WO2016000402A1 - 一种高压储能热能动力机器及其做功方法 - Google Patents

一种高压储能热能动力机器及其做功方法 Download PDF

Info

Publication number
WO2016000402A1
WO2016000402A1 PCT/CN2014/093131 CN2014093131W WO2016000402A1 WO 2016000402 A1 WO2016000402 A1 WO 2016000402A1 CN 2014093131 W CN2014093131 W CN 2014093131W WO 2016000402 A1 WO2016000402 A1 WO 2016000402A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
gasifier
pressure
stroke
gasification
Prior art date
Application number
PCT/CN2014/093131
Other languages
English (en)
French (fr)
Inventor
郭远军
Original Assignee
郭远军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭远军 filed Critical 郭远军
Priority to US15/323,743 priority Critical patent/US10082072B2/en
Publication of WO2016000402A1 publication Critical patent/WO2016000402A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/02Engines characterised by precombustion chambers the chamber being periodically isolated from its cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/02Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being water or steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B75/021Engines characterised by their cycles, e.g. six-stroke having six or more strokes per cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2490/00Structure, disposition or shape of gas-chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention belongs to the field of thermal energy storage power equipment, in particular to a thermal energy power device for storing high-pressure gas heat energy of an internal combustion engine itself.
  • Each working cycle of a four-stroke engine consists of an intake stroke, a compression stroke, a power stroke and an exhaust stroke.
  • the four-stroke engine has to complete one working cycle, and the piston needs to travel 4 strokes in the cylinder (ie, the crankshaft rotates 2 turns).
  • the four-stroke engine is further divided into a four-stroke gas engine and a four-stroke diesel engine. The main difference between the two is that the ignition method is different.
  • the gas engine is spark plug ignition, while the diesel engine is compression ignition.
  • the four-stroke engine belongs to the reciprocating piston type internal combustion engine, and is classified into three types, namely, a gas oil engine, a diesel engine, and a gas fuel engine, depending on the type of fuel used.
  • Piston internal combustion engines fueled by gas oil or diesel are respectively referred to as gas oil engines or diesel engines.
  • Piston internal combustion engines that use natural gas, liquefied petroleum gas, and other gaseous fuels are referred to as gaseous fuel engines.
  • Gas oil and diesel are both petroleum products and are the traditional fuel for gas engine engines.
  • Non-petroleum fuels are called alternative fuels.
  • An engine that uses alternative fuels is called an alternative fuel engine, such as an ethanol engine, a hydrogen engine, a methanol engine, and the like.
  • the power used for power output generally accounts for only 30%-45% (diesel) or 20%-30% (gas oil machine) of the total heat of fuel combustion.
  • the energy discharged from the outside of the vehicle in the form of waste heat accounts for 55%-70% (diesel) or 80%-70% (gas oil machine) of the total energy of the combustion, mainly including the heat taken away by the circulating cooling water and the heat taken away by the exhaust gas.
  • the following table shows the heat balance of the internal combustion engine.
  • the gas oil machine mixes air and gas oil into a good mixture in a certain ratio, and is sucked into the cylinder during the intake stroke.
  • the mixed gas is compressed and ignited to generate heat energy.
  • the high temperature and high pressure gas acts on the top of the piston to push the piston.
  • the reciprocating linear motion outputs mechanical energy to the outside through the connecting rod and the crankshaft flywheel mechanism.
  • the four-stroke gas engine completes a duty cycle in the intake stroke, compression stroke, power stroke, and exhaust stroke.
  • the intake stroke piston is moved from the top dead center to the bottom dead center by the crankshaft.
  • the intake valve is opened, the exhaust valve is closed, and the crankshaft is rotated by 180°.
  • the cylinder volume gradually increases, the gas pressure in the cylinder gradually decreases from pr to pa, and a certain degree of vacuum is formed in the cylinder.
  • the mixture of air and gas oil is drawn into the cylinder through the intake valve, and further in the cylinder. Mix to form a combustible mixture.
  • the temperature of the combustible mixture entering the cylinder rises to 340 to 400 K due to the heating of the high temperature parts such as the intake pipe, the cylinder wall, the piston crown, the valve and the combustion chamber wall, and the mixing with the residual exhaust gas.
  • the intake and exhaust valves are closed at the same time.
  • the piston moves from the bottom dead center to the top dead center and the crankshaft rotates 180°.
  • the piston moves up, the working volume is gradually reduced, and the pressure and temperature of the in-cylinder mixture are continuously increased.
  • the pressure pc can reach 800-2000 kPa and the temperature reaches 600-750K.
  • the combustible mixture is ignited by the spark plug, and the combustion of the mixture releases a large amount of heat energy, so that the pressure and temperature of the gas in the cylinder are rapidly increased.
  • the highest pressure pZ is 3000-6000 kPa and the temperature TZ is 2200-2800K.
  • the high temperature and high pressure gas pushes the piston from the top dead center to the bottom dead center and outputs mechanical energy to the outside through the crank link mechanism.
  • the piston moves down, the cylinder volume increases, the gas pressure and temperature gradually decrease. When it reaches point b, its pressure drops to 300-500 kPa, and the temperature drops to 1200-1500K.
  • the intake and exhaust valves are closed and the crankshaft is rotated by 180°.
  • the exhaust valve opens, the intake valve remains closed, the piston moves from the bottom dead center to the dead center, and the crankshaft rotates 180°.
  • the exhaust end temperature Tr 900 to 1100K.
  • a four-stroke diesel engine consists of an intake stroke, a compression stroke, a power stroke, and an exhaust stroke. Because diesel engine uses diesel as fuel, compared with gas oil, diesel has low self-ignition temperature and high viscosity, so the diesel engine uses self-ignition ignition at the end of compression. Its working process and system structure are different from gas oil machine.
  • the pressure at the end of compression is 3000 to 5000 kPa, and the temperature at the end of compression is 750 to 1000 K, which greatly exceeds the autoignition temperature of diesel (about 520 K).
  • the diesel oil When the compression stroke is nearing the end, under the action of the high-pressure oil pump, the diesel oil is injected into the cylinder combustion chamber through the injector at a high pressure of about 10 MPa, and then spontaneously ignited and burned after being mixed with the air in a short time.
  • the pressure of the gas in the cylinder rises rapidly, up to 5000-9000 kPa, and the highest temperature reaches 1800-2000K. Since the diesel engine is self-ignited by compression, the diesel engine is called a compression ignition engine.
  • the exhaust of the diesel engine is basically the same as that of the gas engine, except that the exhaust temperature is lower than that of the gas engine.
  • Tr 700 ⁇ 900K.
  • the speed is not uniform, the engine is not stable, and the vibration is large. This is because only one of the four itineraries is work, and the other three trips are the ones that consume power to prepare for work.
  • the flywheel must have a sufficiently large moment of inertia, which in turn leads to an increase in mass and size of the entire engine.
  • a multi-cylinder engine can make up for the above shortcomings. Modern gas vehicles use four-cylinder, six-cylinder and eight-cylinder engines.
  • the temperature in the cylinder is as high as 1000K or higher, and the high temperature gas is discharged through the exhaust valve, resulting in direct waste of heat energy.
  • the temperature of the cylinder inner wall, the piston top, the cylinder head and the valve lamp part is high, which will affect the compression stroke.
  • the efficiency of the existing engine cylinders are provided with cooling and cooling systems.
  • exhaust gas turbocharging is to increase the intake pressure of the internal combustion engine and increase the amount of inflation by means of a part of the energy in the exhaust gas to improve the power and economy of the engine.
  • this method can only apply part of the energy in the exhaust gas, and there are some problems such as difficulty in matching the full working condition of the engine.
  • thermoelectric power generation There are three main methods for generating waste heat from engine exhaust, namely thermoelectric power generation, exhaust gas turbine power generation and fluorocarbon Turbine power generation.
  • Temperature difference power generation mainly uses thermoelectric power generation materials for power generation, but due to the low energy conversion rate of thermoelectric materials, it is necessary to develop thermoelectric conversion materials with high conversion rates.
  • Exhaust gas turbine power generation is to use the exhaust gas to drive the turbine to drive the generator to generate electricity. This kind of power generation has certain influence on the performance of the engine to be further studied.
  • the use of generator exhaust gas residual heat cooling is mainly absorption refrigeration and adsorption refrigeration.
  • the absorption refrigeration principle is based on thermal energy to complete the refrigeration cycle; adsorption refrigeration uses some solid materials to adsorb a certain gas or water vapor at a certain temperature and pressure, and can be used under another temperature and pressure. It releases the features to achieve cooling.
  • an idea of using waste heat from generator exhaust heat and generating electricity is proposed.
  • the basic structure of a single cylinder engine consists of a cylinder, a piston, a connecting rod, a crankshaft, a cylinder head, a body, a camshaft, an intake valve, an exhaust valve, a valve spring, a crankshaft toothed pulley, etc., and a reciprocating piston internal combustion engine.
  • the working chamber is called a cylinder and the inner surface of the cylinder is cylindrical.
  • the piston reciprocating in the cylinder is hinged to one end of the connecting rod by a piston pin, and the other end of the connecting rod is connected to the crankshaft to constitute a crank connecting rod mechanism. When the piston reciprocates within the cylinder, the connecting rod pushes the crankshaft to rotate, or vice versa.
  • the top end of the cylinder is closed with a cylinder head.
  • the cylinder head is equipped with an intake valve and an exhaust valve.
  • the cylinder is inflated and exhausted to the outside of the cylinder by opening and closing of the intake and exhaust valves.
  • the opening and closing of the intake and exhaust valves are driven by a camshaft.
  • the camshaft is driven by the crankshaft through a toothed belt or gear.
  • the part constituting the cylinder is called a cylinder block, and the crankshaft rotates inside the crankcase.
  • the external combustion engine Since the external combustion engine does not burn, the external combustion engine avoids the problem of the vibration of the conventional internal combustion engine, thereby achieving high efficiency, low noise, low pollution and low operating cost. As long as the hot chamber reaches 700 °C, the equipment can be operated. The lower the ambient temperature, the higher the power generation efficiency. The biggest advantage of the external combustion engine is that the output and efficiency are not affected by the altitude, which is very suitable for high altitude use.
  • Organic Rankine cycle systems include pumps, evaporators, expanders, generators, condensers, and the like.
  • the collector absorbs the solar radiation, the temperature of the heat exchange medium in the collector increases, and the heat exchange medium transfers the heat to the organic working medium through the evaporator.
  • the organic working fluid is heated under constant pressure in the evaporator, and the high-pressure gaseous organic working medium enters the expander to expand.
  • the work is done to drive the generator to generate electricity; the organic working fluid discharged from the tail of the expander enters the condenser and is condensed by constant pressure.
  • the organic working fluid at the outlet of the condenser is pressurized by the pump and then enters the evaporator to complete a power generation cycle.
  • the organic Rankine cycle system has low conversion efficiency and large volume, and it needs to work with an expander with complicated structure.
  • exhaust gas turbocharging is to increase the intake pressure of the internal combustion engine and increase the amount of inflation by means of a part of the energy in the exhaust gas to improve the power and economy of the engine; A considerable number of gas engine engines are turbocharged; however, this method can only apply part of the energy in the exhaust gas, and there are some problems that are difficult to match with the full operating conditions of the engine.
  • thermoelectric power generation There are three main methods for generating exhaust heat from engine exhaust, namely thermoelectric power generation, exhaust gas turbine power generation, and fluorocarbon turbine power generation.
  • Temperature difference power generation mainly uses thermoelectric power generation materials for power generation, but due to the low energy conversion rate of thermoelectric materials, it is necessary to develop thermoelectric conversion materials with high conversion rates.
  • Exhaust gas turbine power generation is to use the exhaust gas to drive the turbine to drive the generator to generate electricity. This power generation method has certain influence on the performance of the engine;
  • the use of generator exhaust gas residual heat cooling is mainly absorption refrigeration and adsorption refrigeration.
  • the absorption refrigeration principle is based on thermal energy to complete the refrigeration cycle; adsorption refrigeration uses some solid materials to adsorb a certain gas or water vapor at a certain temperature and pressure, and can be used under another temperature and pressure. The characteristics released by it to achieve refrigeration; according to the current situation of the use of generator exhaust heat in the domestic and foreign, the idea of using generator exhaust gas to heat and power generation is proposed.
  • the invention effectively utilizes the technical characteristics that the cylinder of the internal combustion engine has high temperature and high pressure, the cylinder needs heat dissipation and exhaust, fully utilizes the structure of the internal combustion engine to perform heat utilization, so that the thermal energy generated by the work is used twice to generate mechanical energy; the external combustion engine is overcome Excessive chambers, compression chambers, heaters, cooling chambers, regenerators, etc. are expensive, heat loss is 2-3 times that of internal combustion engines, etc. Overcoming the need for an expander or gas turbine for an organic Rankine cycle system, manufacturing costs High technical problems; overcome the problem of low heat utilization rate of the internal combustion engine itself.
  • the invention provides a high heat energy conversion efficiency, recycling of working medium energy, and work generation in a cylinder
  • the thermal energy can be converted into mechanical energy, exhaust gas environmentally friendly high-pressure energy storage thermal power machine.
  • the technical solution adopted by the invention is: a high-pressure energy storage thermal energy power machine, characterized in that: a gasifier is arranged on an exhaust passage on a cylinder head of an internal combustion engine, and the gasifier is provided with a gasification sheet in a parallel flow direction, and gasification The air holes are arranged on the sheet, the bottom of the gasifier is provided with a working fluid inlet, the gasification sheet is distributed, the pore array is distributed on the gasification sheet, the energy storage chamber is disposed on the cylinder head, and the gasifier is connected to the energy storage chamber.
  • the energy storage chamber is connected to the high pressure air valve, and the high pressure air valve is disposed on the cylinder head and above the cylinder block; the volume of the energy storage chamber is 1:1-3 than the cylinder volume of the internal combustion engine, and the pressure in the energy storage chamber is when the work is done.
  • the gasifier is provided with at least one gasification sheet.
  • gas distribution sheet gap distance of the gap distribution is 1.2-6 mm.
  • the pores of the upper and lower gasification sheets of the gasification sheet are on the same axis.
  • the gasifier is provided with three layers of gas distribution sheets with a gap distribution.
  • the three-layer gap distribution gasification sheet gap distance is 1.5-3.5 mm.
  • the pore size is set such that the pores on the upper gasification sheet are twice the diameter of the pores on the adjacent gasification sheet.
  • the pores on the first layer of gasification sheet are twice the diameter of the pores on the second layer of gasification sheet; the pores on the second layer of gasification sheet are twice the diameter of the pores on the third layer of gasification sheet.
  • the pore diameter on the first layer of gasification sheet is 0.8-14 mm; the pore diameter on the second layer gasification sheet is 0.4-7 mm; and the pore diameter on the third layer gasification sheet is 0.2-3.5 mm .
  • the gasification sheet has a thickness of 0.2 to 6 mm.
  • the cylinder block and the gasification sheet of the internal combustion engine are both made of a metal heat conductive material.
  • the cylinder block of the internal combustion engine is not provided with a cooling cycle device.
  • the above-mentioned high-pressure energy storage thermal power machine works by adding a high-pressure gas working medium composed of a gasifier and an energy storage chamber to perform a power stroke and an exhaust stroke after the existing engine is performing work or exhausting steps; the existing engine exhaust After that, the high-temperature and high-pressure gas passes through a gasifier disposed in the exhaust passage, and the pressure pump injects the working fluid into the working fluid inlet at the bottom of the gasifier, and the working fluid is instantaneously vaporized to generate high-pressure gas to flow into the energy storage chamber, to be piston
  • the high pressure gas valve opens, the high pressure gas in the energy storage chamber injects the high pressure gas working medium, pushes the piston to work again, and closes the high pressure gas valve after doing the work again, and the work fluid is discharged through the exhaust passage, and the discharged work is done.
  • the material is cooled by the cooler and flows into the liquid storage tank, and the remaining exhaust gas is discharged through the exhaust port on the liquid storage tank.
  • the six-stroke work method of the high-pressure energy storage thermal power machine is: the six-stroke engine is composed of an intake stroke, a compression stroke, a power stroke, an exhaust stroke, a jet power stroke, and an exhaust stroke, and the six-stroke engine
  • the piston needs to travel six strokes in the cylinder, that is, the crankshaft turns three turns.
  • the internal combustion engine in the above-described high-pressure energy storage thermal power machine work method may be a gas oil engine, a diesel engine or a substitute fuel engine; the engine may be a two-stroke, four-stroke, six-stroke and other strokes to increase the jet work stroke.
  • the existing internal combustion engine is a fuel compression expansion work, and the heat energy generated by a large amount of combustion is discharged through the exhaust gas.
  • the gas discharged after the internal combustion engine of the present invention passes through the gasification sheet on the gasifier, and the gasification sheet absorbs 45%-99% of the heat energy of the exhaust gas to perform work. After the working fluid and the exhaust heat energy are absorbed, the temperature of the exhaust gas is reduced.
  • the internal combustion engine wraps the thermal insulation layer to make the temperature constant, effectively utilizes the thermal energy, and increases the working stroke without affecting the operation of the internal combustion engine itself.
  • the invention has the advantages that the increased work stroke makes the temperature of the cylinder block lower and the compression ratio is higher; the exhaust gas discharged through the cooler and the liquid storage tank is more environmentally friendly than the existing engine; the exhaust gas discharged after the temperature of the cylinder block is cooled Filtered through the cooler and the liquid storage tank without noise; increased the power stroke, the heat utilization rate is increased by 20-95%; the heat energy is directly used on the exhaust passage, and no heat dissipation tank is needed.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a cross-sectional view of the gasifier of the present invention, the arrows indicate the flow of the tail gas
  • Figure 3 is a schematic view of the gasification sheet of the present invention a
  • Figure 4 is a schematic view of the gasification sheet of the present invention b
  • Figure 5 is a schematic view of the gasification sheet of the present invention c
  • FIG. 6 is a schematic structural view of Embodiment 2 of the present invention.
  • High-pressure energy storage thermal power machine comprising cylinder block 1, piston 2, piston ring 3, connecting rod 4, crankshaft 5, intake port 6, intake valve 7, exhaust passage 8, cylinder head 18, exhaust valve 20 and the combustion chamber 21;
  • the cylinder block 1 is provided with a combustion chamber 21 and a piston 2
  • the piston 2 is provided with a piston ring 3
  • the piston 2 is movably connected to the connecting rod 4
  • the connecting rod 4 is connected to the crankshaft 5
  • the upper part of the cylinder block 1 is provided with a cylinder a cover 18,
  • the cylinder head 18 is provided with an intake passage 6, an exhaust passage 8,
  • the intake passage 6 is provided with an intake valve 7, and the exhaust passage 8 is provided with an exhaust valve 20;
  • the gas passage 23 is formed on the gasification sheet 22;
  • a gasifier 9 is disposed on
  • the bottom of the gasifier 9 is provided with a working fluid inlet 14, the gasification sheet 22 is distributed in a gap, the array of the air holes 23 is distributed on the gasification sheet 22, and the energy storage chamber 10 is disposed on the cylinder head 18, the gas
  • the chemical device 9 is connected to the energy storage chamber 10, and the energy storage chamber 10
  • the high-pressure gas valve 19 is connected, and the high-pressure gas valve 19 is disposed on the cylinder head 18 above the cylinder block 1; the exhaust passage 8 is connected to the cooler 11 through the pipe 17, and the liquid storage tank 12 connected to the cooler 13 through the pipe 17 is used for liquid storage.
  • the tank 12 is connected to a pressure pump 16 connected by a pipe 17, and the pressure pump 16 is connected to the working fluid inlet 14 through a pipe 17, and the liquid storage tank 12 is provided with an exhaust port 13 for working the working fluid 15 to the liquid storage tank 12, and the liquid storage tank 12
  • the inner pipe 17 extends to the bottom; the volume of the energy storage chamber 10 is 1:1.3 than the cylinder volume of the internal combustion engine, preferably the volume of the energy storage chamber 10 is 1:1.5, and the cylinder volume of the internal combustion engine is 1:1.5.
  • the cylinder volume of the internal combustion engine is 1:2, more preferably the volume of the energy storage chamber 10 is 1:3 than the cylinder volume of the internal combustion engine, and the pressure in the energy storage chamber 10 is the pressure generated when the work is done; the length of the gasifier is long.
  • the ratio of the exhaust gas to the gasifier is 3:3:1.
  • the exhaust valve 24 is added at the position of the cylinder block 1, the exhaust valve 24 is connected to the cooler 13, and after the high-pressure gas valve 19 is exhausted, the exhaust valve 24 is exhausted;
  • the thermal conductivity of the chemical sheet is greater than 300 W/m ⁇ K; the high pressure gas valve 19 and the exhaust valve 24 are controlled by a mechanical transmission mechanism or an air motor electronic controller (ECU).
  • ECU air motor electronic controller
  • the gap distance of the gasification sheet 22 is determined according to the number of layers and the thickness of the gasification sheet; the larger the gap distance of the gasification sheet 22, the gasification sheet The thicker the thickness of 22 is, the larger the diameter of the air hole 23 is, and the smaller the number of layers is provided by the gasification sheet 22; the gasification sheet 22 is provided.
  • the upper air holes 23 are staggered; preferably, the cylinder top dead center of the internal combustion engine is provided with three layers of gap distribution gasification sheets 22; the three layer gap distribution gasification sheets 22 have a gap distance of 1.5 mm or 1.8 mm or 2 mm or 2.5 mm Or 2.8 mm or 3 mm or 3.6 mm or 3.5 mm; the pore size is such that the pores on the next gasification sheet are half the diameter of the pores on the adjacent upper gasification sheet; The pores are half of the pore diameter on the first gasification sheet; the pores on the third gasification sheet are half the diameter of the pores on the second gasification sheet; more preferably, the pore diameter on the first gasification sheet is 0.8 mm or 1.2mm or 1.6mm or 2mm or 3.2mm or 4
  • the high-pressure energy storage thermal power machine as described in Embodiment 1 or 2 or 3 can be manufactured into a single-cylinder, two-cylinder, multi-cylinder engine with different working fluids and different heat energy utilization efficiency, and the structure of the present invention can be designed according to needs. Used in gasoline engines, diesel engines, and alternative gas engines.

Abstract

本发明公开一种高压储能热能动力机器,在内燃机缸盖上的排气道上设置气化器,气化器是在平行气流方向设置气化片,气化片上设置气孔,气化器底部设有工质入口,所述气化片间隙分布,所述气孔阵列分布在所述气化片上,储能腔设置在缸盖上,气化器连接储能腔,储能腔连接高压气阀,高压气阀设置在缸盖上,处于气缸体上方,所述储能腔的体积比内燃机气缸体积为1:1-3。增加的做功行程使得气缸体温度得到降温,压缩比高;因经过冷却器和储液罐的过滤,排出的尾气比现有发动机环保;气缸体温度得到降温后噪音更小;增加了一次做功行程,热能利用率提高20-95%;直接在排气道上进行热能利用,不需要散热水箱。

Description

一种高压储能热能动力机器及其做功方法 技术领域
本发明属于热能储能动力设备领域,尤其是储存内燃机本身做功高压气体热能的热能动力设备。
背景技术
四冲程发动机每个工作循环是由进气行程、压缩行程、做功行程和排气行程组成,而四冲程发动机要完成一个工作循环,活塞在气缸内需要往返4个行程(即曲轴转2转)。四冲程发动机又分为四冲程气油机和四冲程柴油机,两者的主要区别是点火方式不同。气油机是火花塞点火,而柴油机是压燃。
四冲程发动机属于往复活塞式内燃机,根据所用燃料种类的不同,分为气油机、柴油机和气体燃料发动机三类。以气油或柴油为燃料的活塞式内燃机分别称作气油机或柴油机。使用天然气、液化石油气和其他气体燃料的活塞式内燃机称作气体燃料发动机。气油和柴油都是石油制品,是气车发动机的传统燃料。非石油燃料称作代用燃料。燃用代用燃料的发动机称作代用燃料发动机,如乙醇发动机、氢气发动机、甲醇发动机等。
从目前气车所用发动机的热平衡来看,用于动力输出的功率一般只占燃油燃烧总热量的30%-45%(柴油机)或20%-30%(气油机)。以余热形式排出车外的能量占燃烧总能量的55%-70%(柴油机)或80%-70%(气油机),主要包括循环冷却水带走的热量和尾气带走的热量。下表为内燃机的热平衡表
Figure PCTCN2014093131-appb-000001
气油机是将空气与气油以一定的比例混合成良好的混合气,在进气行程被吸入气缸,混合气经压缩点火燃烧而产生热能,高温高压的气体作用于活塞顶部,推动活塞作往复直线运动,通过连杆、曲轴飞轮机构对外输出机械能。四冲程气油机在进气行程、压缩行程、做功行程和排气行程内完成一个工作循环。
进气行程活塞在曲轴的带动下由上止点移至下止点。此时进气门开启,排气门关闭,曲轴转动180°。在活塞移动过程中,气缸容积逐渐增大,气缸内气体压力从pr逐渐降低到pa,气缸内形成一定的真空度,空气和气油的混合气通过进气门被吸入气缸,并在气缸内进一步混合形成可燃混合气。由于进气系统存在阻力,进气终点气缸内气体压力小于大气压力0 p,即pa=(0.80~0.90)0 p。进入气缸内的可燃混合气的温度,由于进气管、气缸壁、活塞顶、气门和燃烧室壁等高温零件的加热以及与残余废气的混合而升高到340~400K。
压缩行程压缩行程时,进、排气门同时关闭。活塞从下止点向上止点运动,曲轴转动180°。活塞上移时,工作容积逐渐缩小,缸内混合气受压缩后压力和温度不断升高,到达压缩终点时,其压力pc可达800~2000kPa,温度达600~750K。
做功行程当活塞接近上止点时,由火花塞点燃可燃混合气,混合气燃烧释放出大量的热能,使气缸内气体的压力和温度迅速提高。燃烧最高压力pZ达3000~6000kPa,温度TZ达2200~2800K。高温高压的燃气推动活塞从上止点向下止点运动,并通过曲柄连杆机构对外输出机械能。随着活塞下移,气缸容积增加,气体压力和温度逐渐下降,到达b点时,其压力降至300~500kPa,温度降至1200~1500K。在做功行程,进气门、排气门均关闭,曲轴转动180°。
排气行程排气行程时,排气门开启,进气门仍然关闭,活塞从下止点向上止点运动,曲轴转动180°。排气门开启时,燃烧后的废气一方面在气缸内外压差作用下向缸外排出,另一方面通过活塞的排挤作用向缸外排气。由于排气系统的阻力作用,排气终点r点的压力稍高于大气压力,即pr=(1.05~1.20)p0。排气终点温度Tr=900~1100K。活塞运动到上止点时,燃烧室中仍留有一定容积的废气无法排出,这部分废气叫残余废气。
四冲程柴油机和气油机一样,每个工作循环也是由进气行程、压缩行程、做功行程和排气行程组成。由于柴油机以柴油作燃料,与气油相比,柴油自燃温度低、黏度大不易蒸发,因而柴油机采用压缩终点自燃着火,其工作过程及系统结构与气油机有所不同.
进气行程 进入气缸的工质是纯空气。由于柴油机进气系统阻力较小,进气终点压力pa=(0.85~0.95)p0,比气油机高。进气终点温度Ta=300~340K,比气油机 低。
压缩行程 由于压缩的工质是纯空气,因此柴油机的压缩比比气油机高(一般为ε=16~22)。压缩终点的压力为3000~5000kPa,压缩终点的温度为750~1000K,大大超过柴油的自燃温度(约520K)。
做功行程 当压缩行程接近终了时,在高压油泵作用下,将柴油以10MPa左右的高压通过喷油器喷入气缸燃烧室中,在很短的时间内与空气混合后立即自行发火燃烧。气缸内气体的压力急速上升,最高达5000~9000kPa,最高温度达1800~2000K。由于柴油机是靠压缩自行着火燃烧,故称柴油机为压燃式发动机。
排气行程 柴油机的排气与气油机基本相同,只是排气温度比气油机低。一般Tr=700~900K。对于单缸发动机来说,其转速不均匀,发动机工作不平稳,振动大。这是因为四个行程中只有一个行程是做功的,其他三个行程是消耗动力为做功做准备的行程。为了解决这个问题,飞轮必须具有足够大的转动惯量,这样又会导致整个发动机质量和尺寸增加。采用多缸发动机可以弥补上述不足。现代气车用多采用四缸、六缸和八缸发动机。
上述内燃机的气缸在做功后气缸内温度高达1000K以上高温,高温气体通过排气门排出,造成热能的直接浪费,气缸内壁、活塞顶、气缸盖、气门灯部位的温度较高,会影响压缩冲程的效率,故现有发动机气缸上均设有冷却散热系统。
发动机尾气的利用,目前发动机有涡轮增压,增压后发动机在工作时候的压力和温度都大大升高,因此发动机寿命会比同样排量没有经过增压的发动机要短,而且机械性能、润滑性能都会受到影响,这样也在一定程度上限制了涡轮增压技术在发动机上的应用。
尾气余热利用比较低;能量回收装置要抗震动和冲击;尾气余热回收装置不能影响发动机的正常工作性能。目前关于发动机尾气余热利用方式主要有以下几种:废气涡轮增压就是借助废气中的一部分能量来提高内燃机的进气压力进而增加充气量,以改善发动机的动力性和经济性。目前相当多的气车发动机都采用涡轮增压的方式。但是这种方式只能应用废气中的部分能量,而且存在很难与发动机的全工况进行匹配等一些问题。
发动机尾气余热利用发电主要有三种方法,即温差发电、废气涡轮发电以及氟龙 透平发电。温差发电主要是利用温差发电材料进行发电,但是由于热电材料的能量转换率较低因而需要开发出转换率较高的热电转换材料。废气涡轮发电就是利用废气驱动涡轮从而带动发电机发电,这种发电方式对发动机的性能有一定的影响要进一步研究。
目前利用发电机尾气余热制冷主要是吸收式制冷和吸附式制冷。吸收式制冷原理是以热能为动力来完成制冷循环的;吸附式制冷是利用某些固体物质在一定温度、压力下能吸附某种气体或水蒸气,在另一种温度及压力下又能把它释放出来的特性来实现制冷。根据目前国内外关于发电机尾气余热利用的现状,提出了一种利用发电机尾气余热制暖以及发电的思路。
单缸发动机的基本结构,它由气缸、活塞、连杆、曲轴、气缸盖、机体、凸轮轴、进气门、排气门、气门弹簧、曲轴齿形带轮等组成,往复活塞式内燃机的工作腔称作气缸,气缸内表面为圆柱形。在气缸内作往复运动的活塞通过活塞销与连杆的一端铰接,连杆的另一端则与曲轴相连,构成曲柄连杆机构。活塞在气缸内作往复运动时,连杆推动曲轴旋转,或者相反。同时,气缸的容积在不断的由小变大,再由大变小,如此循环不已。气缸的顶端用气缸盖封闭。气缸盖上装有进气门和排气门。通过进、排气门的开闭实现向气缸内充气和向气缸外排气。进、排气门的开闭由凸轮轴驱动。凸轮轴由曲轴通过齿形带或齿轮驱动。构成气缸的零件称作气缸体,曲轴在曲轴箱内转动。
外燃机由于工质不燃烧,外燃机避免了传统内燃机的震爆做功问题,从而实现了高效率、低噪音、低污染和低运行成本。只要热腔达到700℃,设备即可做功运行,环境温度越低,发电效率越高。外燃机最大的优点是出力和效率不受海拔高度影响,非常适合于高海拔地区使用。
同时斯特林发动机尚存在的主要问题和缺点是:制造成本较高,工质密封技术较难,密封件的可靠性和寿命还存在问题,材料成本高,功率调节控制系统较复杂,机器较为笨重;膨胀室、压缩室、加热器、冷却室、再生器等的成本高,热量损失是内燃发动机的2-3倍等。
有机朗肯循环系统包括泵、蒸发器、膨胀机、发电机、冷凝器等。集热器吸收太阳辐照,集热器内换热介质温度升高,换热介质通过蒸发器把热量传给有机工质。有机工质在蒸发器中定压加热,高压的气态有机工质进入膨胀机膨胀 做功,带动发电机发电;膨胀机尾部排出的有机工质进入冷凝器中定压冷凝,冷凝器出口的有机工质经过泵加压后进入蒸发器完成一次发电循环。
有机朗肯循环系统存在转换效率不高,体积大,需要借助结构复杂的膨胀机做功。
现有发动机噪音大,尤其是多缸大排量发动机。
发明内容
上述背景技术中的现有技术对尾气的利用均是在气缸的外面,需要配置完整的循环系统,尾气余热利用比较低;能量回收装置要抗震动和冲击;尾气余热回收装置不能影响发动机的正常工作性能;目前关于发动机尾气余热利用方式主要有以下几种:废气涡轮增压就是借助废气中的一部分能量来提高内燃机的进气压力进而增加充气量,以改善发动机的动力性和经济性;目前相当多的气车发动机都采用涡轮增压的方式;但是这种方式只能应用废气中的部分能量,而且存在很难与发动机的全工况进行匹配等一些问题。发动机尾气余热利用发电主要有三种方法,即温差发电、废气涡轮发电以及氟龙透平发电。温差发电主要是利用温差发电材料进行发电,但是由于热电材料的能量转换率较低因而需要开发出转换率较高的热电转换材料。废气涡轮发电就是利用废气驱动涡轮从而带动发电机发电,这种发电方式对发动机的性能有一定的影响;
目前利用发电机尾气余热制冷主要是吸收式制冷和吸附式制冷。吸收式制冷原理是以热能为动力来完成制冷循环的;吸附式制冷是利用某些固体物质在一定温度、压力下能吸附某种气体或水蒸气,在另一种温度及压力下又能把它释放出来的特性来实现制冷;根据目前国内外关于发电机尾气余热利用的现状,提出了一种利用发电机尾气余热制暖以及发电的思路。
本发明有效利用了内燃机气缸内本身具有高温高压,气缸需要散热和排气的技术特点,充分利用内燃机本身的结构进行热量利用,使做功产生的热能二次被利用产生机械能;克服了外燃机存在的膨胀室、压缩室、加热器、冷却室、再生器等的成本高,热量损失是内燃发动机的2-3倍等问题;克服了有机朗肯循环系统需要膨胀机或气轮机,制造成本高的技术难题;克服了内燃机本身热能利用率低的问题。
本发明提供了一种热能转换效率高、工质能循环使用、气缸内做功产生 的热能能再次转换成机械能、尾气环保的高压储能热能动力机器。
本发明采用的技术方案是:一种高压储能热能动力机器,其特征是:在内燃机缸盖上的排气道上设置气化器,气化器是在平行气流方向设置气化片,气化片上设置气孔,气化器底部设有工质入口,所述气化片间隙分布,所述气孔阵列分布在所述气化片上,储能腔设置在缸盖上,气化器连接储能腔,储能腔连接高压气阀,高压气阀设置在缸盖上,处于气缸体上方;所述储能腔的体积比内燃机气缸体积为1:1-3,储能腔内的压力是做功时产生的压力大小;气化器长L比气化器宽W比排气道直径R为3:3:1;内燃机外层包裹保温层。
进一步,所述气化器设有至少一层气化片。
进一步,所述间隙分布的气化片间隙距离为1.2-6mm。
进一步,所述气化片上下两层气化片的气孔在同一轴线上。
进一步,所述气化器设有三层间隙分布的气化片。
进一步,所述三层间隙分布的气化片间隙距离为1.5-3.5mm。
进一步,所述气孔大小设置是,上一层气化片上的气孔是相邻下一层气化片上的气孔直径一倍。
进一步,所述第一层气化片上的气孔是第二层气化片上的气孔直径一倍;第二层气化片上的气孔是第三层气化片上的气孔直径一倍。
进一步,所述第一层气化片上的气孔直径为0.8-14mm;所述第二层气化片上的气孔直径为0.4-7mm;所述第三层气化片上的气孔直径为0.2-3.5mm。
进一步,所述气化片的厚度为0.2-6mm。
进一步,所述内燃机气缸体与气化片均是金属导热材料制成。
进一步,所述内燃机气缸体包裹保温层不设冷却循环装置。
上述高压储能热能动力机器做功方法是:在现有发动机做功或排气步骤后,增加由气化器和储能腔构成的喷高压气体工质做功行程和排气行程;现有发动机排气后,高温高压气体经过设置在排气道的气化器,压力泵把做功工质注入到气化器底部的工质入口,工质瞬间被气化产生高压气体流入到储能腔,待活塞到达上止点时,高压气阀打开,储能腔内的高压气体喷射高压气体工质,推动活塞再次做功,再次做功后关闭高压气阀,做功工质通过排气道排出,排出的做功工质经过冷却器冷却后流入储液罐,剩余尾气经过储液罐上的排气口排出。
如上述高压储能热能动力机器六冲程的做功方法是:六冲程发动机每个工作循环是由进气行程、压缩行程、做功行程、排气行程、喷气做功行程和排气行程组成,六冲程发动机要完成一个工作循环,活塞在气缸内需要往返六个行程,即曲轴转三转。
如上述高压储能热能动力机器做功方法中的内燃机可以是气油机、柴油机或代用燃料发动机;可以是二冲程、四冲程、六冲程及其他冲程的发动机增加喷气做功行程。
现有内燃机是燃料压缩膨胀做功,大量燃烧产生的热能通过尾气排出,本发明内燃机做功后排出的气体经过气化器上的气化片,气化片吸收尾气45%-99%的热能加热做功工质,尾气热能被吸收后,尾气温度得到降低,内燃机包裹保温层使温度恒定,有效利用了热能,同时不影响内燃机本身工作的情况下,增加了一次做功行程。
本发明的优点是:增加的做功行程使得气缸体温度得到降温,压缩比高;因经过冷却器和储液罐的过滤,排出的尾气比现有发动机环保;气缸体温度得到降温后排出的尾气经过冷却器和储液罐过滤无噪音;增加了一次做功行程,热能利用率提高20-95%;直接在排气道上进行热能利用,不需要散热水箱。
附图说明
图1是本发明结构示意图
图2是本发明气化器剖视图,箭头表示尾气流向
图3是本发明气化片示意图a
图4是本发明气化片示意图b
图5是本发明气化片示意图c
图6是本发明实施例2结构示意图
图中1-气缸体 2-活塞 3-活塞环 4-连杆 5-曲轴 6-进气道 7-进气门 8-排气道 9-气化器 10-储能腔 11-冷却器 12-储液罐 13-排气口 14-工质入口 15-做功工质16-压力泵 17-管道 18-缸盖 19-高压气阀 20-排气门 21-燃烧室 22-气化片 23-气孔。
具体实施方式
参照附图,更详细说明本发明的实施方式。
实施例1
一种高压储能热能动力机器,包括气缸体1、活塞2、活塞环3、连杆4、曲轴5、进气道6、进气门7、排气道8、缸盖18、排气门20和燃烧室21;气缸体1内设有燃烧室21和活塞2,活塞2上设有活塞环3,活塞2活动连接连杆4,连杆4连接曲轴5,气缸体1上部设有缸盖18,缸盖18上设有进气道6、排气道8,进气道6设有进气门7,排气道8设有排气门20;还包括气化器9、储能腔10、冷却器11、储液罐12、排气口13、工质入口14、做功工质15、压力泵16、管道17和高压气阀19,气化器9由气化片22和设置在气化片22上气孔23组成;在内燃机缸盖18上的排气道8上设置气化器9,气化器9是在平行气流方向设置气化片22,气化片22上设置气孔23,气化器9底部设有工质入口14,所述气化片22间隙分布,所述气孔23阵列分布在所述气化片22上,储能腔10设置在缸盖18上,气化器9连接储能腔10,储能腔10连接高压气阀19,高压气阀19设置在缸盖18上,处于气缸体1上方;排气道8通过管道17连接冷却器11,冷却器13通过管道17连接的储液罐12,储液罐12通过管道17连接的压力泵16,压力泵16通过管道17连接工质入口14,储液罐12上设有排气口13,做功工质15至于储液罐12内,储液罐12内的管道17延伸至底部;所述储能腔10的体积比内燃机气缸体积为1:1.3,优选所述储能腔10的体积比内燃机气缸体积为1:1.5,再优选所述储能腔10的体积比内燃机气缸体积为1:2,更优选所述储能腔10的体积比内燃机气缸体积为1:3,储能腔10内的压力是做功时产生的压力大小;气化器长比气化器宽比排气道直径为3:3:1。
实施例2
如实施例1中的高压储能热能动力机器,在气缸体1位置增加排气阀24,排气阀24连接冷却器13,高压气阀19喷气做功后,开启排气阀24排气;气化片导热系数大于300 W/m·K;高压气阀19和排气阀24由机械传动机构控制或气车电子控制器(ECU)进行控制。
实施例3
上述实施例1或2中所述高压储能热能动力机器,所述气化片22的间隙距离根据气化片的层数和厚度决定;气化片22设置的间隙距离越大,气化片22的厚度设置越厚,气孔23设置的直径越大,气化片22设置的层数越少;气化片22设 置的间隙距离越小,气化片22的厚度设置越薄,气孔23设置的直径越小,气化片22设置的层数越多;所述间隙分布的气化片22与气化片22上的气孔23交错分布;优选所述内燃机气缸上止点设有三层间隙分布的气化片22;所述三层间隙分布的气化片22间隙距离为1.5mm或1.8mm或2mm或2.5mm或2.8mm或3mm或3.6mm或3.5mm;所述气孔大小设置是,下一层气化片上的气孔是相邻上一层气化片上的气孔直径一半;所述第二层气化片上的气孔是第一层气化片上的气孔直径一半;第三层气化片上的气孔是第二层气化片上的气孔直径一半;更优选所述第一层气化片上的气孔直径为0.8mm或1.2mm或1.6mm或2mm或3.2mm或4mm或4.8mm或6mm或7.2mm或8mm或10mm或12mm或14mm;所述第二层气化片上的气孔直径为0.4mm或0.6mm或0.8mm或1mm或1.6mm或2mm或2.4mm或3mm或3.6mm或4mm或5mm或6mm或7mm;所述第三层气化片上的气孔直径为0.2mm或0.3mm或0.4mm或0.5mm或0.8mm或1mm或1.2mm或1.5mm或1.8mm或2mm或2.5mm或3mm或3.5mm;所述气化片的厚度为0.4mm或0.6mm或0.8mm或1mm或1.6mm或2mm或2.4mm或3mm或3.6mm或4mm或5mm或6mm;所述内燃机气缸与气化片均是金属导热材料制成,其导热系数大于300 W/m·K,优选金、银、铜制成的合金。
实施例4
如实施例1或2或3中所述高压储能热能动力机器,能制造成单缸、两缸、多缸发动机,做功工质不同,热能利用效率不同,本发明的结构能根据需要设计在汽油机、柴油机、替代燃气机中使用。

Claims (9)

  1. 一种高压储能热能动力机器,其特征是:在内燃机缸盖上的排气道上设置气化器,气化器是在平行气流方向设置气化片,气化片上设置气孔,气化器底部设有工质入口,所述气化片间隙分布,所述气孔阵列分布在所述气化片上,储能腔设置在缸盖上,气化器连接储能腔,储能腔连接高压气阀,高压气阀设置在缸盖上,处于气缸体上方;所述储能腔的体积比内燃机气缸体积为1:1-3,储能腔内的压力是做功时产生的压力大小;气化器长L比气化器宽W比排气道直径R为3:3:1;内燃机外层包裹保温层。
  2. 如权利要求1所述高压储能热能动力机器,其特征是:所述储能腔的体积大小是内燃机气缸体积的1-3倍,储能腔内的压力是做功时产生的压力大小。
  3. 如权利要求1所述高压储能热能动力机器,其特征是:所述气化器设有至少一层气化片。
  4. 如权利要求1所述高压储能热能动力机器,其特征是:所述间隙分布的气化片间隙距离为1.2-6mm。
  5. 如权利要求1所述高压储能热能动力机器,其特征是:所述气化片上下两层气化片的气孔在同一轴线上;所述气化器设有三层间隙分布的气化片;所述三层间隙分布的气化片间隙距离为1.5-3.5mm。
  6. 如权利要求1所述高压储能热能动力机器,其特征是:所述气孔大小设置是,上一层气化片上的气孔是相邻下一层气化片上的气孔直径一倍;所述第一层气化片上的气孔是第二层气化片上的气孔直径一倍;第二层气化片上的气孔是第三层气化片上的气孔直径一倍。
  7. 如权利要求1所述高压储能热能动力机器,其特征是:所述第一层气化片上的气孔直径为0.8-14mm;所述第二层气化片上的气孔直径为0.4-7mm;所述第三层气化片上的气孔直径为0.2-3.5mm;所述气化片的厚度为0.2-6mm;所述内燃机气缸体与气化片均是金属导热材料制成;所述内燃机气缸体包裹保温层不设冷却循环装置。
  8. 如权利要求1-7任一项所述高压储能热能动力机器做功方法是:在现有发动机做功或排气步骤后,增加由气化器和储能腔构成的喷高压气体工质做功行程和排气行程;现有发动机排气后,高温高压气体经过设置在排气道的气化器,压力泵 把做功工质注入到气化器底部的工质入口,工质瞬间被气化产生高压气体流入到储能腔,待活塞到达上止点时,高压气阀打开,储能腔内的高压气体喷射高压气体工质,推动活塞再次做功,再次做功后关闭高压气阀,做功工质通过排气道排出,排出的做功工质经过冷却器冷却后流入储液罐,剩余尾气经过储液罐上的排气口排出。
  9. 如权利要求8所述高压储能热能动力机器做功方法,其特征是:六冲程发动机每个工作循环是由进气行程、压缩行程、做功行程、排气行程、喷气做功行程和排气行程组成,六冲程发动机要完成一个工作循环,活塞在气缸内需要往返六个行程,即曲轴转三转;所述做功方法中的内燃机可以是气油机、柴油机或代用燃料发动机;可以是二冲程、四冲程、六冲程及其他冲程的发动机增加喷气做功行程。
PCT/CN2014/093131 2014-07-04 2014-12-05 一种高压储能热能动力机器及其做功方法 WO2016000402A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/323,743 US10082072B2 (en) 2014-07-04 2014-12-05 High pressure energy storage thermal energy power machine and work-doing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410314051.1A CN104100365A (zh) 2014-07-04 2014-07-04 一种高压储能热能动力机器及其做功方法
CN2014103140511 2014-07-04

Publications (1)

Publication Number Publication Date
WO2016000402A1 true WO2016000402A1 (zh) 2016-01-07

Family

ID=51668848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093131 WO2016000402A1 (zh) 2014-07-04 2014-12-05 一种高压储能热能动力机器及其做功方法

Country Status (3)

Country Link
US (1) US10082072B2 (zh)
CN (1) CN104100365A (zh)
WO (1) WO2016000402A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104100365A (zh) * 2014-07-04 2014-10-15 郭远军 一种高压储能热能动力机器及其做功方法
CN107939491A (zh) * 2015-12-10 2018-04-20 成都问达茂源科技有限公司 一种汽车尾气热能转化机构
CN113833720B (zh) * 2021-10-18 2024-04-09 中国科学院工程热物理研究所 一种基于微小非光滑表面结构的储能飞轮减阻系统
EP4253738B1 (de) * 2022-03-31 2024-04-24 Martin Buchberger Verfahren zum betreiben eines getaktet angetriebenen kolbenmotors
US11933204B2 (en) * 2022-06-23 2024-03-19 Caterpillar Inc. Systems and methods for thermal barrier coatings to modify engine component thermal characteristics

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040400A (en) * 1975-09-02 1977-08-09 Karl Kiener Internal combustion process and engine
JPH0861103A (ja) * 1994-08-19 1996-03-05 Isuzu Ceramics Kenkyusho:Kk 遮熱型ガスエンジン
CN101403350A (zh) * 2007-10-02 2009-04-08 张寅啸 内燃直热蒸汽机
CN101532420A (zh) * 2009-04-18 2009-09-16 王鑫弘 喷雾液体到热壁上高速蒸发与内燃机和蒸汽机复合发动机
GB2492827A (en) * 2011-07-14 2013-01-16 Matthew P Wood A device for vaporising liquid and the use of such a device in an internal combustion engine
CN104100365A (zh) * 2014-07-04 2014-10-15 郭远军 一种高压储能热能动力机器及其做功方法
CN204082319U (zh) * 2014-07-04 2015-01-07 郭远军 一种高压储能热能动力机器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671311A (en) * 1951-03-16 1954-03-09 Joe Reilly Engine having alternate internal-combustion and fluid pressure power strokes
US3842808A (en) * 1973-03-26 1974-10-22 Gen Motors Corp Regenerative steam ignition internal combustion engine
US4552106A (en) * 1982-12-03 1985-11-12 John P. Ohl Internal combustion engine
CN104088720B (zh) * 2014-07-04 2016-04-13 湖南零陵恒远发电设备有限公司 一种高效热能动力发动机及其做功方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4040400A (en) * 1975-09-02 1977-08-09 Karl Kiener Internal combustion process and engine
JPH0861103A (ja) * 1994-08-19 1996-03-05 Isuzu Ceramics Kenkyusho:Kk 遮熱型ガスエンジン
CN101403350A (zh) * 2007-10-02 2009-04-08 张寅啸 内燃直热蒸汽机
CN101532420A (zh) * 2009-04-18 2009-09-16 王鑫弘 喷雾液体到热壁上高速蒸发与内燃机和蒸汽机复合发动机
GB2492827A (en) * 2011-07-14 2013-01-16 Matthew P Wood A device for vaporising liquid and the use of such a device in an internal combustion engine
CN104100365A (zh) * 2014-07-04 2014-10-15 郭远军 一种高压储能热能动力机器及其做功方法
CN204082319U (zh) * 2014-07-04 2015-01-07 郭远军 一种高压储能热能动力机器

Also Published As

Publication number Publication date
CN104100365A (zh) 2014-10-15
US10082072B2 (en) 2018-09-25
US20170167365A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2016000402A1 (zh) 一种高压储能热能动力机器及其做功方法
US20090056670A1 (en) High efficiency integrated heat engine-2 (heihe-2)
US20070022977A1 (en) Method and apparatus for operating an internal combustion engine
CN102072013B (zh) 新型内燃机设计
WO2016000401A1 (zh) 一种高效热能动力发动机及其做功方法
WO2016000400A1 (zh) 一种高效热能动力设备及其做功方法
WO2016000403A1 (zh) 一种热能动力设备及其做功方法
CN102748126B (zh) 门控同缸u流活塞热动力系统及提高其效率的方法
CN101852130A (zh) 双媒体混合动力发动机
CN102562294B (zh) 八冲程发动机
CN112065574B (zh) 一种提高热机效率减少尾气污染的中燃热气轮机
CN204082319U (zh) 一种高压储能热能动力机器
CN204082318U (zh) 一种热能动力设备
CN109469557B (zh) 一种自适应压气连续燃烧活塞发动机
CN204082379U (zh) 一种高效热能动力发动机
CN210686064U (zh) 一种储压式发动机
CN204082377U (zh) 一种高效热能动力设备
CN202065021U (zh) 汽车不耗油co2热力发动机
RU136095U1 (ru) Двигатель внутреннего сгорания
CN101776025B (zh) 高效高温型内外混燃机
CN201496142U (zh) 内冷活塞式内燃蒸汽机
CN112253307A (zh) 燃烧室瞬传导、节流中冷的中冷方法及绝热内燃机
CN117167138A (zh) 一种滑膛式季差绝热内燃机
CN105927379A (zh) 季差绝热式活塞内燃机技术及所制造的内燃机
RU89179U1 (ru) Двигатель внутреннего сгорания

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15323743

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14896360

Country of ref document: EP

Kind code of ref document: A1