WO2019175357A1 - Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule - Google Patents

Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule Download PDF

Info

Publication number
WO2019175357A1
WO2019175357A1 PCT/EP2019/056503 EP2019056503W WO2019175357A1 WO 2019175357 A1 WO2019175357 A1 WO 2019175357A1 EP 2019056503 W EP2019056503 W EP 2019056503W WO 2019175357 A1 WO2019175357 A1 WO 2019175357A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical energy
energy storage
charging
state
energy store
Prior art date
Application number
PCT/EP2019/056503
Other languages
German (de)
English (en)
Inventor
Matthias Schroeder
Michael ERDEN
Julia Ott
Olivier Cois
Simon TIPPMAN
Joerg Poehler
Martin Manuel Hiller
Thomas Dufaux
Original Assignee
Robert Bosch Gmbh
Gs Yuasa International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh, Gs Yuasa International Ltd. filed Critical Robert Bosch Gmbh
Publication of WO2019175357A1 publication Critical patent/WO2019175357A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00038Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
    • H02J7/00041Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for operating a
  • US 2014/0062415 A1 shows an apparatus and a method for charging a battery with a predetermined charging duration.
  • US 2017/0070061 A1 shows a device and method for fast charging a battery.
  • the core of the invention in the method for operating an electrical energy storage device is that the method is the following temporally successive
  • Method steps comprises:
  • Background of the invention is that the overall life of an electrical energy storage is controllable. As a result, occasional fast charging operations are possible, whereby the increased load of the electrical energy storage can be compensated for by gentler charge cycles, so that the predetermined total service life of the electrical energy storage is achieved.
  • predetermined maintenance intervals in particular for the replacement of the electrical energy store, can be maintained.
  • the electrical energy stores are replaced at the end of their entire service life, when the electrical energy store has approximately 80% of its capacity.
  • a failure of the electrical energy storage during the maintenance interval is avoided as well as an exchange of an electrical energy storage, which has a higher performance than at the end of
  • the total service life is less than a maximum possible life of the electrical energy storage. This is occasional
  • At least one voltage and / or state of charge and / or temperature and / or electrical resistance and / or capacity of the electrical energy store is determined as the state parameter of the electrical energy store.
  • the loading profile is stored from a list of
  • Reference load profiles is selected.
  • a reference charging profile is selected, which has caused the desired aging for an electrical reference energy storage with comparable state parameters in a simulation and / or in an experiment.
  • Reference charging profiles can be used for a variety of electrical energy storage.
  • a charging time is experimentally and / or by means of a simulation as a function of a temperature and / or a state of charge of the electrical energy storage determined.
  • the reference charging profiles are determined once, stored and used for a variety of energy storage.
  • an electrical energy storage model is modeled from the at least one state parameter of the electrical energy store.
  • the effects, in particular the resulting aging state and / or the resulting anode potential, of a charging profile, in particular of a charging current can be simulated on the electrical energy storage.
  • any loading profiles can be used during the process. A limitation to pre-simulated or experimentally tested loading profiles is eliminated.
  • Energy storage model determines an anode potential, wherein the charging profile is adjusted such that the anode potential of the electric energy storage model a
  • a charging process of the electrical energy storage model is simulated as a function of at least one charging parameter, wherein an aging state of the electrical energy storage model is determined, wherein the at least one charging parameter is adjusted such that the aging state of the electrical
  • Energy storage model reaches an aging state setpoint.
  • the advantage here is that complex aging processes of the electrical energy storage can be simulated for specific operating parameters.
  • the loading profile is thus dynamically optimized.
  • the essence of the invention in the control of an electrical energy store is that the controller is suitable for carrying out a method as described above or according to one of the claims directed to the method.
  • Background of the invention is that the overall life of the electrical energy storage is controllable. As a result, occasional fast charging operations are possible, whereby the increased load of the electrical energy storage can be compensated for by gentler charge cycles, so that the predetermined total service life of the electrical energy storage is achieved.
  • the controller is part of a battery management system of the electrical energy storage, which controls the electrical energy storage.
  • the controller may be arranged integrated in the electrical energy store or may be arranged at a distance from the electrical energy store.
  • controller an aging control and / or a
  • the controller is configured to carry out the method according to the invention.
  • the essence of the invention in the device and / or the vehicle is that the device and / or the vehicle has at least one electrical energy storage and a control as described above or according to one of the claims related to the control.
  • Implementations of the invention also include not explicitly mentioned combinations of features described above or below with regard to the exemplary embodiments Invention.
  • the person skilled in the art will also add individual aspects as improvements or additions to the respective basic form of the present invention.
  • Fig. 1 is a schematic representation of a first embodiment of a
  • Fig. 2 is a schematic representation of a second embodiment of the
  • Fig. 3 is a schematic representation of a third embodiment of the
  • an electrical energy storage 5 is understood here as a rechargeable energy storage, in particular an electrochemical energy storage cell and / or a
  • Energy storage module having at least one electrochemical energy storage cell and / or an energy storage pack comprising at least one energy storage module.
  • the energy storage cell is as a lithium-based battery cell, in particular lithium-ion battery cell, executable.
  • the energy storage cell is designed as a lithium-polymer battery cell or nickel-metal hydride battery cell or lead-acid battery cell or lithium-air battery cell or lithium-sulfur battery cell.
  • a first method step a total life of 1 of the electric
  • Energy storage 5 is a function of the number of charging cycles that the electric
  • the charging profile ie the time course of the charging current Icell during the respective charging cycle, the temperature Tcell of the electrical energy storage device 5, the charging voltage Ucell, the resistance of the electric Robs
  • An overall lifetime is understood as meaning a period within which the electrical energy store has at least 80% of its capacity (SOH> 80%).
  • At least one state parameter in particular a voltage Ucell and / or a state of charge SOCobs and / or a temperature Tobs and / or an electrical resistance Robs and / or a capacitance Cobs of the electrical
  • Energy storage 5 determines, in particular estimated.
  • the at least one state parameter is evaluated and the state of aging (SOHc, SOHr) of the electrical energy store 5 is determined.
  • the aging state (SOHc, SOHr) is determined based on the capacitance Cobs the resistance Robs.
  • a modeled voltage Umod of the electrical energy storage model 7 is transferred to an evaluation unit 6 and compared with the voltage Ucell in order to determine the error in the determination of the state of aging (SOHc, SOHr) and / or the at least one
  • an aging controller 2 evaluates the state of aging (SOHc, SOHr) of the electrical energy store 5 and / or of the electrical system
  • the aging control 2 outputs an aging factor 3, which indicates whether the electrical energy storage device 5 and / or the electrical energy storage model 7 has aged as predefined or more strongly or aged less than predetermined.
  • the aging factor 3 and / or the state of charge SOC and / or the temperature T of the electrical energy storage device 5 and / or the electrical energy storage model 7 are used to generate a charge profile for the electrical energy storage device 5 from a storage device 4 by reference charging profiles for various Temperatures and states of charge are stored to select.
  • the reference charging profiles were determined experimentally in advance and / or simulated and stored by means of the storage means 4.
  • a charging profile is selected, which protects the electrical energy storage, for example by a lower charging current Icell and a resulting extended charging time.
  • a charging profile is selected, which allows a shorter charging time, whereby the electrical energy storage 5 ages more.
  • the method steps two to six are executed again.
  • Lig. 2 a second embodiment of the method according to the invention for operating an electrical energy storage device 5 is shown.
  • the method steps three, four and five are varied in the second embodiment.
  • the at least one state parameter is evaluated and the aging state (SOHc, SOHr) and additionally an anode potential 108 of the electrical energy store 5 are determined.
  • an electrical energy storage model 7 of the electrical energy storage device 5 is modeled by means of the at least one state parameter.
  • the aging state (SOHc, SOHr) is determined based on the capacitance Cobs the resistance Robs.
  • a modeled voltage Umod of the electrical energy storage model 7 is transferred to an evaluation unit 6 and connected to the Voltage Ucell compared to reduce the error in the determination of the state of aging (SOHc, SOHr) and / or the at least one state parameter.
  • An aging controller 102 evaluates the aging state (SOHc, SOHr) of the electric energy storage model 7 and compares it with one in the given one
  • Aging controller 102 determines therefrom an anode potential setpoint 103 and provides it to an anode potential controller 104.
  • the anode potential setpoint value 103 is higher for an electrical energy storage model 7 that has aged more strongly than predetermined, than for an electrical energy storage model 7 that is less aged than specified.
  • the anode potential reference value 103 is at least as great as the potential of the reactive material of the electrical energy store 5, in particular higher than the potential of lithium.
  • Energy storage model 7 used by the anode potential controller 104 to control the charging current Icell or the charging profile for the electrical energy storage 5 such that the anode potential target value 103 is reached.
  • the method steps two to five are repeated during the charging process continuously or at least after a predetermined time interval periodically.
  • FIG. 3 shows a third exemplary embodiment of the method according to the invention for operating an electrical energy store 5.
  • the method steps four and five are varied in the third embodiment.
  • An aging controller 202 evaluates the aging state (SOHc, SOHr) of the electric energy storage model 207 and compares it with one in the predetermined one
  • the aging controller 202 determines therefrom an aging state target value 203, in particular a charging time reference value, and transfers this to a simulation unit 204.
  • the aging state desired value 203 in particular the charging time reference value, is higher for an electrical energy storage model 7 which has aged more strongly than predetermined, than for an electrical energy storage model 7 which is less aged than predetermined.
  • an electrical energy storage simulation 211 based on simulated
  • Energy storage simulation 211 occurring aging processes are analyzed and an aging state of the electric energy storage model 7 is determined.
  • the at least one charging parameter is dynamically optimized by means of arithmetic unit 212, so that the
  • Aging state of the electric energy storage model 7 reaches an aging state target value 203 when using an optimized charging profile 209.
  • the method steps two to five are repeated during the charging process continuously or at least after a predetermined time interval periodically.
  • a controller according to the invention for an electrical energy store 5 has:
  • an aging control (2, 102, 202) for determining the aging factor 3 and / or the anode potential setpoint value 103 and / or the aging state setpoint 203 and / or a storage means 4 for storing reference charging profiles and / or
  • an anode potential controller 104 for controlling the anode potential of the electrical energy storage model and / or
  • a simulation unit 204 for simulating the electrical energy storage simulation 211 and / or
  • a computing unit 212 for the dynamic optimization of the loading parameters and / or an evaluation unit 6 for determining the at least one state parameter (Ucell, SOCobs, Tobs, Robs, Cobs), in particular a voltage sensor and / or a state of charge sensor and / or a temperature sensor and / or has a current sensor, and / or

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

Procédé pour faire fonctionner un accumulateur d'énergie électrique (5), commande pour un accumulateur d'énergie électrique (5) et dispositif et/ou véhicule, comprenant les étapes successives dans le temps : - définition d'une durée de vie totale (1) de l'accumulateur d'énergie électrique (5), - mesure d'au moins un paramètre d'état (Ucell, SOCobs, Tobs, Robs, Cobs) de l'accumulateur d'énergie électrique (5), - détermination d'un état de vieillissement (SOHr, SOHc) de l'accumulateur d'énergie électrique (5), - calcul de la durée de vie restante de l'accumulateur d'énergie électrique (5), - sélection d'un profil de charge pour charger l'accumulateur d'énergie électrique (5) tel que la durée de vie restante de l'accumulateur d'énergie électrique (5) est adaptée, de sorte que la durée de vie totale (1) prédéfinie de l'accumulateur d'énergie électrique (5) soit atteinte.
PCT/EP2019/056503 2018-03-14 2019-03-14 Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule WO2019175357A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018203824.4A DE102018203824A1 (de) 2018-03-14 2018-03-14 Verfahren zum Betreiben eines elektrischen Energiespeichers, Steuerung für einen elektrischen Energiespeicher und Vorrichtung und/oder Fahrzeug
DE102018203824.4 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019175357A1 true WO2019175357A1 (fr) 2019-09-19

Family

ID=65812318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/056503 WO2019175357A1 (fr) 2018-03-14 2019-03-14 Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule

Country Status (2)

Country Link
DE (1) DE102018203824A1 (fr)
WO (1) WO2019175357A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019108607B3 (de) * 2019-04-02 2020-10-01 Bayerische Motoren Werke Aktiengesellschaft System und Verfahren zur Ermittlung von Ladeprofilen
DE102021208937A1 (de) 2021-08-16 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Durchführung eines Ladevorgangs einer Gerätebatterie
DE102021211146A1 (de) 2021-10-04 2023-04-06 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Durchführung eines Ladevorgangs einer Gerätebatterie
DE102021211419A1 (de) 2021-10-11 2023-04-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zur Durchführung eines Ladevorgangs einer Gerätebatterie
AT526220A1 (de) * 2022-06-10 2023-12-15 Avl List Gmbh Voralterungsverfahren zum Voraltern einer Batterie und Testverfahren zum Testen von Batteriesätzen
DE102022125518A1 (de) 2022-10-04 2024-04-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Laden eines elektrischen Energiespeichers eines Kraftfahrzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062415A1 (en) 2012-08-30 2014-03-06 Texas Instruments Incorporated Method and apparatus of charging the battery with globally minimized integral degradation possible for predefined charging duration
WO2014100937A1 (fr) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Procédé pour surveiller la pression gazeuse d'une batterie et régler des paramètres de charge
DE102014215309A1 (de) * 2014-08-04 2016-02-04 Siemens Aktiengesellschaft Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers
EP3050739A1 (fr) * 2015-01-29 2016-08-03 MAN Truck & Bus AG Procede et dispositif de commande et/ou de reglage d'au moins un parametre de fonctionnement influençant un etat de vieillissement d'un systeme de stockage energetique electrique
DE102016007479A1 (de) * 2016-06-18 2017-02-09 Daimler Ag Verfahren und Vorrichtung zum Laden einer Batteriezelle und Verfahren zum Bereitstellen eines Ladestromstärkenkennfeldes
US20170070061A1 (en) 2015-09-09 2017-03-09 Texas Instruments Incorporated Methods and Apparatus for Optimal Fast Battery Charging
EP3203574A1 (fr) * 2016-02-08 2017-08-09 Siemens Aktiengesellschaft Commande de duree de vie pour accumulateur d'energie
US20170353045A1 (en) * 2016-06-07 2017-12-07 Nova Lumos Ltd. System and method for prolonging battery life

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140062415A1 (en) 2012-08-30 2014-03-06 Texas Instruments Incorporated Method and apparatus of charging the battery with globally minimized integral degradation possible for predefined charging duration
WO2014100937A1 (fr) * 2012-12-24 2014-07-03 Schneider Electric It Corporation Procédé pour surveiller la pression gazeuse d'une batterie et régler des paramètres de charge
DE102014215309A1 (de) * 2014-08-04 2016-02-04 Siemens Aktiengesellschaft Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers
EP3050739A1 (fr) * 2015-01-29 2016-08-03 MAN Truck & Bus AG Procede et dispositif de commande et/ou de reglage d'au moins un parametre de fonctionnement influençant un etat de vieillissement d'un systeme de stockage energetique electrique
US20170070061A1 (en) 2015-09-09 2017-03-09 Texas Instruments Incorporated Methods and Apparatus for Optimal Fast Battery Charging
EP3203574A1 (fr) * 2016-02-08 2017-08-09 Siemens Aktiengesellschaft Commande de duree de vie pour accumulateur d'energie
US20170353045A1 (en) * 2016-06-07 2017-12-07 Nova Lumos Ltd. System and method for prolonging battery life
DE102016007479A1 (de) * 2016-06-18 2017-02-09 Daimler Ag Verfahren und Vorrichtung zum Laden einer Batteriezelle und Verfahren zum Bereitstellen eines Ladestromstärkenkennfeldes

Also Published As

Publication number Publication date
DE102018203824A1 (de) 2019-09-19

Similar Documents

Publication Publication Date Title
WO2019175357A1 (fr) Procédé pour faire fonctionner un accumulateur d'énergie électrique, commande pour un accumulateur d'énergie électrique et dispositif et/ou véhicule
DE102018212494B4 (de) Verfahren zum Vorhersagen der Zeit zum Laden einer Batterie eines umweltfreundlichen Fahrzeugs
DE102013208046B4 (de) Schätzvorrichtung für einen Batterieladezustand, die einen robusten H∞-Beobachter verwendet
DE102013113951A1 (de) Verfahren zum Detektieren von Leerlaufsspannungsverschiebungen mittels Optimierung durch Anpassen der Anodenelektrodenhalbzellspannungskurve
DE102015109962A1 (de) Batteriemanagementterminal und Batteriemanagementsystem
EP3017496B1 (fr) Procédé de gestion de batterie et système de gestion de batterie
EP3095153B1 (fr) Procédé de compensation d'état de charge d'une batterie
DE102013108198B4 (de) Verfahren zum Ausführen eines Zellausgleichs eines Batteriesystems basierend auf Kapazitätswerten
EP2944009B1 (fr) Procédé et dispositif destinés à augmenter la capacité disponible d'un groupe accumulateur par équilibrage des niveaux de charge des éléments, système de gestion d'accumulateur, accumulateur et appareil de charge d'accumulateur
DE102020124096A1 (de) Verfahren und vorrichtung zum ladungsausgleich von batteriezellen
DE102010001529A1 (de) Adaptives Verfahren zur Bestimmung der Leistungsparameter einer Batterie
WO2016012196A1 (fr) Procédé destiné à faire fonctionner une batterie secondaire
DE102017005595A1 (de) Verfahren und Vorrichtung zum Laden einer wiederaufladbaren elektrochemischen Energiespeicherzelle
EP2180540B1 (fr) Accumulateur doté de plusieurs cellules galvaniques
DE102014215309A1 (de) Ermittlung eines Alterungszustandes eines elektrischen Energiespeichers
DE102012217193A1 (de) Verfahren zum Betreiben eines Bordnetzes
EP3866300A1 (fr) Procédé de détermination de l'état de vieillissement d'au moins une unité d'accumulation d'énergie électrique
DE102011054460A1 (de) Automatisches Zellbalancer-Reparaturwerkzeug für ein Batterieteil/Modul
DE102018221501A1 (de) Verfahren zum Betreiben eines elektrischen Energiespeichers
DE102018214984A1 (de) Verfahren zur Ermittlung einer Umgebungstemperatur einer ersten elektrischen Energiespeichereinheit im Verbund mit zweiten elektrischen Energiespeichereinheiten sowie entsprechende Vorrichtung, Computerprogramm und maschinenlesbares Speichermedium
DE102018112875A1 (de) Verfahren zur Bestimmung von Eigenschaften von Batteriesegmenten zum Betrieb eines Batteriesatzes mit Modulen verschiedener chemischer Zusammensetzung
WO2023143881A1 (fr) Procédé et dispositif de charge d'une batterie à cellules multiples
DE102022109884A1 (de) Verfahren zum Bestimmen der Kapazitäten der Batteriezellen eines wiederaufladbaren Energiespeichers
WO2021063565A1 (fr) Dispositif de charge et procédé de charge d'un accumulateur d'énergie électrique
DE102022109869A1 (de) Verfahren zum Aufladen eines wiederaufladbaren Energiespeichers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711577

Country of ref document: EP

Kind code of ref document: A1