WO2012136113A1 - 压缩空气车辆发动机及其运行方法 - Google Patents

压缩空气车辆发动机及其运行方法 Download PDF

Info

Publication number
WO2012136113A1
WO2012136113A1 PCT/CN2012/073219 CN2012073219W WO2012136113A1 WO 2012136113 A1 WO2012136113 A1 WO 2012136113A1 CN 2012073219 W CN2012073219 W CN 2012073219W WO 2012136113 A1 WO2012136113 A1 WO 2012136113A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
output
vehicle engine
tube
heating device
Prior art date
Application number
PCT/CN2012/073219
Other languages
English (en)
French (fr)
Inventor
罗显平
Original Assignee
Luo Xianping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luo Xianping filed Critical Luo Xianping
Publication of WO2012136113A1 publication Critical patent/WO2012136113A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/02Adaptations for driving vehicles, e.g. locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/44Passages conducting the charge from the pump to the engine inlet, e.g. reservoirs
    • F02B33/443Heating of charging air, e.g. for facilitating the starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric

Definitions

  • the present invention relates to a compressed air vehicle engine, a flame, a turbine, and a valve train. Background technique
  • Hybrid electric vehicle inherits the inherent defects of high energy consumption, high pollution, small output torque, etc. of the existing internal combustion engine, only for the current transition. Products; fuel cell vehicles - energy saving and emission reduction effect is very good, but hydrogen fuel and platinum sources are difficult, the dream is difficult to achieve.
  • Countries still invest huge sums of money to research and develop these technologies. It can be seen that new energy vehicle technologies have touched the nerves of all countries in the world and have become a competition between the national levels. Worried about it, it is possible that the economical and practical new energy vehicles have not been built, and humans have burned out the oil on the earth. Recently, people began to realize that compressed air-powered cars are as environmentally-friendly and energy-efficient, and the technology is feasible.
  • a compressed air vehicle engine and a method for operating the same according to a method and apparatus for reducing vehicle energy consumption, according to a connection relationship between components of the compressed air vehicle engine, thereby reducing vehicle energy consumption
  • the compressed air vehicle engine uses a horizontally opposed two-process engine that enables it to convert compressed air energy at a large flow rate
  • the compressed air east engine uses a horizontally opposed two-process engine valve distributor
  • a compressed air vehicle engine comprising an air cleaner, an air compressor, a gas storage tank, a heating device, an output gas valve, a two-process engine, a turbine, an exhaust pipe, a battery, a generator, a reducer;
  • the air compressor comprises a low power air compressor and a high power air compressor;
  • the heating device is composed of a heating device A and a heating device B;
  • the components in the compressed air vehicle engine are connected in the following manner:
  • Air - air filter - low power and high power air compressor - gas storage tank - heating device A - output gas valve - two process engine - turbine - heating device B - exhaust Tube - the atmosphere, which is connected in series with the atmosphere to form a thermodynamic cycle with compressed air as the working medium; or
  • Air - air filter - low power and high power air compressor - gas storage tank - output gas valve - one heating device A two process engine - turbine - heating device B - exhaust pipe - the atmosphere, connected in series with the pipeline to form a thermodynamic cycle with compressed air as the working medium;
  • the turbine is powered by a matched reducer output power to the generator and the high-power air compressor, and the battery is electrically connected to each of the electrical appliances;
  • the input end of the combustion chamber electronic control unit ECU of the heating device A is respectively electrically connected with the detection compressed air flow sensor, the heating front and rear pressure sensor, and the heating front and rear temperature sensor, and the signal output end is respectively connected with the ignition device of the combustion chamber, and the fuel-fuel ratio is controlled according to the program.
  • the device is electrically connected.
  • a normally open emergency backup valve is also connected between the gas storage tank and the output gas valve.
  • An air compressor powered by a battery.
  • the electric air compressor is a vane air compressor.
  • the high power vane air compressor is driven by the turbine output mechanical energy.
  • the gas storage tank is made of carbon fiber material wrapped in light metal, and is composed of at least two or more gas storage tanks connected in parallel.
  • the heating device B includes an external heat device for recovering waste heat of the exhaust gas;
  • the heating device A includes an internal heat device for internal combustion, and the internal heat device is a combustion chamber including a combustion chamber shell, a diffuser, a flame tube, a swirler, and an ignition device. Compressed air to support combustion,
  • the combustion chamber has at least two fuel supply systems and fuel atomizing nozzles thereof, and the signal input ends of the electronic control unit ECU are respectively electrically connected with the detecting 3 ⁇ 4 shrink air flow sensor, the heating front and rear pressure sensor, the heating front and rear temperature sensor, and the signal output end respectively burning
  • the ignition device of the chamber is electrically connected to the device for controlling the fuel air-fuel ratio according to the program.
  • the output air wide door is provided with an input air port at one longitudinal end and an output gas port at the other end, and a stator having a tapered hole and communicating with the input and output gas ports is matched with a longitudinally provided hole and sleeved into the tapered hole.
  • the cone rotor is composed of a rotating cone rotor that can open or close the compressed air flowing through the input and output air ports.
  • the second process engine including the crank linkage mechanism, the gas distribution mechanism, the lubrication system, and the second process engine have at least three or more n turns, and the relative positions of the cranks are uniformly arranged on the crank angle by 360!
  • the number of pistons connected to the shaft journal is equal.
  • the valve train moves the piston from the top dead center to the bottom dead center.
  • the intake valve opens, the exhaust valve closes, and the piston moves from the bottom dead center to the top dead center.
  • the door is closed and the exhaust valve is open.
  • one of the two process engines is selected as the intake end, the other end is the exhaust end.
  • the crankshaft rotates one revolution to complete the work of two cycles of work and exhaust.
  • the crankshaft can be Clockwise or counterclockwise rotation converts the force transmitted from the piston rod set into torque output mechanical energy. More than 6 pairs of pistons are evenly distributed on both sides of the crankshaft, and 2 cranks in the same plane are opposite to each other.
  • the horizontal movement of the piston in the horizontal direction constitutes a horizontally opposed two-process engine.
  • a horizontally opposed two-process engine one piston with a cylinder block and a cylinder head.
  • a heat sink is provided on the outer surface of the cylinder block and the cylinder head.
  • a heat sink is provided on the surface of the crankcase.
  • the gas distribution mechanism of the horizontally opposed two-process engine is composed of a cylinder head and an electric device.
  • the cylinder head is provided with an intake port and an exhaust port at one longitudinal end, and an air inlet and an exhaust port facing the piston end.
  • a stator having a tapered hole and communicating with the intake and exhaust port is matched with a cone rotor having a radial vertical and horizontal vertical and two non-intersecting holes nested in the tapered hole on the same shaft;
  • the electric device is composed of a crank position sensor
  • the actuator is composed of an actuator output power and a rotor power connection of the cylinder head, and the electric device output signal drives the rotor rotation control level to face the process cylinder cylinder inlet and exhaust valves to open or close.
  • the electric device of the horizontally opposite two-process engine valve-distributing mechanism is provided with a non-magnetic turntable that rotates synchronously with the horizontally opposite two-process engine output shaft, and the non-magnetic turntable is fixed corresponding to the horizontally opposite two-process engine crank angle
  • a permanent magnet and a magnetic conductive material is fixed in a semicircle of the permanent magnet sweeping point, and a Hall sensor is arranged in the direction of the magnetic pole of the magnetic conductive material. When the Hall sensor detects a signal of a crank, the output signal is controlled to be executed.
  • the mechanism drives the rotor rotation control level to oppose the opening or closing of the engine cylinder head intake and exhaust valves.
  • the horizontally opposite two-process engine valve-distributing mechanism is composed of two AB switches, the same-direction series control line, the inter-AB node 1, the CD two switch tubes, the same-direction series control line, the inter-CD node 2, the node 1 and There are two iron core coils connected in parallel between the nodes 2, the iron core is connected with the rotor power, the switch tube A tube and the D tube input signal electrode are connected in parallel with the Hall sensor input correction page (fine ⁇ 9) The signal terminal is electrically connected, and the switch tube C tube and the B tube input signal electrode are electrically connected in parallel to the inverter output end, and the inverter input end is electrically connected to the Hall sensor output signal end.
  • the switch tube C tube and the B tube input signal electrode are electrically connected in parallel to the inverter output end, and the inverter input end is
  • the engine is turned forward, and when the bypass tube A tube and the D tube input signal electrode are electrically connected in parallel to the inverter output end, the inverter input end is electrically connected with the Hall sensor output signal end.
  • the C-tube and the B-tube input signal electrode are connected in parallel with the Hall sensor output signal terminal, the horizontally opposite process engine is converted from a forward to a reverse.
  • connection relationship between components in a compressed air vehicle engine is as described above, and the method includes the following steps:
  • the low-power air compressor is activated to provide compressed air, and the output air valve controls the amount of compressed air released, so that the compressed air obtains increased energy at the heating device;
  • Driving a high-power air compressor provides a large amount of compressed air to cycle the compressed air vehicle engine.
  • Compressed air vehicle engines do not require the use of large capacity batteries. Because the existing pure electric vehicles and hybrid vehicles are driven by the entire vehicle, it is necessary to use a large-capacity battery pack. It is necessary to use a large-power electric generator, which is its fatal. The weak point; and the present invention only needs to use a low-power generator and a small-capacity battery to drive a low-power electric air compressor to provide a compressed air to start the engine. It is a shortcoming to overcome the above shortcomings by using a horizontally opposed two-engine engine to drive power to drive the vehicle, and to drive the low-power generator and the high-power air compressor with a structurally lightweight turbine output.
  • the flame tube heating device is used, the air-fuel ratio can reach 40:1 or more, the fuel can be burned ultra-thin and fully burned, and the amount of excess air is small, and the harmful substances generated are naturally less.
  • the main emission is air.
  • the output torque is larger. Since the horizontally opposed two-process engine is used, the piston works at least two pistons at any time, and at least two pistons are in the exhaust stroke, and the output torque is more than twice the output torque of the single cylinder.
  • the gas distribution mechanism of the internal combustion engine is equipped with a gear transmission or a synchronous belt transmission cam gas distribution device.
  • the gear transmission cam gas distribution device is said to be synchronous belt drive cam except that the noise is large, bulky, complicated and easy to wear, and the gas distribution is not allowed.
  • Gas distribution device, the current car generally needs to replace the timing belt every 6 ⁇ 0 million kilometers, otherwise it will break the engine, which is a major weakness of the current car.
  • the present invention does not have these problems with an electric wide door air distribution device.
  • Correction page (Article 9 1) 6. Cancel the water cooling system. Because the cylinder is used for the external combustion heating method, the second process engine is provided with a heat sink, and when the output gas valve is closed, the atmosphere is cooled, so that it can be cooled by air.
  • the taper-shaped stator is equipped with a cone-shaped rotor as a valve, and the joint is automatically matched even if the joint is worn.
  • the carbon fiber is used as the main material to manufacture the gas storage tank; 2.
  • the maximum rated output pressure of the existing commercial vane air compressor is only 1.3Mpa, and 1.3Mpa is the conventional low pressure range.
  • the entire energy conversion device and the gas turbine have similar places, which can be regarded as a horizontally opposed two-process engine connected in series between the gas turbine of the gas turbine and the combustion chamber.
  • the working mode of the gas turbine is different from that of the horizontally opposite process engine.
  • the externally driven load, the turbine output power independently drives the compressor; the heat obtained by the combustion medium of the invention from the combustion of the fuel in the flame tube is partly converted by the horizontally opposed two-process engine to output useful mechanical energy for driving the vehicle, and the other part outputs the useless work. Most of this useless work is recycled and recycled by turbines and regenerators. Only a small part of the heat is transferred to the lower temperature environment through the casing and exhaust gas, making the energy conversion efficiency of this device close to the ideal 100% limit.
  • the heat engine is much more efficient.
  • the scientific connection method plus the light weight of the gas tank, the flame tube, the turbine and the above technical advantages the compressed air vehicle engine is easy to start, the structure is simple, the weight is light, the energy is high, the durability is durable, and there is no short cruising problem.
  • small cars save clutches, drive shafts, and even gearboxes. Large cars can also eliminate clutches and drive shafts.
  • FIG. 1 is a schematic view showing the internal connection of a compressed air vehicle engine according to the present invention.
  • thermodynamic cycle the one-way valve that removes the vacuum resistance and is introduced into the atmosphere in parallel between the output gas valve and the two process engine, so that the atmosphere-air filter is introduced into the atmosphere, the one-way valve - the two process engine - the turbine - - Heating device B - exhaust pipe - atmosphere, forming a thermal cycle with the atmosphere as a working fluid, grounding one generator - battery - low power air pressure Machine motor - grounding
  • a compressed air vehicle engine Connected to form a compressed air vehicle engine, first start a low-power electric air compressor to provide compressed air, control the release of compressed air through the output gas gate, so that the compressed air obtains increased energy at the heating device, and then drives The process engine and turbine output mechanical energy, which in turn drives a high-power air compressor to provide a large amount of compressed air to cycle the compressed air vehicle engine.
  • the drawings of the specification only show a schematic diagram of one of the connection methods, and the other connection only requires the heating device 5 to be placed in front of the output gas valve 4.
  • Advantages of the schematic connection method The flame tube will not be placed in a high temperature and high pressure environment for a long time, and the output air valve will release the compressed air to have a cooling effect, so that the heating device B can absorb more heat, and then the heating device A is heated to the required temperature.
  • Another advantage of the connection The compressed air stored in the internal space of the flame tube and the pipe before the output gas valve is not wasted with the output gas valve closed.
  • the battery provides electric energy to drive the low-power electric air compressor.
  • the battery can be directly supplied with DC power or inverted to AC power.
  • the vane air compressor has many advantages, and it is best to use it as a source of air for a compressed air vehicle engine.
  • the flow of the existing vane compressor air atmosphere ⁇ air filter ⁇ intake wide - air end ⁇ oil separator ⁇ minimum pressure check valve ⁇ after cooler (some minicomputers without aftercooler) ⁇ gas system. It can be seen that the aftercooler is counterproductive to the present invention and should be omitted.
  • the space occupied by the vehicle is large, and multiple small gas storage tanks are used in parallel.
  • the gas tank material is preferably made of carbon fiber material wrapped in lightweight metal to reduce weight and improve safety.
  • a normally open emergency backup valve is connected between the gas storage tank and the output gas valve, which is to prevent the output valve from being unable to close the correction page (fine 6 is the first 9) When closed, the horizontally opposed two-process engine will continue to output power.
  • the heating device B includes an external heat device for recovering waste heat of the exhaust gas;
  • the heating device A includes an internal heat device for internal combustion, and the internal heat device is a combustion chamber including a combustion chamber shell, a diffuser, a flame tube, a swirler, and an ignition device.
  • the compressed air assists combustion, the combustion chamber has at least two fuel supply systems and fuel atomizing nozzles thereof, and the signal input ends of the electronic control unit ECU are respectively electrically connected with the detection compressed air flow sensor, the front and rear pressure sensors, the heating front and rear temperature sensors, and the signal output end. They are electrically connected to the ignition device of the combustion chamber and the device for controlling the fuel air-fuel ratio according to the program.
  • This combustion chamber is referred to as a flame tube. It is lightweight and can burn fuel in an ultra-lean manner. It can heat a large amount of compressed air per isometric pressure per unit time, and can provide multiple fuel supplies. Therefore, the present invention can use a variety of fuels.
  • the invention adopts a stator with an input air port at one longitudinal end and an output gas port at the other end, and a stator having a tapered hole in the horizontal direction and communicating with the input and output gas ports is matched with a cone which is longitudinally provided with a hole and is inserted into the tapered hole.
  • Rotor composition, rotating cone rotor can open or close the compressed air flowing through the input and output gas interface as the output gas door (actually the so-called throttle), the cone design is for the system to work at high temperature and high pressure, this rotating part is easy Damaged and used.
  • a horizontally opposed two-process engine including a crank-link mechanism, a valve train, a lubrication system, and a horizontally opposed two-process engine having at least six or more n turns, and the relative position of each crank is 360 Q / n is evenly arranged on the corner of the crankshaft.
  • the number of pistons above 6 is evenly distributed on both sides of the crankshaft.
  • the number of pistons connected to the journals of the connecting rods is equal, and the two cranks in the same plane are opposite to each other.
  • the valve train Moving horizontally in the horizontal direction, the valve train moves the piston from the top dead center to the bottom dead center.
  • the intake valve opens, the exhaust valve closes, and the piston moves from the bottom dead center to the top dead center.
  • the exhaust valve is open.
  • the crankshaft rotates one revolution to complete the work of two cycles of work and exhaust.
  • the crankshaft can be clockwise or Counterclockwise rotation converts the force transmitted from the piston rod set into torque output mechanical energy.
  • 6 8, 10, 12, and 14 pistons are respectively composed of 3 opposite, 4 opposite, 5 opposite, 6 opposite, 7 opposed horizontally opposed two process engines, which are two process engines. Special structure engine under specific conditions.
  • a piston is provided with a cylinder block and a cylinder head.
  • the cylinder block and the cylinder head are provided with fins on the outside, and the surface of the crankcase is provided with a heat dissipating piece.
  • the gas distribution mechanism of the horizontally opposed two-process engine is composed of a cylinder head and an electric device.
  • the cylinder head is provided with an intake port and an exhaust port at one longitudinal end, and an air inlet and an exhaust port facing the piston end.
  • a stator having a tapered hole in the transverse direction and communicating with the inlet and outlet ports is matched with a cone rotor having two holes vertically and vertically disposed on the same shaft and sleeved into the tapered hole;
  • the electric device is composed of a crank position sensor,
  • the actuator consists of a non-magnetic turntable that rotates synchronously with the engine output shaft of the horizontally opposite process.
  • the non-magnetic turntable has a permanent magnet attached to the horizontally opposite two-process engine crank angle, and the semi-circular range of the permanent magnet sweep point.
  • Each is fixed with a magnetic conductive material, and a Hall sensor is arranged in the direction of the magnetic pole of the magnetic conductive material;
  • the actuator is a node between the two switches of the AB in the same direction and the control line AB, and the two switches of the CD are in the same direction of the series control circuit CD Node 2, two core coils are connected in parallel between node 1 and node 2, and the iron core is connected to the rotor, and the correction page (Article 9 1)
  • the switch tube A tube and the D tube input signal electrode are connected in parallel with the Hall sensor output signal end, and the switch tube C tube and the B tube input signal electrode are electrically connected in parallel to the inverter output end, the inverter input end and the Hall sensor output.
  • the signal terminal is electrically connected.
  • the horizontally opposed two-process engine can be reversed by circuit switching:
  • the above electric device may also be constituted by other forms of circuit devices and servo motors.
  • the turbines are mature in the prior art. There are two types of runoff and axial flow, and the speed is high. It is best to decelerate to 1000-2000 rpm when driving the vane air compressor and generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Supercharger (AREA)

Description

压缩空气车辆发动机及其运行方法
技术领域
本发明涉及压缩空气车辆发动机、 火焰简、 涡轮机及配气机构。 背景技术
自 1899年法国人研究制造出第一辆新能源电动车到现在已有一百多年发展史。在石油用 一天少一天、 国际能源危机、 油价高昂、 环境保护的多重压力下, 现有技术的内燃发动机尤 如西边的太阳, 热效率只有 40%左右的燃气轮机动力装置一般适用驱动飞机、 轮船、 发电等 负载, 要驱动要求扭矩带宽大的车辆难以适应。 经国内外车企二十多年倾力研发, 新能源汽 车发动机己有了很大进步, 可目前的新能源汽车: 纯电动汽车——续航路程短, 电池能量密 度低、 昂贵、 寿命短、 充电时间长, 电池也存在二次污染……目前仍难以推广应用; 油电混 合动力汽车——继承了现有内燃机高能耗、 高污染、 输出扭矩小……等先天缺陷, 只作目前 的过渡产品; 燃料电池汽车——节能减排效果很好, 但氢燃料和铂金来源困难, 梦想难以实 现。 各国依然投入巨额资金对上述技术进行研发, 可见新能源汽车技术已经触动着世界各 国的神经, 已成为国家层次之间的竞争。 担心的是如此钻牛角尖下去, 有可能未曾能把 经济实用的新能源汽车造出来, 人类己把地球上的石油烧光了。 最近人们开始认识到以 压缩空气为动力的汽车一样环保节能, 而且技术可行, 比上述三个新能源汽车发展方向 在技术上容易解决得多, 经济实用, 才开始把精力和资金投入到以压缩空气为动力的压 缩空气汽车上来, 中国、 法国、 美国、 印度、 澳大利亚等国已投入相关的研究。 据报道, 2004年澳大利亚墨尔本市的一个发明家, 近日发明了世界上第一辆"压缩空气"汽车。 不知何 因未能推广。 2003 年, 以本人专利号 200310113991.6 为代表的 "一种降低车辆能耗的 方法及其装置" 在中国获得多项国家发明专利权, 它其实就是所谓 "压缩空气" 汽车。 虽然在降低车辆能耗方面已取得突破性技术进步, 但由于使用了内燃机驱动压缩机, 未 应用火焰筒、 水平对置二过程发动机等, 致使在环保节能、 降低车辆能耗、 实用性等方 面存在了一定差距。 发明内容
发明目的: 通过优化一种降低车辆能耗的方法及其装置得到的一种压缩空气车辆发 动机及其运行方法, 根据该压缩空气车辆发动机中部件之间的连接关系, 使它在降低车辆能 耗方面发挥更加出色; 此外, 该压缩空气车辆发动机采用一种水平对置二过程发动机, 使它 能大流量转换压缩空气能量; 该压缩空气东辆发动机采用一种水平对置二过程发动机配气机
1
更正页 (细則第 9 1条) 构, 用它代替凸轮轴配气机构, 使水平对置二过程发动机结构简单实用。
本发明所述的压缩空气车辆发动机具体采用以下技术方案来实现:
一种压缩空气车辆发动机, 其包括空气滤清器、 空气压缩机、 储气罐、 加热装置、 输出 气闽门、 二过程发动机、 涡轮机、 排气管、 蓄电池、 发电机、 减速器; 所述空气压缩机包括 小功率空气压缩机和大功率空气压缩机;所述加热装置由加热装置 A和加热装置 B两部分组 成;
所述压缩空气车辆发动机中的部件采用以下方式连接:
把大气——空气滤清器——小功率和大功率空气压缩机——储气罐——加热装置 A—— 输出气阀门——二过程发动机——涡轮机——加热装置 B——排气管——大气, 用管道顺序 连接使之与大气形成以压缩空气为工质的热力循环; 或
把大气——空气滤清器——小功率和大功率空气压缩机——储气罐——输出气阀门—— 一加热装置 A 二过程发动机——涡轮机——加热装置 B——排气管——大气, 用管道 顺序连接使之与大气形成以压缩空气为工质的热力循环;
消除真空阻力导入大气的单向阀并联在输出气阀门至二过程发动机之间, 使大气——空 气滤清器——导入大气的单向阀——二过程发动机——涡轮机——加热装置 B——排气管一 一大气, 形成以大气为工质的热力循环;
接地——发电机——蓄电池——小功率空气压縮机电机——接地, 顺序电连接形成以电 荷为工质的电力循环,
涡轮机通过匹配的减速器输出动力与发电机和大功率空气压缩机动力连接, 蓄电池与各 用电器电连接;
加热装置 A的燃烧室电控单元 ECU信号输入端分别与检测压缩空气流量传感器、 加热 前后压力传感器、 加热前后温度传感器电连接, 信号输出端分别与燃烧室的点火装置、 依程 序控制燃料空燃比的装置电连接。
在储气罐和输出气阀门之间还连接有常开应急备用阀门。
在上述基础上, 作为优选方案, 还包括以下述功能部件和装置。
由蓄电池提供电能驱动的空气压缩机。
所述的电动空气压缩机是滑片空气压缩机。
由涡轮机输出机械能驱动大功率滑片空气压缩机。
储气罐用碳纤维材料包裹轻质金属制成, 由至少 2个以上储气罐并联组成。
加热装置 B包括回收废气余热的外热装置; 加热装置 A包括内燃烧的内热装置, 所述内 热装置是包括燃烧室壳、 扩压器、 火焰筒、 旋流器、 点火装置的燃烧室, 靠压缩空气助燃、
2
更正页 (细則第 9 1条) 燃烧室至少有 2路燃料供给系统及其燃料雾化喷嘴,电控单元 ECU信号输入端分别与检测 ¾ 缩空气流量传感器、 加热前后压力传感器、 加热前后温度传感器电连接, 信号输出端分别与 燃烧室的点火装置、 依程序控制燃料空燃比的装置电连接。
输出气阔门, 由一个纵向一端设有输入气接口另一端设有输出气接口, 横向设有锥形孔 且与输入输出气接口相通的定子匹配一个纵向设有孔套入锥形孔内的锥形体转子组成, 转动 锥形体转子可开或关流经输入输出气接口的压缩空气。
二过程发动机, 包括曲柄连杆机构、 配气机构、 润滑系, 二过程发动机至少有 3个以上 的 n个曲拐数, 各曲拐的相对位置按 360 !均匀布置于曲轴转角上, 各连杆轴颈连接的活塞 数相等, 配气机构使活塞从上止点下移至下止点过程其间进气门开, 排气门关, 活塞从下止 点上移至上止点过程其间进气门关, 排气门开, 当选定二过程发动机其中一端为进气端时, 则另一端为排气端, 曲轴旋转一周能完成一个循环中的作功、 排气二个过程, 曲轴可以顺时 针或逆时针旋转把活塞连杆组传来的力转变为扭矩输出机械能, 取 6以上双数个活塞平均分 布在曲轴两侧, 以同一平面反向的 2个曲拐为 1对置, 使活塞在水平方向上左右运动构成一 种水平对置二过程发动机。
一种水平对置二过程发动机, 一个活塞配一个缸体及气缸盖。
缸体及气缸盖外表设有散热片。
曲轴箱表面设有散热片。
所述水平对置二过程发动机的配气机构由气缸盖和电动装置组成, 气缸盖由一个纵向一 端设有进气接口、 排气接口, 面向活塞端设有进气口、 排气口, 横向设有锥形孔且与进排气 口相通的定子匹配一个同一条轴上径向纵横垂直设有 2个互不相通孔套入锥形孔内的锥形体 转子组成; 电动装置由曲轴位置传感器、 执行机构组成, 执行机构输出动力与气缸盖的转子 动力连接, 电动装置输出信号驱动转子转动控制水平对置二过程发动机气缸盖进排气门的开 或关。
所述水平对置二过程发动机配气机构的电动装置, 设有一个与水平对置二过程发动机输 出轴同步转动的非磁性转盘, 非磁性转盘上对应水平对置二过程发动机曲拐转角分别固定有 永久磁铁, 在永久磁铁扫过点半圆范围分别固定有导磁材料, 紧贴导磁材料磁极方向设有霍 尔传感器, 当霍尔传感器检测到是某曲拐的信号时, 输出信号控制执行机构驱动转子转动控 制水平对置二过程发动机气缸盖进排气门的开或关。
所述水平对置二过程发动机配气机构的执行机构, 由 AB两个幵关管同向串联控制线路 A-B间节点 1, CD两个开关管同向串联控制线路 C-D间节点 2 , 节点 1与节点 2之间并联有 两个铁芯线圈, 铁芯与转子动力连接, 开关管 A管与 D管输入信号电极并联与霍尔传感器输 更正页 (细^第 9〗条) 出信号端电连接, 开关管 C管与 B管输入信号电极并联电连接反相器输出端, 反相器输入端 与霍尔传感器输出信号端电连接。
当选定幵关管 A管与 D管输入信号电极并联与霍尔传感器输出信号端电连接, 开关管 C 管与 B管输入信号电极并联电连接反相器输出端, 反相器输入端与霍尔传感器输出信号端电 连接时发动机是顺转, 则当幵关管 A管与 D管输入信号电极并联电连接反相器输出端, 反相 器输入端与霍尔传感器输出信号端电连接, 幵关管 C管与 B管输入信号电极并联与霍尔传感 器输出信号端电连接时水平对置二过程发动机由顺转变为逆转。
一种根据上述压缩空气车辆发动机的运行方法, 压缩空气车辆发动机中部件之间的连接 关系参见上文所述, 该方法包括以下步骤:
启动小功率空气压缩机提供压缩空气, 通过输出气阀门控制压缩空气释放量, 使压缩空 气在加热装置处获得增大的能量;
驱动二过程发动机和涡轮机输出机械能;
驱动大功率空气压缩机提供大量压缩空气, 使压缩空气车辆发动机循环工作下去。
由于取用了上述技术措施, 达到以下的的技术效果:
1、压缩空气车辆发动机无需使用大容量的蓄电池。 因为现有纯电动汽车和混合动力汽车 工作时驱动的负载是整辆汽车, 所以必须要用大容量的蓄电池组, 必然就要用重量大功率大 的电动一发电机, 这正是它的致命弱点; 而本发明只需用小功率发电机和用小容量蓄电池驱 动小功率电动空气压缩机提供压缩空气起动发动机就可以了。 用水平对置二过程发动机输出 动力驱动车辆, 用结构轻便涡轮机输出动力驱动小功率发电机和大功率空压机正是克服上述 方面缺点。
2、 燃料来源广泛。 由于取用了来自燃气轮机燃烧室原理的火焰筒加热装置, 柴油、 天然 气、 沼气、 丙烷、 汽油、 煤油、 酒精等都是它燃料。 特别是沼气, 只要有易降解有机物存在, 人类就能低成本获取沼气, 它是人类未来能源的希望。
3、 更节能环保。 因为取用火焰筒加热装置, 空燃比可达 40: 1以上, 燃料可超稀薄充分 燃烧, 过量空气量大, 所产生的有害物质自然就少, 主要排放物是空气。
4、 输出扭矩更大。 由于取用了水平对置二过程发动机, 活塞做功是任何时候都至少有 2 个活塞处于做功行程, 也至少有 2个活塞处于排气行程, 输出扭矩是单缸输出扭矩 2倍以上。
5、 实现了电子配气。现时的内燃机配气机构都是取用齿轮传动或同步皮带传动凸轮配气 装置, 齿轮传动凸轮配气装置除噪声大、 笨重、 复杂和容易磨损出现配气不准外, 就说同步 皮带传动凸轮配气装置, 现时的小汽车一般每行 6〜 0万公里需要更换同步皮带, 否则会断带 损坏发动机, 这是现时小汽车的一大弱点。而本发明用电动阔门配气装置就不存在这些问题。 更正页 (细則第 9 1条) 6、 取消水冷却系统。 因为取用的是缸外燃烧加热方式, 二过程发动机设有散热片, 关闭 输出气阀门时又导入大气冷却, 故用风冷就可以了。
7、 实现了电子换档。 用切换电路方式就可以使发动机顺转、 逆转从而代替了变速箱的前 进档、 倒车档。
8、 不易泄气。 取用锥型孔定子配锥型体转子做阀门, 即使吻接部位磨损也会自动吻合。
9、 供气得到保障。 因为滑片空气压缩机型较小、 噪音小、 振动小、 节能外, 故障率少 和长达 10万小时以上使用寿命是它的最大优势。
10、 安全性能高。 一取用了以碳纤维为主要材料来制造储气罐; 二现有商品滑片空气压 缩机最大额定输出压力只有 1.3Mpa, 1.3Mpa属常规低压范围。
11、 在降低车辆能耗方面发挥更加出色。 一、 要驱动汽车, 它的发动机必须有足够的输 出扭矩和转速, 即有足够大的输出功率, 要使二过程发动机能输出足够大的输出功率, 它必 须有转换大量压缩空气能量为机械能的能力, 水平对置二过程发动机正好满足要求, 任何时 候它都至少有 2个活塞处于做功行程, 至少有 2个活塞处于排气行程, 高低转速都能输出大 扭矩, 而且转速越低输出扭矩越大, 大量的压缩空气能量在单位时间内被转换成机械能, 转 速可高达 3000转 /分以上, 即输出了强劲的功率。 二、 整个能量转换装置和燃气轮机有相似 的地方, 可看成在燃气轮机的燃气涡轮与燃烧室之间串联了水平对置二过程发动机, 与燃气 轮机工作方式不同是水平对置二过程发动机输出动力独立对外驱动负载, 涡轮机输出动力独 立驱动压气机; 本发明工质从火焰筒中燃料燃烧获得的热量, 一部分由水平对置二过程发动 机转换输出用于驱动车辆行驶的有用功机械能, 另一部分输出了无用功, 而这无用功大部分 被涡轮机和回热装置回收循环利用, 只有小部分的热量通过机壳和废气传递到温度较低的环 境中, 使这个装置能量转换效率接近理想的 100%极限, 比燃气轮机等热机效率高得多。 三、 科学的连接方法加上储气罐、 火焰筒、 涡轮机等轻量化和上述技术优势, 使压缩空气车辆发 动机容易启动、 结构简单、 重量轻、 高效节能、 经久耐用、 不存在续航路程短问题, 使装上 它作汽车发动机使用时, 小型汽车省却离合器、 传动轴、 甚至变速箱, 大型汽车也能省却离 合器、 传动轴。 附图说明
图 1为本发明所述的一种压缩空气车辆发动机的内部连接示意图。
编号 1、 7、 14空气滤清器, 2小功率电动滑片空气压缩机, 3储气罐, 4输出气阀门, 5 加热装置八、 B , 6 ECU, 8单向阀, 9动力输出, 10水平对置二过程发动机, 11涡轮机, 12 减速器, 13发电机, 15大功率滑片空气压缩机, 16蓄电池。 更正页 (细則第 9 1条) 具体实施方式
压縮空气车辆发动机的连接方法, 把大气——空气滤清器——小功率和大功率空气压缩 机——储气罐——加热装置 A——输出气阔门——二过程发动机——涡轮机——加热装置 B ——排气管——大气, 用管道顺序连接使之与大气形成以压缩空气为工质的热力循环或把大 气——空气滤清器——小功率和大功率空气压缩机——储气罐——输出气阀门 加热装 置 A 二过程发动机——涡轮机——加热装置 B——排气管——大气, 用管道顺序连接 使之与大气形成以压缩空气为工质的热力循环, 消除真空阻力导入大气的单向阀并联在输出 气阀门至二过程发动机之间, 使大气——空气滤清器——导入大气的单向阀——二过程发动 机——涡轮机——加热装置 B——排气管——大气, 形成以大气为工质的热力循环, 接地一 一发电机——蓄电池——小功率空气压缩机电机——接地, 顺序电连接形成以电荷为工质的 电力循环, 涡轮机通过匹配的减速器输出动力与发电机和大功率空气压缩机动力连接, 蓄电 池与各用电器电连接, 加热装置 A的燃烧室电控单元 ECU信号输入端分别与检测压缩空气 流量传感器、 加热前后压力传感器、 加热前后温度传感器电连接, 信号输出端分别与燃烧室 的点火装置、 依程序控制燃料空燃比的装置电连接, 以此组成一台压缩空气车辆发动机, 先 启动小功率电动空气压缩机提供压缩空气, 通过输出气阔门控制压缩空气释放量, 使压缩空 气在加热装置处获得增大的能量, 进而驱动二过程发动机和涡轮机输出机械能, 进而驱动大 功率空气压缩机提供大量压缩空气, 使压缩空气车辆发动机循环工作下去。
说明书附图只给出了其中一种连接方法示意图, 另一种接法只需把加热装置 5放置在输 出气阀门 4前面。 示意图连接方法好处: 火焰筒不会长时间置身在高温高压环境中, 输出气 阔门释放压缩空气有致冷作用, 可让加热装置 B吸收更多的回热, 再 ώ加热装置 A加热到所 需的温度。 另一种接法好处: 输出气阀门前如火焰筒、 管道的内部空间储存的压缩空气不会 随输出气阀门关闭而浪费。
蓄电池提供电能驱动小功率电动空气压缩机, 可用蓄电池直接提供直流电, 也可逆变成 交流电供电。
滑片式空气压缩机有许多优点, 用它做压缩空气车辆发动机的空气源是最好的。 现有滑 片压縮机空气的流程: 大气→空气过滤器→进气阔—空气端→油气分离器→最小压力止 回阀→后冷却器 (某些小型机无后冷却器) →用气系统。 可见后冷却器, 对本发明起相 反作用, 应省去。
用一个储气罐来储备大量的压縮空气安装在车上所占空间大,应用多个小储气罐并 联使用。 储气罐材料首选碳纤维材料包裹轻质金属制成的, 以减轻重量和提高安全性能。
在储气罐——输出气阀门之间连接有常开应急备用阀门, 是预防万一输出气阀门不能关 更正页 (细 6則第 9 1条) 闭时, 水平对置二过程发动机会继续输出动力而设的。
加热装置 B包括回收废气余热的外热装置; 加热装置 A包括内燃烧的内热装置, 所述内 热装置是包括燃烧室壳、 扩压器、 火焰筒、 旋流器、 点火装置的燃烧室, 靠压缩空气助燃、 燃烧室至少有 2路燃料供给系统及其燃料雾化喷嘴,电控单元 ECU信号输入端分别与检测压 缩空气流量传感器、 加热前后压力传感器、 加热前后温度传感器电连接, 信号输出端分别与 燃烧室的点火装置、 依程序控制燃料空燃比的装置电连接。
这个燃烧室简称火焰筒, 它轻巧, 能超稀薄燃烧燃料, 能单位时间内等压加热大量的压 缩空气, 可设多路燃料供给, 故本发明可使用多种燃料。
本发明用由一个纵向一端设有输入气接口另一端设有输出气接口, 横向设有锥形孔且与 输入输出气接口相通的定子匹配一个纵向设有孔套入锥形孔内的锥形体转子组成, 转动锥形 体转子可开或关流经输入输出气接口的压縮空气做输出气阔门(其实是所谓的油门), 锥形体 设计是出于系统工作于高温高压, 这个转动部件容易损坏泄气而取用。
一种水平对置二过程发动机, 包括曲柄连杆机构、 配气机构、 润滑系, 水平对置二过程 发动机至少有 6个以上的 n个曲拐数, 各曲拐的相对位置按 360Q/n均匀布置于曲轴转角上, 6 以上双数个活塞平均分布在曲轴两侧, 各连杆轴颈连接的活塞数相等, 以同一平面反向的 2 个曲拐为 1对置, 使活塞在水平方向上左右运动, 配气机构使活塞从上止点下移至下止点过 程其间进气门开, 排气门关, 活塞从下止点上移至上止点过程其间进气门关, 排气门开, 当 选定二过程发动机其中一端为进气端时, 则另一端为排气端, 曲轴旋转一周能完成一个循环 中的作功、 排气二个过程, 曲轴可以顺时针或逆时针旋转把活塞连杆组传来的力转变为扭矩 输出机械能。 例如 6、 8、 10、 12、 14个活塞时, 就分别构成了 3对置、 4对置、 5对置、 6 对置、 7对置水平对置二过程发动机, 它是二过程发动机在特定条件下的特殊结构发动机。
取用一个活塞配一个缸体及气缸盖, 缸体及气缸盖外表设有散热片, 曲轴箱表面设有散 热片, 这样分立结构和散热, 就可以省冷却水装置, 减轻重量和减少体积。
一种水平对置二过程发动机所述配气机构, 由气缸盖和电动装置组成, 气缸盖由一个纵 向一端设有进气接口、 排气接口, 面向活塞端设有进气口、 排气口, 横向设有锥形孔且与进 排气口相通的定子匹配一个同一条轴上径向纵横垂直设有 2个孔套入锥形孔内的锥形体转子 组成; 电动装置由曲轴位置传感器、 执行机构组成, 设一个与水平对置二过程发动机输出轴 同步转动的非磁性转盘, 非磁性转盘上对应水平对置二过程发动机曲拐转角分别固定有永久 磁铁, 在永久磁铁扫过点半圆范围分别固定有导磁材料, 紧贴导磁材料磁极方向设有霍尔传 感器; 执行机构是 AB两个开关管同向串联控制线路 A-B间节点 1, CD两个开关管同向串联 控制线路 C-D间节点 2, 节点 1与节点 2之间并联有两个铁芯线圈, 铁芯与转子动力连接, 更正页 (细則第 9 1条) 开关管 A管与 D管输入信号电极并联与霍尔传感器输出信号端电连接, 开关管 C管与 B管 输入信号电极并联电连接反相器输出端, 反相器输入端与霍尔传感器输出信号端电连接, 当 霍尔传感器检测到是某曲拐的信号时, 电动装置输出信号驱动转子转动控制水平对置二过程 发动机气缸盖进排气门的开或关。
通过电路切换就可以实现水平对置二过程发动机顺逆转:
当选定开关管 A管与 D管输入信号电极并联与霍尔传感器输出信号端电连接,开关管 C 管与 B管输入信号电极并联电连接反相器输出端, 反相器输入端与霍尔传感器输出信号端电 连接时发动机是顺转, 则当开关管 A管与 D管输入信号电极并联电连接反相器输出端, 反相 器输入端与霍尔传感器输出信号端电连接, 开关管 C管与 B管输入信号电极并联与霍尔传感 器输出信号端电连接时水平对置二过程发动机由顺转变为逆转。
上述电动装置也可以由其它形式电路装置与伺服电机构成。
涡轮机现有技术成熟, 有径流和轴流两种, 转速高, 驱动滑片空气压缩机和发电机时最 好减速至 1000— 2000转 /分。
8
更正页 (细則第 9 1条)

Claims

权 利 要 求 书
1. 一种压缩空气车辆发动机, 其包括空气滤清器、 空气压縮机、 储气罐、 加热装置、 输 出气阀门、 二过程发动机、 涡轮机、 排气管、 蓄电池、 发电机、 减速器; 所述空气压 缩机包括小功率空气压缩机和大功率空气压缩机; 所述加热装置由加热装置 A和加热 装置 B两部分组成;
其特征在于, 所述压缩空气车辆发动机中的部件按以下方式连接:
空气滤清器、 小功率和大功率空气压縮机、 储气罐、 加热装置 A、 输出气阀门、 二过程发动机、 涡轮机、 加热装置 B及排气管依次以管道顺序连接, 使之与大气形成 以压縮空气为工质的热力循环; 或者
空气滤清器、 小功率和大功率空气压缩机、 储气罐、 输出气阔门、 加热装置 、 二 过程发动机、 涡轮机、 加热装置 B、 排气管依次以管道顺序连接, 使之与大气形成以 压缩空气为工质的热力循环; 以及
消除真空阻力导入大气的单向阀并联设置在输出气阀门和二过程发动机之间, 使 得空气滤清器、 导入大气的单向闽、 二过程发动机、 涡轮机、 加热装置 B、 排气管依 次顺序连接, 形成以大气为工质的热力循环;
发电机、 蓄电池、 小功率空气压縮机顺序电连接, 其中发电机和小功率空气压缩 机分别接地, 形成以电荷为工质的电力循环;
涡轮机通过匹配的减速器输出动力与发电机和大功率空气压縮机动力连接; 蓄电池与各用电器电连接;
加热装置 A的燃烧室电控单元 ECU信号输入端分别与检测压縮空气流量传感器、 加热前后压力传感器、 加热前后温度传感器电连接, 信号输出端分别与燃烧室的点火 装置、 依程序控制燃料空燃比的装置电连接。
2. 根据权利要求 1所述的一种压缩空气车辆发动机, 其特征在于: 在储气罐和输出气阀 门之间还连接有常开的应急备用阀门。
3. 根据权利要求 1所述的一种压縮空气车辆发动机, 其特征在于: 由蓄电池提供电能驱 动空气压縮机。
4. 根据权利要求 1或 2或 3所述的一种压縮空气车辆发动机, 其特征在于: 所述小功率 电动空气压缩机是滑片空气压缩机。
5. 根据权利要求 4所述的一种压縮空气车辆发动机, 其特征在于: 由涡轮机输出机械能 驱动滑片空气压缩机。
6. 根据权利要求 1所述的一种压缩空气车辆发动机, 所述储气罐由碳纤维材料包裹轻质 金属制成, 其特征在于: 所述储气罐由至少两个储气罐并联组成。
7. 根据权利要求 1所述的一种压缩空气车辆发动机, 其中, 所述加热装置 A包括内热装 置, 所述内热装置是包括燃烧室壳、 扩压器、 火焰筒、 旋流器、 点火装置的燃烧室, 其特征在于: 靠压缩空气助燃、 燃烧室至少有 2路燃料供给系统及其燃料雾化喷嘴, 电控单元 ECU信号输入端分别与检测压缩空气流量传感器、加热前后压力传感器、加 热前后温度传感器电连接, 信号输出端分别与燃烧室的点火装置、 依程序控制燃料空 燃比的装置电连接。
8. 根据权利要求 1所述的一种压縮空气车辆发动机, 其特征在于, 所述输出气阀门由一 个纵向一端设有输入气接口另一端设有输出气接口, 横向设有锥形孔且与输入输出气 接口相通的定子匹配一个纵向设有孔套入锥形孔内的锥形体转子组成, 转动锥形体转 子可开或关流经输入输出气接口的压縮空气。
9. 根据权利要求 1所述的一种压缩空气车辆发动机, 其中, 所述二过程发动机, 包括曲 柄连杆机构、 配气机构、 润滑系, 至少有 3个以上的 n个曲拐数, 各曲拐的相对位置 按 360Q/n均匀布置于曲轴转角上, 各连杆轴颈连接的活塞数相等, 配气机构使活塞从 上止点下移至下止点过程其间进气门开, 排气门关, 活塞从下止点上移至上止点过程 其间进气门关, 排气门开, 当选定二过程发动机其中一端为进气端时, 则另一端为排 气端, 曲轴旋转一周能完成一个循环中的作功、 排气二个过程, 曲轴可以顺时针或逆 时针旋转把活塞连杆组传来的力转变为扭矩输出机械能, 其特征在于: 取 6以上双数 个活塞平均分布在曲轴两侧, 以同一平面反向的 2个曲拐为 1对置, 使活塞在水平方 向上左右运动构成一种水平对置二过程发动机。
10. 根据权利要求 9所述的一种压缩空气车辆发动机, 其特征在于: 所述水平对置二过程 发动机的一个活塞配一个缸体及气缸盖。
11. 根据权利要求 10所述的一种压缩空气车辆发动机,其特征在于: 所述缸体及气缸盖的 外表设有散热片。
12. 根据权利要求 9或 10或 11所述的一种压缩空气车辆发动机, 其特征在于: 曲轴箱表 面设有散热片。
13. 根据权利要求 9所述的一种压縮空气车辆发动机, 其特征在于: 所述二过程发动机的 配气机构由气缸盖和电动装置组成; 其中:
气缸盖由一个纵向一端设有进气接口、 排气接口, 面向活塞端设有进气口、 排气 口, 横向设有锥形孔且与进排气口相通的定子匹配一个同一条轴上径向纵横垂直设有
2个互不相通孔套入锥形孔内的锥形体转子组成; 以及 电动装置由曲轴位置传感器、 执行机构组成, 执行机构输出动力与气缸盖的转子 动力连接, 电动装置输出信号驱动转子转动控制水平对置二过程发动机气缸盖进排气 门的开或关。
14. 根据权利要求 13所述一种压缩空气车辆发动机,其特征在于:所述电动装置是一个与 水平对置二过程发动机输出轴同步转动的非磁性转盘, 所述非磁性转盘上对应水平对 置二过程发动机曲拐转角分别固定有永久磁铁, 在永久磁铁扫过点半圆范围分别固定 有导磁材料, 紧贴导磁材料磁极方向设有霍尔传感器, 当霍尔传感器检测到是某曲拐 的信号时, 输出信号控制执行机构驱动转子转动控制水平对置二过程发动机气缸盖进 排气门的开或关。
15. 根据权利要求 13或 14所述一种压縮空气车辆发动机, 其特征在于: 所述执行机构由 AB两个开关管同向串联控制线路 A-B间节点 1, CD两个开关管同向串联控制线路 C-D间节点 2, 节点 1与节点 2之间并联有两个铁芯线圈, 铁芯与转子动力连接, 开 关管 A管与 D管输入信号电极并联与霍尔传感器输出信号端电连接,开关管 C管与 B 管输入信号电极并联电连接反相器输出端, 反相器输入端与霍尔传感器输出信号端电 连接。
16. 根据权利要求 15 中所述的一种压缩空气车辆发动机, 其特征在于: 当选定开关管 A 管与 D管输入信号电极并联与霍尔传感器输出信号端电连接,开关管 C管与 B管输入 信号电极并联电连接反相器输出端, 反相器输入端与霍尔传感器输出信号端电连接时 水平对置二过程发动机是顺转,则当开关管 A管与 D管输入信号电极并联电连接反相 器输出端, 反相器输入端与霍尔传感器输出信号端电连接, 开关管 C管与 B管输入信 号电极并联与霍尔传感器输出信号端电连接时水平对置二过程发动机由顺转变为逆 转。
17. 根据权利要求 13所述的一种压缩空气车辆发动机,其特征在于: 所述配气机构的执行 机构是伺服电机。
18. 一种如权利要求 1所述的压缩空气车辆发动机的运行方法, 其特征在于: 所述方法包 括以下步骤:
启动小功率空气压縮机提供压缩空气, 通过输出气阀门控制压縮空气释放量, 使 压缩空气在加热装置处获得增大的能量;
驱动二过程发动机和涡轮机输出机械能;
驱动大功率空气压缩机提供大量压缩空气, 使压缩空气车辆发动机循环工作。
PCT/CN2012/073219 2011-04-05 2012-03-29 压缩空气车辆发动机及其运行方法 WO2012136113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110091069 CN102200051B (zh) 2011-04-05 2011-04-05 压缩空气车辆发动机的连接方法及其装置
CN201110091069.6 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012136113A1 true WO2012136113A1 (zh) 2012-10-11

Family

ID=44660985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073219 WO2012136113A1 (zh) 2011-04-05 2012-03-29 压缩空气车辆发动机及其运行方法

Country Status (2)

Country Link
CN (1) CN102200051B (zh)
WO (1) WO2012136113A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200051B (zh) * 2011-04-05 2013-09-18 罗显平 压缩空气车辆发动机的连接方法及其装置
CN102777247A (zh) * 2012-08-04 2012-11-14 张英华 储热燃烧式发动机
CN112012799B (zh) * 2020-08-09 2021-11-12 肇庆高新区伙伴汽车技术有限公司 滑片式发动机
CN112937278A (zh) * 2021-02-04 2021-06-11 浙江吉利控股集团有限公司 一种空气能绝热外燃动力系统及行车驱动方法
CN114188578B (zh) * 2021-12-14 2023-10-03 北京有恒能动科技有限公司 固体氧化物燃料电池系统的火焰筒进气方法及其燃烧室

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099101A (zh) * 1993-08-20 1995-02-22 薛殿甲 复合式多次燃烧作功内燃机
CN1544802A (zh) * 2003-11-16 2004-11-10 罗显平 一种降低车辆能耗的方法及其装置
US20060101800A1 (en) * 2002-03-14 2006-05-18 Newton Propulsion Technologies Ltd Gas turbine engine system
WO2010035054A1 (en) * 2008-09-26 2010-04-01 Renault Trucks Power assembly, especially for an automotive vehicle
GB2469279A (en) * 2009-04-07 2010-10-13 Rikard Mikalsen Linear reciprocating free piston external combustion open cycle heat engine
GB2469939A (en) * 2009-05-01 2010-11-03 Keith Gordon Hall Split-cycle engines
CN102200051A (zh) * 2011-04-05 2011-09-28 罗显平 压缩空气车辆发动机的连接方法及其装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155314A (en) * 1919-06-17 1920-12-17 Rochfort Wybrants Robinson A new or improved combined internal combustion and compressed air engine
CN100353041C (zh) * 2005-04-28 2007-12-05 苏兴起 滚旋式内外燃压缩空气发动机
JP5254112B2 (ja) * 2009-04-02 2013-08-07 株式会社東芝 ガスタービン発電設備およびそのクリアランスコントロールシステムバックアップ空気の供給方法
CN201502406U (zh) * 2009-09-16 2010-06-09 韩著祥 压缩空气发动机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1099101A (zh) * 1993-08-20 1995-02-22 薛殿甲 复合式多次燃烧作功内燃机
US20060101800A1 (en) * 2002-03-14 2006-05-18 Newton Propulsion Technologies Ltd Gas turbine engine system
CN1544802A (zh) * 2003-11-16 2004-11-10 罗显平 一种降低车辆能耗的方法及其装置
WO2010035054A1 (en) * 2008-09-26 2010-04-01 Renault Trucks Power assembly, especially for an automotive vehicle
GB2469279A (en) * 2009-04-07 2010-10-13 Rikard Mikalsen Linear reciprocating free piston external combustion open cycle heat engine
GB2469939A (en) * 2009-05-01 2010-11-03 Keith Gordon Hall Split-cycle engines
CN102200051A (zh) * 2011-04-05 2011-09-28 罗显平 压缩空气车辆发动机的连接方法及其装置

Also Published As

Publication number Publication date
CN102200051A (zh) 2011-09-28
CN102200051B (zh) 2013-09-18

Similar Documents

Publication Publication Date Title
WO2010094223A1 (zh) 一种空气能源动力系统
KR101587318B1 (ko) 전자기 부스터 에어동력 발전기 시스템
CN204267172U (zh) 基于斯特林循环的发动机废气能量转化装置
CN101459397A (zh) 内燃机余热温差电转换发电系统
WO2009146626A1 (zh) 多能源直轴混合动力发动机
WO2012136113A1 (zh) 压缩空气车辆发动机及其运行方法
CN104963769B (zh) 节能环保空气‑燃油混合动力发动机
Wang et al. Performance study of parallel-type hybrid-power gas engine-driven heat pump system
WO2014026423A1 (zh) 一种利用压缩空气为作功能源的透平发动机
CN104454137A (zh) 发动机装置
CN102840026A (zh) 一种利用空气循环回收内燃机废气余热能的系统
CN107917020A (zh) 一种发动机余热回收能量利用装置及其控制方法
CN103775243A (zh) 循环利用发动机冷却液的汽车余热发电技术
WO2015014206A1 (zh) 空气能燃油混合型发动机
CN105114266B (zh) 利用热泵技术的动力装置
CN201496168U (zh) 发动机排气余热利用装置
CN109455081A (zh) 无离合器、变速箱的混合动力自动挡汽车
WO2009030147A1 (fr) Moteur électromécanique combiné
WO2016000402A1 (zh) 一种高压储能热能动力机器及其做功方法
CN201360230Y (zh) 一种内燃机余热温差电转换发电装置
CN108643994B (zh) 一种车载发动机排气能量多级联合回收装置
CN2816402Y (zh) 空气动力发动机总成
CN103644030A (zh) 一种采用介质吸热回能内燃机的太阳能车动力源
CN203441537U (zh) 空气能发动机
CN210686064U (zh) 一种储压式发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768162

Country of ref document: EP

Kind code of ref document: A1