direct current 5.
  • a further cell of the electrochemical storage module 1 1 is discharged.
  • DC 5 of the cell is deprived of energy and through
  • FIG. 4 shows the arrangement illustrated in FIG. 3 when the charging current 3 is superimposed with an alternating signal 4 according to the invention.
  • Alternating signal 4 is smaller than the amount of the charging current. 3
  • FIG. 5 shows in its upper region a schematic crystal layer 51, in which five different layers 510, 51 1, 512, 513 and 514
  • crystal layers 510, 51 1, 512, 513, 514 are additionally marked with Roman numerals I-V and with
  • the equivalent circuit consists of a series connection of two poles, each having a capacitance C
  • Crystal layer 51 and the equivalent circuit diagram is an impedance diagram to real and imaginary part of the impedance of the crystal arrangement shown.
  • An arrow indicates the overall impedance curve in the direction of increasing frequency f.
  • the sections marked with Roman numerals I to V visualize the influences of the individual crystal layers 510 to 514.
  • the high-frequency semicircle is mainly attributed to the effects of passivation films and SEI in the electrode-electrolyte interface.
  • the equivalent of the medium frequency semicircle is commonly used in charge transfer processes and effects of the
  • Double layer capacitance seen in conjunction with the transition from ionic to electrical conduction on the electrode surface is Often, the medium-frequency semicircle is influenced by another, at least indicated, lower-frequency semicircle or inclined capacitive straight line sections. Such courses in the low-frequency range correlate to solid-state diffusion processes (Warburgdiffusion) of lithium ions in the porous electrode matrix. For very small frequencies, the impedance of Li-ion systems is often almost pure-capacitive. This is associated with capacitive effects due to ion (de) intercalation into and out of the electrodes. Figure 6 shows three recorded at different cell temperatures
  • Impedance shares each representing different aging states of an electrochemical storage. Plotted is the imaginary part of the impedance (Im (Z) / mOhm) over the real part (Re (Z) / mOhm), while in each case a first graph 61 an initial state (after 0 weeks), a second graph 62 an aging state after 6 weeks, a third graph 63 a
  • the partial figure a) was taken at a cell temperature of 35 ° C.
  • the partial figure b) has been recorded at a cell temperature of 50 ° C.
  • the subfigure c) has been recorded at a cell temperature of 65 ° C.
  • a second graph 62 shows one compared to the first graph 61 higher degree of aging.
  • the following graphs 63 to 66 show the progressive aging on the basis of increasing aging states. The temperatures shown increase from part a) to part c).
  • the DOD depth of discharge
  • Charge amount " is 50% each with open circuit
  • FIG. 7 shows a flowchart visualizing steps according to FIG.
  • a charge state between a first memory cell and a second memory cell is compensated by means of a direct current.
  • Such a process is called "balancing" to improve the performance of a composed of electrochemical storage cells
  • step 200 the DC signal is superimposed by means of an AC signal.
  • the alternating signal may for example be a sinusoidal signal, which has a time-variable frequency and is designed, for example, as a sine sweep.
  • This step may be performed concurrently with step 100.
  • step 300 the response of the applied memory cell to the AC signal is examined. In this case, for example, the real part and the imaginary part of the cell impedance are compared with one another at different frequencies and compared with predefined, stored references within the evaluation system. Also, step 300 may be performed concurrently with steps 100 and 200. in the
  • an operating mode and / or a balancing parameter can be adapted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module comportant une pluralité de cellules de stockage électrochimiques. Le procédé comprend une étape qui consiste à équilibrer un état de charge entre une première cellule de stockage et une seconde cellule de stockage au moyen d'un courant continu. Une seconde étape du présent procédé consiste à superposer un signal alternatif au courant continu. On analyse ensuite la réaction de la première cellule de stockage au signal alternatif. Selon un autre aspect, la présente invention concerne un module de stockage électrochimique permettant la mise en œuvre du procédé ci-dessus.
PCT/EP2014/066103 2013-07-30 2014-07-25 Module de stockage électrochimique et procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module WO2015014764A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013214821.6 2013-07-30
DE102013214821.6A DE102013214821A1 (de) 2013-07-30 2013-07-30 Elektrochemisches Speichermodul und Verfahren zur Untersuchung einer elektrochemischen Speicherzelle in einem Modul

Publications (2)

Publication Number Publication Date
WO2015014764A2 true WO2015014764A2 (fr) 2015-02-05
WO2015014764A3 WO2015014764A3 (fr) 2015-04-02

Family

ID=51224965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066103 WO2015014764A2 (fr) 2013-07-30 2014-07-25 Module de stockage électrochimique et procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module

Country Status (2)

Country Link
DE (1) DE102013214821A1 (fr)
WO (1) WO2015014764A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005904A1 (fr) * 2015-07-09 2017-01-12 Lithium Balance A/S Système permettant de fournir un signal d'excitation à un système électrochimique et procédé associé
EP3722823A1 (fr) * 2019-04-11 2020-10-14 Bundesrepublik Deutschland, vertr. durch das Bundesministerium f. Wirtschaft und Technologie, Procédé de détermination d'un paramètre de vieillissement, d'un paramètre d'état de charge et d'une température d'un accumulateur, en particulier d'un accumulateur lithium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017006334B8 (de) 2017-07-04 2019-02-21 Wilhelm Bauer Verfahren und Vorrichtung zur Feststellung und Vermeidung von degradationsförderlichen Prozessen während des Ladens von wiederaufladbaren Batteriezellen und deren Verwendung
DE102021003117B4 (de) 2021-06-20 2023-03-16 Ulrich Twelmeier Verfahren und Vorrichtung zum Verhindern oder Vermindern der Gefahr eines durch Dendriten verursachten Kurzschlusses in einem Lithium-Ionen-Akkumulator
DE102021006585B4 (de) 2021-06-20 2023-04-06 Ulrich Twelmeier Verfahren zum Verhindern oder Vermindern der Gefahr eines durch Dendriten verursachten Kurzschlusses in einem Lithium-lonen-Akkumulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009000337A1 (de) 2009-01-21 2010-07-22 Robert Bosch Gmbh Verfahren zur Bestimmung eines Alterungszustandes einer Batteriezelle mittels Impedanzspektroskopie
DE102009000336A1 (de) 2009-01-21 2010-07-22 Robert Bosch Gmbh Impedanzmessung von elektrochemischen Energiespeichern in Fahrzeugen
DE102009002468A1 (de) * 2009-04-17 2010-10-21 Robert Bosch Gmbh Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie bei Einsatz von induktivem Zellbalancing
US9128165B2 (en) * 2011-05-04 2015-09-08 Datang Nxp Semiconductors Co., Ltd. Battery cell impedance measurement method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005904A1 (fr) * 2015-07-09 2017-01-12 Lithium Balance A/S Système permettant de fournir un signal d'excitation à un système électrochimique et procédé associé
US10585146B2 (en) 2015-07-09 2020-03-10 Lithium Balance A/S System for providing an excitation signal to an electrochemical system and method therefor
EP3722823A1 (fr) * 2019-04-11 2020-10-14 Bundesrepublik Deutschland, vertr. durch das Bundesministerium f. Wirtschaft und Technologie, Procédé de détermination d'un paramètre de vieillissement, d'un paramètre d'état de charge et d'une température d'un accumulateur, en particulier d'un accumulateur lithium
US11448708B2 (en) 2019-04-11 2022-09-20 Volkswagen Aktiengesellschaft Method for determining an ageing parameter, a state of charge parameter and a temperature of a rechargeable battery, especially a lithium rechargeable battery

Also Published As

Publication number Publication date
DE102013214821A1 (de) 2015-02-05
WO2015014764A3 (fr) 2015-04-02

Similar Documents

Publication Publication Date Title
DE10345057B4 (de) Verfahren und Vorrichtung zur Bestimmung des Ladezustandes einer Batterie
EP2374181B1 (fr) Procédé de détermination de l'état de charge d'une cellule intercalaire secondaire d'une batterie rechargeable
EP2649666B1 (fr) Procédé permettant de déterminer des paramètres de fonctionnement d'une batterie, système de gestion de batterie et batterie
DE102013208046B4 (de) Schätzvorrichtung für einen Batterieladezustand, die einen robusten H∞-Beobachter verwendet
DE102009038663B4 (de) Kraftwagen mit einer Mehrzahl von Batterien und Verfahren zur Batteriediagnose
DE112013005746T5 (de) Nach-Verschlechterung-Performanz-Schätzvorrichtung und Nach-Verschlechterung-Performanz-Schätzverfahren für eine Energiespeichereinrichtung sowie Energiespeichersystem
DE102013208048A1 (de) Batterieladezustandsbeobachter
EP3766120B1 (fr) Caractérisation d'un placage de lithium pour des batteries rechargeables
WO2015014764A2 (fr) Module de stockage électrochimique et procédé permettant l'analyse d'une cellule de stockage électrochimique dans un module
DE112013005733T5 (de) Performanzverschlechterungs-Erfassungsvorrichtung und Performanzverschlechterungs-Erfassungsverfahren für eine Energiespeichereinrichtung sowie Energiespeichersystem
DE102012208426A1 (de) Schätzvorrichtung zum Wiederaufladen von Batterien unter Verwendung der Impedanzantwort einer Batterie
DE102011054339A1 (de) Adaptive Iangsam veränderliche Stromerkennung
DE102019114722A1 (de) Fahrzeuginterne algorithmen zum bestimmen, ob eine lithium-beschichtung stattgefunden hat
WO2010084070A1 (fr) Mesure de l'impédance d'accumulateurs d'énergie électrochimiques dans des véhicules
DE102019115705A1 (de) Schätzung des Batteriezustands unter Verwendung des Elektrodentransientenmodells
WO2012072434A1 (fr) Procédé pour déterminer la tension en circuit ouvert d'une batterie, batterie pourvue d'un module pour déterminer la tension en circuit ouvert et véhicule automobile équipé d'une batterie correspondante
WO2019175357A1 (fr) Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule
DE102020206272A1 (de) Batterieverwaltungssystem mit gemischter elektrode
DE102018108184A1 (de) Verfahren und Einrichtung zur Bestimmung des Zustands eines Akkumulators sowie Computerprogramm
DE10103848A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Beurteilung der Alterung oder zumindest eines vorgewählten Anteils der Alterung einer Batterie
DE112019003484T5 (de) Sekundärbatterieparameter-Schätzungsvorrichtung, Sekundärbatterieparameter-Schätzungsverfahren und Programm
DE102017115766A1 (de) Verfahren und System zum Betreiben einer Speichereinheit
EP2260313B1 (fr) Procédé et dispositif de contrôle de l'état de fonctionnement d'une batterie
DE102013214817A1 (de) Verfahren zur Diagnose eines Zustands einer Batterie
DE102019125236A1 (de) Batteriezelle mit einer Diagnoseeinheit, Verfahren zur Zustandsdiagnose einer Batteriezelle, Batterie sowie Kraftfahrzeug mit einer Batterie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14742556

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14742556

Country of ref document: EP

Kind code of ref document: A2