WO2014026423A1 - 一种利用压缩空气为作功能源的透平发动机 - Google Patents

一种利用压缩空气为作功能源的透平发动机 Download PDF

Info

Publication number
WO2014026423A1
WO2014026423A1 PCT/CN2012/082154 CN2012082154W WO2014026423A1 WO 2014026423 A1 WO2014026423 A1 WO 2014026423A1 CN 2012082154 W CN2012082154 W CN 2012082154W WO 2014026423 A1 WO2014026423 A1 WO 2014026423A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
compressed air
exhaust
cylinder
intake
Prior art date
Application number
PCT/CN2012/082154
Other languages
English (en)
French (fr)
Inventor
彭学军
Original Assignee
Peng Xuejun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Xuejun filed Critical Peng Xuejun
Publication of WO2014026423A1 publication Critical patent/WO2014026423A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B25/00Regulating, controlling, or safety means
    • F01B25/02Regulating or controlling by varying working-fluid admission or exhaust, e.g. by varying pressure or quantity

Definitions

  • This invention relates to the field of engine technology, and more particularly to a piston turbine engine that utilizes compressed air as a working medium.
  • physical energy storage includes pumped energy storage, compressed air energy storage, flywheel energy storage, phase change energy storage and so on.
  • Chemical energy storage includes lead-acid batteries, lithium-based batteries, flow batteries, sodium-sulfur batteries, etc.
  • electromagnetic energy storage such as superconducting energy storage.
  • pumped storage has the largest capacity in the international energy storage market, accounting for 99% of the total installed capacity; the second is compressed air storage, accounting for 0.5%; all other including all kinds of batteries Form accounts for 0.5%
  • pumped storage capacity is the largest in scale, reaching thousands of megawatts, and the technology is also the most mature; compressed air storage is second, single machine scale is 100 megawatts; chemical storage capacity is small, single machine The scale is generally on the megawatt level or less.
  • the air storage energy is not the same. If there is a need, it can be built. When it is stored, it uses electric energy to compress and store the air in the air storage chamber. At the time, the high-pressure air is released from the gas storage chamber and enters the expansion chamber to generate electricity. The electricity can be stored by using low valleys, abandoned wind, abandoned water, and abandoned light, and is released when needed, completely free from geographical conditions.
  • compressed air energy storage technology is also particularly suitable for solving the problems of randomness, gap and volatility of wind power generation and solar power generation. Smooth output of power generation.
  • An aerodynamic engine is a device that converts energy stored in high-pressure air into mechanical energy output in the form of torque, and does not consume fuel such as petroleum.
  • the "air starting device” patent No. ZL02116274.3 which was invented by the inventor in 2002, "compressed aerodynamic engine gas distribution” reported in "China Mechanical Engineering", Vol. 15, No. 18, published in September 2004. Institutional research” and so on.
  • the launching uses compressed air as the working medium, which can create the working environment and conditions of the compressed air source pressure and the absolute pressure difference of the work chamber without working air.
  • the compression is performed.
  • the air potential energy can be efficiently and fully converted into turbo mechanical energy, and then the external output machine can be used to quit.
  • the present invention provides a turbine engine using compressed air as a function source, comprising four subsystems of gas source, control, work, and lubrication jointly attached to the same body, and gas distribution, transmission, and auxiliary three. Sub-institution
  • the gas source system is provided with a gas source by an air compressor and/or a compressed air storage container, and is formed by a series connection of pipes;
  • the control system is disposed between the air source system and the work system, and includes an electronic measurement and control device and a control valve.
  • the electronic measurement and control device performs data collection, analysis and quantification on the pressure and air quality of the compressed air, and controls
  • the valve controls the flow rate and pressure of the compressed air supplied to the working system to control the engine torque and the operating state;
  • the working system includes a housing and at least one set of cylinders and pistons disposed therein, the cylinder has a closed variable volume, a working chamber inside, a cylinder head at the top, and a crankcase at the bottom;
  • the cylinder head is provided with an intake valve and an exhaust valve, and the intake valve is connected to the intake duct through an intake valve, and the exhaust valve is connected to the exhaust duct through an exhaust valve, the intake air
  • the pipeline is in communication with the gas source system, and the outlet of the exhaust conduit is in communication with the atmosphere;
  • a crankshaft is disposed in the crankcase, the piston is connected to the crankshaft through a connecting rod, two ends of the connecting rod are respectively hinged with a piston and a crankshaft, and the crankshaft is connected with a main shaft of the engine; a lubricating oil passage, an oil pump, an oil filter and a valve disposed in the cylinder, the oil is stored in an oil sump at the bottom of the crankcase, and the oil pump, the oil filter and the lubricating oil passage are connected to form an oil a lubricating oil circuit, the valve being disposed on a lubricating oil road;
  • the air distribution mechanism includes a camshaft connected to the crankshaft, and the intake valve and the exhaust valve periodically open and close the intake and exhaust valves under the control of the camshaft to allow compressed air to enter the cylinder and exhaust the exhaust gas. Discharge from the cylinder to achieve the ventilation process;
  • the transmission mechanism includes a timing sprocket, a timing chain and a crank sprocket, the crank sprocket is disposed on a crankshaft, and the timing sprocket is connected to the crank sprocket through a timing chain; the timing sprocket Connected to the camshaft;
  • the auxiliary mechanism includes one of a tail gas pressure stabilizing mechanism, an exhaust gas recovery mechanism, an exhaust muffling mechanism, or a combination thereof;
  • the work cycle of the work system is:
  • the cylinder volume is at the minimum volume.
  • the camshaft controls the intake valve to open through the intake valve, the exhaust valve closes, and the compressed air directly enters the closed cylinder, due to the cylinder and the cylinder.
  • the camshaft controls the intake valve to close and the exhaust valve to open through the intake valve, and the piston moves upward under the action of inertia to generate an upward force.
  • the compressed air is discharged through the exhaust valve, and the cylinder volume becomes the minimum again, and enters the next cycle of work, thereby continuously outputting power to the outside.
  • a heat exchange device is disposed on the communication pipe between the control valve and the intake valve for temperature and pressure regulation of the compressed air passing through the pipe to improve the effective work power.
  • the intake air continuous angle of the intake valve opening when the camshaft is in operation and the exhaust gas continuous angle of the exhaust valve opening are relatively gapless.
  • the camshaft is located on one side of the crankshaft, and the two are connected by a gear or a belt drive, and the intake valve and the exhaust valve are provided with a valve lifter for controlling opening and closing thereof, and a cam on the camshaft
  • the crossbar is connected to the valve lifter to control the intake valve and the exhaust valve to be sequentially opened or closed according to the piston work flow.
  • the camshaft is located at the top of the intake and exhaust valves and is coupled to the crankshaft via a belt or chain, the cam thereon directly controlling the intake and exhaust valves.
  • the camshaft is located at the top of the intake and exhaust valves and is coupled to the crankshaft via a belt or chain, and the cam thereon controls the intake and exhaust valves through the connecting rod.
  • the cam shaft includes an intake cam and an exhaust cam; the intake cam is formed with a lobed angle in a direction of its symmetry to open the intake valve, and the exhaust cam is formed with an open portion in its symmetrical direction to open the exhaust valve.
  • the gas pressure of the compressed air source is greater than the pressure required for the fresh charge in the cylinder working chamber to be compressed to the compression ratio set by the starting device, and the pressure has an order of magnitude difference from the operating ambient pressure, and Can reach the lowest pressure of the piston as the work dead point.
  • the compressed air storage container is provided with a smart safety valve, an artificial pressure reducing valve, an inlet valve, an exhaust valve, a flange connection, a pressure pressure meter interface, and a drain valve disposed at the bottom of the container.
  • the cylinders are operated separately or in an integral multiple of 2 of 36 or less, arranged in an in-line, V-shaped, horizontally opposed or W-type.
  • the turbine engine provided by the invention solves the limitation of energy exploitation of the petrochemical engine whose existing thermal energy is converted into mechanical energy, and the technical defects of polluting environment, high cost, non-recyclable, economical and the like, and provides a set of natural use.
  • the general engine By using compressed air as the power source and not using traditional petrochemical energy, the general engine is eliminated: oil and gas, ignition, cooling, fuel injection, explosion combustion and other systems, without explosive combustion during work, low noise and vibration during operation
  • the general engine without harmful exhaust emissions, emits a tail gas temperature of 20 ° C, a more compact structure, and effectively reduces manufacturing costs and body weight.
  • the invention can be arranged in a single cylinder or a multi-cylinder in parallel to correspond to the power output that satisfies the corresponding power. And can make the work of compressed air be precisely controlled, greatly improve the energy transfer, the work power in the conversion process, less heat loss and vibration noise, energy consumption, thereby improving the overall Power system stability, reliability and energy saving performance.
  • the invention also has: unrestricted starting, good dynamic characteristics, adjustable speed and compression ratio, large output torque, good general and economical efficiency, convenient maintenance, long service life, high safety, energy saving, environmental protection and the like. .
  • non-polluting, green, clean and environmentally friendly mechanical power unit it is suitable for: military and civil applications such as motor vehicles, aircraft, ships and power generation, and construction machinery.
  • FIG. 1 is a schematic structural view of a specific embodiment of a turbine engine according to the present invention, wherein the engine is in an intake power stroke;
  • FIG. 2 is a schematic structural view of a specific embodiment of a turbine engine according to the present invention, wherein the engine is in an exhaust stroke;
  • FIG 3 is a schematic view showing the working principle of the turbine engine shown in Figure 1;
  • FIG. 4 is a schematic view showing a layout of a cylinder head of a turbine engine according to the present invention
  • FIG. 5 is a schematic structural view of a camshaft
  • Fig. 6 is a schematic structural view of a crankshaft.
  • Air compressor Air storage container 3. Pipe 4. Control valve 5. Housing 6. Cylinder 7. Piston 8. Cylinder head 9. Intake valve 10. Exhaust valve 11. Intake valve 12. Exhaust Valve 13. Crankshaft 14. Connecting rod 15. Camshaft 16. Heat exchange unit
  • FIG. 1 is a schematic structural view of a specific embodiment of a turbine engine according to the present invention.
  • the engine is in an intake power stroke
  • FIG. 2 is a turbine provided by the present invention.
  • FIG. 3 is a schematic diagram of the working principle of the turbine engine shown in FIG.
  • the present invention provides compressed air as a functional source.
  • Turbine engine including four subsystems of gas source, control, work and lubrication, which are attached to the same body, and three sub-mechanisms: gas distribution, transmission and auxiliary;
  • the air source system is provided with a gas source by the air compressor 1 and/or the compressed air storage container 2, and is formed by a series of pipes 3, and the compressed air refers to a gas that is mechanically pressurized by natural air, and the compressed natural air
  • the compression ratio can meet the rated requirements according to the design standards.
  • the control system is disposed between the air source system and the work system, and includes an electronic measuring and controlling device (not shown) and a control valve 4, and the electronic measuring and controlling device performs data collection, analysis and quantification on the pressure and air quality of the compressed air.
  • the flow rate and pressure of the compressed air supplied to the work system are controlled by the control valve 4 to control the engine torque and the operating state.
  • the control valve 4 is a backup pressure control valve, which can be a mechanical valve (hydraulic or solenoid valve), and the control valve 4 is disposed between the compressed air storage container 2 and the starting device, which is the pressure of the compressed air source required. , flow regulator and brake, control center, can have a significant impact on the power of the launching device, the brake gap in the control valve is expanded ⁇ gas volume increase ⁇ motion acceleration, brake gap reduction ⁇ reduce gas volume ⁇ motion deceleration, brake gap Infinitely close to zero ⁇ no air volume ⁇ motion stops.
  • the working system comprises a housing 5 and at least one set of cylinders 6 and pistons 7 disposed therein.
  • the cylinder 6 has a closed variable volume, the inside of which is a working chamber, a cylinder head 8 at the top and a crankcase at the bottom.
  • the piston 7 and the cylinder liner in the cylinder 6 are not in direct contact with each other and are in a relatively small gap or in a critical state of contact and non-contact, thereby realizing the piston movement work and the cylinder.
  • the minimum friction of the set is to increase work and power.
  • the intake valve 9 communicates with the intake duct through the intake valve 11
  • the exhaust valve 10 communicates with the exhaust duct through the exhaust valve 12
  • the gas pipe is connected to the gas source system, and the outlet of the exhaust pipe is connected to the atmosphere.
  • a crankshaft 13 (shown in Fig. 6) is disposed in the crankcase, and the piston 7 is drivingly coupled to the crankshaft 13 via a connecting rod 14, and both ends of the connecting rod 14 are hinged to the piston 7 and the crankshaft 13, respectively.
  • the lubrication system includes a lubricating oil passage disposed in the cylinder, an oil pump, an oil filter and a valve.
  • the oil is stored in an oil sump at the bottom of the crankcase, and the oil pump, the oil filter and the lubricating oil passage are connected to form an oil lubricating oil road.
  • the valve is located on the lubricating oil road.
  • the air distribution mechanism includes a cam shaft 15 (shown in FIG. 5) that is drivingly coupled to the crankshaft 13.
  • the cam shaft 15 is provided with an intake cam and an exhaust cam.
  • the intake cam is formed with a lobed angle along its symmetrical direction for playing.
  • the intake valve 11 is opened, and the exhaust cam is formed with an opening portion in its symmetrical direction to open the exhaust valve 12, and the intake valve 11 and the exhaust valve 12 are timed to open and close the intake valve 9 and the row under the control of the camshaft 13.
  • the valve 10 allows compressed air to enter the cylinder 6, and exhausts the exhaust gas from the cylinder 6, thereby realizing the ventilation process.
  • the transmission mechanism includes a timing sprocket, a timing chain and a crank sprocket, and the crank sprocket is disposed on the crankshaft
  • the timing sprocket is connected to the crankshaft sprocket through a timing chain, and the timing sprocket is connected to the camshaft 13.
  • the auxiliary mechanism includes one of a tail gas pressure stabilizing mechanism, a tail gas recovery mechanism, and a tail gas muffling mechanism, or a combination thereof.
  • the main function of the recycling mechanism is to carry out the residual pressure and residual temperature contained in the compressed air after work through the pressure and heat exchange device.
  • the muffler mechanism mainly includes the decibel reduction and digestion of the noise generated by the external work during operation.
  • the camshaft 15 controls the intake valve 9 to open through the intake valve 11, the exhaust valve 10 is closed, and the compressed air directly enters the closed cylinder 6. Due to the pressure difference between the cylinder and the cylinder, the compressed air expands in the cylinder and increases in volume. At the same time, under the thrust of the potential energy release, the piston 7 is pushed to generate a downward stroke, and the downward linear reciprocating motion of the piston 7 passes through the crank joint. The rod drives the crankshaft 13 for a circular work motion.
  • the camshaft 15 controls the intake valve 9 to close and the exhaust valve 10 to open through the intake valve 11, and the piston 7 moves upward under the action of inertia.
  • the compressed air after the work is discharged through the exhaust valve, and the cylinder volume becomes the minimum again, and enters the next cycle of the work process, thereby continuously outputting power to the outside.
  • the cylinder connection is provided with the necessary seal, and the connection between the exhaust valve and the exhaust pipe and the connection between the intake pipe and the gas pipe are sealed and sealed.
  • the gas pressure of the compressed air source should be greater than the pressure required for the fresh charge of the cylinder to be compressed to the compression ratio set by the engine, and the pressure and the ambient pressure of the working environment have an order of magnitude difference, and It can reach the lowest pressure of the piston as the work dead point, and the amount and flow of compressed air entering the cylinder are proportional to the rotational speed.
  • a heat exchange device 16 using external energy for work can be disposed on the communication pipe between the control valve and the intake valve for temperature and pressure regulation of the compressed air passing through the pipe to improve the effective work power.
  • Relatively no gap echo there may be a plurality of specific forms, and only three of them are exemplified below:
  • the camshaft 15 is located on the side of the crankshaft 13 , both of which pass gears or
  • the belt drive connection, the intake valve 11 and the exhaust valve 12 are provided with a valve lifter for controlling the opening and closing thereof, and the cam on the cam shaft 15 is connected with the valve lifter through the crossbar to control the intake valve
  • the camshaft 15 is located at the top of the intake valve 9 and the exhaust valve 10, and is drivingly connected to the crankshaft 13 via a belt or a chain, and the cam thereon directly controls the intake valve 11 and the exhaust gas.
  • Valve 12 the camshaft 15 is located at the top of the intake valve 9 and the exhaust valve 10, and is drivingly connected to the crankshaft 13 via a belt or a chain, and the cam thereon directly controls the intake valve 11 and the exhaust gas.
  • the camshaft 15 is located at the top of the intake valve 9 and the exhaust valve 10, and is drivingly coupled to the crankshaft 13 via a belt or a chain, and the cam thereon controls the intake valve 11 through the connecting rod and Exhaust valve 12.
  • a smart safety valve an artificial pressure reducing valve, an inlet valve, an exhaust valve, a flange connection, a pressure gauge interface, and a drain valve disposed at the bottom of the container may be further disposed on the compressed air storage container.
  • the above-mentioned working chambers may be one or a plurality of components, that is, the cylinders are operated in a single machine or operate at an integral multiple of 2 or less, which is arranged in an in-line, V-shaped, horizontally opposed or W-shaped manner.
  • the concentric crankshaft is the through shaft.
  • the piston strokes are equal in each working chamber, and the crankshaft outputs a power source through the transmission mechanism.
  • the piston is cylindrical
  • the ejector is a cylindrical cylinder at one end, the piston and the piston cylinder are hinged, and the top end of the piston rod abuts the plane of the ejector.
  • the working mechanism composed of the cylinder and the piston is a layer in the casing, at least one of the number of cylinders is at least one or symmetrically arranged, the number of cylinders and pistons corresponding to the gas distribution port, the camshaft, the crankshaft and the like The number of ejector pins is equal.
  • the compressed air storage container 2 is in communication with the control valve 4, the gas source is in communication with the intake valve 9 through the control valve 4, the heat exchange device 16, the intake valve 9 is connected to the work chamber, and the compressed air enters the cylinder through the intake valve 9. 6.
  • the exhaust valve of the cylinder 6 communicates with the exhaust pipe through the exhaust valve 12, and an exhaust mechanism is installed on the pipe below the exhaust valve, and the outlet of the exhaust mechanism communicates with the atmosphere, and the compressed air after work After passing through the exhaust mechanism, it is discharged into the atmosphere.
  • the compressed air is supplied to the control valve 4 through the pipeline through the gas source, and the control valve 4 is connected to the heat exchange device 16 through the closed pipe, and the compressed air after the heat exchange device 16 is directly passed through the intake valve to the cylinder 6, because it is external to the outside
  • the natural air has an absolute pressure difference.
  • the compressed air uses its accumulated potential energy stored between the air molecules to rapidly release and expand to push the piston 7.
  • the piston 7 generates a linear motion mechanical work by generating a vertical displacement by the thrust of the compressive air potential energy.
  • the piston 7 in turn pushes the connecting rod 14 to generate a tangential force with the crankshaft 13 and the camshaft 15 to rotate the crankshaft circumferentially.
  • the piston 7 cooperates closely with the cylinder 6 to expand, and the power stroke is affected by the compressive air input air pressure potential energy, and the consumed air pressure potential energy is converted into stable and continuous kinetic energy. In this way, the cycle alternates and the operation is continued until the crankshaft continuously rotates in the circumferential direction, and the turbine mechanical power is outputted by the crankshaft.
  • the general engine is a four-stroke work, which uses the high temperature and high pressure gas obtained by explosion and combustion to push the piston to work, and the energy exploitation is limited, the conversion rate is low, the pollution is high, and the non-renewable;
  • the present invention uses two-stroke work to compress Air as a working medium, the four projects of intake, compression, ignition, explosion and exhaust are respectively formed in two working mechanisms, and the independent air compressor performs the work of collecting and compressing the intake air to realize The first two strokes of the four strokes; the ignition and explosion are realized by the coaxial, non-compressed launching device, and the last two strokes of the four strokes are completed to achieve the work of the two-stroke process, through the molecules of the compressed air.
  • the potential energy turbine pushes the piston to work, has a high power density and torque reserve, and makes up for the shortcomings of the traditional two-stroke engine. Moreover, it has no explosive combustion, physical work, high conversion rate, no new pollution source, renewable, energy is not limited, and can be recycled.
  • a low torque in the state of high power power output, a low torque can be used for greater torque output, and at the same time, the work temperature due to excessively high compressed air pressure and excessive flow rate can be effectively improved.
  • Working conditions can improve overall system performance and reliability.
  • the air distribution port of the gas distribution inlet of the gas distribution mechanism is directly connected from the gas distribution device installed at the top of the engine device from the air inlet of the original internal combustion engine through the connection port of the body disk connected through the air inlet It is connected to each cylinder and its structure is more reasonable and simple.
  • the working mechanism of the control valve adopts a combination of electromagnetic control and a built-in convex cone structure, which can not only effectively reduce the variation range of the compressed air during the passage of the compressed air, but also adjust the inside of the cylinder than the mechanical baffle structure.
  • the fresh air compression ratio has a faster, more stable load response, which allows the compressed air to be minimized when it is adjusted through the control valve.
  • it can effectively control the seven working conditions of starting, starting, idling, medium load, full load, acceleration and deceleration of the starting device, and then realize the speed regulation requirements for starting, working and stopping the starting device.
  • arc-shaped members constituting the upper and lower dead points of the gas distribution are uniformly distributed on the cam shaft along concentric circular arc lines.
  • the cylinder body is uniformly distributed with cylinders along the outer circumference thereof with the warp axis as an axis, and has corresponding inlet and exhaust ports communicating with the respective cylinders.
  • the cylinder, the cylinder head and the piston are all made of a special material, and the pressure resistance is higher than that of the existing engine, and the lightness is higher, so that the high-pressure compressed air can be received at the highest level in the system itself.
  • the exhaust system mainly uses the residual pressure and residual temperature contained in the compressed air after work to comprehensively recycle and utilize the pressure and heat exchange device to make the exhaust pressure
  • the stability lies in the value of the external air pressure equal or close, so that the external working mode of the compressed air potential energy can be realized, and the energy in the compressed air is utilized to the utmost. It includes decibel reduction and resolution of noise generated by external work during operation of the system of the present invention.
  • turbo engine described above is only a preferred solution, and is not limited thereto. On this basis, a targeted adjustment can be made according to actual needs, thereby obtaining different embodiments. Since there are many ways to do this, here is no longer - an example.
  • the invention can realize unrestricted starting, does not use a starter motor, does not burn when the work is performed during work, is a process of endothermic work, keeps the low temperature optimal work state, so it is not excessively heated, so it is not necessary Use a cooling system of a conventional engine. This not only satisfies the optimum correlation optimization of the temperature characteristics of the metal, but also eliminates the cooling system necessary for conventional engines. Since the power source for its work comes from the filtered and compressed natural air, there is no change in composition, so it is not necessary to use the filtering device for filtering air pollutants required by conventional engines.
  • the present invention eliminates the ignition system, the fuel supply system, the cooling system, and the like as compared with the conventional conventional engine.
  • the invention also has the following characteristics: the structure is simple, the vibration is small, the volume is small, the weight is light, the safety is reliable, the service life is long, the low-speed torque is large, the response speed is fast, the energy is saved, the environment is energy-saving, and the use and maintenance are convenient.
  • the beneficial effects of the present invention are as follows:
  • the natural air is easy to prepare, non-flammable and explosive, and the compressed air can be obtained without any payment, unlimited access anytime, anywhere, storage, high storage density, and adjustable compression ratio.
  • Unique feature advantages there is no chemical reaction in the preparation of compressed air, no change in material composition, no fire and explosion hazard, the source of energy belongs to the physical transfer of the existing energy in nature, and the energy in the transfer process is converted by thermal energy and potential energy.
  • the form is mainly, the work process is explosion-free, burning, meets environmental protection requirements, and the operation is safe and reliable. It has the advantage of clean energy compared with the existing oil, coal and electric energy.
  • the compressed air passes through the processes of dust removal, cooling and purification.
  • the compressed air component itself does not participate in the work response, so the discharge after work
  • the present invention From the results of the analysis of the composition of the exhaust gas of the present invention from the National climate Analysis Center, the present invention also has the effect of purifying air.
  • the solution not only saves energy but also helps to increase the effective conversion power of the present invention.
  • It can be used as a launching device for conventional power machinery. It can also be used for compressed air energy storage systems. It can be used to adjust the peaks and valleys of power systems, or to support natural energy systems such as wind and light to solve the intermittent nature of their power generation. Frequency instability bottleneck.
  • the invention is an environmentally-friendly new energy development technology, has wide sources, no pollution, is easy to develop, has a simple equipment, low cost, wide application, and broad prospect. It will be the future automobile industry, the rolling stock industry, the aircraft industry, and even A technology widely used in the field of shipbuilding and other industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种利用压缩空气为作功能源的透平发动机,包括气源、控制、作功、润滑系统,以及配气、传动、辅助机构,所述气源系统由空气压缩机和/或压缩空气存储容器提供气源,并通过管道串连构成;所述控制系统,设于气源系统与作功系统之间,包括电子测控装置以及控制阀;所述作功系统包括壳体及其内部设置的至少一组气缸与活塞;所述润滑系包括设于所述气缸的润滑油道、机油泵、机油滤清器以及阀门。该发动以压缩空气为工质,能够创造压缩空气气源压力与作功室未作功空气有绝对压力差的工况环境与条件,在进一步优化作功与传动系统结构的基础上,使压缩空气势能能够高效、充分地转化为透平机械能,进而向外输出机械功。

Description

一种利用压缩空气为作功能源的透平发动机
本申请要求 2012 年 08 月 17 日提交中国专利局、 申请号为 201210295986.0、 发明名称为"一种利用压缩空气为作功能源的透平发动 机"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发动机技术领域, 尤其是利用压缩空气作为工作介质的活 塞式透平发动机。
背景技术
为了有效应对石化能源耗尽所带来的能源危机, 许多国家都在寻求石 化能源的替代品, 如风能、 核能、 太阳能以及生物燃料等。 然而, 不论是 不可再生的还是可再生的能源, 很大一部分都必须转化为电能加以利用。 因此未来能源最主要的形式仍将是电能。
目前世界上电能储存技术大致可分为物理储能和化学储能。 其中, 物 理储能包括抽水储能、 压缩空气储能、 飞轮储能、 相变储能等。 化学储能 包括铅酸电池、 锂系电池、 液流电池、 钠硫电池等。 此外, 还有电磁储能, 如超导储能等。
根据统计数据显示, 抽水蓄能在国际储能市场中容量最大, 占总装机 容量的 99%; 排名第二的是压缩空气储能, 占 0.5%; 剩下包括各种电池在 内的所有其他形式占 0.5%
在各种储能技术中, 抽水蓄能在规模上最大, 达到上千兆瓦, 技术也 最成熟; 压缩空气储能次之, 单机规模在百兆瓦级别; 化学储能规模较小, 单机规模一般在兆瓦级别或更小。
相比抽水蓄能受限于地理条件, 空气压缩储能则不然, 只要有需要的 地方, 就可以建造, 它在储能时, 用电能将空气压缩并存于储气室中; 在 释能时, 高压空气从储气室释放, 进入膨胀室做功发电, 可利用低谷、 弃 风、 弃水、 弃光的电力来储能, 在有需要的时候释放出来, 完全不受地理 条件的限制。 除了将富余的电能储存再利用, 实现常规的"削峰平谷"之外, 压缩空 气储能技术还特别适用于解决风力发电和太阳能发电的随机性、 间隙性和 波动性等问题, 可以实现其发电的平稳输出。
空气动力发动机是将高压空气中存储的能量转化为扭矩形式的机械能 输出的装置, 不消耗石油等燃料。 如: 2002年公开的由本发明人发明的专 利号为 ZL02116274.3的 "空气发动装置", 2004年 9月出版的 《中国机械工 程》 第 15卷第 18期报道的 "压缩空气动力发动机配气机构的研究" 等等。
目前已知的空气动力发动机, 都是在局部或关键部件上的开发, 至今 尚无成套装置的设计和成功的工业化应用范例, 同时也存在工作效率低、 功率小、 工作可靠性差等诸多因技术不成熟造成的缺陷。
发明内容
本发明的目的是提供一种利用压缩空气为作功能源的透平发动机。 该 发动以压缩空气为工质, 能够创造压缩空气气源压力与作功室未作功空气 有绝对压力差的工况环境与条件, 在进一步优化作功与传动系统结构的基 础上, 使压缩空气势能能够高效、 充分地转化为透平机械能, 进而向外输 出机才戒功。
为了实现上述目的, 本发明提供一种利用压缩空气为作功能源的透平 发动机, 包括共同依附于同一机体的气源、 控制、 作功、 润滑四个子系统, 以及配气、 传动、 辅助三个子机构;
所述气源系统由空气压缩机和 /或压缩空气存储容器提供气源, 并通过 管道串连构成;
所述控制系统, 设于气源系统与作功系统之间, 包括电子测控装置以 及控制阀, 所述电子测控装置对压缩空气的压强和空气质量, 进行数据采 集、 分析与定量, 并通过控制阀控制供给作功系统的压缩空气的流量和压 强, 实现对发动机力矩与运行状态的控制;
所述作功系统包括壳体及其内部设置的至少一组气缸与活塞, 所述气 缸具有封闭的可变容积, 其内部为作功室, 顶部设有气缸盖, 底部设有曲 轴箱; 其中, 气缸盖设有进气门、 排气门, 所述进气门通过进气阀与进气管 道相连通, 所述排气门通过排气阀与排气管道相连通, 所述进气管道与气 源系统相连通, 所述排气管道的出口与大气相连通;
其中, 所述曲轴箱内设置曲轴, 所述活塞通过连杆与曲轴传动连接, 所述连杆的两端分别与活塞和曲轴相铰接,所述曲轴与发动机的主轴连接; 所述润滑系包括设于所述气缸的润滑油道、 机油泵、 机油滤清器以及 阀门, 机油储存于所述曲轴箱底部的油底壳, 所述机油泵、 机油滤清器和 润滑油道相连通形成机油润滑油路, 所述阀门设于润滑油路;
所述配气机构包括与曲轴传动连接的凸轮轴, 所述进气阀和排气阀在 凸轮轴的控制下定时开启和关闭进气门和排气门, 使压缩空气进入气缸, 并使废气从气缸内排出, 实现换气过程;
所述传动机构包括正时链轮、 正时链条和曲轴链轮, 所述曲轴链轮设 置于曲轴上, 所述正时链轮通过正时链条与曲轴链轮连接; 所述正时链轮 与所述凸轮轴相连;
所述辅助机构包括尾气稳压机构、 尾气回收机构、 尾气消声机构之一 或其组合;
所述作功系统作功室的工作循环:
当活塞运动至上止点时, 气缸容积处于最小容积, 此时, 所述凸轮轴 通过进气阀控制进气门开启、 排气门关闭, 压缩空气直接进入封闭的气缸 内, 由于缸内与缸外的压差, 压缩空气在缸内膨胀、 体积增大, 同时在其 势能极速释放的推力下, 推动活塞运动产生下行行程, 活塞的下行直线往 复运动通过曲柄连杆驱动曲轴作圓周作功运动;
当活塞运动至下止点时, 气缸室处于最大体积, 此时, 所述凸轮轴通 过进气阀控制进气门关闭、 排气门开启, 活塞在惯性作用下向上运动产生 上行形成,作功后的压缩空气通过排气门排出, 气缸容积再次变为最小值, 进入下一循环作功过程, 从而向外界不断输出动力。
优选地, 所述控制阀与进气门之间的连通管道上设置有热交换装置, 用于对通过管道的压缩空气进行温度和压力调节,以提高有效的作功功率。
优选地, 所述凸轮轴工作时进气阀开启的进气持续角与排气阀开启的 排气持续角为相对无间隙呼应。 优选地, 所述凸轮轴位于所述曲轴一侧, 两者通过齿轮或皮带传动连 接, 所述进气阀和排气阀设有控制其启闭的气门挺杆, 所述凸轮轴上的凸 轮通过横杆与气门挺杆传动连接, 从而控制进气阀和排气阀按活塞作功行 程依次开启或关闭。
优选地, 所述凸轮轴位于所述进气门和排气门顶部, 并通过皮带或链 条与曲轴传动连接, 其上的凸轮直接控制进气阀和排气阀。
优选地, 所述凸轮轴位于所述进气门和排气门顶部, 并通过皮带或链 条与曲轴传动连接, 其上的凸轮通过连杆控制进气阀和排气阀。
优选地, 所述凸轮轴包括进气凸轮和排气凸轮; 所述进气凸轮沿其对 称方向形成有凸角以便打开进气阀, 排气凸轮沿其对称方向形成有打开部 分以便打开排气阀。
优选地, 所述压缩空气气源的气体压力大于所述气缸作功室内的新鲜 充气压缩到发动装置设定的压缩比所需的压力, 其压力与工况环境压力有 数量级的压差, 且能达到活塞最低气压作功死点。
优选地, 所述压缩空气存储容器上设有智能安全阀、 人工减压阀、 进 阀门、 排气阀门、 法兰盘连接、 压力压强仪表接口, 以及设置在容器底部 的排污阀。
优选地, 所述气缸单独成机运行或以小于等于 36的 2的整倍数成机 运行, 其排列方式为直列、 V型、 水平对置或 W型。
本发明提供的透平发动机解决了现有热能转化为机械能的石化发动机 受能源开采的限制, 以及污染环境、 成本高、 不可循环利用、 经济型差等 方面的技术缺陷, 提供了一套使用自然空气作为基础能源, 利用压缩空气 作为工质的动力源透平机械功输出机构系统的可行性技术方案和实施例。
通过采用压缩空气为动力源, 不采用传统的石化能源, 取消了一般发 动机的: 油气、 点火、 冷却、 喷油、 爆炸燃烧等系统, 作功时无爆炸燃烧, 工作时的噪声和振动低于一般发动机, 没有有害尾气排放, 其排放的尾气 温度 20°C , 结构更为筒单, 而且有效降低了制造成本与机体重量。
本发明可以设置单缸或多缸并联成机, 以对应满足相应功率的动力输 出。 并可以使压缩空气的作功得到精确控制, 极大的提高能量转移、 转换 过程中的作功功率, 较少热量损失和振动噪声僧能量消耗, 从而提高整体 动力系统的稳定性、 可靠性和节能减排性能。
本发明还具有: 无限制性启动、 动力特性好, 转速和压缩比可调, 输 出扭矩大, 通用与经济性好, 维修方便、 使用寿命长, 安全性高, 节约能 源、 保护环境等诸多优点。
作为一种不污染环境的、 绿色的、 清洁的环保型机械动力装置, 适用 于: 机动车辆、 飞行器、 舰船与动力发电、 工程机械等军、 民应用领域。
附图说明
图 1为本发明所提供透平发动机的一种具体实施方式的结构示意图, 图中发动机处于进气作功行程;
图 2为本发明所提供透平发动机的一种具体实施方式的结构示意图, 图中发动机处于排气行程;
图 3为图 1所示透平发动机的工作原理示意图;
图 4为本发明所提供透平发动机的气缸头的一种布置示意图; 图 5为凸轮轴的结构示意图;
图 6为曲轴的结构示意图。
图中:
1.空气压缩机 2.空气存储容器 3.管道 4.控制阀 5.壳体 6.气缸 7.活塞 8.气缸盖 9.进气门 10.排气门 11.进气阀 12. 排气阀 13.曲轴 14.连杆 15.凸轮轴 16.热交换装置
具体实施方式
为了使本技术领域的人员更好地理解本发明方案, 下面结合附图和具 体实施方式对本发明作进一步的详细说明。
请参考图 1、 图 2、 图 3 , 图 1为本发明所提供透平发动机的一种具体 实施方式的结构示意图, 图中发动机处于进气作功行程; 图 2为本发明所 提供透平发动机的一种具体实施方式的结构示意图, 图中发动机处于排气 行程; 图 3为图 1所示透平发动机的工作原理示意图。
在一种具体实施方式中, 本发明所提供的利用压缩空气为作功能源的 透平发动机, 包括共同依附于同一机体的气源、 控制、 作功、 润滑四个子 系统, 以及配气、 传动、 辅助三个子机构;
气源系统由空气压缩机 1和 /或压缩空气存储容器 2提供气源, 并通过 管道 3串连构成, 压缩空气是指对自然空气进行机械增压后的气体, 经过 压缩后的自然空气的压缩比能按设计标准达到额定要求。
控制系统设于气源系统与作功系统之间, 包括电子测控装置(图中未 示出) 以及控制阀 4, 电子测控装置对压缩空气的压强和空气质量, 进行 数据采集、 分析与定量, 并通过控制阀 4控制供给作功系统的压缩空气的 流量和压强, 实现对发动机力矩与运行状态的控制。
控制阀 4是一个备压式的控制阀,可采用机械配气阀(液压或电磁阀), 控制阀 4设在压缩空气存储容器 2与发动装置之间, 是所需压缩空气气源 的压力、 流量调节器和制动、 控制中枢, 能够对发动装置的动力性产生重 大影响, 控制阀内制动间隙扩大→气量增加→运动加速, 制动间隙缩小→ 减少气量→运动减速, 制动间隙无限接近零→无气量→运动停止。
作功系统包括壳体 5及其内部设置的至少一组气缸 6与活塞 7,气缸 6 具有封闭的可变容积, 其内部为作功室, 顶部设有气缸盖 8, 底部设有曲 轴箱.
为保证作功室内的处于相对密封状态, 活塞 7与气缸 6内的缸套之间 不直接接触并处于相当小的间隙或处于接触与非接触的临界状态, 从而实 现活塞运动作功时与缸套的最小摩擦, 以提升作功与升功率。
其中, 气缸盖中部设有进气门 9、 排气门 10, 进气门 9通过进气阀 11 与进气管道相连通, 排气门 10通过排气阀 12与排气管道相连通, 进气管 道与气源系统相连通, 排气管道的出口与大气相连通。
曲轴箱内设置曲轴 13 (如图 6所示 ), 活塞 7通过连杆 14与曲轴 13 传动连接, 连杆 14的两端分别与活塞 7和曲轴 13相铰接。
润滑系包括设于气缸的润滑油道、 机油泵、 机油滤清器以及阀门, 机 油储存于曲轴箱底部的油底壳, 机油泵、 机油滤清器和润滑油道相连通形 成机油润滑油路, 阀门设于润滑油路。
配气机构包括与曲轴 13传动连接的凸轮轴 15 (如图 5所示 ), 凸轮轴 15上设有进气凸轮和排气凸轮, 进气凸轮沿其对称方向形成有凸角以便打 开进气阀 11 , 排气凸轮沿其对称方向形成有打开部分以便打开排气阀 12, 进气阀 11和排气阀 12在凸轮轴 13的控制下定时开启和关闭进气门 9和排 气门 10, 使压缩空气进入气缸 6, 并使废气从气缸 6内排出, 实现换气过 程。
传动机构包括正时链轮、 正时链条和曲轴链轮, 曲轴链轮设置于曲轴
13上, 正时链轮通过正时链条与曲轴链轮连接, 正时链轮与凸轮轴 13相 连。
辅助机构包括尾气稳压机构、 尾气回收机构、 尾气消声机构之一或其 组合, 回收机构主要作用是将作功后的压缩空气中内含的余压、 余温通过 压力与热交换装置进行综合回收利用, 消声机构主要包括对运行时由于对 外作功所产生的噪声进行分贝的降低与消解。
上述作功室内的工作循环:
当活塞 7运动至上止点时, 气缸 6的容积处于最小值, 此时, 凸轮轴 15通过进气阀 11控制进气门 9开启、 排气门 10关闭, 压缩空气直接进入 封闭的气缸 6内, 由于缸内与缸外的压差, 压缩空气在缸内膨胀、 体积增 大, 同时在其势能极速释放的推力下, 推动活塞 7运动产生下行行程, 活 塞 7的下行直线往复运动通过曲柄连杆驱动曲轴 13作圓周作功运动。
当活塞 7运动至下止点时, 气缸 6室处于最大体积, 此时, 凸轮轴 15 通过进气阀 11控制进气门 9关闭、 排气门 10开启, 活塞 7在惯性作用下 向上运动产生上行行程, 作功后的压缩空气通过排气门排出, 气缸容积再 次变为最小值, 进入下一循环作功过程, 从而向外界不断输出动力。
上述气缸连接处设置有必要的密封, 排气门与排气管连接处和进气管 与气管连接处有密封圏密封。
这里要说明的是, 压缩空气气源的气体压力应大于气缸作功室内的新 鲜充气压缩到发动装置设定的压缩比所需的压力, 其压力与工况环境压力 有数量级的压差, 且能达到活塞最低气压作功死点, 进入气缸内的压缩空 气的量和流量与转速成正比。
控制阀与进气门之间的连通管道上可设置采用外来能源作功的热交换 装置 16, 用于对通过管道的压缩空气进行温度与压力调节, 以提高有效的 作功功率。 相对无间隙呼应, 其具体形式可以有多种, 下面仅例举其中的三种: 如图 1、 图 2所示的第一种形式, 凸轮轴 15位于曲轴 13—侧, 两者 通过齿轮或皮带传动连接, 进气阀 11和排气阀 12设有控制其启闭的气门 挺杆, 凸轮轴 15上的凸轮通过横杆与气门挺杆传动连接,从而控制进气阀
11和排气阀 12按活塞作功行程依次开启或关闭。
如图 3所示的第二种形式,凸轮轴 15位于进气门 9和排气门 10顶部, 并通过皮带或链条与曲轴 13传动连接, 其上的凸轮直接控制进气阀 11和 排气阀 12。
如图 4所示的第三种形式,凸轮轴 15位于进气门 9和排气门 10顶部, 并通过皮带或链条与曲轴 13传动连接, 其上的凸轮通过连杆控制进气阀 11和排气阀 12。
具体地,压缩空气存储容器上可进一步设置智能安全阀、人工减压阀、 进阀门、 排气阀门、 法兰盘连接、 压力压强仪表接口, 以及设置在容器底 部的排污阀。
上述作功室可以为一个或者由多个组成, 即气缸单独成机运行或以小 于等于 36的 2的整倍数成机运行, 其排列方式为直列、 V型、 水平对置或 W型。
使用多个作功室时, 其同心曲轴为通轴。 各作功室内活塞行程相等, 曲轴通过传动机构向外输出动力源。 活塞为圓柱形, 顶杆为一端有平面的 圓柱体, 活塞与活塞缸向铰链, 活塞杆的顶端与顶杆的平面相抵。 气缸与 活塞组成的作功机构在壳体中为一层, 气缸数量至少为一个或成对称排布 的至少两组, 与配气口对应的气缸和活塞的组数、 凸轮轴、 曲轴等钳口、 顶杆数的数量相等。
其工作原理如下:
压缩空气存储容器 2与控制阀 4相连通, 气源通过控制阀 4、 热交换 装置 16与进气门 9相连通,进气门 9与作功室相连,压缩空气通过进气门 9进入气缸 6, 气缸 6的排气门通过排气阀 12与排气管道相连通, 在排气 门下方的管道上安装有排气机构, 排气机构的出口与大气相连通, 作功后 的压缩空气经过排气机构后排入大气。 由气源通过管道输入压缩空气至控制阀 4, 控制阀 4通过封闭管道连 接至热交换装置 16, 经热交换装置 16作功后的压缩空气直接通过进气门 输入气缸 6, 因其与外界自然空气有绝对压差, 压缩空气利用其存储在空 气分子间的积聚势能, 迅速释放并膨胀推动活塞 7 , 活塞 7通过接受压缩 空气势能的推力产生上下位移而作直线运动机械功。 活塞 7又推动连杆 14 与曲轴 13、 凸轮轴 15产生切线力使曲轴作圓周转动。 通过控制进气门 9 与排气门 10的开启与关闭时间, 实现对压缩空气进入与排出的控制要求。 活塞 7与气缸 6密切配合膨胀、 作功行程受到压缩空气输入空气压强势能 的作用, 由消耗空气压强势能转变成稳定而持续的动能。 如此循环往复交 替运行, 至曲轴连续作圓周转动, 由曲轴输出透平机械功。
一般发动机为四沖程作功, 利用由爆炸与燃烧获得的高温、 高压气体 推动活塞作功, 而且能源开采受限, 转化率低、 高污染、 不可再生; 本发 明采用二沖程作功, 以压缩空气作为工质, 将进气、 压缩、 点火爆炸和排 气这四个工程形成分别在两个作功机构中进行, 由独立的空气压缩机进行 对进气空气的采集和压缩作功, 实现四沖程的前两个行程; 由同轴心、 不 具有压缩功能的发动装置实现点火爆炸和排气, 完成四沖程的后两个作功 行程, 实现二沖程过程作功,通过压缩空气的分子势能透平推动活塞作功, 具有很高的功率密度和扭矩储备, 弥补了传统二沖程发动机的缺点。 而且 作功无爆炸燃烧, 物理作功, 转化率高, 无新生污染源, 可再生, 能源不 受限, 可循环利用。
作为本发明的进一步改进, 在大功率动力输出的状态下, 采用低转速 能有更大的扭矩输出, 同时, 能有效改善因压缩空气压强过高、 流速过快 引起的作功温度过低的工况, 能够提高整体系统性能与可靠性。
作为本发明的进一步改进, 配气机构的配气入口的配气口是从安装在 发动装置顶部的配气装置由原内燃机的空气进气口通过进气口连接的体盘 的连接口对应接直接接入至各缸体内, 其结构更为合理和筒单。
作为本发明的进一步改进, 控制阀的作功机构采用电磁控制与内置凸 锥结构相结合的方式,不但能有效降低压缩空气调节通过时晗的变动区间, 而且比机械挡板式结构调节气缸内新鲜空气压缩比有着更快、 更稳定的负 荷响应特性, 就使压缩空气能在通过控制阀调节时损功降为最低。 并可实 现对发动装置停止、 启动、 怠速、 中等负荷、 全负荷、 加速、 减速等七种 工况的有效控制、 进而实现对发动装置启动、 工作、 停止的调速要求。
作为本发明的更进一步改进, 在凸轮轴上沿同心圓弧线均布有构成配 气上下止点的弧形部件。 缸体沿其外圓周以经线为轴心均布有气缸, 并有 对应的进排气口与各气缸相连通。
作为本发明的进一步改进, 气缸、 缸盖和活塞都采用特殊材料制造, 其耐压能力大于现有发动机, 而且具有更高的轻度, 如此可以在系统本身 最高限度地接受高压强的压缩空气直接进入气缸进行作功, 尽可能避免因 过度减压导致的压缩空气有效能损失。 克服和避免了现有气动发动机在减 压环节和排气环节中的有效能损失, 提高了压缩空气在由分子势能向机械 动能转化的能量转换效率。
作为本发明的进一步改进, 为解决尾气能量的损失问题, 排气系统主 要将作功后的压缩空气中内含的余压、 余温通过压力与热交换装置进行综 合回收利用, 使排气压力稳定在于外界气压相等或相近的数值, 从而实现 压缩空气势能可变的对外作功方式,最大限度地利用了压缩空气中的能量。 包括对本发明系统运行时由于对外作功所产生的噪声进行分贝的降低与消 解。
上述透平发动机仅是一种优选方案, 具体并不局限于此, 在此基础上 可根据实际需要作出具有针对性的调整, 从而得到不同的实施方式。 由于 可能实现的方式较多, 这里就不再——举例说明。
本发明可实现无限制性启动, 不采用启动马达, 作功时作功运行时不 燃烧, 是一个吸热作功的过程, 保持低温最佳作功运行状态, 故不会过度 受热, 所以不必使用传统发动机的冷却系统。 这既满足了金属的温度特性 要求的关联最佳优化, 而且也取消了常规发动机必须的冷却系统。 由于其 作功的动力源来自经过过滤和压缩后的自然空气, 无何成分变化, 故也不 必使用传统发动机所需的过滤空气污染物的过滤装置。 与现有传统发动机 相比, 本发明取消了点火系统, 供油系统和冷却系统等。
本发明还具有如下特性: 结构筒单、 振动小、 体积小、 重量轻、 安全 可靠、 使用寿命长、 低速扭矩大、 响应调速快、 节约能源、 环保节能、 使 用维修方便等。 本发明的有益效果如下:
1、 为可再生的清洁空气能源的广泛认知与应用提供了原创性技术方案 与实例, 改变了现有发动机的能源使用方式, 为可再生能源的利用开辟了 新的领域与途径。
2、 在运行过程中使用的是制备筒易、 非易燃易爆的自然空气, 压缩空 气具有获取不需支付费用, 无限制随时随地获得, 可存储, 存储密度高, 压缩比可调的诸多特有的特性优点。 而且压缩空气的制备过程中不产生化 学反应, 不发生物质成分的改变, 无火灾与爆炸危险, 其能量的来源属于 自然界既有能源的物理性转移, 转移过程中的能量以热能和势能的转换形 式为主, 作功过程无爆炸、 燃烧, 符合环保要求, 运行安全而可靠, 较现 有的石油、 煤炭、 电能更具有清洁能源的优势。
3、 压缩空气经过了除尘、 冷却、 净化等工艺流程, 在将压缩空气的能 量转换成曲轴的动能过程中, 没有燃烧和爆炸过程, 压缩空气成分本身不 参与作功反应, 所以作功后排放出的气体与使用前没有根本性变化, 也就 没有传统发动机的尾气污染; 不消耗不可再生的石化能源, 回收释放出来 的气体可再作循环利用, 达到了发动装置尾气排放对环境的零污染。 因此 即能节省有限的地球资源, 又可避免环境的污染。 从国家气候分析中心对 本发明尾气的成分分析结果来看, 本发明还具有净化空气的作用。 方案, 不仅节省了能源, 而且有助于提高本发明的有效转化功率。
5、可以作用常规动力机械的发动装置,还可以用于压缩空气储能系统, 用来为电力系统调峰填谷, 或与风、 光等自然能源电系统配套, 解决他们 发电的间歇性和频率不稳瓶颈。
6、 解决了现有技术存在的技术缺陷, 以及发动装置对环境、 能源与人 类健康相悖的发展问题, 减少内燃机对石油燃料和其它燃料的过度依赖和 过度消耗, 以及因此而造成的过度环境污染。
本发明是一种环保型新能源的开发技术, 来源广泛, 没有污染, 容易 开发, 设备筒单, 成本低廉, 用途广泛, 前景广阔, 它将是未来汽车工业、 机车车辆工业、 飞机工业、 甚至轮船工业等领域广泛运用的一项技术。
在全球面临能源与环境危机的今天, 采用本发明的技术与原理方案对 传统发动机工业的发展具有现实的技术价值、 经济价值、 环境价值和社会 价值和深远的战略意义。
以上对本发明所提供的利用压缩空气为作功能源的透平发动机进行 述, 以上实施例的说明只是用于帮助理解本发明的核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还 可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本发明权利要 求的保护范围内。

Claims

1、 一种利用压缩空气为作功能源的透平发动机, 其特征在于, 包括共 同依附于同一机体的气源、 控制、 作功、 润滑四个子系统, 以及配气、 传 动、 辅助三个子机构;
所述气源系统由空气压缩机和 /或压缩空气存储容器提供气源, 并通过 管道串连构成;
所述控制系统, 设于气源权系统与作功系统之间, 包括电子测控装置以 及控制阀, 所述电子测控装置对压缩空气的压强和空气质量, 进行数据采 利 _
集、 分析与定量, 并通过控制阀控制 1供给作功系统的压缩空气的流量和压
3
强, 实现对发动机力矩与运行状态的控要制;
所述作功系统包括壳体及其内部设置的求至少一组气缸与活塞, 所述气 缸具有封闭的可变容积, 其内部为作功室, 顶部设有气缸盖, 底部设有曲 轴箱;
其中, 气缸盖设有进气门、 排气门, 所述进气门通过进气阀与进气管 道相连通, 所述排气门通过排气阀与排气管道相连通, 所述进气管道与气 源系统相连通, 所述排气管道的出口与大气相连通;
其中, 所述曲轴箱内设置曲轴, 所述活塞通过连杆与曲轴传动连接, 所述连杆的两端分别与活塞和曲轴相铰接,所述曲轴与发动机的主轴连接; 所述润滑系包括设于所述气缸的润滑油道、 机油泵、 机油滤清器以及 阀门, 机油储存于所述曲轴箱底部的油底壳, 所述机油泵、 机油滤清器和 润滑油道相连通形成机油润滑油路, 所述阀门设于润滑油路;
所述配气机构包括与曲轴传动连接的凸轮轴, 所述进气阀和排气阀在 凸轮轴的控制下定时开启和关闭进气门和排气门, 使压缩空气进入气缸, 并使废气从气缸内排出, 实现换气过程;
所述传动机构包括正时链轮、 正时链条和曲轴链轮, 所述曲轴链轮设 置于曲轴上, 所述正时链轮通过正时链条与曲轴链轮连接; 所述正时链轮 与所述凸轮轴相连;
所述辅助机构包括尾气稳压机构、 尾气回收机构、 尾气消声机构之一 或其组合; 所述作功系统作功室的工作循环:
当活塞运动至上止点时, 气缸容积处于最小容积, 此时, 所述凸轮轴 通过进气阀控制进气门开启、 排气门关闭, 压缩空气直接进入封闭的气缸 内, 由于缸内与缸外的压差, 压缩空气在缸内膨胀、 体积增大, 同时在其 势能极速释放的推力下, 推动活塞运动产生下行行程, 活塞的下行直线往 复运动通过曲柄连杆驱动曲轴作圓周作功运动;
当活塞运动至下止点时, 气缸室处于最大体积, 此时, 所述凸轮轴通 过进气阀控制进气门关闭、 排气门开启, 活塞在惯性作用下向上运动产生 上行形成,作功后的压缩空气通过排气门排出, 气缸容积再次变为最小值, 进入下一循环作功过程, 从而向外界不断输出动力。
2、根据权利要求 1所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述控制阀与进气门之间的连通管道上设置有热交换装置, 用 于对通过管道的压缩空气进行温度和压力调节, 以提高有效的作功功率。
3、根据权利要求 1所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述凸轮轴工作时进气阀开启的进气持续角与排气阀开启的排 气持续角为相对无间隙呼应。
4、根据权利要求 3所述的利用压缩空气为作功能源的透平发动机,其 特征在于,所述凸轮轴位于所述曲轴一侧, 两者通过齿轮或皮带传动连接, 所述进气阀和排气阀设有控制其启闭的气门挺杆, 所述凸轮轴上的凸轮通 过横杆与气门挺杆传动连接, 从而控制进气阀和排气阀按活塞作功行程依 次开启或关闭。
5、根据权利要求 3所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述凸轮轴位于所述进气门和排气门顶部, 并通过皮带或链条 与曲轴传动连接, 其上的凸轮直接控制进气阀和排气阀。
6、根据权利要求 3所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述凸轮轴位于所述进气门和排气门顶部, 并通过皮带或链条 与曲轴传动连接, 其上的凸轮通过连杆控制进气阀和排气阀。
7、根据权利要求 3所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述凸轮轴包括进气凸轮和排气凸轮; 所述进气凸轮沿其对称 方向形成有凸角以便打开进气阀, 排气凸轮沿其对称方向形成有打开部分 以便打开排气阀。
8、根据权利要求 1所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述压缩空气气源的气体压力大于所述气缸作功室内的新鲜充 气压缩到发动装置设定的压缩比所需的压力, 其压力与工况环境压力有数 量级的压差, 且能达到活塞最低气压作功死点。
9、根据权利要求 1所述的利用压缩空气为作功能源的透平发动机,其 特征在于, 所述压缩空气存储容器上设有智能安全阀、 人工减压阀、 进阀 门、 排气阀门、 法兰盘连接、 压力压强仪表接口, 以及设置在容器底部的 排污阀。
10、 根据权利要求 1所述的利用压缩空气为作功能源的透平发动机, 其特征在于,所述气缸单独成机运行或以小于等于 36的 2的整倍数成机运 行, 其排列方式为直列、 V型、 水平对置或 W型。
PCT/CN2012/082154 2012-08-17 2012-09-27 一种利用压缩空气为作功能源的透平发动机 WO2014026423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210295986.0 2012-08-17
CN2012102959860A CN102787866A (zh) 2012-08-17 2012-08-17 一种利用压缩空气为作功能源的透平发动机

Publications (1)

Publication Number Publication Date
WO2014026423A1 true WO2014026423A1 (zh) 2014-02-20

Family

ID=47153427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082154 WO2014026423A1 (zh) 2012-08-17 2012-09-27 一种利用压缩空气为作功能源的透平发动机

Country Status (2)

Country Link
CN (1) CN102787866A (zh)
WO (1) WO2014026423A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594952A (zh) * 2014-12-08 2015-05-06 上海领势新能源科技有限公司 采用正时系统控制的温差发动机
CN111691925A (zh) * 2020-06-24 2020-09-22 张谭伟 一种空气发动机及像呼吸空气运动的空气发动机系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016143B (zh) * 2013-01-09 2015-03-25 于魁江 一种新型内燃机
CN103216318B (zh) * 2013-01-27 2015-04-01 于魁江 一种新型内燃机
CN103266954A (zh) * 2013-05-31 2013-08-28 中国人民解放军理工大学 摇摆式双口单路气门机构
CN108443265B (zh) * 2018-03-14 2019-10-25 吴雨潞 具有缓冲功能的气动引擎
JP6812532B1 (ja) * 2019-12-24 2021-01-13 株式会社三井E&Sマシナリー 往復式圧縮膨張機
CN112879098A (zh) * 2021-01-26 2021-06-01 罗邦琴 空气动力发动机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2450077A1 (de) * 1974-10-22 1976-04-29 Rudolf Dr Wieser Brennkraftmaschine
US4311084A (en) * 1980-01-04 1982-01-19 Pierce Richard V Pneumatic engine
CN1699747A (zh) * 2005-07-06 2005-11-23 蔡道德 一种车用活塞式气压发动机
CN101476490A (zh) * 2009-01-16 2009-07-08 华南理工大学 膨胀比可调的车用气动发动机及其排气压力控制方法
GB2464704A (en) * 2008-10-23 2010-04-28 Univ Brunel Air motor
JP2011220317A (ja) * 2010-04-12 2011-11-04 Kazuko Sugita 圧縮空気往復機関
WO2011157861A1 (es) * 2010-06-16 2011-12-22 Jose Antonio Maldonado Del Castillo Sistema motriz de impulsión neumática
CN202325693U (zh) * 2011-10-18 2012-07-11 周登荣 具有尾气回收回路的压缩空气发动机总成
CN202788945U (zh) * 2012-08-17 2013-03-13 彭学军 一种利用压缩空气为作功能源的透平发动机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2450077A1 (de) * 1974-10-22 1976-04-29 Rudolf Dr Wieser Brennkraftmaschine
US4311084A (en) * 1980-01-04 1982-01-19 Pierce Richard V Pneumatic engine
CN1699747A (zh) * 2005-07-06 2005-11-23 蔡道德 一种车用活塞式气压发动机
GB2464704A (en) * 2008-10-23 2010-04-28 Univ Brunel Air motor
CN101476490A (zh) * 2009-01-16 2009-07-08 华南理工大学 膨胀比可调的车用气动发动机及其排气压力控制方法
JP2011220317A (ja) * 2010-04-12 2011-11-04 Kazuko Sugita 圧縮空気往復機関
WO2011157861A1 (es) * 2010-06-16 2011-12-22 Jose Antonio Maldonado Del Castillo Sistema motriz de impulsión neumática
CN202325693U (zh) * 2011-10-18 2012-07-11 周登荣 具有尾气回收回路的压缩空气发动机总成
CN202788945U (zh) * 2012-08-17 2013-03-13 彭学军 一种利用压缩空气为作功能源的透平发动机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104594952A (zh) * 2014-12-08 2015-05-06 上海领势新能源科技有限公司 采用正时系统控制的温差发动机
CN111691925A (zh) * 2020-06-24 2020-09-22 张谭伟 一种空气发动机及像呼吸空气运动的空气发动机系统

Also Published As

Publication number Publication date
CN102787866A (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
WO2014026423A1 (zh) 一种利用压缩空气为作功能源的透平发动机
US9885324B2 (en) Efficient thermal energy power engine and working method thereof
US10082072B2 (en) High pressure energy storage thermal energy power machine and work-doing method therefor
CN202788945U (zh) 一种利用压缩空气为作功能源的透平发动机
CN113047948B (zh) 一种基于刚性连接的自由活塞发电机
CN113047952B (zh) 一种六缸对置式自由活塞内燃发电机
CN102200051B (zh) 压缩空气车辆发动机的连接方法及其装置
US11616420B2 (en) Free piston generator based on split thermodynamic cycle
Yan et al. Design and simulation of opposed-piston four-stroke free-piston linear generator
CN113047953A (zh) 一种两阶段压缩膨胀循环的单活塞式内燃直线发电机
CN204476553U (zh) 二冲程纯氧发动机用废气膨胀机构
CN204119008U (zh) 自发电发动机
Radhika et al. Design of a compressed air vehicle
CN202510167U (zh) 星形空气动力引擎总成
US20170159620A1 (en) Thermal energy power device and work-doing method therefor
CN1831312A (zh) 组合机电发动机
CN113482771B (zh) 一种分缸式四冲程自由活塞发电机及工作方法
CN113047949B (zh) 一种基于pid闭环控制的分缸式自由活塞发电机
CN113047954B (zh) 一种基于刚性同步传动系统的自由活塞发电机
CN204082379U (zh) 一种高效热能动力发动机
CN204082318U (zh) 一种热能动力设备
CN202065021U (zh) 汽车不耗油co2热力发动机
CN103277190A (zh) 可选燃料活塞式二行程发动机
CN104005846A (zh) 可选燃料活塞式二行程发动机
CN106050410A (zh) 一种对撞式活塞发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12882993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/06/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12882993

Country of ref document: EP

Kind code of ref document: A1