WO2015014236A1 - 一种系统识别方法、基站及用户设备 - Google Patents

一种系统识别方法、基站及用户设备 Download PDF

Info

Publication number
WO2015014236A1
WO2015014236A1 PCT/CN2014/082950 CN2014082950W WO2015014236A1 WO 2015014236 A1 WO2015014236 A1 WO 2015014236A1 CN 2014082950 W CN2014082950 W CN 2014082950W WO 2015014236 A1 WO2015014236 A1 WO 2015014236A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
system identification
sequence
base station
identification signal
Prior art date
Application number
PCT/CN2014/082950
Other languages
English (en)
French (fr)
Inventor
李元杰
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015014236A1 publication Critical patent/WO2015014236A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information

Definitions

  • the present invention relates to the field of communications, and in particular, to a system identification method, a base station, and a user equipment. Background technique
  • Machine to Machine (M2M) communication refers to the use of automatic control and network communication technology to achieve independent data communication between machines and machines without human intervention.
  • M2M can refer to a source or a sink. Both parties are machine communication, including Human to Machine (H2M) and Machine to Human (M2H) communication.
  • H2M Human to Machine
  • M2H Machine to Human
  • M2M communication Compared with traditional human to human (H2H) communication, M2M communication has many types of applications, huge number of terminals, close connection with applications, and diverse business models.
  • future M2M communication systems may be deployed in hybrid with existing mobile communication networks.
  • the M2M communication system can be deployed in a hybrid system with a global system for mobile communication (GSM) system or an advanced long term evolution advanced (LTE-A) system, using a similar downlink transmission mechanism.
  • GSM global system for mobile communication
  • LTE-A advanced long term evolution advanced
  • Embodiments of the present invention provide a system identification method for effectively identifying an M2M communication system.
  • a first aspect of the present invention provides a system identification method, including: a base station determining a system identification signal, where the system identification signal carries its own signal characteristic information, The signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes one or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information;
  • the base station sends the system identification signal to a user equipment.
  • the spectrum characteristic of the system identification signal satisfies the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a single frequency sinusoidal signal; or the system identification signal is a single frequency cosine signal.
  • the system identification signal is generated by the base station according to a first sequence, and values of the elements in the first sequence are equal. And not equal to 1.
  • the value of each element in the first sequence is preset, not equal to -1, and is not required to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and is obtained by differential encoding of the second sequence.
  • a second aspect of the present invention provides a base station, including:
  • a determining unit configured to determine a system identification signal, where the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes a frequency One or more of feature information, phase feature information, and amplitude feature information;
  • a sending unit configured to send the system identification signal to the user equipment.
  • the spectrum characteristic of the system identification signal satisfies the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a single frequency sinusoidal signal; or the system identification signal is a single frequency cosine signal.
  • the determining unit is specifically configured to: generate the system identification signal according to the first sequence, in the first sequence The values of the elements are equal and not equal to one.
  • the value of each element in the first sequence is preset, not equal to -1, and is not required to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and the determining unit is further configured to:
  • the second sequence is differentially encoded to obtain the first sequence.
  • a third aspect of the present invention provides a system identification method, including:
  • the user equipment receives the system identification signal sent by the base station, where the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes a frequency.
  • the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes a frequency.
  • the user equipment determines, according to the system identification signal, that the system to which the base station belongs is a machine-to-machine communication system.
  • the spectrum characteristic of the system identification signal satisfies the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a single frequency sinusoidal signal; or the system identification signal is a single frequency cosine signal.
  • the system identification signal is generated by the base station according to the first sequence, and the values of the elements in the first sequence are equal. And not equal to 1.
  • the value of each element in the first sequence is preset, not equal to -1, and is not required to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and is obtained by differential encoding of the second sequence.
  • a fourth aspect of the present invention provides a user equipment, including: a receiving unit, configured to receive a system identification signal sent by the base station, where the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system,
  • the signal characteristic information includes one or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information;
  • a determining unit configured to determine, according to the system identification signal, that the system to which the base station belongs is a machine-to-machine communication system.
  • the spectrum characteristic of the system identification signal satisfies the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a single frequency sinusoidal signal; or the system identification signal is a single frequency cosine signal.
  • the system identification signal is generated by the base station according to the first sequence, and the values of the elements in the first sequence are equal. And not equal to 1.
  • the value of each element in the first sequence is preset, not equal to -1, and does not need to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and is obtained by differential encoding of the second sequence.
  • the base station determines the system identification signal by using the system, and sends the system identification signal to the user equipment after being up-converted, and the system identification signal carries its own signal characteristic information, so that the user equipment according to the received signal identification signal of the system identification signal Searching for the base station of the machine and machine communication system that matches itself, preventing the user equipment from accidentally accessing the incompatible communication system, resulting in additional consumption of its own resources.
  • FIG. 1 is a schematic flow chart of a system identification method according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a base station according to a first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to a second embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a system identification method according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a user equipment according to a first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a user equipment according to a second embodiment of the present invention.
  • FIG. 7 is a diagram of a method for generating a frequency offset correction signal by a user equipment side according to an embodiment of the present invention. detailed description
  • the technical solution provided by the embodiment of the present invention can be applied to various wireless communication networks, for example, a global system for mobile communication (GSM) system, a code division multiple access (CDMA) system.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband code division multiple access
  • UMTS universal mobile telecommunication system
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE-A advanced long term evolution advanced
  • WiMAX worldwide interoperability for microwave access
  • a base station may be a device that communicates with a user equipment (UE) or other communication station, such as a relay station, where the base station can provide communication in a specific physical area. cover.
  • the base station may specifically be a base transceiver station (Base Transceiver Station, BTS for short) or a base station controller in GSM or CDMA (Base - -
  • BSC Station Controller
  • BSC Node B
  • RNC Radio Network Controller
  • ENB evolved Node B
  • eNodeB another access network device that provides access services in a wireless communication network, which is not limited by the present invention.
  • the UEs may be distributed throughout the wireless network, and each UE may be static or mobile.
  • a UE may be referred to as a terminal, a mobile station, a subscriber unit, a station, or the like.
  • the UE can be a cellular phone, a personal digital assistant (PDA), a wireless modem (modem), a wireless communication device, a handheld device, a laptop computer, a cordless phone. (cordless phone), wireless local loop (WLL), etc.
  • PDA personal digital assistant
  • modem wireless modem
  • WLL wireless local loop
  • the UE may be referred to as an M2M terminal, and may specifically be a smart meter or a smart home appliance that supports M2M communication.
  • the M2M terminal can communicate with the M2M network side device by means of the existing mobile communication network, and the M2M network device supports the M2M communication.
  • the base station which supports M2M communication, can also support H2H communication. In actual deployment, the base stations that support H2H communication may be different physical entities or the same physical entity.
  • the M2M network side device can be located inside or outside the carrier domain, and the network operator provides the M2M network side device with a network connection to the carrier domain.
  • the M2M network side device When the M2M network side device is located in the operator domain, the M2M network side device is controlled by the network operator, and the M2M user device accesses the M2M network side device through the specific channel resource. When the M2M network side device is outside the carrier domain, the M2M side device is not controlled by the network operator.
  • FIG. 1 is a schematic flowchart of a system identification method according to a first embodiment of the present invention. The method is applicable to a side of a base station, and includes:
  • Step 101 The base station determines a system identification signal, where the system identification signal carries its own signal characteristic information.
  • Step 102 The base station sends the system identification signal to a user equipment.
  • the base station is a base station supporting a machine and a machine M2M communication system, and the base station determines a system identification signal, where the system identification signal carries its own signal characteristic information, and the signal feature information is used to identify the system to which the base station belongs.
  • the signal characteristic information is a parameter that distinguishes the system identification signal from other types of signals, including one or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information.
  • the frequency characteristic information includes spectrum, center of gravity frequency FC, mean square frequency MSF, root mean square frequency RMSF, frequency variance VF or frequency standard RVF; amplitude characteristic information includes mean, variance, root mean square or peak; phase characteristic information includes initial Phase or phase increment.
  • the system identification signal is a baseband signal, and the base station processes the system identification signal to a high frequency signal suitable for transmission in the wireless channel to the user equipment.
  • the system identification signal may be generated by: digitally modulating the preset sequence, and the method of digital modulation includes Amplitude Shift Keying (ASK), Frequency Shift Keying (ASK) or phase shift keying ( Phase Shift Keying, ASK), the preset sequence is digitally modulated to generate a system identification signal, which is upconverted and transmitted through the transmitting antenna.
  • the signal characteristic information may be added to the pilot information of the system identification signal, or the signal characteristic information may be carried by other methods.
  • the system identification signal may be a single frequency signal or a non-single frequency signal, and has a specified spectral characteristic, and the spectral characteristics thereof satisfy: the energy value of the peak frequency point and any other frequency point.
  • the ratio of energy values is not less than 1.5.
  • the energy of the system identification signal that satisfies the spectral characteristics is mostly concentrated on the peak frequency point, and the peak frequency point has good discrimination with other frequency points, so that the user equipment can accurately locate the peak frequency point of the system identification signal by using the peak detection algorithm. , the calculation accuracy is higher.
  • the method for generating the non-single frequency system identification signal may be: selecting a third sequence, wherein the values of the elements in the third sequence may not be equal, and the third sequence is GMSK modulated to generate a system identification signal of a non-single frequency.
  • the system identification signal is a sinusoidal signal or a cosine signal of a single frequency
  • the energy values of the sinusoidal signal or the cosine signal of the single frequency are concentrated on the peak frequency point (self frequency), and the energy value at other frequency points is 0.
  • the ratio of the energy value of the peak frequency of the system identification signal to the energy value of any other frequency point is much larger than 1.5.
  • the method for generating a single frequency signal on the base station side is: the base station transmits the baseband signal - -
  • the differential encoding operation yields a sequence containing only elements +1 or -1, which is digitally modulated to obtain a single frequency signal.
  • the baseband signal is set to ⁇ , and the value in all is 0 or all 1s, and the sequence d'i obtained by differentially encoding the sequence is:
  • ® represents an exclusive OR operation, and further maps the differentially encoded sequence to get the 1 point, and the obtained sequence A is:
  • the sequence ⁇ is a full +1 sequence.
  • the first sequence may be obtained by a differential encoding operation of the second sequence, specifically: the first sequence is performed according to the second sequence [0, 1, 0, ..., 0, 1 of length N
  • the difference operation and the mapping operation operate the first sequence, the elements in the second sequence are alternating 0 and 1, wherein the values of the elements in the first sequence are all -1; or the first sequence is based on the length N
  • the second sequence [1,0,1,...,1,0] N performs a difference and mapping operation to obtain the first sequence, and the elements in the second sequence are alternating between 1 and 0.
  • the values of all elements in the sequence are -1.
  • the selection of the first sequence is no longer limited to the limit of the element values being all +1.
  • the foregoing differential coding operation may also be omitted.
  • the system identification signal is directly generated by the base station according to a preset first sequence, and the values of the respective elements in the preset first sequence are equal, and are not equal to +1 or -1.
  • the value of each element in the first sequence may be a real number such as 1.2, 1.5, -3.
  • the elements in the first sequence after omitting the differential encoding operation, have different values corresponding to the peak frequency points, so the element values in the first sequence can be flexibly selected according to the requirements of the peak frequency points.
  • the specific generation method of the system identification signal may be: performing Gaussian filtering and serial-to-parallel transformation on the first sequence to obtain a first branch sequence and a second branch sequence, and modulating the first branch sequence with the first carrier to obtain a first modulated signal And modulating the second branch sequence with the second carrier to obtain a second modulation sequence, wherein the angular frequencies of the first carrier and the second carrier are equal and orthogonal to each other, and the first modulated signal and the second modulated signal are added to obtain a system Identify the signal.
  • the expression of the frequency characteristic of the Gaussian filter is:
  • the spectrum distribution is more concentrated, which can effectively prevent crosstalk between codes.
  • the first sequence after Gaussian filtering is further subjected to 2-way serial-to-parallel conversion to generate a first branch symbol sequence.
  • the second tributary symbol sequence assuming that the symbol duration of the first sequence is T, then the symbol durations of the first tributary symbol sequence and the second tributary symbol sequence are both 2 ⁇ .
  • the first branch sequence is modulated with a sinusoidal signal having an angular frequency of ⁇
  • the second branch sequence is modulated with a cosine signal having an angular frequency of ⁇ .
  • the system identification signal obtained by adding the first modulation signal and the second modulation signal is:
  • ⁇ . ⁇ ⁇ 1 ⁇
  • E e the transmit power
  • % the initial phase
  • the system recognizes that the signal is a frequency f.
  • cosine of continuous phase It can be seen that the generation process of the above system identification signal is a GMSK modulation process in which the differential coding operation is omitted, and the first sequence generation system directly recognizes the signal, and when generating the system identification signal, different sequences can be selected according to different requirements, A system identification signal with a wider frequency offset range is obtained, and the compatibility of the communication system is improved.
  • the user equipment may acquire signal characteristic information of the system identification signal, where the signal characteristic information includes one or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information, and the frequency characteristic information includes a frequency spectrum and a gravity center frequency.
  • FC mean square frequency MSF, root mean square frequency
  • the user equipment may transform the modulated signal into the frequency domain by using a fast Fourier transform (FFT) algorithm, extract signal characteristic information of the modulated signal, and the user equipment generates a signal feature vector by extracting the signal characteristic information.
  • FFT fast Fourier transform
  • the base station 1 includes a determining unit 11 and a sending unit 12,
  • the determining unit 11 is configured to determine a system identification signal, where the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes One or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information.
  • the sending unit 12 is configured to send the system identification signal to the user equipment.
  • the base station is a base station supporting a machine and a machine M2M communication system
  • the determining unit 11 determines a system identification signal, where the system identification signal carries its own signal characteristic information, and the signal feature information is used to identify the base station to which the base station belongs.
  • the system is a machine-to-machine communication system
  • the signal characteristic information is a parameter that distinguishes the system identification signal from other types of signals, including one or more of frequency characteristic information, phase characteristic information, and amplitude characteristic information.
  • the system identification signal is a baseband signal, and the transmitting unit 12 processes the system identification signal to a high frequency signal suitable for transmission in the wireless channel to the user equipment.
  • the system identification signal may be generated by: digitally modulating the preset sequence, and the method of digital modulation includes Amplitude Shift Keying (ASK), Frequency Shift Keying (ASK) or phase shift keying ( Phase Shift Keying, ASK), the preset sequence is digitally modulated to generate a system identification signal that is transmitted through the transmit antenna.
  • the signal characteristic information may be added to the pilot information of the system identification signal, or the signal characteristic information may be carried by other methods.
  • the spectral characteristics of the system identification signal satisfy the following conditions: - -
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a sinusoidal signal of a single frequency; or the system identification signal is a cosine signal of a single frequency.
  • the determining unit 11 is specifically configured to: generate the system identification signal according to the first sequence, where values of the elements in the first sequence are equal, and are not equal to 1.
  • the value of each element in the first sequence is preset, not equal to -1, and does not need to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and the determining unit 11 is further configured to: differentially encode the second sequence to obtain the first sequence.
  • FIG. 3 is a schematic structural diagram of a base station according to a second embodiment of the present invention.
  • the base station 2 includes a processor 61, a memory 62, an input device 63, and an output device 64.
  • the number of processors 61 in the base station 1 may be One or more, Figure 3 takes a processor as an example.
  • the processor 61, the memory 62, the input device 63, and the output device 64 may be connected by a bus or other means, and the bus connection is exemplified in FIG.
  • the memory 62 stores a set of program codes
  • the processor 61 is configured to call the program code stored in the memory 62 for performing the following operations:
  • the system identification signal carries its own signal characteristic information, wherein the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes frequency characteristic information and phase characteristics.
  • the signal characteristic information includes frequency characteristic information and phase characteristics.
  • One or more of information and amplitude characteristic information transmitting the system identification signal to a user equipment.
  • the spectral characteristics of the system identification signal satisfy the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a sinusoidal signal of a single frequency; or the system identification signal is a cosine signal of a single frequency.
  • the system identification signal is generated by the base station according to a first sequence - -
  • the values of the elements in the first sequence are equal and not equal to one.
  • the values of the elements in the first sequence are preset, not equal to -1, and are obtained without differential encoding.
  • the value of each element in the first sequence is equal to -1 and is obtained by differential encoding of the second sequence.
  • FIG. 4 is a schematic flowchart of a system identification method according to a second embodiment of the present invention.
  • the method is applied to a user equipment side, and can be used in combination with the system identification method applied to the base station side.
  • the method includes:
  • Step 201 The user equipment receives a system identification signal sent by the base station, where the system identification signal carries its own signal characteristic information.
  • the user equipment After receiving the system identification signal, acquires signal feature information of the system identification signal, where the signal feature information includes one or more of frequency feature information, phase feature information, and amplitude feature information, and the frequency feature information includes a center of gravity frequency.
  • FC mean square frequency MSF, root mean square frequency RMSF, frequency variance VF or frequency standard RVF;
  • amplitude characteristic information includes mean, variance, root mean square or peak;
  • phase characteristic information includes initial phase or phase increment.
  • Step 202 The user equipment determines, according to the system identification signal, that the system to which the base station belongs is a machine-to-machine communication system.
  • the user equipment may extract a signal feature information of the modulated signal by using a fast Fourier transform (FFT) algorithm, and the user equipment generates a signal feature vector by extracting the signal feature information, and calculates the signal feature vector and receives the local The similarity value of the signal feature vector of the stored M2M communication system. If the similarity value is greater than a preset threshold, it is determined that the system identification signal is sent by the base station of the M2M communication system, so that the user equipment can correctly match the base station. A communication connection is established between the two.
  • FFT fast Fourier transform
  • the user equipment comprises a device that supports machine-to-machine communication, such as a mobile communication terminal or smart meter.
  • the data collected by the user equipment is transmitted to the base station to implement automatic real-time collection of monitoring data, preventing the user equipment from accessing the incompatible base station, resulting in additional consumption of its own resources.
  • the user equipment may further perform frequency offset estimation on the received modulated signal (that is, the high frequency signal obtained by the base station using the system identification signal to perform up-conversion processing), and the frequency offset value may be calculated according to the carrier.
  • the frequency offset estimation method calculates the frequency offset value using the modulated signal.
  • Carrier frequency offset estimation The - method may be a maximum likelihood based frequency estimation algorithm or other algorithms, and the invention is not limited.
  • the receiving end In a wireless communication system, the receiving end generates a local carrier by using its own oscillator, and uses the local carrier to multiply the received modulated signal to achieve down-conversion. Due to factors such as Doppler shift and oscillator accuracy, the receiving end The carrier and the local carrier of the received modulated signal are not completely synchronized, and there is a certain frequency offset value. The receiving end must calculate the frequency offset value by using the carrier frequency offset estimation algorithm, and use the frequency offset value to receive the frequency offset value to the receiving end. The modulated signal is compensated for coherent demodulation.
  • a user equipment which is hereinafter referred to as user equipment 3, includes a receiving unit 21 and a determining unit 22, which are the first embodiment of the present invention.
  • the receiving unit 21 is configured to receive a system identification signal sent by the base station, where the system identification signal carries its own signal characteristic information, where the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal
  • the feature information includes one or more of frequency feature information, phase feature information, and amplitude feature information;
  • the determining unit 22 is configured to determine, according to the system identification signal, that the system to which the base station belongs is a machine-to-machine communication system.
  • the spectral characteristics of the system identification signal satisfy the following conditions:
  • the ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a sinusoidal signal of a single frequency; or the system identification signal is a cosine signal of a single frequency.
  • the determining unit 11 is specifically configured to: generate the system identification signal according to the first sequence, where values of the elements in the first sequence are equal, and are not equal to 1.
  • the value of each element in the first sequence is preset, not equal to -1, and does not need to be differentially encoded.
  • the value of each element in the first sequence is equal to -1, and the determining unit 11 is further configured to: differentially encode the second sequence to obtain the first sequence.
  • FIG. 6 is a schematic structural diagram of a user equipment according to a second embodiment of the present invention, where - The device 4 comprises a processor 71, a memory 72, an input device 73 and an output device 74.
  • the number of processors 71 in the user device 4 may be one or more, and Figure 8 takes a processor as an example.
  • the processor 71, the memory 72, the input device 73, and the output device 74 may be connected by a bus or other means, and the bus connection is taken as an example in FIG.
  • the memory 72 stores a set of program codes
  • the processor 71 is configured to call the program code stored in the memory 72 for performing the following operations:
  • the signal characteristic information is used to identify that the system to which the base station belongs is a machine-to-machine communication system, and the signal characteristic information includes frequency characteristic information.
  • the signal characteristic information includes frequency characteristic information.
  • the spectral characteristics of the system identification signal satisfy the following conditions: The ratio of the energy value of the peak frequency point to the energy value of any other frequency point is not less than 1.5.
  • the system identification signal is a sinusoidal signal of a single frequency; or the system identification signal is a cosine signal of a single frequency.
  • the system identification signal is generated by the base station according to a first sequence, and values of elements in the first sequence are equal and not equal to one.
  • the values of the elements in the first sequence are preset, not equal to -1, and are obtained without differential encoding.
  • the value of each element in the first sequence is equal to -1 and is obtained by differential encoding of the second sequence.
  • the user equipment may also generate a frequency offset estimation signal according to the target sequence, and send the frequency offset estimation signal to the base station, so that the base station calculates the carrier of the user equipment according to the frequency offset estimation signal. And a frequency offset value of the local carrier, and correcting the local carrier by using the frequency offset value, where the user equipment is an M2M terminal, and the base station is a base station supporting M2M communication. See Figure 7, - - - The method for generating the frequency offset correction signal on the user equipment side includes:
  • Step 301 The user equipment selects a target sequence from the preset sequence set, and determines a system identification signal according to the target sequence.
  • Step 302 Perform up-conversion of the system identification signal to generate a frequency offset correction signal, and send the frequency offset correction signal to the base station.
  • the foregoing pre-configured sequence set may include various possible values of the foregoing first sequence.
  • the first sequence may be set in advance, and the value of each element in the first sequence may be a real number such as 1.2, 1.5, or -3; or the differential operation may be performed by the second sequence; or It may be the foregoing third sequence, which is not limited by the embodiment of the present invention.
  • the step of the user equipment selecting a target sequence from the preset sequence set includes: the user equipment, according to the cell identity information of the cell in which the user equipment is located, query the cell identity information from the preset mapping table.
  • the sequence of goals For example, the user equipment can query the target sequence in the mapping table selection sequence set according to the cell identity information of the cell in which the user is located.
  • the cell identifier of the cell where the user equipment is located is the identifier 1
  • the mapping table of the preset information is learned to correspond to the identifier 1 Sequence 1 in the sequence set.
  • the selection of the target sequence may also use other methods.
  • the pre-configured sequence set includes m sequences, and the index or number is ⁇ 0, 1, ml ⁇ , and the user equipment of a certain cell may be used.
  • the target sequence selected by the user equipment may be configured by the base station to the user equipment by signaling.
  • the target sequence selected by the user equipment is determined according to the ID number of the user equipment.
  • the system identification signal is a sinusoidal signal of a single frequency; or the system identification signal is a cosine signal of a single frequency.
  • each element of the sequence in the sequence set has equal values and is not equal to 1.
  • the value of each element of each sequence in the sequence set is preset and does not need to be differentially encoded.
  • each element in each sequence in the sequence set is equal to -1, and is performed by the second sequence.
  • - - Columns are obtained by differential encoding.
  • the method for performing frequency offset correction by the base station by using the frequency offset correction signal sent by the user equipment is to construct a sequence to be estimated by using the received frequency offset correction signal, and obtain a frequency offset value f by using a certain algorithm. Then, the base station uses the frequency offset value to perform frequency offset compensation on the received signal, thereby implementing frequency synchronization between the base station and the user equipment.
  • the frequency offset estimation method may be based on data assisted and non-data assisted estimation.
  • the frequency offset correction signal c(k) is known, and is not data assisted.
  • the frequency offset correction signal c(k) is unknown.
  • the carrier frequency offset estimation method may be a maximum likelihood based frequency estimation algorithm or other algorithms, and the invention is not limited.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种系统识别方法,包括基站确定系统识别信号,所述系统识别信号携带有自身的信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通信系统,所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的一种或多种;所述基站向用户设备发送所述系统识别信号。本发明实施例还公开了一种基站和用户设备,实施本发明能有效防止非匹配的用户设备接入M2M通信系统的基站。

Description

一 一
一种系统识别方法、 基站及用户设备
本发明要求 2013 年 8 月 2 日递交的发明名称为 "一种系统识别方法、 基站和用户设备" 的申请号 201310334904.3 的在先申请优先权, 上述在先申 请的内容以引入的方式并入本文本中。 技术领域
本发明涉及通信领域, 尤其涉及一种系统识别方法、 基站及用户设备。 背景技术
作为未来泛在网络的重要组成部分, 机器与机器 ( Machine to Machine, 简称 M2M)通信是指利用自动控制及网络通信等技术,在没有人为干预的情况 下实现机器与机器之间自主数据通信与信息交互的一系列技术或技术组合的 总称。 它为各种终端设备在系统之间、 网络之间以及远程实体之间实时建立通 信连接, 传输数据提供了一种有效途径。 在广义上, M2M可泛指信源或信宿 双方一方是机器的通信, 包括人与机器(Human to Machine, H2M )及机器与 人( Machine to Human,简称 M2H )通信形式。与传统人与人 ( Human to Human, 简称 H2H )通信相比, M2M通信具有应用类型繁多、 终端数量巨大、 与应用 联系紧密、 业务模式多样等特点。
考虑到实际应用中的频谱规划, 未来 M2M通信系统可能与现有的移动通 信网络混合部署。例如, M2M通信系统可以与全球移动通信(global system for mobile communication, 简称为 GSM ) 系统或者先进的长期演进 ( long term evolution advanced, 简称为 LTE-A )系统混合部署,釆用类似的下行传输机制。 为了保证 M2M终端可以准确接入 M2M通信系统, 有必要提供一种系统识别 方法, 使得 M2M终端可以准确识别 M2M通信系统。 发明内容
本发明实施例提供了一种系统识别方法, 以有效识别 M2M通信系统。 为了解决上述技术问题,本发明第一方面提供了一种系统识别方法,包括: 基站确定系统识别信号, 所述系统识别信号携带有自身的信号特征信息, - - 所述信号特征信息用于标识所述基站所属系统为机器与机器通信系统,所述信 号特征信息包括频率特征信息、 相位特征信息和幅度特征信息中的一种或多 种;
所述基站向用户设备发送所述系统识别信号。
在第一种可能的实现方式中, 所述系统识别信号的频谱特征满足如下条 件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述系统识别信号为单一频率的正弦信号;或所述系统识别信号为单一频率的余 弦信号。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述系统识别信号由所述基站根据第一序列生成,所述第一序列中各元素的数值 相等, 且不等于 1。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述第一序列中各元素的数值为预先设定,不等于 -1,且无需经过差分编码得到。
结合第一方面的第三种可能的实现方式,在第五种可能的实现方式中, 所 述第一序列中各元素的数值等于 - 1, 且由第二序列经差分编码得到。
本发明第二方面提供了一种基站, 包括:
确定单元, 用于确定系统识别信号, 所述系统识别信号携带有自身的信号 特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通信系 统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的 一种或多种;
发送单元, 用于向用户设备发送所述系统识别信号。
在第一种可能的实现方式中, 所述系统识别信号的频谱特征满足如下条 件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
结合第二方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述系统识别信号为单一频率的正弦信号;或所述系统识别信号为单一频率的余 弦信号。 - - 结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述确定单元具体用于: 根据第一序列生成所述系统识别信号, 所述第一序列中 各元素的数值相等, 且不等于 1。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述第一序列中各元素的数值为预先设定,不等于 -1,且无需经过差分编码得到。
结合第二方面的第三种可能的实现方式,在第五种可能的实现方式中, 所 述第一序列中各元素的数值等于 - 1, 则所述确定单元还用于:
对第二序列进行差分编码, 以得到所述第一序列。
本发明第三方面提供了一种系统识别方法, 包括:
用户设备接收基站发送的系统识别信号,所述系统识别信号携带有自身的 信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通 信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息 中的一种或多种;
所述用户设备根据所述系统识别信号确定所述基站所属系统为机器与机 器通信系统。
在第一种可能的实现方式中, 所述系统识别信号的频谱特征满足如下条 件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中, 所 述系统识别信号为单一频率的正弦信号;或所述系统识别信号为单一频率的余 弦信号。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述系统识别信号由所述基站根据第一序列生成,所述第一序列中各元素的数值 相等, 且不等于 1。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述第一序列中各元素的数值为预先设定,不等于 -1,且无需经过差分编码得到。
结合第三方面的第三种可能的实现方式,在第五种可能的实现方式中, 所 述第一序列中各元素的数值等于 - 1, 且由第二序列经差分编码得到。
本发明第四方面提供了一种用户设备, 包括: - - 接收单元, 用于接收基站发送的系统识别信号, 所述系统识别信号携带有 自身的信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与 机器通信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特 征信息中的一种或多种;
确定单元,用于根据所述系统识别信号确定所述基站所属系统为机器与机 器通信系统。
在第一种可能的实现方式中, 所述系统识别信号的频谱特征满足如下条 件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述系统识别信号为单一频率的正弦信号; 或者, 所述系统识别信号为单一频率 的余弦信号。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中, 所 述系统识别信号由所述基站根据第一序列生成,所述第一序列中各元素的数值 相等, 且不等于 1。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中, 所 述第一序列中各元素的数值为预先设定,不等于 -1,且无需经过差分编码得到。 结合第四方面的第三种可能的实现方式,在第五种可能的实现方式中, 所述第 一序列中各元素的数值等于 -1, 且由第二序列经差分编码得到。
实施本发明实施例, 具有如下有益效果:
基站利用系统确定系统识别信号并将该系统识别信号经上变频处理后发 送至用户设备, 该系统识别信号携带有自身的信号特征信息, 以使用户设备根 据接收到的系统识别信号的信号特征信号搜索到自身匹配的机器与机器通信 系统的基站, 防止用户设备误接入不兼容的通信系统,造成自身的资源的额外 消耗。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是 - - 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明第一实施例的一种系统识别方法的流程示意图;
图 2是本发明第一实施例的一种基站的结构示意图;
图 3是本发明第二实施例的一种基站的结构示意图;
图 4是本发明第二实施例的一种系统识别方法的流程示意图;
图 5是本发明第一实施例的一种用户设备的结构示意图;
图 6是本发明第二实施例的一种用户设备的结构示意图;
图 7是本发明实施例的一种用户设备侧生成频偏校正信号的方法。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 详细地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供的技术方案可以应用于各种无线通信网络, 例如: 全球 移动通信 ( global system for mobile communication, 简称为 GSM ) 系统、 码分 多址 (code division multiple access , 简称为 CDMA ) 系统、 宽带码分多址 ( wideband code division multiple access, 简称为 WCDMA )系统、通用移动通 信 ( universal mobile telecommunication system, 简称为 UMTS ) 系统、 通用分 组无线业务 ( general packet radio service, 简称为 GPRS )系统、长期演进( long term evolution , 简称为 LTE ) 系统、 先进的长期演进 ( long term evolution advanced, 简称为 LTE-A )系统、全球互联微波接入 ( worldwide interoperability for microwave access, 简称为 WiMAX ) 系统等。 术语 "网络" 和 "系统" 可 以相互替换。
在本发明实施例中, 基站 (base station, 简称为 BS ) 可以是与用户设备 ( user equipment, 简称为 UE )或其它通信站点如中继站点, 进行通信的设备, 基站可以提供特定物理区域的通信覆盖。例如,基站具体可以是 GSM或 CDMA 中的基站收发台 ( Base Transceiver Station, 简称为 BTS )或基站控制器( Base - -
Station Controller, 简称为 BSC ); 也可以是 UMTS中的节点 B ( Node B, 简称 为 NB )或者 UMTS中的无线网络控制器( Radio Network Controller, 简称为 RNC ); 还可以是 LTE中的演进型基站( Evolutional Node B, 简称为 ENB或 eNodeB );或者,也可以是无线通信网络中的提供接入服务的其他接入网设备, 本发明并不限定。
在本发明实施例中, UE可以分布于整个无线网络中, 每个 UE可以是静 态的或移动的。 UE可以称为终端 (terminal ), 移动台 ( mobile station ), 用户 单元 ( subscriber unit ),站台( station )等。 UE可以为蜂窝电话( cellular phone ), 个人数字助理 (personal digital assistant , 简称为 PDA ) , 无线调制解调器 ( modem ) , 无线通信设备, 手持设备 ( handheld ), 膝上型电脑 (laptop computer ), 无绳电话 ( cordless phone ), 无线本地环路 ( wireless local loop, 简称为 WLL ) 台等。 当 UE应用于 M2M方式通信时, UE可以称为 M2M终 端, 具体可以是支持 M2M通信的智能仪表、 智能家电等。
M2M ( Machine to Machine, M2M )通信与现有的移动通信网络混合部署 的典型应用场景中, M2M终端可以借助于现有的移动通信网络与 M2M网络 侧设备进行通信, M2M网络设备为支持 M2M通信的基站, 该基站支持 M2M 通信的同时, 也可以支持 H2H通信。 在实际部署时, 与支持 H2H通信的基站 可以为不同的物理实体, 也可以为同一物理实体。 M2M网络侧设备可以位于 运营商域之内或之外, 网络运营商为 M2M网络侧设备提供到运营商域的网络 连接。 当 M2M网络侧设备位于运营商域之内时, M2M网络侧设备由网络运 营商控制, M2M用户设备通过特定的信道资源访问 M2M网络侧设备。当 M2M 网络侧设备位于运营商域之外时, M2M侧设备不受网络运营商控制。
本申请发明人在对现有技术的研究和实践中, 暂未发现可直接应用于 M2M通信系统的系统识别方法。 有鉴于此, 本申请发明人设计了一种系统识 别方法, 以实现有效识别 M2M通信系统。 参见图 1, 为本发明第一实施例的 一种系统识别方法的流程示意图, 该方法可应用于基站一侧, 包括:
步骤 101、 基站确定系统识别信号, 所述系统识别信号携带有自身的信号 特征信息。
步骤 102、 所述基站向用户设备发送所述系统识别信号。 具体的, 在本发明实施例中, 基站为支持机器与机器 M2M通信系统的基 站, 基站确定系统识别信号, 该系统识别信号携带有自身的信号特征信息, 信 号特征信息用于标识基站所属系统为机器与机器通信系统,所述信号特征信息 为系统识别信号与其他类型信号区分开来的参数, 包括频率特征信息、相位特 征信息和幅度特征信息中的一种或多种。 例如, 频率特征信息包括频谱、 重心 频率 FC、 均方频率 MSF、 均方根频率 RMSF、 频率方差 VF或频率标准 RVF; 幅度特征信息包括均值、 方差、 均方根或峰值; 相位特征信息包括初始相位或 相位增量。
系统识别信号为基带信号,基站将系统识别信号经上变频处理成适合在无 线信道中传输的高频信号发送至用户设备。 系统识别信号的产生可以是: 将预 置的序列进行数字调制, 数字调制的方法包括振幅键控 (Amplitude Shift Keying, ASK )、频移键控( Frequency Shift Keying, ASK )或相移键控( Phase Shift Keying, ASK ), 预置的序列经过数字调制后生成系统识别信号, 上变频处理后 经发射天线发射出去。在本发明的一个实施例中,信号特征信息可以釆用在系 统识别信号的导频信息中添加, 也可以釆用其他方法携带该信号特征信息。
可选地,在本发明的实施例中, 系统识别信号可以为单一频率信号或非单 一频率信号, 具有指定的频谱特征, 其频谱特征满足: 峰值频点的能量值与其 他任一频点的能量值的比值不小于 1.5。 满足该频谱特征的系统识别信号的能 量大部分集中在峰值频点上,峰值频点与其他频点具有良好的区分度,使用户 设备能使用峰值检测算法准确定位到系统识别信号的峰值频点, 计算精度更 高。
非单一频率的系统识别信号的生成方法可以是: 选取一个第三序列, 该第 三序列中各元素的数值可以不相等, 将该第三序列经过 GMSK调制后生成非 单一频率的系统识别信号。
进一步地, 若系统识别信号为单一频率的正弦信号或余弦信号,单一频率 的正弦信号或余弦信号的能量值均集中在峰值频点(自身频率)上, 其他频点 上的能量值为 0, 则此时系统识别信号的峰值频点的能量值与其他任一频点的 能量值的比值远大于 1.5。
在现有技术中,基站侧生成单一频率的信号的方法为: 基站将基带信号经 - - 过差分编码运算得到只包含元素 +1或 -1的序列, 对该序列进行数字调制得到 单一频率的信号。 具体为, 支设基带信号为^, 中的值为全 0或全 1, 对其 进行差分编码得到的序列 d'i为:
d; = d; Φ ά^ (d; e {0,l})
式中 ®表示异或运算, 进一步将差分编码得到的序列映射到得到士 1点上, 得到的序列 A为:
β, = 1 - 2^ («^{-1,+ 1})
当基带信号为全 0或全 1序列时, 序列 Α为全 +1序列。
在本发明的实施例中, 第一序列可由第二序列经差分编码运算得到, 具体 为: 第一序列根据长度为 N的第二序列 [0,1,0,...,0,1 进行差分运算和映射运 算所述第一序列, 所述第二序列中的元素为 0和 1的交替, 此时第一序列中个 元素的数值均为 -1;或第一序列根据长度为 N的第二序列 [1,0,1,... ,1,0]N进行差 分和映射运算得到所述第一序列, 所述第二序列中的元素为 1和 0的交替, 此 时第一序列中个元素的数值均为 -1。第一序列的选取不再局限于元素值全为 +1 的限制。
可选地,也可以省略上述差分编码操作, 系统识别信号由基站直接根据预 先设定的第一序列生成, 该预先设定的第一序列中的各个元素的数值相等,且 不等于 +1或 -1。 例如, 该第一序列中的各元素的数值可以为 1.2、 1.5、 -3等实 数。 事实上, 省略差分编码操作之后, 第一序列中元素取值不同对应峰值频点 的不同, 因此可以根据峰值频点的需求, 灵活地选择第一序列中元素取值。
系统识别信号的具体生成方法可以是:将第一序列进行高斯滤波和串并变 换得到第一支路序列和第二支路序列,将第一支路序列与第一载波调制得到第 一调制信号, 并将第二支路序列与第二载波调制得到第二调制序列, 第一载波 和第二载波的角频率相等且相互正交,将第一调制信号和第二调制信号作加法 运算得到系统识别信号。
具体的, 高斯滤波器的频率特性的表达式为:
H ( f ) = exp[-(ln2/ 2)( f / B)2] ( χ ) 式( 1 )中, Β为滤波器的 3dB的带宽, 将式( 1 )作反傅里叶变换后得到 高斯滤波器的冲击响应为: - - h(t) =— exp(--t)2
a ( 2 ) 式 ( 2 ) 中, α =」ί^1。 经过高斯滤波器后得到输出序列的相位偏移参
2 Β 数的表达式为:
Figure imgf000011_0001
式(3 ) 中, &1为第一序列中的码元(即元素), i=l, 2, 3, ... , N, h为调 制因子, h(u)为高斯滤波器的冲击响应函数, T为第一序列的码元持续时间, 通常取 BT=0.3, 即高斯滤波器的 3dB带宽等于码元频偏的 0.3倍。
将第一序列经过高斯滤波处理后其频谱分布更加集中,能有效防止码间串 扰的问题, 经高斯滤波处理后的第一序列再进行 2路的串并变换, 生成第一支 路码元序列和第二支路码元序列, 假设第一序列的码元持续时间为 T, 则此时 第一支路码元序列和第二支路码元序列的码元持续时间均为 2Τ。
第一支路序列与角频率为 ω的正弦信号调制,第二支路序列与角频率为 ω 的余弦信号调制。将第一调制信号和第二调制信号作加法运算得到的系统识别 信号为:
1 2Ε
x(t) =、—— - cos(2 r f0t + φ(ί) + φ0)
τ ( 4 )
式(4 ) 中, ΐ。 = ω Ι 1π , Ee为发射功率, %为初始相位, 该系统识别信号为 一个频率为 f。且相位连续的余弦。可以看出,上述系统识别信号的生成过程为 省略了差分编码运算的 GMSK调制过程,直接由第一序列生成系统识别信号, 在生成系统识别信号上时能根据不同的需求选择不同的序列,以获得频偏范围 更丰富的系统识别信号, 提高通信系统的兼容性。
用户设备接收到系统识别信号后, 可以获取系统识别信号的信号特征信 息,信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的一种 或多种, 频率特征信息包括频谱、 重心频率 FC、 均方频率 MSF、 均方根频率
RMSF、 频率方差 VF或频率标准 RVF; 幅度特征信息包括均值、 方差、 均方 - - 根或峰值; 相位特征信息包括初始相位或相位增量。 具体地, 用户设备可釆用 快速傅里叶变换(FFT )算法将已调信号变换到频域, 提取已调信号的信号特 征信息, 用户设备将提取到的信号特征信息生成一个信号特征向量,计算该信 号特征向量与接收到本地存储的 M2M通信系统的信号特征向量的相似度值, 若该相似度值大于预置的门限值, 确定该系统识别信号由 M2M通信系统的基 站发出, 这样用户设备就能与基站正确匹配, 二者之间建立通信连接。
参见图 2, 为本发明实施例的一种基站的结构示意图, 以下简称基站 1, 该基站 1包括确定单元 11和发送单元 12,
确定单元 11, 用于确定系统识别信号, 所述系统识别信号携带有自身的 信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通 信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息 中的一种或多种。
发送单元 12, 用于向用户设备发送所述系统识别信号。
具体的, 在本发明实施例中, 基站为支持机器与机器 M2M通信系统的基 站, 确定单元 11确定系统识别信号, 该系统识别信号携带有自身的信号特征 信息,信号特征信息用于标识基站所属系统为机器与机器通信系统, 所述信号 特征信息为系统识别信号与其他类型信号区分开来的参数, 包括频率特征信 息、 相位特征信息和幅度特征信息中的一种或多种。 例如, 频率特征信息包括 频语、 重心频率 FC、 均方频率 MSF、 均方^ =艮频率 RMSF、 频率方差 VF或频 率标准 RVF; 幅度特征信息包括均值、 方差、 均方根或峰值; 相位特征信息 包括初始相位或相位增量。
系统识别信号为基带信号, 发送单元 12将系统识别信号经上变频处理成 适合在无线信道中传输的高频信号发送至用户设备。系统识别信号的产生可以 是: 将预置的序列进行数字调制, 数字调制的方法包括振幅键控 (Amplitude Shift Keying, ASK )、频移键控( Frequency Shift Keying, ASK )或相移键控( Phase Shift Keying, ASK ),预置的序列经过数字调制后生成系统识别信号,经发射天 线发射出去。在本发明的一个实施例中,信号特征信息可以釆用在系统识别信 号的导频信息中添加, 也可以釆用其他方法携带该信号特征信息。
可选地, 系统识别信号的频谱特征满足如下条件: - - 峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
可选地, 系统识别信号为单一频率的正弦信号; 或所述系统识别信号为单 一频率的余弦信号。
可选地, 确定单元 11具体用于: 根据第一序列生成所述系统识别信号, 所述第一序列中各元素的数值相等, 且不等于 1。
可选地, 所述第一序列中各元素的数值为预先设定, 不等于 -1, 且无需经 过差分编码得到。
可选地, 所述第一序列中各元素的数值等于 -1, 则确定单元 11还用于: 对第二序列进行差分编码, 以得到所述第一序列。
需要说明的是, 图 2所示实施例中提供的基站各单元之间的信息交互、执 行过程等内容与图 1所示方法实施例基于同一构思,其带来的技术效果也与本 发明方法实施例相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再 赘述。
参见图 3, 为本发明实施例第二实施例的一种基站的结构示意图, 基站 2 包括处理器 61、 存储器 62、 输入装置 63和输出装置 64, 基站 1中的处理器 61 的数量可以是一个或多个, 图 3以一个处理器为例。 本发明的一些实施例 中, 处理器 61、 存储器 62、 输入装置 63和输出装置 64可通过总线或其他方 式连接, 图 3中以总线连接为例。
其中, 存储器 62中存储一组程序代码, 且处理器 61用于调用存储器 62 中存储的程序代码, 用于执行以下操作:
确定系统识别信号, 所述系统识别信号携带有自身的信号特征信息, 所述 信号特征信息用于标识所述基站所属系统为机器与机器通信系统,所述信号特 征信息包括频率特征信息、 相位特征信息和幅度特征信息中的一种或多种; 向用户设备发送所述系统识别信号。
在本发明的一些实施例中, 所述系统识别信号的频谱特征满足如下条件: 峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
在本发明的一些实施例中, 所述系统识别信号为单一频率的正弦信号; 或 所述系统识别信号为单一频率的余弦信号。
在本发明的一些实施例中,所述系统识别信号由所述基站根据第一序列生 - - 成, 所述第一序列中各元素的数值相等, 且不等于 1。
在本发明的一些实施例中, 所述第一序列中各元素的数值为预先设定, 不 等于 -1, 且无需经过差分编码得到。
在本发明的一些实施例中, 所述第一序列中各元素的数值等于 -1, 且由第 二序列经差分编码得到。
参见图 4, 为本发明第二实施例的一种系统识别方法的流程示意图, 该方 法应用于用户设备一侧, 可与上述应用于基站侧的系统识别方法配合使用, 该 方法包括:
步骤 201、 用户设备接收基站发送的系统识别信号, 所述系统识别信号携 带有自身的信号特征信息。
具体的, 用户设备接收到系统识别信号后, 获取系统识别信号的信号特征 信息,信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的一 种或多种,频率特征信息包括重心频率 FC、均方频率 MSF、均方根频率 RMSF、 频率方差 VF或频率标准 RVF; 幅度特征信息包括均值、方差、均方根或峰值; 相位特征信息包括初始相位或相位增量。
步骤 202、 所述用户设备根据所述系统识别信号确定所述基站所属系统为 机器与机器通信系统。
具体的, 用户设备可釆用快速傅里叶变换(FFT )算法提取已调信号的信 号特征信息, 用户设备将提取到的信号特征信息生成一个信号特征向量,计算 该信号特征向量与接收到本地存储的 M2M通信系统的信号特征向量的相似度 值, 若该相似度值大于预置的门限值, 确定该系统识别信号由 M2M通信系统 的基站发出, 这样用户设备就能与基站正确匹配, 二者之间建立通信连接。
在本发明的实施例中,用户设备包括移动通信终端或智能仪表等支持机器 与机器通信的设备。用户设备识别出机器与机器通信系统的基站后,将自身釆 集的数据传输至该基站, 以实现监测数据的自动实时釆集, 防止用户设备接入 不兼容的基站, 导致自身资源的额外消耗。
在本发明的实施例中, 用户设备还可以对接收到已调信号(即基站使用系 统识别信号进行上变频处理得到的高频信号)进行频偏估计, 频偏值的计算方 法可以是根据载波频偏估算法计算法利用已调信号计算频偏值。载波频偏估算 - - 法可以为基于最大似然的频率估计算法或其他算法, 本发明不作限制。
在无线通信系统中,接收端利用自己的振荡器产生本地载波, 并使用该本 地载波和接收到的已调信号相乘实现下变频,由于多普勒频移和振荡器精度等 因素,接收端接收到的已调信号的载波和本地载波并不完全同步,存在一定频 偏值,接收端必须釆用载波频偏估计算法计算出该频偏值, 并使用该频偏值对 接收端接收到的已调信号进行补偿, 实现相干解调。
参见图 5, 为本发明第一实施例的一种用户设备, 以下简称用户设备 3, 包括接收单元 21和确定单元 22,
接收单元 21, 用于接收基站发送的系统识别信号, 所述系统识别信号携 带有自身的信号特征信息,所述信号特征信息用于标识所述基站所属系统为机 器与机器通信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅 度特征信息中的一种或多种;
确定单元 22, 用于根据所述系统识别信号确定所述基站所属系统为机器 与机器通信系统。
可选地, 系统识别信号的频谱特征满足如下条件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
可选地, 系统识别信号为单一频率的正弦信号; 或所述系统识别信号为单 一频率的余弦信号。
可选地, 确定单元 11具体用于: 根据第一序列生成所述系统识别信号, 所述第一序列中各元素的数值相等, 且不等于 1。
可选地, 所述第一序列中各元素的数值为预先设定, 不等于 -1, 且无需经 过差分编码得到。
可选地, 所述第一序列中各元素的数值等于 -1, 则确定单元 11还用于: 对第二序列进行差分编码, 以得到所述第一序列。
需要说明的是, 图 5 所示实施例中提供的用户设备各单元之间的信息交 互、执行过程等内容与图 4所示方法实施例基于同一构思, 其带来的技术效果 也与本发明方法实施例相同, 具体内容可参见本发明方法实施例中的叙述, 此 处不再赘述。
参见图 6, 为本发明实施例第二实施例的一种用户设备结构示意图, 用户 - - 设备 4包括处理器 71、 存储器 72、 输入装置 73和输出装置 74, 用户设备 4 中的处理器 71的数量可以是一个或多个, 图 8以一个处理器为例。 本发明的 一些实施例中, 处理器 71、 存储器 72、 输入装置 73和输出装置 74可通过总 线或其他方式连接, 图 6中以总线连接为例。
其中, 存储器 72中存储一组程序代码, 且处理器 71用于调用存储器 72 中存储的程序代码, 用于执行以下操作:
接收基站发送的系统识别信号,所述系统识别信号携带有自身的信号特征 信息, 所述信号特征信息用于标识所述基站所属系统为机器与机器通信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的一种 或多种;
根据所述系统识别信号确定所述基站所属系统为机器与机器通信系统。 在本发明的一些实施例中, 所述系统识别信号的频谱特征满足如下条件: 峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
在本发明的一些实施例中, 所述系统识别信号为单一频率的正弦信号; 或 所述系统识别信号为单一频率的余弦信号。
在本发明的一些实施例中,所述系统识别信号由所述基站根据第一序列生 成, 所述第一序列中各元素的数值相等, 且不等于 1。
在本发明的一些实施例中, 所述第一序列中各元素的数值为预先设定, 不 等于 -1, 且无需经过差分编码得到。
在本发明的一些实施例中, 所述第一序列中各元素的数值等于 -1, 且由第 二序列经差分编码得到。
需要说明的是, 图 6 所示实施例中提供的用户设备各单元之间的信息交 互、执行过程等内容与图 4所示方法实施例基于同一构思, 其带来的技术效果 也与本发明方法实施例相同, 具体内容可参见本发明方法实施例中的叙述, 此 处不再赘述。
在本发明的一些实施例中,也可以由用户设备根据目标序列生成频偏估计 信号, 并将所述频偏估计信号发送至基站, 以使基站根据该频偏估计信号计算 出用户设备的载波和本地载波的频偏值, 并使用该频偏值对本地载波进行校 正, 其中用户设备为 M2M终端, 基站为支撑 M2M通信的基站。 参见图 7, - - 用户设备侧生成频偏校正信号的方法包括:
步骤 301、 用户设备从预先配置的序列集合中选取一个目标序列, 并根据 所述目标序列确定系统识别信号;
步骤 302、 将所述系统识别信号进行上变频生成频偏校正信号, 向所述基 站发送所述频偏校正信号。
其中, 上述预先配置的序列集合可以包括前述第一序列的各种可能的取 值。例如可以为前述预先设定的第一序列, 该第一序列中的各元素的数值可以 为 1.2、 1.5、 -3等实数; 也可以为前述由第二序列经差分编码运算得到; 或者, 还可以是前述第三序列, 本发明实施例并不对此限定。
可选地,所述用户设备从预先配置的序列集合中选取一个目标序列的步骤 包括: 所述用户设备根据自身所在小区的小区身份信息,从预置的映射表中查 询所述小区身份信息对应的目标序列。例如, 用户设备可以根据自身所在的小 区的小区身份信息查询映射表选择序列集合中的目标序列, 例如, 用户设备所 在的小区的小区标识为标识 1, 查询预置的映射表得知标识 1对应的序列集合 中的序列 1。
在本发明的实施例中, 目标序列的选取还可以釆用其他方法, 例如, 预先 配置序列集合中包含 m个序列, 索引或编号为 {0, 1, m-l }, 某个小区的用 户设备可以选择索引号为 Index的目标序列生成待发送的频偏估计信号, 其中 Index = n_cellID mod m, n_cellID为该用户设备所在的小区的 ID, 其中 mod 表示取模运算。
其他可能的方案包括:用户设备选取的目标序列可以是基站通过信令给用 户设备配置的。 或者, 用户设备选取的目标序列是根据该用户设备的 ID号来 确定的。
可选的, 所述系统识别信号为单一频率的正弦信号; 或所述系统识别信号 为单一频率的余弦信号。
可选的, 所述序列集合中的每个序列各元素的数值相等, 且不等于 1。 可选的, 所述序列集合中的每个序列各元素的数值为预先设定,且无需经 过差分编码得到。
可选的, 所述序列集合中的每个序列中各元素的数值等于 -1, 且由第二序 - - 列经差分编码得到。
需要说明的是,此处所示的可选实施例中提供的内容与图 1和图 4所示方 法实施例基于同一构思, 具体内容可参见本发明上述方法实施例中的叙述, 此 处不再赘述。
基站利用用户设备发送的频偏校正信号进行频偏校正的方法为利用接收 到的频偏校正信号构造出待估计序列,运用一定的算法得到频偏值 f。, 然后基 站利用该频偏值对接收信号进行频偏补偿,从而实现基站和用户设备的频率同 步。 具体原理为: 在 AWGN 信道中, 基站经过滤波器接的接收信号为 y(k) = c(k)ej (2?rfok+i?) + n(k),k = 1,2,..., N , 其中, c(k)为频偏估计信号, 其幅度为 / ,此处将频偏校正信号的幅度归一化为单位 1, N为频偏估计中利用的接收 信号数据长度, f。表示频偏值, 假设 6>为零或是已知, n(k)表示方差为 σ2、 均值为 0的独立同分布复高斯白噪声。 基站利用接收信号 y(k)估计频偏值 f。。 在本发明的实施例中, 频偏估计方法可基于数据辅助和非数据辅助估计,在有 数据辅助的频偏估计方案中, 频偏校正信号 c(k)为已知的, 在非数据辅助频偏 估计中, 频偏校正信号 c(k)为未知的。 载波频偏估算法可以为基于最大似然的 频率估计算法或其他算法, 本发明不作限制。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发 明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流 程, 并依本发明权利要求所作的等同变化, 仍属于发明所涵盖的范围。

Claims

权 利 要 求
1、 一种系统识别的方法, 其特征在于, 包括:
基站确定系统识别信号, 所述系统识别信号携带有自身的信号特征信息, 所述信号特征信息用于标识所述基站所属系统为机器与机器通信系统,所述信 号特征信息包括频率特征信息、 相位特征信息和幅度特征信息中的一种或多 种;
所述基站向用户设备发送所述系统识别信号。
2、 根据权利要求 1所述的方法, 其特征在于, 所述系统识别信号的频谱 特征满足如下条件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
3、 根据权利要求 2所述的方法, 其特征在于, 所述系统识别信号为单一 频率的正弦信号; 或所述系统识别信号为单一频率的余弦信号。
4、 根据权利要求 3所述的方法, 其特征在于, 所述系统识别信号由所述 基站根据第一序列生成, 所述第一序列中各元素的数值相等, 且不等于 1。
5、 根据权利要求 4所述的方法, 其特征在于, 所述第一序列中各元素的 数值为预先设定, 不等于 -1, 且无需经过差分编码得到。
6、 根据权利要求 4所述的方法, 其特征在于, 所述第一序列中各元素的 数值等于 -1, 且由第二序列经差分编码得到。
7、 一种基站, 其特征在于, 包括:
确定单元, 用于确定系统识别信号, 所述系统识别信号携带有自身的信号 特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通信系 统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息中的 一种或多种;
发送单元, 用于向用户设备发送所述系统识别信号。
8、 根据权利要求 7所述的基站, 其特征在于, 所述系统识别信号的频谱 特征满足如下条件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
9、 根据权利要求 8所述的基站, 其特征在于, 所述系统识别信号为单一 频率的正弦信号; 或所述系统识别信号为单一频率的余弦信号。
10、 根据权利要求 9所述的基站, 其特征在于, 所述确定单元具体用于: 根据第一序列生成所述系统识别信号, 所述第一序列中各元素的数值相等,且 不等于 1。
11、 根据权利要求 10所述的基站, 其特征在于, 所述第一序列中各元素 的数值为预先设定, 不等于 -1, 且无需经过差分编码得到。
12、 根据权利要求 10所述的基站, 其特征在于, 所述第一序列中各元素 的数值等于 -1, 则所述确定单元还用于:
对第二序列进行差分编码, 以得到所述第一序列。
13、 一种系统识别的方法, 其特征在于, 包括:
用户设备接收基站发送的系统识别信号,所述系统识别信号携带有自身的 信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与机器通 信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特征信息 中的一种或多种;
所述用户设备根据所述系统识别信号确定所述基站所属系统为机器与机 器通信系统。
14、 根据权利要求 13所述的方法, 其特征在于, 所述系统识别信号的频 谱特征满足如下条件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
15、 根据权利要求 14所述的方法, 其特征在于, 所述系统识别信号为单 一频率的正弦信号; 或所述系统识别信号为单一频率的余弦信号。
16、 根据权利要求 15所述的方法, 其特征在于, 所述系统识别信号由所 述基站根据第一序列生成, 所述第一序列中各元素的数值相等, 且不等于 1。
17、 根据权利要求 16所述的方法, 其特征在于, 所述第一序列中各元素 的数值为预先设定, 不等于 -1, 且无需经过差分编码得到。
18、 根据权利要求 16所述的方法, 其特征在于, 所述第一序列中各元素 的数值等于 -1, 且由第二序列经差分编码得到。
19、 一种用户设备, 其特征在于, 包括:
接收单元, 用于接收基站发送的系统识别信号, 所述系统识别信号携带有 自身的信号特征信息,所述信号特征信息用于标识所述基站所属系统为机器与 机器通信系统, 所述信号特征信息包括频率特征信息、相位特征信息和幅度特 征信息中的一种或多种;
确定单元,用于根据所述系统识别信号确定所述基站所属系统为机器与机 器通信系统。
20、 根据权利要求 19所述的用户设备, 其特征在于, 所述系统识别信号 的频谱特征满足如下条件:
峰值频点的能量值与其他任一频点的能量值的比值不小于 1.5。
21、 根据权利要求 20所述的用户设备, 其特征在于, 所述系统识别信号 为单一频率的正弦信号; 或所述系统识别信号为单一频率的余弦信号。
22、 根据权利要求 21所述的用户设备, 其特征在于, 所述系统识别信号 由所述基站根据第一序列生成, 所述第一序列中各元素的数值相等,且不等于 1。
23、 根据权利要求 22所述的用户设备, 其特征在于, 所述第一序列中各 元素的数值为预先设定, 不等于 -1, 且无需经过差分编码得到。
24、 根据权利要求 22所述的用户设备, 其特征在于, 所述第一序列中各 元素的数值等于 -1, 且由第二序列经差分编码得到。
PCT/CN2014/082950 2013-08-02 2014-07-24 一种系统识别方法、基站及用户设备 WO2015014236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310334904.3A CN104349268B (zh) 2013-08-02 2013-08-02 一种系统识别方法、基站及用户设备
CN201310334904.3 2013-08-02

Publications (1)

Publication Number Publication Date
WO2015014236A1 true WO2015014236A1 (zh) 2015-02-05

Family

ID=52430984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082950 WO2015014236A1 (zh) 2013-08-02 2014-07-24 一种系统识别方法、基站及用户设备

Country Status (2)

Country Link
CN (1) CN104349268B (zh)
WO (1) WO2015014236A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452716A (zh) * 2016-11-15 2017-02-22 厦门大学 基于Hash指纹的无人机信号识别检测算法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783712A (zh) * 2009-01-19 2010-07-21 华为技术有限公司 Lte版本识别的方法、用户终端和网络节点
CN103141070A (zh) * 2011-07-22 2013-06-05 阿尔卡特朗讯 无线电网络中的机器类型通信

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149166B (zh) * 2010-02-10 2015-08-12 中兴通讯股份有限公司 无线接入网络的选择方法和系统
US9042326B2 (en) * 2010-06-24 2015-05-26 Lg Electronics Inc. Method and device for transmitting uplink data in wireless connection system
CN102438294B (zh) * 2010-09-29 2014-02-26 电信科学技术研究院 一种m2m终端接入网络的方法及m2m通信系统
IN2014CN04550A (zh) * 2011-11-25 2015-09-18 Nec Corp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783712A (zh) * 2009-01-19 2010-07-21 华为技术有限公司 Lte版本识别的方法、用户终端和网络节点
CN103141070A (zh) * 2011-07-22 2013-06-05 阿尔卡特朗讯 无线电网络中的机器类型通信

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452716A (zh) * 2016-11-15 2017-02-22 厦门大学 基于Hash指纹的无人机信号识别检测算法

Also Published As

Publication number Publication date
CN104349268A (zh) 2015-02-11
CN104349268B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
US11665656B2 (en) Information transmission method and information transmission apparatus
US10749726B2 (en) Reference signal for pi/2 binary phase shift keying (BPSK) modulation
WO2020052514A1 (zh) 一种信息发送方法,信息接收的方法和装置
CN113348690B (zh) 用于安全的方法和装置
CN108024325A (zh) 无线通信方法和装置
TW202027472A (zh) 用於二進位移相鍵控調變資料的電腦產生的序列設計
EP3665920B1 (en) Mobile number portability
TW201935983A (zh) 實體上傳分享通道傳輸方法和終端設備
WO2021061726A1 (en) Sequence based physical uplink control channel transmission
CN110710174A (zh) 用于无线通信波形生成的方法和装置
JP7251634B2 (ja) Dmrs送信のための方法、基地局、及び端末デバイス
JP7498766B2 (ja) 参考信号のためのシーケンスを発生させること
JP7250944B2 (ja) 基準信号生成方法及び通信機器
WO2015014236A1 (zh) 一种系统识别方法、基站及用户设备
KR20200018143A (ko) 이동통신 시스템에서 데이터 손실을 줄이기 위한 방법 및 장치
JP2024518467A (ja) デジタルポストディストーション支援のための改良された復調参照信号
CN117280646A (zh) 用于数字后失真辅助的增强型相位跟踪参考信号
TWI684375B (zh) 通訊方法、終端設備和網路設備
WO2024036504A1 (en) On-off keying-modulated orthogonal frequency division multiplexing waveform generation
WO2019028904A1 (zh) 无线通信的方法、网络设备和终端设备
US20240214249A1 (en) Techniques for cyclic prefix compatible formulation of single carrier waveforms
WO2024067191A1 (zh) 一种通信方法及装置
US20220150696A1 (en) Method and apparatus for establishing secure connections for edge computing services
US20220312197A1 (en) Method and apparatus for protecting information in wireless communication system
WO2023287415A1 (en) Apparatus and method for low power channel estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833005

Country of ref document: EP

Kind code of ref document: A1