WO2015014204A1 - 空气能循环动力发电机 - Google Patents

空气能循环动力发电机 Download PDF

Info

Publication number
WO2015014204A1
WO2015014204A1 PCT/CN2014/082113 CN2014082113W WO2015014204A1 WO 2015014204 A1 WO2015014204 A1 WO 2015014204A1 CN 2014082113 W CN2014082113 W CN 2014082113W WO 2015014204 A1 WO2015014204 A1 WO 2015014204A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
gas
engine
compressor
control
Prior art date
Application number
PCT/CN2014/082113
Other languages
English (en)
French (fr)
Inventor
朱红锋
齐东才
Original Assignee
深圳市品川新智科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市品川新智科技发展有限公司 filed Critical 深圳市品川新智科技发展有限公司
Publication of WO2015014204A1 publication Critical patent/WO2015014204A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle

Definitions

  • the invention relates to the field of new energy machinery technology, and in particular to an air energy circulation power generator.
  • an air energy circulating power generator including a gas energy storage device and an engine Gas supply control device, solenoid valve gas control system, power generation and power supply device, air energy engine, engine starting device, DC motor transmission device, gas supply circulation control device; said gas storage device and engine a gas supply control device is connected;
  • the engine gas supply control device includes a pressure reducing valve watch assembly, a buffer tank, a gas flow control valve, a gas heat exchanger; wherein an air outlet of the gas heat exchanger is connected to an air inlet of the air pipe tee joint through a gas solenoid valve main valve, wherein the air pipe tee joint
  • the air outlets are respectively connected to the branch cylinder gas lines
  • the air intake circulation control device includes an air compressor, a compressor electromagnetic clutch, and a pneumatic control sensor; wherein the air outlet of the air compressor is connected to the pipeline of the gas energy storage device through the air pressure control sensor ; said Power generation and power supply device, comprising an alternator,
  • the air energy circulation engine comprises a cylinder intake control solenoid valve, an exhaust pipe, a cylinder, a piston, a connecting rod, and a crankshaft;
  • the air energy engine has four inlet chamber cylinders connected to the upper end of the body, and four cylinder intake control solenoid valves are installed on the intake chamber; among them, the air energy engine has four exhaust ports on the upper side.
  • said air energy cycle engine body is coupled to an air energy engine starting device, said air energy
  • the engine starting device includes a starting motor, a starting gear, and a flywheel.
  • the air energy engine The output shaft wheel and the alternator are coaxially arranged with a transmission sprocket, and the driving shaft of the alternator is provided with a driving gear; the driving gear meshes with the photoelectric control transmission gear of the generator.
  • the solenoid valve gas control system Including gas supply split photoelectric sensor, single-chip program controller, gas control solenoid valve total valve, air pipe tee joint, gas pipeline, solenoid valve control wire, cylinder intake control solenoid valve.
  • the transmission air supply shunt photoelectric sensor and the single chip program controller and the direct current motor program controller respectively Connection, wherein the MCU program controller is respectively connected with the gas control solenoid valve main valve, the cylinder intake control solenoid valve, the air pressure control sensor, the compressor electromagnetic clutch; the DC motor program controller is connected with the DC motor.
  • the invention provides an air energy circulation power generator, which is convenient, clean, safe, easy to obtain, and inexpensive, using an air medium source. There is no special harmful performance, there is no danger of fire, and the air has inexhaustible energy everywhere on the ground.
  • the structure optimization of the electronic program control system and the device is adopted, and the structure is novel, the operation is convenient, the energy saving and environmental protection, and no high temperature. Not afraid of damage caused by overload, it can work in many adverse environments. In particular, it can meet the urgent needs of serious air pollution and oil shortage at this stage.
  • a high-performance battery is used to supply power to the motor to form an air energy cycle.
  • the generator does not need to be refueled by the external auxiliary gas station equipment.
  • the gas storage tank is small in size and completely relies on the self-powered power control system.
  • the motor drives the compressor to reciprocate and supply air to the engine, which solves the air energy circulation power.
  • Generators' power generation, fuel consumption and environmental pollution are widely used in future applications, and can be applied to various environmental power needs, replacing existing energy-contaminated fuel generators.
  • Figure 1 is a schematic view showing the structure of an air energy cycle power engine of the present invention.
  • Air energy cycle power generator mainly consists of gas energy storage device, engine air supply control device, solenoid valve gas control system, power generation and power supply device, air energy engine , an engine starting device, a DC motor transmission device, and a gas supply circulation control device; wherein the gas energy storage device is in communication with the engine gas supply control device, and the gas energy storage device comprises a gas storage tank 1 and an air supply valve interface 2 The gas storage tank switching valve 3 and the gas storage tank safety valve 5; wherein the gas storage tank 1 is a carbon fiber gas tank, and the gas filling valve interface 2 is connected with the air inlet of the gas storage tank 1, and the gas storage tank 1 is filled with gas.
  • Valve port 2 and air outlet of high pressure air compressor (not shown) connected The gas outlet of the gas storage tank 1 is provided with a gas storage tank switching valve 3, and a gas storage tank safety valve 5 is provided between the gas storage tank switching valve 3 and the pressure reducing valve table assembly 7, and the gas tank safety valve 5 is used for monitoring The air pressure in the air tank 1 is exhausted by itself.
  • Engine air supply control unit includes The pressure reducing valve table assembly 6, the buffer tank 10, the gas flow control valve 13, the gas flow meter assembly 14, and the gas heat exchanger 16, wherein the pressure reducing valve table is provided with a high pressure meter 7 and a pressure reducing regulating valve 8 And a low pressure meter 9, wherein the high pressure meter 7 detects the rated pressure in the gas storage tank 1, and the pressure reducing regulating valve 8 is used to adjust the high pressure air pressure to a working pressure range of 5 MPa.
  • the total intake port of the pressure reducing valve table is connected to the air tank safety valve 5, and the air outlet of the pressure reducing valve table assembly 6 is connected to the air inlet of the buffer tank 10; the buffer tank 10 is provided with a buffer tank low pressure.
  • the buffer tank safety valve 12, the buffer tank low pressure meter 11 is to observe the pressure reducing regulating valve 8 to adjust the working air pressure, and the buffer tank safety valve 12 is to control the pressure regulating pressure of the pressure reducing regulating valve 8 when the pressure is too high.
  • a gas flow control valve 13, a gas flow meter assembly 14, a gas flow meter 15, and a gas heat exchanger 16 are sequentially connected to the gas outlet of the buffer tank 10; the gas outlet of the gas heat exchanger 16 passes through the gas solenoid valve 17 is connected to the air inlet of the air pipe tee joint 18, wherein the air outlet of the air pipe tee joint 18 passes through the branch cylinder gas line 20 respectively
  • the four intake chambers of the air energy cycle engine 34 are in communication.
  • the gas supply circulation control device is mainly composed of an air compressor 45, a compressor electromagnetic clutch 40, and a gas pressure control sensor 4; wherein the air outlet of the air compressor 45 is connected to the gas storage tank safety valve 5 of the gas storage device through the air pressure control sensor 4. ;
  • the power generation and power supply device is mainly composed of an alternator 36, an alternator output line 41, an electric appliance 35, and the like, wherein the drive shaft of the alternator 36 is The drive sprocket 39 provided on the compressor electromagnetic clutch 40 is coaxially connected.
  • the compressor electromagnetic clutch 40 is provided with an alternator drive sprocket 39 and a driven sprocket 48, wherein the driven sprocket 48 is linked with the compressor drive sprocket 42 on the air compressor 45; the alternator drive sprocket 39 and The output shaft wheel 47 of the air energy cycle engine 34 is linked.
  • the DC motor 43 The DC motor 43 , the rectification charging voltage regulator module 50 , the DC motor program controller 49 , the rectifying inverter 51 , the battery pack 44 , and the like; wherein the rotating shaft of the DC motor 43 and The electromagnetic clutch of the compressor is connected to the rotating shaft of the driven sprocket 48,
  • the DC motor 43 is connected to the rectification charging regulator module 50 and the rectifying inverter 51 via the DC motor program controller 49, and the rectification charging regulator module 50 and the rectifying inverter 51 are connected to the battery pack 44.
  • Air-electric electric hybrid engine The body 34 includes a cylinder intake control solenoid valve 21, an exhaust pipe 22, a cylinder 23, and a piston 24 The connecting rod 25 and the crankshaft 26; the air energy electric hybrid engine.
  • the upper end of the body 34 is provided with four intake chamber cylinders, and the cylinder inlet is provided with four cylinder intake control solenoid valves 21; wherein the air can circulate the engine
  • the upper end of the body 34 has four exhaust chambers 22.
  • Air energy cycle engine The body 34 is connected to an air energy cycle engine starting device, which can circulate air
  • the engine starting device includes a starter motor 32, a starter gear 28, and a flywheel 27.
  • Solenoid valve gas control system is mainly controlled by motor photoelectric transmission gear 38,
  • the gas supply split photoelectric sensor assembly 37, the single chip program controller 30, the gas control solenoid valve main valve 17, the gas pipe tee joint 18, the gas line 20, the solenoid valve control wire 19, the cylinder intake control solenoid valve 21 and the like are composed.
  • the air energy engine drive sprocket 47 rotates to drive the alternator drive sprocket 39 coaxially disposed with the alternator 36 to rotate, and the drive gear 46 rotates to drive the transmission gear 38 to rotate and drive the air supply split photoelectric sensor assembly 37 to control the optical axis.
  • the photoelectric sensor of the gas supply split photoelectric sensor 37 receives the light control shaft wheel signal and sends it to the microcontroller program controller 30 for program processing.
  • the transmission air supply split photoelectric sensor 37 and the single-chip microcomputer program controller 30 are connected through the single-chip control line 31, and the transmission air supply split photoelectric sensor 37 also passes
  • the alternator output line 41 is connected to an alternator.
  • the microcontroller program controller 30 is connected to the gas control solenoid valve main valve 18, the cylinder intake control solenoid valve 21, the air pressure control sensor 4, and the compressor electromagnetic clutch 40 via solenoid valve control lines 29, 19, respectively.
  • the microcontroller program controller 30 controls the starter motor 32 to start, the start gear 28 is operated, and the flywheel 27 is rotated.
  • the center hole of the flywheel 27 is nested on the crankshaft 26, and the crankshaft 26 also starts to rotate, thereby driving the output shaft wheel 47 to start rotating;
  • the shaft wheel 47 rotates and rotates the alternator drive sprocket 39 and the driving gear 46 to rotate, and the driving gear 46 drives the generator photoelectric control transmission gear 38 to rotate;
  • the transmission air supply split photoelectric sensor assembly 37 light control shaft wheel starts to work at the same time, so that
  • the photoelectric sensor of the gas supply shunt photoelectric sensor assembly 37 receives the light control shaft wheel signal, and sends it to the single chip program controller 30 for program processing, and then controls the gas control solenoid valve main valve 17 and the cylinder air intake control solenoid valve 21 to open, respectively.
  • the air cylinders 23 of the air energy cycle engine 34 are respectively circulated and supplied with air.
  • the piston 24 is pushed up and down in the cylinder 23, the lower end of the piston 24 is connected to one end of the connecting rod 25, and the other end is connected to the crankshaft 25.
  • the piston 24 is pushed by the air pressure, the piston 24 is moved up and down, and the crankshaft 26 is pushed up and down via the connecting rod 25.
  • the rotation of the crankshaft 26 drives the output shaft wheel 47 to rotate, and the driving photoelectric control transmission gear 38 is driven to rotate by the driving gear 46.
  • Air energy electric hybrid engine output shaft wheel 47 drive alternator drive sprocket 39 rotates to drive the alternator 36 Start working to provide power to the electrical appliance 35.
  • the automatic control compressor electromagnetic clutch 40 While the alternator drive sprocket 39 is rotating, the automatic control compressor electromagnetic clutch 40 also begins to operate, and the driven sprocket 48 of the compressor electromagnetic clutch 40 is automatically controlled to be linked with the compressor drive sprocket 42 through the air pressure control sensor 4 And the single-chip microcomputer program controller 30 controls the automatic control of the compressor electromagnetic clutch 40 to pull in and off, so that the air compressor 45 operates and stops.
  • the air pressure control sensor 4 senses the air pressure in the gas storage tank 1. When the air pressure is higher than the set value, the air pressure control sensor 4 transmits the high air pressure signal to the single chip program controller 30, and the single chip program controller 30 automatically controls the compressor through the analysis and control. The electromagnetic clutch 40 is turned off and the air compressor 45 is not operating.
  • the air pressure control sensor 4 When the air pressure of the air tank 1 is lower than the set value, the air pressure control sensor 4 transmits a low voltage signal to the single chip program controller 30, and the single-chip microcomputer controller 30 controls the automatic control of the electromagnetic clutch 40 of the compressor to be sucked, and the air compressor 45 works.
  • the high pressure air compressor refills the gas storage tank 1, When the air pressure in the gas storage tank 1 reaches the set value of 20 MPa, the gas filling is stopped. After the gas storage tank 1 is filled with the high pressure gas, the air pressure control sensor 4 transmits the high pressure signal to the single chip program controller 30, and is analyzed by the single chip program controller 30.
  • the control automatic control compressor electromagnetic clutch 40 is opened and the air compressor 45 is stopped. Further, the high pressure gas in the gas storage tank 1 directly controls the operation of the engine, thereby
  • the air energy circulation engine 34 and the air compressor 45 pass the transmission conversion device to achieve the purpose of the air supply cycle, which greatly increases the endurance of the air energy cycle engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Eletrric Generators (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

空气能循环动力发电机,包括气体储能装置、发动机供气控制装置、电磁阀气体控制系统、发电充供蓄电装置、发电供电装置、空气能发动机、发动机启动装置、直流电动机传动装置、供气循环控制装置。气体储能装置与发动机供气控制装置连通,发动机供气控制装置包括减压阀表总成(6)、缓冲罐(10)、气体流量控制阀(13)、气体热交换器(16);气体热交换器(16)的出气口通过气体电磁阀总阀(17)连接到气管三通接头(18)的进气口,气管三通接头(18)的出气口通过分支气缸气体管路(20)分别与空气能发动机(34)机体的四个进气腔连通;供气循环控制装置包括空气压缩机(45)、压缩机电磁离合器(40)、气压控制传感器(4);空气压缩机(45)的出气口通过气压控制传感器(4)与气体储能装置的管路连通;发电供电装置包括交流发电机(36)、交流发电机输出线(41)、用电电器(35),交流发电机(36)的传动轴与压缩机电磁离合器(40)上设置的传动链轮(39)同轴连接;压缩机电磁离合器(40)设有传动链轮(39)、从动链轮(48),从动链轮(48)与空气压缩机(45)上的压缩机传动链轮(42)链接;传动链轮(39)与空气能发动机机体的输出轴轮(47)链接;直流电动机传动装置包括直流电动机(43)、整流充电稳压模块(50)、直流电动机程控器(49)、整流逆变器(51)、蓄电池组(44);直流电动机(43)的转轴与压缩机电磁离合器从动链轮轴连接,该直流电动机(43)通过直流电动机程控器(49)与整流充电稳压模块(50)、整流逆变器(51)连接,整流充电稳压模块(50)和整流逆变器(51)与蓄电池组(44)连接。

Description

空气能循环动力发电机 技术领域
本发明涉及一种新能源机械技术领域,尤其是涉 及一种空气能循环动力发电机。
背景技术
随着现代化建设的迅速发展,各行各业对电力的应用越来越广泛,使得电力越来越紧张,所采用的发电设备也是多样化, 尤其是燃油发电机最为普及广泛,的确燃油发电机给人们的生活带来了方便,但燃油发电机在作功完成后,所产生废气排放到大气中,这给环境造成污染,又给人们身体健康带来负面的影响。由于燃油发电机也在不但地日益迅猛增加,燃油也在不但消耗,使石油能源日益紧张,石油原料价格 一再飙升 ,更是 自然燃料能源的大量消耗临近 枯竭和造成环境严重的污染 ,已是摆在世界各国面前的重点问题,因为, 能源是现代社会赖以生存和发展的基础, 面对 自然燃料能源的大量消耗面临 枯竭 ,紧缺的情况下,对于 燃油发动机动力机械所产生的种种问题,促使世界各国的科学界对新能源,新动力的研究探讨,如核能、太阳能、风能、氢能、地热能、海洋能、生物质能、压缩空气储能等等,最为关注的是压缩空气储能,它最具有发展推广应用性,是取之不尽用之不竭的清洁环保能源。所有用燃油来发电的发电机,在社会发展时代 不论怎样 ' 细水长流 ' , 自然能源 石油煤炭早晚都会用完的。最终会成为永不动的机器。
技术问题
本发明目的是提供一种空气能循环动力发电机 。以解决现有技术所存在的 燃油发电机排放有害气体及使用成本较高、发电机续航能力差、成本较高 等 技术问题。
技术解决方案
为解决上述技术问题,本发明所采用的技术方案是: 空气能循环动力发电机,包括气体储能装置、发动机 供气控制装置、电磁阀气体控制系统、发电供电装置、空气能发动机 、发动机启动装置、直流电动机传动装置、供气循环控制装置 ;所述 气体储能装置与发动机 供气控制装置连通; 所述发动机 供气控制装置包括 减压阀表总成、缓冲罐、气体流量控制阀、气体热交换器;其中气体热交换器的出气口通过气体电磁阀总阀连接到气管三通接头的进气口,其中气管三通接头的出气口通过分支气缸气体管路分别与 空气能发动机 机体的四个进气腔连通;所述供气循环控制装置包括空气压缩机、压缩机电磁离合器、气压控制传感器;其中空气压缩机的出气口通过气压控制传感器与气体储能装置的管路连通;所述 发电供电装置,包括 交流发电机,交流发电机输出线,用电电器,其中交流发电机的传动轴与所述 压缩机电磁离合器上设置的传动链轮同轴连接;所述压缩机电磁离合器设有传动链轮、从动链轮,其中从动链轮与空气压缩机上的压缩机传动链轮链接;传动链轮与 空气能发动机 机体的输出轴轮链接;所述 直流电动机传动装置包括 直流电动机、整流充电稳压模块、直流电动机程控器、整流逆变器、蓄电池组;其中直流电动机的转轴与 压缩机电磁离合器从动链轮轴连接,该 直流电动机通过直流电动机程控器与整流充电稳压模块、整流逆变器连接,整流充电稳压模块和整流逆变器与蓄电池组连接。
作为优选,所述 空气能循环发动机 包括气缸进气控制电磁阀、排气管、气缸 、活塞、连杆 、曲轴; 空气能发动机 机体上端设有四个进气腔气缸连通,进气腔口上安装有四个气缸进气控制电磁阀;其中 空气能发动机 机体上侧端有四个排气口。
作为优选,所述 空气能循环发动机 机体与 空气能发动机启动装置连接,该空气能 发动机启动装置包括启动马达、启动齿轮、飞轮。
作为优选,所述 空气能发动机 的输出轴轮与交流发电机同轴设置传动链轮链接,该交流发电机的转轴上设有主动齿轮;所述主动齿轮与发电机光电控制传动齿轮啮合。
作为优选,所述 电磁阀气体控制系统 包括供气分路光电传感器、单片机程控器、气体控制电磁阀总阀、气管三通接头、气体管路、电磁阀控制电线、气缸进气控制电磁阀。
作为优选,所述传动供气分路光电传感器分别与单片机程控器和 直流电动机程控器 连接,其中单片机程控器分别与气体控制电磁阀总阀、气缸进气控制电磁阀、气压控制传感器、压缩机电磁离合器连接; 直流电动机程控器与直流电动机连接 。
有益效果
本发明提供一种空气能 循环动力 发电机,利用空气介质来源方便,清洁,安全 , 易取 , 价廉, 没有特殊的有害性能,没有起火危险,空气在地面上到处都有取之不尽的能源。便 采用了电子程序控制系统和器件的结构优化,其结构新颖、操作方便,节能环保,无高温, 不怕超负荷所引起机件损坏,能在许多不利环境下工作。 特别是它可以满足现阶段空气污染严重和石油紧缺的迫切需要。又采用高性能蓄电池提供给电动机供电工作,形成一种空气能 循环动力 发电机无需外部辅助加气站设备加气,储气罐体积小,完全靠自助动力控制系统,通过电动机带动压缩机循环往复的给发动机供气,解决了空气能 循环动力 发电机的发电和燃油的消耗及环境的污染,在未来的应用领域及为广泛,并可适用于各种环境用电的需求,便取代现有耗能污染的燃油发电机。
附图说明
图1是本发明 空气能循环动力发动机 的结构示意图。
图中: 1 、储气罐,2、加气阀接口,3、储气罐开关阀,4、气压控制传感器,5、储气罐安全阀,6、减压阀总成,7、高压表,8、减压调节阀,9、低压表,10、缓冲罐,11、缓冲罐低压表,12、缓冲罐安全阀,13、气体流量控制阀,14、气体流量表总成,15、气体流量表,16、气体热交换器,17、气体控制电磁阀总阀,18、气管三通接头,19、电磁阀控制电线,20气体管路,21、气缸控制电磁阀,22、排气管,23、气缸,24、活塞,25、连杆,26、曲轴,27、飞轮,28、启动齿轮,29、电磁阀控制线,30、单片机程控器,31、单片机程控器控制线,32、启动马达,33、启动马达控制线,34、空气能循环发动机机体,35、 用电电器 ,36、 交流发电机 ,37、供气分路光电传感器组件,38、发电机光电控制传动齿轮,39、离合变速箱传动链轮,40、自动控制压缩机电磁离合器,41、 交流发电机输出线 ,42、压缩机传动链轮,43、直流电动机,44、蓄电池组,45、空气压缩机,46、主动齿轮,47输出轴轮,48、从动链轮,49、 直流电动机程控器,50、整流充电稳压模块、51、 整流逆变器 。
本发明的实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体说明。
图1是本发明 空气能循环发动机 的结构示意图。由图1可知, 空气能循环动力发电机,主要由气体储能装置、发动机 供气控制装置、电磁阀气体控制系统、发电供电装置、空气能发动机 、发动机启动装置、直流电动机传动装置、供气循环控制装置 ;其中 气体储能装置与发动机 供气控制装置连通, 气体储能装置包括 储气罐1、加气阀接口2、 储气罐开关阀3、储气罐安全阀5; 其中 储气罐1采用的是碳纤维气罐,加气阀接口2与储气罐1的进气口连接,该 储气罐1通过加气阀接口2与 高压空气压缩机的出气口 (图中未画出)连通, 储气罐1的出气口设有储气罐开关阀3,储气罐开关阀3和减压阀表总成7之间设有储气罐安全阀5,该气罐安全阀5用于监测储气罐1内的气压并自行排气。
发动机 供气控制装置包括 减压阀表总成6、缓冲罐10、气体流量控制阀13、气体流量表总成14、气体热交换器16,其中减压阀表总6成配置有高压表7、减压调节阀8、低压表9,其中高压表7检测储气罐1内的额定压力,减压调节阀8用于将高压气压调节到5Mpa的工作气压范围内。减压阀表总6成的进气口与储气罐安全阀5接通,该减压阀表总成6的出气口与缓冲罐10的进气口连接;缓冲罐10设置有缓冲罐低压表11、缓冲罐安全阀12,缓冲罐低压表11是观察减压调节阀8调节工作气压压力,缓冲罐安全阀12是控制减压调节阀8压力调节的过高时排放气压。缓冲罐10出气口的管路上依次连接有气体流量控制阀13、气体流量表总成14、气体流量表15和气体热交换器16;该气体热交换器16的出气口通过气体电磁阀总阀17连接到气管三通接头18的进气口,其中气管三通接头18的出气口通过分支气缸气体管路20分别与 空气能循环发动机 34 的四个进气腔连通。
供气循环控制装置,主要由空气压缩机45、压缩机电磁离合器40、气压控制传感器4;其中空气压缩机45的出气口通过气压控制传感器4与气体储能装置的储气罐安全阀5连通; 发电供电装置主要由 交流发电机36,交流发电机输出线41,用电电器35等组成,其中交流发电机36的传动轴与所述 压缩机电磁离合器40上设置的传动链轮39同轴连接。压缩机电磁离合器40设有交流发电机传动链轮39、从动链轮48,其中从动链轮48与空气压缩机45上的压缩机传动链轮42链接;交流发电机传动链轮39与空气能循环发动机34的输出轴轮47链接。
直流电动机传动装置主要由 直流电动机43、整流充电稳压模块50、直流电动机程控器49、整流逆变器51、蓄电池组44等组成;其中直流电动机43的转轴与 压缩机电磁离合器从动链轮48的转轴连接,该 直流电动机43通过直流电动机程控器49与整流充电稳压模块50、整流逆变器51连接,整流充电稳压模块50和整流逆变器51与蓄电池组44连接。
空气能电动混合型发动机 机体34包括气缸进气控制电磁阀21、排气管22、气缸23 、活塞24 、连杆25 、曲轴26; 空气能电动混合型发动机 机体34上端设有四个进气腔气缸连通,进气腔口上安装有四个气缸进气控制电磁阀21;其中 空气能循环发动机 机体34上侧端有四个排气腔22。 空气能循环发动机 机体34与 空气能循环发动机启动装置连接,该空气能循环 发动机启动装置包括启动马达32、启动齿轮28、飞轮27。
电磁阀气体控制系统 主要由电机光电控制传动齿轮38 、 供气分路光电传感器组件37、单片机程控器30、气体控制电磁阀总阀17、气管三通接头18、气体管路20、电磁阀控制电线19、气缸进气控制电磁阀21等组成。空气能发动机传动链轮47转动带动与交流发电机36同轴设置的交流发电机传动链轮39转动,同时主动齿轮46转动带动传动齿轮38旋转并传动供气分路光电传感器组件37光控轴轮;其中供气分路光电传感器37的光电传感器接受到光控轴轮信号,输送给单片机程控器30进行程序处理。传动供气分路光电传感器37与单片机程控器30通过单片机控制线31连接,传动供气分路光电传感器37还通过 交流发电机输出线41与交流发电机连接。 单片机程控器30通过电磁阀控制线29、19分别与气体控制电磁阀总阀18、气缸进气控制电磁阀21、气压控制传感器4、压缩机电磁离合器40连接。
工作过程:
单片机程控器30控制启动马达32启动,使启动齿轮28运转,带动飞轮27旋转,飞轮27中心孔是嵌套在曲轴轴26上,曲轴26也开始旋转,从而带动输出轴轮47开始转动;输出轴轮47转动并联动交流发电机传动链轮39和主动齿轮46转动,主动齿轮46带动发电机光电控制传动齿轮38转动;传动供气分路光电传感器组件37光控轴轮同时开始工作,使供气分路光电传感器组件37的光电传感器接受到光控轴轮信号,输送给单片机程控器30进行程序处理后,分别控制气体控制电磁阀总阀17和气缸进气控制电磁阀21开启,对空气能循环发动机34的气缸23分别逐级循环进行供气。推动活塞24在气缸23内上下运动,活塞24下端与连杆25一端连接,另一端与曲轴25连接,在活塞24受到气压强力推动下,使活塞24上下运动,经连杆25上下推拉曲轴26旋转工作。曲轴26旋转带动输出轴轮47转动,通过主动齿轮46带动发电机光电控制传动齿轮38转动, 空气能 电动混合型 发动机 输出轴轮47 传动交流发电机传动链轮39转动,从而带动 交流发电机 36 开始工作,为用电电器35提供电源。在交流发电机传动链轮39转动的同时,自动控制压缩机电磁离合器40也开始工作,自动控制压缩机电磁离合器40的从动链轮48与压缩机传动链轮42链接,通过气压控制传感器4和单片机程控器30控制自动控制压缩机电磁离合器40吸合和断开,使空气压缩机45工作和停机。
气压控制传感器4是感应储气罐1里气压高低,当气压高于设定值时,气压控制传感器4将高气压信号传输给单片机程控器30,由单片机程控器30通过分析控制自动控制压缩机电磁离合器40断开,空气压缩机45不工作。
当储气罐1气压低于设定值时,气压控制传感器4传输低压信号给单片机程控器30,由单片机程控器30控制自动控制压缩机电磁离合器40吸合,空气压缩机45工作。 同时, 高压空气压缩机向储气罐1加气, 当储气罐1内的气压达到20Mpa的设定值后停止加气,储气罐1充满高压气后,气压控制传感器4将高气压信号传输给单片机程控器30,由单片机程控器30通过分析控制自动控制压缩机电磁离合器40端开,空气压缩机45停止工作。进而使储气罐1内的高压气体直接控制发动机工作,进而使 空气能循环发动机34和空气压缩机45通过传动转换装置,达到供气循环的目的,大大增加 空气能循环发动机的续航能力 。

Claims (6)

  1. 空气能循环动力发电机,包括气体储能装置、发动机 供气控制装置、电磁阀气体控制系统、发电充供蓄电装置、发电供电装置、空气能发动机 、发动机启动装置、直流电动机传动装置、供气循环控制装置 ;其特征是,所述 气体储能装置与发动机 供气控制装置连通, 发动机 供气控制装置包括 减压阀表总成、缓冲罐、气体流量控制阀、气体热交换器;其中气体热交换器的出气口通过气体电磁阀总阀连接到气管三通接头的进气口,其中气管三通接头的出气口通过分支气缸气体管路分别与 空气能发动机 机体的四个进气腔连通;所述供气循环控制装置包括空气压缩机、压缩机电磁离合器、气压控制传感器;其中空气压缩机的出气口通过气压控制传感器与气体储能装置的管路连通;所述 发电供电装置,包括 交流发电机,交流发电机输出线,用电电器,其中交流发电机的传动轴与所述 压缩机电磁离合器上设置的传动链轮同轴连接;所述压缩机电磁离合器设有传动链轮、从动链轮,其中从动链轮与空气压缩机上的压缩机传动链轮链接;传动链轮与 空气能发动机 机体的输出轴轮链接;所述 直流电动机传动装置包括 直流电动机、整流充电稳压模块、直流电动机程控器、整流逆变器、蓄电池组;其中直流电动机的转轴与 压缩机电磁离合器从动链轮轴连接,该 直流电动机通过直流电动机程控器与整流充电稳压模块、整流逆变器连接,整流充电稳压模块和整流逆变器与蓄电池组连接。
  2. 根据权利要求1所述的空气能循环动力发电机,其特征是,所述 空气能循环发动机 包括气缸进气控制电磁阀、排气管、气缸 、活塞、连杆 、曲轴; 空气能发动机 机体上端设有四个进气腔气缸连通,进气腔口上安装有四个气缸进气控制电磁阀;其中 空气能发动机 机体上侧端有四个排气口。
  3. 根据权利要求2所述的空气能循环动力发电机,其特征是,所述 空气能循环发动机 机体与 空气能发动机启动装置连接,该空气能 发动机启动装置包括启动马达、启动齿轮、飞轮。
  4. 根据权利要求1或2所述的空气能循环动力发电机,其特征是,所述 空气能循环发动机 的输出轴轮与交流发电机同轴设置的传动链轮链接,该交流发电机的转轴上设有主动齿轮;所述主动齿轮与发电机光电控制传动齿轮啮合。
  5. 根据权利要求1所述的空气能循环动力发电机,其特征是,所述 电磁阀气体控制系统 包括供气分路光电传感器、单片机程控器、气体控制电磁阀总阀、气管三通接头、气体管路、电磁阀控制电线、气缸进气控制电磁阀。
  6. 根据权利要求1所述的空气能循环动力发电机,其特征是,所述传动供气分路光电传感器分别与单片机程控器和 直流电动机程控器 连接,其中单片机程控器分别与气体控制电磁阀总阀、气缸进气控制电磁阀、气压控制传感器、压缩机电磁离合器连接; 直流电动机程控器与直流电动机连接 。
PCT/CN2014/082113 2013-08-01 2014-07-14 空气能循环动力发电机 WO2015014204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310330015.X 2013-08-01
CN201310330015.XA CN103362556B (zh) 2013-08-01 2013-08-01 空气能循环动力发电机

Publications (1)

Publication Number Publication Date
WO2015014204A1 true WO2015014204A1 (zh) 2015-02-05

Family

ID=49364735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082113 WO2015014204A1 (zh) 2013-08-01 2014-07-14 空气能循环动力发电机

Country Status (2)

Country Link
CN (1) CN103362556B (zh)
WO (1) WO2015014204A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065063A (zh) * 2015-09-08 2015-11-18 郭生 一种空气动力系统
CN107359737A (zh) * 2017-07-04 2017-11-17 王维平 风能太阳能发电环保变压发电系统
CN108894876A (zh) * 2018-06-25 2018-11-27 重庆赛欧机电安装工程有限公司 一种散热性能较好的发电机组
CN114934951A (zh) * 2022-04-01 2022-08-23 宁波芯丰精密科技有限公司 一种空气主轴气压保护系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103362556B (zh) * 2013-08-01 2015-04-29 深圳市品川新智科技发展有限公司 空气能循环动力发电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071375A1 (de) * 1999-05-21 2000-11-30 Iq Battery Research & Development Gmbh Hybridmotor
CN202573777U (zh) * 2012-05-18 2012-12-05 周登荣 空气动力汽车
CN103362556A (zh) * 2013-08-01 2013-10-23 深圳市品川新智科技发展有限公司 空气能循环动力发电机
CN203441542U (zh) * 2013-08-01 2014-02-19 深圳市品川新智科技发展有限公司 空气能循环动力发电机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413403A (zh) * 2008-11-05 2009-04-22 周登荣 空气动力发动机总成
CN103061818B (zh) * 2011-10-18 2014-09-03 周登荣 具有补充压缩空气回路的压缩空气发动机总成

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071375A1 (de) * 1999-05-21 2000-11-30 Iq Battery Research & Development Gmbh Hybridmotor
CN202573777U (zh) * 2012-05-18 2012-12-05 周登荣 空气动力汽车
CN103362556A (zh) * 2013-08-01 2013-10-23 深圳市品川新智科技发展有限公司 空气能循环动力发电机
CN203441542U (zh) * 2013-08-01 2014-02-19 深圳市品川新智科技发展有限公司 空气能循环动力发电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DENG, RONGBING ET AL.: "A Study on Compressed Air Engine Based on Electronic of Injection", INTERNAL COMBUSTION ENGINE & POWERPLANT, vol. 2, 30 April 2008 (2008-04-30), pages 2 - 4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065063A (zh) * 2015-09-08 2015-11-18 郭生 一种空气动力系统
CN107359737A (zh) * 2017-07-04 2017-11-17 王维平 风能太阳能发电环保变压发电系统
CN108894876A (zh) * 2018-06-25 2018-11-27 重庆赛欧机电安装工程有限公司 一种散热性能较好的发电机组
CN114934951A (zh) * 2022-04-01 2022-08-23 宁波芯丰精密科技有限公司 一种空气主轴气压保护系统

Also Published As

Publication number Publication date
CN103362556B (zh) 2015-04-29
CN103362556A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2015014205A1 (zh) 空气能排气增压循环发动机
WO2015014206A1 (zh) 空气能燃油混合型发动机
WO2015014204A1 (zh) 空气能循环动力发电机
WO2010094223A1 (zh) 一种空气能源动力系统
WO2009124461A1 (zh) 一种液压动力发动机及发电机组装置
WO2015014234A1 (zh) 空气能电动混合型发动机
CN103362555B (zh) 空气能循环发动机
WO2012136113A1 (zh) 压缩空气车辆发动机及其运行方法
CN203441537U (zh) 空气能发动机
CN203441541U (zh) 空气能循环发动机
WO2011131032A1 (zh) 一种空气发电装置及其应用
CN103352724A (zh) 空气能发动机
CN203442476U (zh) 空气能发动机供气循环系统
CN203441542U (zh) 空气能循环动力发电机
CN201966678U (zh) 基于沼气发电的温室节能供电装置
CN203441544U (zh) 空气能排气增压循环发动机
CN203441539U (zh) 空气能燃油混合型发动机
CN203441538U (zh) 空气能电动混合发动机
CN103591004B (zh) 一种微水头流体能抽水系统
CN113294926A (zh) 一种户式斯特林制冷系统
CN212202229U (zh) 一种氢氧循环动力系统
CN201433855Y (zh) 气体差压发电装置
CN203115239U (zh) 一种利用地源热的环保节能减压装置
CN202236223U (zh) 一种太阳能桑拿房
CN204652204U (zh) 一种自由电力能源产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832112

Country of ref document: EP

Kind code of ref document: A1