WO2015014043A1 - 基于空气实现再生热量高效利用的热源塔热泵装置 - Google Patents
基于空气实现再生热量高效利用的热源塔热泵装置 Download PDFInfo
- Publication number
- WO2015014043A1 WO2015014043A1 PCT/CN2013/087181 CN2013087181W WO2015014043A1 WO 2015014043 A1 WO2015014043 A1 WO 2015014043A1 CN 2013087181 W CN2013087181 W CN 2013087181W WO 2015014043 A1 WO2015014043 A1 WO 2015014043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- heat
- solution
- valve
- source tower
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/003—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/003—Indoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/004—Outdoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/021—Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit
- F25B2313/0213—Indoor unit or outdoor unit with auxiliary heat exchanger not forming part of the indoor or outdoor unit the auxiliary heat exchanger being only used during heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
Definitions
- Heat source tower heat pump device based on air for efficient utilization of regenerative heat
- the invention belongs to the field of design and manufacture of refrigeration and air conditioning systems, and relates to a heat source tower heat pump device for realizing comprehensive and efficient utilization of solution regeneration heat. Background technique
- the heat source tower heat pump has the functions of both cooling and heating. In the summer cooling, it has the high efficiency of the water-cooled chiller. In the winter heating, the solution is used to exchange heat with the air in the heat source tower, and the solution absorbs the heat in the air as the heat pump unit. Low heat source.
- the heat source tower heat pump is electrically driven, which avoids the direct use of primary energy.
- the system has higher primary energy utilization efficiency, and there is no frosting problem of the air source heat pump. It has the advantages of flexible use and no geographical and geological conditions. A promising new air conditioning system.
- the heat source tower heat pump system uses the solution to exchange heat with the air in the heat source tower during the heating operation in the winter.
- the moisture in the air will enter the solution.
- the concentration of the solution thinner, the freezing point of the solution will rise.
- the regeneration process of the solution is a process that needs to absorb heat. How to obtain the regenerative heat source of the solution and the efficient utilization of the solution regeneration heat are of great significance for improving the performance of the heat source tower heat pump system and ensuring the safe and reliable operation of the system.
- the object of the present invention is to provide a heat source tower heat pump device that efficiently solves the problem of solution regeneration in a heat source tower heat pump system and improves the operating efficiency of the heat source tower heat pump system under various operating conditions.
- the present invention is based on a heat source tower heat pump device that utilizes air to achieve efficient utilization of regenerative heat, including a refrigerant circuit, a solution circuit, an air circuit, and a hot and cold water circuit.
- the refrigerant circuit includes a compressor, a first electromagnetic valve, a second electromagnetic valve, a first heat exchanger, a four-way valve, a second heat exchanger, a first one-way valve, a second one-way valve, a reservoir, a filter, an electronic expansion valve, a third check valve, a fourth check valve, a third heat exchanger, a gas-liquid separator and related connecting pipes, and the first heat exchanger and the second heat exchanger are also solution circuits
- the constituent component, the third heat exchanger is also a component of the hot and cold water circuit.
- the output end of the compressor is divided into two paths, one is connected to the first input end of the first heat exchanger through the second electromagnetic valve, and the other is connected to the first input end of the four-way valve through the first electromagnetic valve.
- the first input end of the four-way valve is also connected to the first output end of the first heat exchanger, the first output end of the four-way valve is connected with the first input end of the second heat exchanger, and the first output end of the second heat exchanger is
- the inlet of the first one-way valve is connected, the outlet of the first one-way valve is divided into two paths, one is connected to the input end of the liquid storage device, the other is connected to the outlet of the second one-way valve, and the inlet of the second one-way valve is
- the first output end of the third heat exchanger is connected, and the output end of the liquid storage device is connected to the input end of the electronic expansion valve through a filter, and the output end of the electronic expansion valve is divided into two paths, one way is connected to the inlet of the third
- the solution circuit includes a second heat exchanger, a packing heat exchanger, a first solution pump, a first electric three-way regulating valve, a second electric three-way regulating valve, a fourth heat exchanger, a fourth electromagnetic valve, and a fifth electromagnetic valve a solution reservoir, a sixth solenoid valve, a heat source tower, a second solution pump, a first heat exchanger and related connecting pipes, and the packing heat exchanger is simultaneously a component of the air circuit;
- the output end of the heat source tower solution is connected to the inlet of the second solution pump, the outlet of the second solution pump is connected to the input end of the second electric three-way regulating valve, and the first output end of the second electric three-way regulating valve is replaced by the second one.
- the second input end of the second heat exchanger is connected to the first input end of the heat source tower, and the second output end of the second electric three-way regulating valve is connected to the first input end of the fourth heat exchanger,
- the first output end of the fourth heat exchanger is connected to the second input end of the first heat exchanger, the second output end of the first heat exchanger is connected to the input end of the solution of the filler heat exchanger, and the output end of the solution of the packed heat exchanger and the first solution
- the inlet of the pump is connected, the outlet of the first solution pump is connected to the input end of the first electric three-way regulating valve, and the first output end of the first electric three-way regulating valve is also connected with the second input end of the first heat exchanger, the first electric three
- the second output end of the regulating valve is connected to the second input end of the fourth heat exchanger, and the outlet of the second output end of the fourth heat exchanger is divided into two paths, one way is connected to the first input end of the heat source tower through the fourth electromagnetic
- the air circuit includes a packing heat exchanger, a finned tube heat exchanger, a fan, and a connected packing heat exchanger which are sequentially connected
- the finned tube heat exchanger and the connecting duct of the fan form a circulation loop.
- the bottom end of the fin-and-tube heat exchanger is connected with a drain valve, and the fin-tube heat exchanger is also a component of the hot and cold water circuit.
- the hot and cold water circuit includes a water pump, a third solenoid valve, a finned tube heat exchanger, a third heat exchanger, and associated piping.
- the inlet of the water pump is connected to the return end of the heat source tower heat pump device
- the outlet of the water pump is divided into two paths, one is connected to the second input end of the third heat exchanger, and the other is passed through the third electromagnetic valve and the fin
- the input end of the tube heat exchanger solution is connected
- the second output end of the third heat exchanger is connected with the water supply end of the heat source tower heat pump device
- the output end of the fin tube heat exchanger solution is also connected with the water supply end of the heat source tower heat pump device.
- the flow rate of the solution entering the first heat exchanger, the second heat exchanger and the fourth heat exchanger is adjusted by controlling the first electric three-way regulating valve and the second electric three-way regulating valve to realize the entry of the filler
- the solution flow rate, temperature and concentration of the heat exchanger are controlled to realize the adjustment of the operating temperature of each part in the closed air circuit, so that the heat source tower heat pump device obtains the best regeneration efficiency while maintaining the stability of the operating solution concentration.
- the heat released by the superheated refrigerant in the first heat exchanger is used to cool the solution.
- the heat released by the condensation of moisture in the air is used to heat the hot water in the hot and cold water circuit.
- the air outlet of the heat source tower has a self-opening and closing function, and the air outlet automatically opens when working, and automatically closes when not working, preventing rainwater from entering the tower.
- the low-temperature low-pressure refrigerant gas is sucked from the gas-liquid separator by the compressor, and then becomes high-temperature and high-pressure superheated steam, and passes through the first electromagnetic valve (the second electromagnetic valve is closed at this time). And the four-way valve enters the second heat exchanger, the refrigerant releases heat, condenses into a liquid, and then passes through the first check valve, the accumulator, the filter, and the electronic expansion valve to become a low-temperature low-pressure gas.
- the liquid two phases enter the third heat exchanger after passing through the third one-way valve, and the refrigerant absorbs heat in the third heat exchanger to evaporate, and the cold water is obtained, and the refrigerant completely evaporates and becomes superheated gas from the third heat exchange.
- the device exits through the four-way valve and enters the gas-liquid separator, and is then sucked into the compressor again to complete the refrigeration cycle and produce chilled water.
- the rest of the solution circuit stops working. In the solution circuit, the cooling water is taken out from the heat source tower and sucked by the second solution pump.
- the cooling water After the second solution pump is pressurized, the cooling water enters the second electric three-way regulating valve, and the cooling water is all from the second electric three-way regulating valve.
- An output end flows out into the second heat exchanger, and the second heat exchanger absorbs heat to condense the refrigerant into a liquid.
- the heat source tower After the temperature rises, the heat source tower enters the heat source tower to exchange heat with the air, and the temperature of the cooling water is lowered again.
- the heat source tower flows out.
- the air circuit is not working.
- the chilled water in the hot and cold water circuit enters the heat exchanger of the heat source tower from the return water end of the heat source tower, passes through the water pump, and enters the third heat exchanger.
- the third electromagnetic valve is closed.
- the chilled water exchanges heat with the refrigerant therein, and after the temperature is lowered, it flows out from the third heat exchanger and then flows out from the water supply end of the heat source tower heat pump device.
- Heat source tower heat pump is divided into three modes in winter heating mode.
- Heating mode 1 Heat source tower heat pump is used for heating operation in winter.
- the humidity in the air is small or the amount of water entering the solution from the air in the heat source tower is less, the solution does not need to be regenerated.
- the low-temperature and low-pressure refrigerant gas is sucked from the gas-liquid separator by the compressor, it is converted into a high-temperature high-pressure superheated vapor, and is discharged through the first electromagnetic valve (the second electromagnetic valve is closed) and the four-way valve.
- the refrigerant releases heat, produces hot water, and condenses itself into a liquid, and then passes through the second check valve, the accumulator, the filter, and the electronic expansion valve to become a low-temperature low-pressure gas liquid.
- the two phases enter the second heat exchanger after passing through the fourth one-way valve, and the refrigerant absorbs heat in the second heat exchanger to evaporate. After the refrigerant completely evaporates, it becomes superheated gas and passes through the fourth heat exchanger.
- the valve enters the gas-liquid separator and is again sucked into the compressor, thereby completing the heating cycle and producing hot water.
- the solution circuit is filled with the solution, and the rest of the solution circuit is stopped except for the heat source tower, the second solution pump, the second electric three-way regulating valve, and the second heat exchanger.
- the solution exits the heat source tower in the solution loop, it is sucked by the second solution pump.
- the second solution pump is pressurized, the solution enters the second electric three-way regulating valve, and the solution is all from the first output end of the second electric three-way regulating valve. Flowing out, then entering the second heat exchanger, absorbing heat in the second heat exchanger and transferring the heat to the refrigerant.
- the heat source tower After the temperature is lowered, the heat source tower enters the heat source tower to exchange heat with the air, and the temperature of the solution rises again from the heat source tower. Flow out.
- the air circuit is not working.
- the hot water in the hot and cold water circuit enters the heat source tower heat pump device from the return water end of the heat source tower heat pump device, passes through the water pump, enters the third heat exchanger (at this time, the third electromagnetic valve is closed), and the hot water is exchanged therein with the refrigerant
- the heat rises and exits from the water supply end of the heat source tower heat pump unit after exiting the third heat exchanger.
- Heating operation mode 2 When the humidity in the air is large or the amount of moisture entering the solution from the air in the heat source tower is large, the solution needs to be regenerated.
- the refrigerant circuit is a low-temperature low-pressure refrigerant gas in the gas-liquid separator, which is sucked by the compressor, compressed and discharged through the second electromagnetic valve (when the first electromagnetic valve is closed) enters the first heat exchanger, in which the refrigerant is The heat exchange with the solution, after the temperature is lowered, flows out of the first heat exchanger, and then enters the third heat exchanger through the four-way valve, and the refrigerant releases heat in the third heat exchanger to obtain hot water, and simultaneously condenses itself into a liquid.
- the solution circuit is filled with the solution, and the solution enters the second solution pump after exiting the heat source tower, and is pressurized by the second solution pump to enter the second electric three-way regulating valve, and the solution is in the second electric three-way regulating valve.
- Divided into two The road after flowing out from the first output end of the second electric three-way regulating valve, enters the second heat exchanger, exchanges heat with the refrigerant, releases heat, and the temperature decreases, and the solution returns from the second heat exchanger to the heat source tower.
- the other way flows out from the second output end of the second electric three-way regulating valve and enters the fourth heat exchanger, and exchanges the solution flowing from the packing heat exchanger into the fourth heat exchanger in the fourth heat exchanger.
- the solution exchanges heat with the refrigerant, the temperature of the solution rises, and the solution passes from the first heat exchanger. After coming out, it enters the packing heat exchanger.
- the solution transfers heat and mass with the air in the packing heat exchanger.
- the temperature of the solution decreases, the water in the solution evaporates, the concentration of the solution increases, and the solution passes through the first solution pump after passing through the packing heat exchanger.
- the solution is divided into two paths therein, one way flows out from the first output end of the first electric three-way regulating valve, and then mixes with the solution flowing out from the first output end of the fourth heat exchanger to enter the first a heat exchanger, The other way comes out from the second output end of the first electric three-way regulating valve and then enters the fourth heat exchanger for heat exchange.
- the temperature After the temperature is lowered, it flows out from the fourth heat exchanger, and passes through the fourth electromagnetic valve (at this time, the fifth electromagnetic valve, After the sixth electromagnetic valve is closed, it is mixed with the solution flowing out from the second output end of the second heat exchanger, and then enters the heat source tower, and the solution transfers heat and mass with the air in the heat source tower, and the temperature of the solution rises.
- the air In the air circuit, the air is sucked and pressurized by the fan, and then enters the packing heat exchanger. The heat exchange with the solution in the packing heat exchanger, the air temperature rises, the moisture content increases, and the heat exchanger is discharged from the packing heat exchanger.
- the air enters the finned tube heat exchanger and exchanges heat with the hot water supply in the finned tube heat exchanger for the heating hot water of 45 ° C for /40 ° C, and the air temperature is lowered to Below the dew point temperature, the moisture in the air condenses, the moisture content decreases, the air flows out of the finned tube heat exchanger and is again sucked by the fan, so that the drain valve opens and the air condenses in the finned tube heat exchanger The water will flow out.
- the hot water in the hot and cold water circuit enters the heat source tower heat pump device from the return water end of the heat source tower heat pump device and passes through the water pump.
- the hot water is divided into two paths, one way enters the third heat exchanger, and the hot water exchanges heat with the refrigerant therein.
- the temperature rises from the third heat exchanger and then flows out from the water supply end of the heat source tower heat pump device, and the other passes through the third solenoid valve into the finned tube heat exchanger, in which the hot water exchanges heat with the air, and the temperature rises.
- High after coming out of the finned tube heat exchanger, it is mixed with the hot water coming out of the third heat exchanger, and finally flows out from the water supply end of the heat source tower heat pump device.
- the system heating operation mode is in the high concentration mode of the solution.
- the other circuit operation is the same as the mode 2, only in the solution circuit, the fifth solenoid valve is opened (the fourth solenoid valve) The sixth solenoid valve is closed. The solution flowing out of the second output end of the fourth heat exchanger will flow into the solution reservoir through the fifth solenoid valve and not into the heat source tower.
- the solution does not need to be regenerated, and the efficient operation of the system is ensured while the solution regeneration is not enabled.
- the solution regeneration utilizes the heat released by the superheated refrigerant, and the first electric three-way control valve and the second electric three-way control valve are controlled to respectively enter the first heat exchanger.
- the solution flow rate of the second heat exchanger and the fourth heat exchanger is adjusted to adjust the amount of the solution to be regenerated, thereby controlling the flow rate, temperature and concentration of the solution entering the packing heat exchanger, thereby realizing various parts of the closed air circuit.
- the adjustment of the operating temperature allows the system to obtain the best regeneration efficiency while maintaining the stability of the operating solution concentration.
- the heat in the air circuit is condensed in the finned tube heat exchanger to heat the hot water. , to achieve efficient use of renewable heat.
- the heat source tower heat pump device based on air for realizing efficient utilization of regenerative heat fully utilizes the heat of the superheated refrigerant to cool and release, and based on the closed cycle of air, the hot water is prepared while realizing the solution regeneration, and the heat source tower is realized.
- the efficient regeneration of the heat pump system solution completely solves the solution regeneration problem of the heat source tower heat pump system, improves the safety and reliability of the heat source tower heat pump system under various operating conditions, and realizes the comprehensive and efficient system.
- FIG. 1 is a schematic view of a heat source tower heat pump apparatus for efficiently utilizing regenerative heat based on air according to the present invention.
- compressor 1 compressor 1; first solenoid valve 2; second solenoid valve 3; first heat exchanger 4; first heat exchanger first input end 4a; first heat exchanger first output end 4b; First heat exchanger second input end 4c; first heat exchanger second output end 4d; four-way valve 5; four-way valve first input end 5a; four-way valve first output end 5b; four-way valve second Input end 5c; four-way valve second output end 5d; second heat exchanger 6; second heat exchanger first input end 6a; second heat exchanger first output end 6b; second heat exchanger second input End 6c; second heat exchanger second output end 6d; first check valve 7; second check valve 8; accumulator 9; filter 10; electronic expansion valve 11; third check valve 12; a four-way valve 13; a third heat exchanger 14; a third heat exchanger first input end 14a; a third heat exchanger first output end 14b; a third heat exchanger second input end 14c; Second output end 14d ; gas-liquid separator 15; water
- the heat source tower heat pump device based on air for realizing efficient utilization of regenerative heat includes a refrigerant circuit, a solution circuit, an air circuit, and a hot and cold water circuit.
- the specific connection method is that the output end of the compressor 1 is divided into two paths, one through the first
- the second electromagnetic valve 3 is connected to the first input end 4a of the first heat exchanger, and the other is connected to the first input end 5a of the four-way valve through the first electromagnetic valve 2, and the first input end 5a of the four-way valve is also connected to the first heat exchanger.
- the first output end 4b, the first output end 5b of the four-way valve is connected to the first input end 6a of the second heat exchanger, and the first output end 6b of the second heat exchanger is connected to the inlet of the first one-way valve 7, the first one-way
- the outlet of the valve 7 is divided into two paths, one is connected to the input end of the accumulator 9, the other is connected to the outlet of the second one-way valve 8, and the inlet of the second one-way valve 8 is connected to the first output end 14b of the third heat exchanger,
- the output end of the accumulator 9 is connected to the input end of the electronic expansion valve 11 through the filter 10.
- the output end of the electronic expansion valve 11 is divided into two paths, one is connected to the inlet of the third one-way valve 12, and the other is connected to the fourth one-way valve.
- the inlet of 13 the outlet of the third check valve 12
- the third heat exchanger first output end 14b is connected, and the outlet of the fourth one-way valve 13 is simultaneously connected with the second heat exchanger first output end 6b and the first check valve 7 inlet, and the third heat exchanger
- the first input end 14a is connected to the fourth input end 5c of the four-way valve
- the second output end 5d of the four-way valve is connected to the input end of the gas-liquid separator 15, and the output end of the gas-liquid separator 15 is connected to the input end of the compressor 1;
- the heat source tower solution output end 29b is connected to the inlet of the second solution pump 30, the outlet of the second solution pump 30 is connected to the second electric three-way regulating valve input end 24a, and the second electric three-way regulating valve is connected to the second output end 24b and the second exchange
- the second input end 6c of the heat exchanger is connected, the second output end 6d of the second heat exchanger is connected to the first input end 29a of the heat source tower, the second output end 24c of the second electric three-way regulating valve and the first input of the fourth heat exchanger
- the end 23a is connected, the first heat exchanger first output end 23b is connected to the first heat exchanger second input end 4c, and the first heat exchanger second output end 4d is connected to the packing heat exchanger solution input end 18a, and the packing is exchanged.
- the heater solution output end 18b is connected to the inlet of the first solution pump 21, the outlet of the first solution pump 21 is connected to the first electric three-way regulating valve input end 22a, and the first electric three-way regulating valve first output end 22b is first
- the second input end 4c of the heat exchanger is connected, the second output end 22c of the first electric three-way regulating valve is connected to the second input end 23c of the fourth heat exchanger, and the outlet of the second output end 23d of the fourth heat exchanger is divided into two paths.
- One way is connected to the first input end 29a of the heat source tower through the fourth electromagnetic valve 25, and the other pass Fifth solenoid valve 26 is connected to the inlet 27 of the reservoir solution, The outlet of the solution reservoir 27 is connected to the second input end 29c of the heat source tower via a sixth solenoid valve 28.
- the packing heat exchanger 18, the fin-and-tube heat exchanger 19, the fan 20, and the connecting air passage of the connecting packing heat exchanger 18, the fin-and-tube heat exchanger 19, and the blower 20 are sequentially connected. Form a loop.
- a drain valve 30 is connected to the bottom end of the fin tube heat exchanger.
- the inlet of the water pump 16 is connected to the return end of the heat source tower heat pump device, and the outlet of the water pump 16 is divided into two paths, one is connected to the second input end 14c of the third heat exchanger, and the other is passed through the third.
- the solenoid valve 17 is connected to the fin tube heat exchanger solution input end 19a, the third heat exchanger second output end 14d is connected to the water supply end of the heat source tower heat pump device, the finned tube heat exchanger solution output end 19b is also connected to the heat source tower heat pump. The water supply end of the device is connected.
- the low-temperature low-pressure refrigerant gas is sucked from the gas-liquid separator 15 by the compressor 1 and compressed to become a high-temperature high-pressure superheated vapor, and passes through the first electromagnetic valve 2 (at this time, the second The solenoid valve 3 is closed) and the four-way valve 5 enters the second heat exchanger 6, the refrigerant releases heat, condenses into a liquid, and then passes through the first check valve 7, the accumulator 9, the filter 10, and the electrons in sequence.
- the expansion valve 11 After the expansion valve 11 becomes a low-temperature low-pressure gas-liquid two-phase, after passing through the third one-way valve 12, it enters the third heat exchanger 14, and the refrigerant absorbs heat in the third heat exchanger 14 to obtain chilled water. After the refrigerant is completely evaporated, it becomes superheated gas and exits from the third heat exchanger 14 through the four-way valve 5 to enter the gas-liquid separator 15, and is again sucked into the compressor 1, thereby completing the refrigeration cycle and producing chilled water. At this time, except for the heat source tower 29, the second solution pump 30, the second electric three-way regulating valve 24, and the second heat exchanger 6 in the solution circuit, the rest is stopped.
- the cooling water emerges from the heat source tower 28 and is sucked by the second solution pump 29. After being pressurized by the second solution pump 29, the cooling water enters the second electric three-way regulating valve 24, and the cooling water is all from the second electric three.
- the first output end 24b of the regulating valve flows out to enter the second heat exchanger 6, and the second heat exchanger 6 absorbs heat to condense the refrigerant into a liquid, and after the temperature rises, it enters the heat source tower 29 to exchange heat with the air. After the temperature of the cooling water is lowered, it flows out again from the heat source tower 29.
- the air circuit is not working.
- the chilled water in the hot and cold water circuit enters the heat source tower heat pump device from the return water end of the heat source tower heat pump device, passes through the water pump 16 and enters the third heat exchanger 14 (at this time, the third electromagnetic valve 17 is closed), and the chilled water is in the same
- the refrigerant heat exchange after the temperature is lowered, exits from the third heat exchanger 14 and flows out from the water supply end of the heat source tower heat pump device.
- Heat source tower heat pump is divided into three modes in winter heating mode.
- Heating mode 1 Heat source tower heat pump is used for heating operation in winter.
- the humidity in the air is small or the amount of water entering the solution from the air in the heat source tower is small, the solution is not needed.
- the low-temperature low-pressure refrigerant gas is taken in from the gas-liquid separator 15 by the compressor 1, compressed, and then discharged into a high-temperature high-pressure superheated vapor, and passes through the first electromagnetic valve 2 (when the second electromagnetic valve 3 is closed)
- the four-way valve 5 enters the third heat exchanger 14, the refrigerant releases heat, prepares hot water, and condenses itself into a liquid, and then passes through the second check valve 8 in turn.
- the fourth check valve 13 passes through the second heat exchanger 6, and the refrigerant is in the second heat exchanger 6.
- the refrigerant completely evaporates and becomes superheated gas.
- the second heat exchanger 6 passes through the four-way valve 5 and enters the gas-liquid separator 15, and is again sucked into the compressor 1, thereby completing the heating cycle. Take hot water.
- the solution circuit is filled with the solution, and the rest of the solution circuit is stopped except for the heat source tower 29, the second solution pump 30, the second electric three-way regulating valve 24, and the second heat exchanger 6.
- the solution After the solution exits the heat source tower 29 in the solution loop, it is sucked by the second solution pump 30. After being pressurized by the second solution pump 30, the solution enters the second electric three-way regulating valve 24, and the solution is all from the second electric three-way regulating valve.
- the first output end 24b flows out, and then enters the second heat exchanger 6, which absorbs heat and transfers heat to the refrigerant in the second heat exchanger 6, and after the temperature is lowered, enters the heat source tower 29 to exchange heat with the air, and the solution After the temperature rises, it flows out again from the heat source tower 29.
- the air circuit is not working.
- the hot water in the hot and cold water circuit enters the heat source tower heat pump device from the return water end of the heat source tower heat pump device, passes through the water pump 16, and enters the third heat exchanger 14 (at this time, the third electromagnetic valve 17 is closed), and the hot water is in the same
- the refrigerant heat exchange and the temperature rises, and exits from the third heat exchanger 14 and flows out from the water supply end of the heat source tower heat pump device.
- Heating Operation Mode 2 When the humidity in the air is large or the amount of moisture entering the solution from the air in the heat source tower 29 is large, the solution needs to be regenerated.
- the refrigerant circuit is a low-temperature low-pressure refrigerant gas in the gas-liquid separator 15, which is sucked by the compressor 1, compressed, and discharged through the second solenoid valve 3 (when the first solenoid valve 2 is closed) enters the first heat exchanger 4
- the refrigerant exchanges heat with the solution, and after the temperature is lowered, it flows out of the first heat exchanger 4, and then enters the third heat exchanger 14 through the four-way valve 5, and the refrigerant releases heat in the third heat exchanger 14 to prepare
- the hot water is condensed into a liquid at the same time, and then passes through the second check valve 8, the accumulator 9, the filter 10, and the electronic expansion valve 11 in sequence, and is throttled and depressurized to pass the gas and liquid two phases through the fourth check valve.
- the regulating valve 24 is divided into two paths, one way flows out from the first output end 24b of the second electric three-way regulating valve and enters the second heat exchanger 6, exchanges heat with the refrigerant, releases heat, and the temperature is lowered, and the solution is from the second After the heat exchanger 6 comes out, it returns to the heat source tower 29, and the other one flows out from the second output end 24c of the second electric three-way regulating valve and enters the fourth heat exchanger 23, and is exchanged from the packing in the fourth heat exchanger 23.
- the solution flowing into the fourth heat exchanger 23 in the heat exchanger 18 performs heat exchange, and the solution temperature rises the solution out of the fourth heat exchanger 23, and the solution enters the first heat exchanger 4, in the first heat exchanger 4.
- the solution exchanges heat with the refrigerant, the temperature of the solution rises, dissolves
- the liquid exits the first heat exchanger 4 and enters the packing heat exchanger 18.
- the solution transfers heat and mass with the air in the packing heat exchanger 18, the temperature of the solution decreases, the water in the solution evaporates, the concentration of the solution increases, and the solution is exchanged from the packing.
- the heat exchanger 18 passes through the first solution pump 21 and enters the first electric three-way regulating valve 22, and the solution is divided into two paths therein, one way from the first electric three-way regulating valve first output end 22b and the fourth from the fourth
- the solution flowing out from the first output end 23b of the heat exchanger is mixed and then enters the first heat exchanger 4, and the other way comes out from the second output end 22c of the first electric three-way regulating valve and then enters the fourth heat exchanger 23 for heat exchange.
- the fourth heat exchanger 23 flows out, and after the fourth electromagnetic valve 25 (the fifth electromagnetic valve 26 and the sixth electromagnetic valve 27 are closed), the solution flows out from the second output end 6d of the second heat exchanger.
- the solution After entering the heat source tower 29, the solution undergoes heat and mass transfer with the air in the heat source tower 29, and the temperature of the solution rises.
- the air circuit After the air is sucked and pressurized by the fan 20, it enters the packing heat exchanger 18, and performs heat and mass exchange with the solution in the packing heat exchanger 18. The temperature of the air rises, the moisture content increases, and heat is exchanged from the packing.
- the air coming out of the device 18 enters the fin-and-tube heat exchanger 19, and exchanges heat with the hot water supply in the fin-and-tube heat exchanger 19 for heat supply at 45 ° C for /40 ° C back.
- the air temperature is lowered below its dew point temperature, the moisture in the air condenses, the moisture content decreases, the air flows out of the finned tube heat exchanger 19 and is again sucked by the blower 20, and thus circulates, at which time the drain valve 31 is opened, the air The water condensed in the fin-and-tube heat exchanger 19 will flow out.
- the hot water in the hot and cold water circuit enters the heat source tower heat pump device from the return water end of the heat source tower heat pump device and passes through the water pump 16.
- the hot water is divided into two paths, one way enters the third heat exchanger 14, and the hot water is in the refrigerant
- the system heating operation mode is in the high concentration mode of the Sany solution:
- the other circuit operation is the same as the mode 2, only in the solution circuit, the fifth solenoid valve 26 is opened (fourth electromagnetic The valve 25, the sixth solenoid valve 27 is closed), and the solution flowing out of the second heat exchanger second output end 23d will flow into the solution reservoir 27 through the fifth solenoid valve 26 for storage without flowing into the heat source tower 29.
- the solution does not need to be regenerated, and the efficient operation of the system is ensured while the solution regeneration is not enabled.
- the solution regeneration utilizes the heat released by the superheated refrigerant to cool, and by controlling the first electric three-way regulating valve 22 and the second electric three-way regulating valve 24, the pair is respectively entered into the first exchange.
- the solution flow rate of the heat exchanger 4, the second heat exchanger 6, and the fourth heat exchanger 23 is adjusted to adjust the amount of the solution to be regenerated, thereby controlling the flow rate, temperature and concentration of the solution entering the packing heat exchanger 18, thereby realizing Closed air circuit
- the adjustment of the operating temperature of each part enables the system to obtain the best regeneration efficiency while keeping the concentration of the running solution stable, and at the same time, using the air in the air circuit, the moisture in the air is condensed and released in the fin-tube heat exchanger 19, and is heated. Heating hot water to achieve efficient use of regenerative heat.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
一种基于空气实现再生热量高效利用的热源塔热泵装置,包括制冷剂回路、溶液回路、空气回路和冷热水回路。该热源塔热泵装置充分利用过热制冷剂冷却放出的热量,基于空气闭式循环,在实现溶液再生的同时制取供热热水,实现了热源塔热泵系统溶液的高效再生。该热源塔热泵装置在各种运行工况下的可靠性提高了,并实现了整个系统的高效运行。
Description
基于空气实现再生热量高效利用的热源塔热泵装置 技术领域
本发明属于制冷空调系统设计和制造领域, 涉及一种实现溶液再生热量综合高效 利用的热源塔热泵装置。 背景技术
热源塔热泵具有兼顾制冷和制热的功能, 在夏季制冷时, 具有水冷冷水机组的高 效率, 冬季制热时, 利用溶液在热源塔内与空气换热, 溶液吸收空气中热量作为热泵 机组的低位热源。 热源塔热泵采用电驱动, 可避免直接使用一次能源, 系统具有更高 的一次能源利用效率, 同时不存在空气源热泵的结霜问题, 具有使用灵活, 不受地理 地质条件限制等优点, 是一种很有前景的新型空调系统。
热源塔热泵系统在冬季制热运行时, 利用溶液在热源塔中与空气换热, 在这过程 中, 由于空气中水蒸汽与溶液表面的水蒸汽存在分压力差, 空气中的水分将进入溶液, 使溶液的浓度变稀, 溶液的冰点将上升, 为了保证系统运行的安全可靠, 需要将溶液 从空气中吸入的水分从溶液中排出, 提高溶液的浓度, 即实现溶液的再生。 溶液的再 生过程是一个需要吸收热量的过程, 如何获得溶液的再生热源, 及其实现溶液再生热 量的高效利用, 对提高热源塔热泵系统性能, 保证系统安全可靠运行具有重要意义。
因此, 如何解决热源塔热泵系统的溶液再生热源和溶液再生热量的高效利用, 实 现热源塔热泵系统的综合高效等问题, 设计出一种新型高效的热源塔热泵系统成为本 领域技术人员迫切需要解决的技术难题。 发明内容
技术问题: 本发明的目的是提供一种高效解决热源塔热泵系统溶液再生问题, 提 高热源塔热泵系统在各种运行工况下运行效率的基于空气实现再生热量高效利用的热 源塔热泵装置。
技术方案: 本发明基于空气实现再生热量高效利用的热源塔热泵装置, 包括制冷 剂回路、 溶液回路、 空气回路和冷热水回路。 制冷剂回路包括压縮机、 第一电磁阀、 第二电磁阀、 第一换热器、 四通阀、 第二换热器、 第一单向阀、 第二单向阀、 储液器、
过滤器、 电子膨胀阀、 第三单向阀、 第四单向阀、 第三换热器、 气液分离器及其相关 连接管道, 第一换热器和第二换热器同时也是溶液回路的构成部件, 第三换热器同时 也是冷热水回路的构成部件。
制冷剂回路中, 压縮机的输出端分两路, 一路通过第二电磁阀与第一换热器第一 输入端连接, 另一路通过第一电磁阀与四通阀第一输入端连接, 四通阀第一输入端同 时还与第一换热器第一输出端连接, 四通阀第一输出端与第二换热器第一输入端连接, 第二换热器第一输出端与第一单向阀的入口连接, 第一单向阀的出口分成两路, 一路 与储液器的输入端连接, 另外一路与第二单向阀的出口连接, 第二单向阀的入口与第 三换热器第一输出端连接, 储液器的输出端通过过滤器与电子膨胀阀的输入端连接, 电子膨胀阀的输出端分成两路, 一路连接第三单向阀的入口, 另外一路连接第四单向 阀的入口, 第三单向阀的出口与第三换热器第一输出端连接, 第四单向阀的出口同时 与第二换热器第一输出端和第一单向阀的入口连接, 第三换热器第一输入端与四通阀 第二输入端连接, 四通阀第二输出端与气液分离器的输入端连接, 气液分离器的输出 端与压縮机的输入端连接。
溶液回路包括第二换热器、 填料换热器、 第一溶液泵、 第一电动三通调节阀、 第 二电动三通调节阀、 第四换热器、 第四电磁阀、 第五电磁阀、 溶液储液器、 第六电磁 阀、 热源塔、 第二溶液泵、 第一换热器及其相关连接管道, 填料换热器同时是空气回 路的构成部件;
溶液回路中, 热源塔溶液输出端与第二溶液泵的入口连接, 第二溶液泵的出口接 第二电动三通调节阀输入端, 第二电动三通调节阀第一输出端与第二换热器第二输入 端连接, 第二换热器第二输出端与热源塔第一输入端连接, 第二电动三通调节阀第二 输出端与第四换热器第一输入端连接, 第四换热器第一输出端与第一换热器第二输入 端连接, 第一换热器第二输出端与填料换热器溶液输入端连接, 填料换热器溶液输出 端与第一溶液泵的入口连接, 第一溶液泵的出口接第一电动三通调节阀输入端, 第一 电动三通调节阀第一输出端也与第一换热器第二输入端连接, 第一电动三通调节阀第 二输出端接第四换热器第二输入端, 第四换热器第二输出端的出口分成两路, 一路通 过第四电磁阀与热源塔第一输入端连接, 另外一路通过第五电磁阀与溶液储液器的进 口连接, 溶液储液器的出口通过第六电磁阀接热源塔第二输入端连接。
空气回路包括依次相接的填料换热器、 翅片管换热器、 风机, 以及连通填料换热
器、 翅片管换热器、 风机的连接风道, 构成一个循环回路。 翅片管换热器底端接有放 水阀, 翅片管换热器同时也是冷热水回路的构成部件。
冷热水回路包括水泵、 第三电磁阀、 翅片管换热器、 第三换热器及其相关连接管 道。 冷热水回路中, 水泵的入口与热源塔热泵装置的回水端连接, 水泵的出口分成两 路, 一路与第三换热器第二输入端连接, 另外一路通过第三电磁阀与翅片管换热器溶 液输入端连接, 第三换热器第二输出端与热源塔热泵装置的供水端连接, 翅片管换热 器溶液输出端也与热源塔热泵装置的供水端连接。
本发明中, 通过控制第一电动三通调节阀和第二电动三通调节阀, 来调节进入第 一换热器、第二换热器和第四换热器的溶液流量, 实现对进入填料换热器的溶液流量、 温度和浓度进行控制, 进而实现密闭空气回路中各部分运行温度的调节, 使得热源塔 热泵装置获得最佳的再生效率的同时, 保持运行溶液浓度的稳定。
本发明中, 利用第一换热器中过热制冷剂冷却放出的热量, 实现溶液再生。
本发明中, 空气回路中的翅片管换热器中, 利用空气中水分凝结放出的热量加热 冷热水回路中热水。
本发明中, 热源塔的出风口具有自开闭功能, 工作时出风口自动打开, 不工作时 自动关闭, 防止雨水进入塔内。
热源塔热泵夏季制冷运行时, 低温低压的制冷剂气体从气液分离器中被压縮机吸 入、 压縮后变成高温高压过热蒸气排出, 经过第一电磁阀 (此时第二电磁阀关闭) 和 四通阀进入第二换热器中, 制冷剂放出热量, 进行冷凝变成液体, 再依次经过第一单 向阀、 储液器、 过滤器、 电子膨胀阀后变成低温低压的气液两相, 再经过第三单向阀 后进入第三换热器, 制冷剂在第三换热器中吸热蒸发, 制取冷水, 制冷剂完全蒸发后 变成过热气体从第三换热器出来经过四通阀进入气液分离器,然后再次被吸入压縮机, 从而完成制冷循环, 制取冷冻水。 此时溶液回路中除热源塔、 第二溶液泵、 第二电动 三通调节阀、 第二换热器工作外, 其余部分都停止工作。 在溶液回路中冷却水从热源 塔出来后被第二溶液泵吸入, 经过第二溶液泵加压后, 冷却水进入第二电动三通调节 阀, 冷却水全部从第二电动三通调节阀第一输出端流出, 进入第二换热器, 在第二换 热器中吸收热量将制冷剂冷凝成液体, 自身温度升高后进入热源塔与空气进行热湿交 换, 冷却水温度降低后再次从热源塔流出。 空气回路不工作。 冷热水回路中冷冻水从 热源塔热泵装置的回水端进入热源塔热泵装置后经过水泵, 进入第三换热器中 (此时
第三电磁阀关闭), 冷冻水在其中与制冷剂换热, 温度降低后, 从第三换热器出来后从 热源塔热泵装置的供水端流出。
热源塔热泵冬季制热分三种模式, 制热运行模式一: 热源塔热泵冬季制热运行, 当空气中湿度较小或在热源塔中由空气进入溶液中的水分较少, 即溶液无需再生时, 低温低压的制冷剂气体从气液分离器中被压縮机吸入、 压縮后变成高温高压过热蒸气 排出, 经过第一电磁阀 (此时第二电磁阀关闭) 和四通阀进入第三换热器中, 制冷剂 放出热量, 制取热水, 同时自身冷凝成液体, 再依次经过第二单向阀、 储液器、 过滤 器、 电子膨胀阀后变成低温低压的气液两相, 再经过第四单向阀后进入第二换热器, 制冷剂在第二换热器中吸热蒸发, 制冷剂完全蒸发后变成过热气体从第二换热器出来 经过四通阀进入气液分离器, 然后再次被吸入压縮机, 从而完成制热循环, 制取热水。 此时溶液回路中充灌着溶液, 溶液回路中除热源塔、 第二溶液泵、 第二电动三通调节 阀、 第二换热器工作外, 其余部分都停止工作。 在溶液回路中溶液从热源塔出来后被 第二溶液泵吸入, 经过第二溶液泵加压后, 溶液进入第二电动三通调节阀, 溶液全部 从第二电动三通调节阀第一输出端流出, 然后进入第二换热器, 在第二换热器中吸收 热量并将热量传给制冷剂, 自身温度降低后进入热源塔与空气进行热湿交换, 溶液温 度升高后再次从热源塔流出。 空气回路不工作。 冷热水回路中热水从热源塔热泵装置 的回水端进入热源塔热泵装置后经过水泵,进入第三换热器中(此时第三电磁阀关闭), 热水在其中与制冷剂换热, 温度升高, 从第三换热器出来后从热源塔热泵装置的供水 端流出。
制热运行模式二: 当空气中湿度较大或在热源塔中由空气进入溶液中的水分较多 时, 溶液需要进行再生。 制冷剂回路为气液分离器中低温低压的制冷剂气体被压縮机 吸入、 压縮后排出经过第二电磁阀 (此时第一电磁阀关闭) 进入第一换热器, 制冷剂 在其中与溶液换热, 温度降低后流出第一换热器, 然后通过四通阀进入第三换热器, 制冷剂在第三换热器中放出热量, 制取热水, 同时自身冷凝成液体, 然后依次通过第 二单向阀、 储液器、 过滤器、 电子膨胀阀, 被节流降压后以气液两相经过第四单向阀 进入第二换热器中, 在第二换热器中与溶液换热, 进行蒸发吸热, 制冷剂完全蒸发后 从第二换热器出来流经四通阀进入气液分离器, 最后再次被压縮机吸入, 重新被压縮 参与循环。 此时溶液回路中充灌着溶液, 溶液从热源塔出来后进入第二溶液泵, 经过 第二溶液泵加压后进入第二电动三通调节阀, 溶液在第二电动三通调节阀中被分成两
路, 一路从第二电动三通调节阀第一输出端流出后与进入第二换热器, 与制冷剂换热, 放出热量, 温度降低, 溶液从第二换热器出来后回到热源塔, 另外一路从第二电动三 通调节阀第二输出端流出后与进入第四换热器, 在第四换热器中与从填料换热器中流 进第四换热器的溶液进行换热, 溶液温度升高溶液从第四换热器中出来后溶液进入第 一换热器, 在第一换热器中溶液与制冷剂换热, 溶液温度升高, 溶液从第一换热器出 来后进入填料换热器, 溶液在填料换热器中与空气进行传热传质, 溶液温度降低, 溶 液中水分蒸发, 溶液浓度提高, 溶液从填料换热器中出来经过第一溶液泵后进入第一 电动三通调节阀, 溶液在其中被分成两路, 一路从第一电动三通调节阀第一输出端流 出后与从第四换热器第一输出端流出的溶液混合后进入第一换热器, 另外一路从第一 电动三通调节阀第二输出端出来后进入第四换热器进行换热, 温度降低后从第四换热 器流出, 经过第四电磁阀 (此时第五电磁阀、 第六电磁阀关闭) 后与从第二换热器第 二输出端流出的溶液混合后进入热源塔, 溶液在热源塔中与空气进行传热传质, 溶液 温度升高。 空气回路中, 空气被风机吸入加压排出后, 进入填料换热器, 在填料换热 器中与溶液进行热质交换, 空气温度升高, 含湿量增大, 从填料换热器中出来的空气 进入翅片管换热器, 在翅片管换热器中与供热热水进行换热, 用于制取 45°C供 /40°C回 的供热热水, 空气温度降低至其露点温度以下, 空气中水分凝出, 含湿量下降, 空气 从翅片管换热器流出后再次被风机吸入, 如此循环, 此时放水阀打开, 空气在翅片管 换热器中凝结的水将流出。 冷热水回路中热水从热源塔热泵装置的回水端进入热源塔 热泵装置后经过水泵, 热水被分成两路, 一路进入第三换热器中, 热水在其中与制冷 剂换热, 温度升高, 从第三换热器出来后从热源塔热泵装置的供水端流出, 另外一路 经过第三电磁阀进入翅片管换热器, 热水在其中与空气进行换热, 温度升高, 从翅片 管换热器出来后与从第三换热器出来的热水混合, 最终从热源塔热泵装置的供水端流 出。
当热源塔热泵冬季供热即将结束,系统制热运行模式三一溶液高度浓縮模式时: 其他回路运行情况与模式二一致, 只有在溶液回路中, 第五电磁阀打开(第四电磁阀、 第六电磁阀关闭),从第四换热器第二输出端流出的溶液将经过第五电磁阀流入溶液储 液器储存, 而不在流入热源塔。
在系统制热运行模式一过程中, 溶液无需再生, 在不启用溶液再生的同时, 保证 系统的高效运行。
在系统制热运行模式二过程中, 溶液再生利用的是过热制冷剂冷却放出的热量, 通过控制第一电动三通调节阀和第二电动三通调节阀, 实现对分别进入第一换热器、 第二换热器和第四换热器的溶液流量调节, 从而调节进行再生的溶液量, 实现对进入 填料换热器的溶液流量、 温度和浓度进行控制, 进而实现密闭空气回路中各部分运行 温度的调节, 使得系统获得最佳的再生效率的同时, 保持运行溶液浓度的稳定, 同时 利用空气回路中, 空气中水分在翅片管换热器中凝结放出的热量, 加热供热热水, 实 现再生热量的高效利用。
有益效果: 本发明与现有技术相比, 具有以下优点:
本发明提出的基于空气实现再生热量高效利用的热源塔热泵装置, 充分利用过热 制冷剂冷却放出的热量, 基于空气闭式循环, 在实现溶液再生的同时制取供热热水, 实现了热源塔热泵系统溶液的高效再生,彻底解决了热源塔热泵系统的溶液再生问题, 提高了热源塔热泵系统在各种运行工况下的安全可靠性, 并实现了系统的综合高效。 附图说明
图 1是本发明基于空气实现再生热量高效利用的热源塔热泵装置的示意图。
图中有: 压縮机 1 ; 第一电磁阀 2; 第二电磁阀 3; 第一换热器 4; 第一换热器第 一输入端 4a; 第一换热器第一输出端 4b; 第一换热器第二输入端 4c; 第一换热器第二 输出端 4d; 四通阀 5; 四通阀第一输入端 5a; 四通阀第一输出端 5b; 四通阀第二输入 端 5c; 四通阀第二输出端 5d; 第二换热器 6; 第二换热器第一输入端 6a; 第二换热器 第一输出端 6b;第二换热器第二输入端 6c;第二换热器第二输出端 6d;第一单向阀 7; 第二单向阀 8; 储液器 9; 过滤器 10; 电子膨胀阀 11 ; 第三单向阀 12; 第四单向阀 13; 第三换热器 14; 第三换热器第一输入端 14a; 第三换热器第一输出端 14b; 第三换热器 第二输入端 14c; 第三换热器第二输出端 14d; 气液分离器 15; 水泵 16; 第三电磁阀 17; 填料换热器 18; 填料换热器溶液输入端 18a; 填料换热器溶液输出端 18b; 翅片管 换热器 19; 翅片管换热器溶液输入端 19a; 翅片管换热器溶液输出端 19b; 风机 20; 第一溶液泵 21 ; 第一电动三通调节阀 22; 第一电动三通调节阀输入端 22a; 第一电动 三通调节阀第一输出端 22b; 第一电动三通调节阀第二输出端 22c; 第四换热器 23; 第 四换热器第一输入端 23a; 第四换热器第一输出端 23b; 第四换热器第二输入端 23c; 第四换热器第二输出端 23d;第二电动三通调节阀 24;第二电动三通调节阀输入端 24a;
第二电动三通调节阀第一输出端 24b; 第二电动三通调节阀第二输出端 24c; 第四电磁 阀 25; 第五电磁阀 26; 溶液储液器 27; 第六电磁阀 28; 热源塔 29; 热源塔第一输入 端 29a; 热源塔溶液输出端 29b; 热源塔第二输入端 29c; 第二溶液泵 30; 放水阀 31。 具体实施方式
下面结合图 1和具体实施例来进一步说明本发明。
本发明的基于空气实现再生热量高效利用的热源塔热泵装置, 包括制冷剂回路、 溶液回路、 空气回路和冷热水回路, 具体的连接方法压縮机 1 的输出端分两路, 一路 通过第二电磁阀 3接第一换热器第一输入端 4a, 另一路通过第一电磁阀 2接四通阀第 一输入端 5a, 四通阀第一输入端 5a同时还接第一换热器第一输出端 4b, 四通阀第一 输出端 5b接第二换热器第一输入端 6a, 第二换热器第一输出端 6b接第一单向阀 7的 入口, 第一单向阀 7的出口分成两路, 一路接储液器 9的输入端, 另外一路接第二单 向阀 8的出口, 第二单向阀 8的入口接第三换热器第一输出端 14b, 储液器 9的输出 端通过过滤器 10接电子膨胀阀 11的输入端, 电子膨胀阀 11的输出端分成两路, 一路 接第三单向阀 12的入口, 另外一路连接第四单向阀 13的入口, 第三单向阀 12的出口 与第三换热器第一输出端 14b连接,第四单向阀 13的出口同时与第二换热器第一输出 端 6b和第一单向阀 7的入口连接, 另外, 第三换热器第一输入端 14a接四通阀第二输 入端 5c, 四通阀第二输出端 5d接气液分离器 15的输入端,气液分离器 15的输出端接 压縮机 1的输入端;
热源塔溶液输出端 29b接第二溶液泵 30的入口, 第二溶液泵 30的出口接第二电 动三通调节阀输入端 24a,第二电动三通调节阀第一输出端 24b与第二换热器第二输入 端 6c连接, 第二换热器第二输出端 6d与热源塔第一输入端 29a连接, 第二电动三通 调节阀第二输出端 24c与第四换热器第一输入端 23a连接,第四换热器第一输出端 23b 与第一换热器第二输入端 4c连接, 第一换热器第二输出端 4d与填料换热器溶液输入 端 18a连接,填料换热器溶液输出端 18b与第一溶液泵 21的入口连接,第一溶液泵 21 的出口接第一电动三通调节阀输入端 22a,第一电动三通调节阀第一输出端 22b与第一 换热器第二输入端 4c连接, 第一电动三通调节阀第二输出端 22c接第四换热器第二输 入端 23c, 第四换热器第二输出端 23d的出口分成两路, 一路通过第四电磁阀 25与热 源塔第一输入端 29a连接, 另外一路通过第五电磁阀 26与溶液储液器 27的进口连接,
溶液储液器 27的出口通过第六电磁阀 28接热源塔第二输入端 29c连接。 在空气流通回路中, 依次相接的填料换热器 18、 翅片管换热器 19、 风机 20, 以 及连通填料换热器 18、 翅片管换热器 19、 风机 20的连接风道, 构成一个循环回路。 在翅片管换热器底端接有放水阀 30。
在冷热水回路中, 水泵 16的入口与热源塔热泵装置的回水端与连接, 水泵 16的 出口分成两路, 一路与第三换热器第二输入端 14c连接, 另外一路通过第三电磁阀 17 与翅片管换热器溶液输入端 19a连接, 第三换热器第二输出端 14d接热源塔热泵装置 的供水端, 翅片管换热器溶液输出端 19b也与热源塔热泵装置的供水端连接。
热源塔热泵夏季制冷运行时,低温低压的制冷剂气体从气液分离器 15中被压縮机 1吸入、 压縮后变成高温高压过热蒸气排出, 经过第一电磁阀 2 (此时第二电磁阀 3关 闭) 和四通阀 5进入第二换热器 6中, 制冷剂放出热量, 进行冷凝变成液体, 再依次 经过第一单向阀 7、储液器 9、过滤器 10、 电子膨胀阀 11后变成低温低压的气液两相, 再经过第三单向阀 12后进入第三换热器 14, 制冷剂在第三换热器 14中吸热蒸发, 制 取冷冻水,制冷剂完全蒸发后变成过热气体从第三换热器 14出来经过四通阀 5进入气 液分离器 15, 然后再次被吸入压縮机 1, 从而完成制冷循环, 制取冷冻水。 此时溶液 回路中除热源塔 29、 第二溶液泵 30、 第二电动三通调节阀 24、 第二换热器 6工作外, 其余部分都停止工作。在溶液回路中冷却水从热源塔 28出来后被第二溶液泵 29吸入, 经过第二溶液泵 29加压后, 冷却水进入第二电动三通调节阀 24, 冷却水全部从第二 电动三通调节阀第一输出端 24b流出, 进入第二换热器 6, 在第二换热器 6中吸收热 量将制冷剂冷凝成液体, 自身温度升高后进入热源塔 29与空气进行热湿交换, 冷却水 温度降低后再次从热源塔 29流出。 空气回路不工作。冷热水回路中冷冻水从热源塔热 泵装置的回水端进入热源塔热泵装置后经过水泵 16, 进入第三换热器 14中 (此时第 三电磁阀 17关闭), 冷冻水在其中与制冷剂换热, 温度降低后, 从第三换热器 14出来 后从热源塔热泵装置的供水端流出。
热源塔热泵冬季制热分三种模式, 制热运行模式一: 热源塔热泵冬季制热运行, 当空气中湿度较小或在热源塔中由空气进入溶液中的水分较少时,即溶液无需再生时, 低温低压的制冷剂气体从气液分离器 15中被压縮机 1吸入、压縮后变成高温高压过热 蒸气排出, 经过第一电磁阀 2 (此时第二电磁阀 3关闭) 和四通阀 5进入第三换热器 14中, 制冷剂放出热量, 制取热水, 同时自身冷凝成液体, 再依次经过第二单向阀 8、
储液器 9、 过滤器 10、 电子膨胀阀 11后变成低温低压的气液两相, 再经过第四单向阀 13后进入第二换热器 6, 制冷剂在第二换热器 6中吸热蒸发, 制冷剂完全蒸发后变成 过热气体从第二换热器 6出来经过四通阀 5进入气液分离器 15, 然后再次被吸入压縮 机 1, 从而完成制热循环, 制取热水。 此时溶液回路中充灌着溶液, 溶液回路中除热 源塔 29、 第二溶液泵 30、 第二电动三通调节阀 24、 第二换热器 6工作外, 其余部分 都停止工作。 在溶液回路中溶液从热源塔 29出来后被第二溶液泵 30吸入, 经过第二 溶液泵 30加压后, 溶液进入第二电动三通调节阀 24, 溶液全部从第二电动三通调节 阀第一输出端 24b流出, 然后进入第二换热器 6, 在第二换热器 6中吸收热量并将热 量传给制冷剂, 自身温度降低后进入热源塔 29与空气进行热湿交换, 溶液温度升高后 再次从热源塔 29流出。 空气回路不工作。冷热水回路中热水从热源塔热泵装置的回水 端进入热源塔热泵装置后经过水泵 16, 进入第三换热器 14中 (此时第三电磁阀 17关 闭), 热水在其中与制冷剂换热, 温度升高, 从第三换热器 14出来后从热源塔热泵装 置的供水端流出。
制热运行模式二: 当空气中湿度较大或在热源塔 29中由空气进入溶液中的水分较 多时, 溶液需要进行再生。制冷剂回路为气液分离器 15中低温低压的制冷剂气体被压 縮机 1吸入、 压縮后排出经过第二电磁阀 3 (此时第一电磁阀 2关闭) 进入第一换热 器 4, 制冷剂在其中与溶液换热, 温度降低后流出第一换热器 4, 然后通过四通阀 5进 入第三换热器 14, 制冷剂在第三换热器 14中放出热量, 制取热水, 同时自身冷凝成 液体, 然后依次通过第二单向阀 8、 储液器 9、 过滤器 10、 电子膨胀阀 11, 被节流降 压后以气液两相经过第四单向阀 13进入第二换热器 6中,在第二换热器 6中与溶液换 热, 进行蒸发吸热, 制冷剂完全蒸发后从第二换热器 6出来流经四通阀 5进入气液分 离器 15, 最后再次被压縮机 1吸入, 重新被压縮参与循环。 此时溶液回路中充灌着溶 液, 溶液从热源塔 29出来后进入第二溶液泵 30, 经过第二溶液泵 30加压后进入第二 电动三通调节阀 24, 溶液在第二电动三通调节阀 24中被分成两路, 一路从第二电动 三通调节阀第一输出端 24b流出后与进入第二换热器 6, 与制冷剂换热, 放出热量, 温度降低, 溶液从第二换热器 6出来后回到热源塔 29, 另外一路从第二电动三通调节 阀第二输出端 24c流出后与进入第四换热器 23, 在第四换热器 23中与从填料换热器 18中流进第四换热器 23的溶液进行换热, 溶液温度升高溶液从第四换热器 23中出来 后溶液进入第一换热器 4, 在第一换热器 4中溶液与制冷剂换热, 溶液温度升高, 溶
液从第一换热器 4出来后进入填料换热器 18, 溶液在填料换热器 18中与空气进行传 热传质, 溶液温度降低, 溶液中水分蒸发, 溶液浓度提高, 溶液从填料换热器 18中出 来经过第一溶液泵 21后进入第一电动三通调节阀 22, 溶液在其中被分成两路, 一路 从第一电动三通调节阀第一输出端 22b流出后与从第四换热器第一输出端 23b流出的 溶液混合后进入第一换热器 4,另外一路从第一电动三通调节阀第二输出端 22c出来后 进入第四换热器 23进行换热, 温度降低后从第四换热器 23流出, 经过第四电磁阀 25 (此时第五电磁阀 26、 第六电磁阀 27关闭) 后与从第二换热器第二输出端 6d流出的 溶液混合后进入热源塔 29, 溶液在热源塔 29中与空气进行传热传质, 溶液温度升高。 空气回路中, 空气被风机 20吸入加压排出后, 进入填料换热器 18, 在填料换热器 18 中与溶液进行热质交换, 空气温度升高, 含湿量增大, 从填料换热器 18中出来的空气 进入翅片管换热器 19, 在翅片管换热器 19中与供热热水进行换热, 用于制取 45°C供 /40°C回的供热热水, 空气温度降低至其露点温度以下, 空气中水分凝出, 含湿量下降, 空气从翅片管换热器 19流出后再次被风机 20吸入, 如此循环, 此时放水阀 31打开, 空气在翅片管换热器 19中凝结的水将流出。冷热水回路中热水从热源塔热泵装置的回 水端进入热源塔热泵装置后经过水泵 16, 热水被分成两路, 一路进入第三换热器 14 中, 热水在其中与制冷剂换热, 温度升高, 从第三换热器 14出来后从热源塔热泵装置 的供水端流出, 另外一路经过第三电磁阀 17进入翅片管换热器 19, 热水在其中与空 气进行换热, 温度升高, 从翅片管换热器 19出来后与从第三换热器 14出来的热水混 合, 最终从热源塔热泵装置的供水端流出。
当热源塔热泵冬季供热即将结束,系统制热运行模式三一溶液高度浓縮模式时: 其他回路运行情况与模式二一致, 只有在溶液回路中, 第五电磁阀 26打开(第四电磁 阀 25、 第六电磁阀 27关闭), 从第四换热器第二输出端 23d流出的溶液将经过第五电 磁阀 26流入溶液储液器 27储存, 而不在流入热源塔 29。
在系统制热运行模式一过程中, 溶液无需再生, 在不启用溶液再生的同时, 保证 系统的高效运行。
在系统制热运行模式二过程中, 溶液再生利用的是过热制冷剂冷却放出的热量, 通过控制第一电动三通调节阀 22和第二电动三通调节阀 24, 实现对分别进入第一换 热器 4、第二换热器 6和第四换热器 23的溶液流量调节,从而调节进行再生的溶液量, 实现对进入填料换热器 18的溶液流量、温度和浓度进行控制, 进而实现密闭空气回路
中各部分运行温度的调节, 使得系统获得最佳的再生效率的同时, 保持运行溶液浓度 的稳定, 同时利用空气回路中, 空气中水分在翅片管换热器 19中凝结放出的热量, 加 热供热热水, 实现再生热量的高效利用。
Claims
1. 一种基于空气实现再生热量高效利用的热源塔热泵装置, 其特征在于, 该装置 包括制冷剂回路, 溶液回路, 空气回路和冷热水回路:
所述制冷剂回路包括压縮机 (1)、 第一电磁阀 (2)、 第二电磁阀 (3)、 第一换热 器 (4)、 四通阀 (5)、 第二换热器 (6)、 第一单向阀 (7)、 第二单向阀 (8)、 储液器
(9)、 过滤器 (10)、 电子膨胀阀 (11)、 第三单向阀 (12)、 第四单向阀 (13)、 第三 换热器 (14)、 气液分离器 (15) 及其相关连接管道, 所述第一换热器 (4) 和第二换 热器 (6) 同时也是溶液回路的构成部件, 第三换热器 (14) 同时也是冷热水回路的构 成部件;
所述制冷剂回路中, 压縮机 (1) 的输出端分两路, 一路通过第二电磁阀 (3) 与 第一换热器第一输入端 (4a) 连接, 另一路通过第一电磁阀 (2) 与四通阀第一输入端
(5a) 连接, 四通阀第一输入端 (5a) 同时还与第一换热器第一输出端 (4b) 连接, 四 通阀第一输出端 (5b) 与第二换热器第一输入端 (6a) 连接, 第二换热器第一输出端
(6b) 与第一单向阀 (7) 的入口连接, 第一单向阀 (7) 的出口分成两路, 一路与储 液器 (9) 的输入端连接, 另外一路与第二单向阀 (8) 的出口连接, 第二单向阀 (8) 的入口与第三换热器第一输出端 (14b) 连接, 储液器 (9) 的输出端通过过滤器
(10) 与电子膨胀阀 (11) 的输入端连接, 电子膨胀阀 (11) 的输出端分成两路, 一路 连接第三单向阀 (12) 的入口, 另外一路连接第四单向阀 (13) 的入口, 第三单向阀
(12) 的出口与第三换热器第一输出端 (14b) 连接, 第四单向阀 (13) 的出口同时与 第二换热器第一输出端 (6b) 和第一单向阀 (7) 的入口连接, 第三换热器第一输入端 (14a) 与四通阀第二输入端 (5c) 连接, 四通阀第二输出端 (5d) 与气液分离器 (15) 的输入端连接, 气液分离器 (15) 的输出端与压縮机 (1) 的输入端连接;
所述溶液回路包括第二换热器 (6)、 第一溶液泵 (21)、 第一电动三通调节阀
(22)、 第二电动三通调节阀 (24) 第二溶液泵 (30)、 填料换热器 (18)、 第四换热器
(23)、 第四电磁阀 (25)、 第五电磁阀 (26)、 溶液储液器 (27)、 第六电磁阀 (28)、 热源塔 (29)、 第一换热器 (4) 及其相关连接管道, 所述填料换热器 (18) 同时是空 气回路的构成部件;
所述溶液回路中, 热源塔溶液输出端 (29b) 与第二溶液泵 (30) 的入口连接, 第 二溶液泵 (30) 的出口接第二电动三通调节阀输入端 (24a), 第二电动三通调节阀第 一输出端 (24b) 与第二换热器第二输入端 (6c) 连接, 第二换热器第二输出端 (6d)
与热源塔第一输入端 (29a) 连接, 第二电动三通调节阀第二输出端 (24c) 与第四换热 器第一输入端 (23a) 连接, 第四换热器第一输出端 (23b) 与第一换热器第二输入端
(4c) 连接, 第一换热器第二输出端 (4d) 与填料换热器溶液输入端 (18a) 连接, 填 料换热器溶液输出端 (18b) 与第一溶液泵 (21) 的入口连接, 第一溶液泵 (21) 的出 口接第一电动三通调节阀输入端 (22a), 第一电动三通调节阀第一输出端 (22b) 也与 第一换热器第二输入端 (4c) 连接, 第一电动三通调节阀第二输出端 (22c) 与第四换 热器第二输入端 (23c) 连接, 第四换热器第二输出端 (23d) 的出口分成两路, 一路 通过第四电磁阀 (25) 与热源塔第一输入端 (29a) 连接, 另外一路通过第五电磁阀
(26) 与溶液储液器 (27) 的进口连接, 溶液储液器 (27) 的出口通过第六电磁阀
(28) 接热源塔第二输入端 (29c) 连接;
所述空气回路包括依次相接的填料换热器 (18)、 翅片管换热器 (19)、 风机
(20), 以及连通所述填料换热器 (18)、 翅片管换热器 (19)、 风机 (20) 的连接风 道, 构成一个循环回路, 所述翅片管换热器 (19) 的底端接有放水阀, 翅片管换热器
(19) 同时也是冷热水回路的构成部件;
所述冷热水回路包括水泵 (16)、 第三电磁阀 (17)、 翅片管换热器 (19)、 第三换 热器 (14) 及其相关连接管道;
所述冷热水回路中, 水泵 (16) 的入口与热源塔热泵装置的回水端连接, 水泵
(16) 的出口分成两路, 一路与第三换热器第二输入端 (14c) 连接, 另外一路通过第 三电磁阀 (17) 与翅片管换热器输入端 (19a) 连接, 第三换热器第二输出端 (14d) 与热源塔热泵装置的供水端连接, 翅片管换热器溶液输出端 (19b) 也与热源塔热泵装 置的供水端连接。
2. 根据权利要求 1 所述的基于空气实现再生热量高效利用的热源塔热泵装置, 其 特征在于, 通过控制第一电动三通调节阀 (22) 和第二电动三通调节阀 (24), 来调节 进入第一换热器 (4)、 第二换热器 (6) 和第四换热器 (23) 的溶液流量, 实现对进入 填料换热器 (18) 的溶液流量、 温度和浓度进行控制, 使得热源塔热泵装置在获得最 佳的再生效率的同时, 保持运行溶液浓度的稳定。
3. 根据权利要求 1 所述的基于空气实现再生热量高效利用的热源塔热泵装置, 其 特征在于, 利用所述第一换热器 (4) 中过热制冷剂冷却放出的热量, 实现溶液再生。
4. 根据权利要求 1 所述的基于空气实现再生热量高效利用的热源塔热泵装置, 其 特征在于, 所述空气回路中的翅片管换热器 (19) 中, 利用空气中水分凝结放出的热
量加热冷热水回路中的热水。
5. 根据权利要求 1 所述的基于空气的实现再生热量高效利用的热源塔热泵装置, 其特征在于, 所述热源塔 (29 ) 的出风口具有自开闭功能, 工作时出风口自动打开, 不工作时自动关闭, 防止雨水进入塔内。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310322427.9A CN103353189B (zh) | 2013-07-30 | 2013-07-30 | 基于空气实现再生热量高效利用的热源塔热泵装置 |
CN201310322427.9 | 2013-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015014043A1 true WO2015014043A1 (zh) | 2015-02-05 |
Family
ID=49309583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/087181 WO2015014043A1 (zh) | 2013-07-30 | 2013-11-15 | 基于空气实现再生热量高效利用的热源塔热泵装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103353189B (zh) |
WO (1) | WO2015014043A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111811143A (zh) * | 2020-08-20 | 2020-10-23 | 广东瑞星新能源科技有限公司 | 一种带低温储物箱的一体式热泵热水器 |
CN115076758A (zh) * | 2022-06-09 | 2022-09-20 | 重庆清研理工智能控制技术研究院有限公司 | 一种节水型喷淋除霜一体化闭式热源塔 |
CN116037625A (zh) * | 2022-12-26 | 2023-05-02 | 江苏辛普森新能源有限公司 | 一种热泵型厨余垃圾处理设备 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103353189B (zh) * | 2013-07-30 | 2015-04-29 | 东南大学 | 基于空气实现再生热量高效利用的热源塔热泵装置 |
CN103644677B (zh) * | 2013-12-05 | 2016-02-24 | 东南大学 | 基于节流闪蒸并实现再生能量自平衡的溶液再生装置 |
CN104235986B (zh) * | 2014-09-24 | 2016-09-28 | 浙江理工大学 | 一种多效再生的热源塔热泵系统及方法 |
CN104771918B (zh) | 2015-04-20 | 2016-03-23 | 黄国和 | 一种基于湿蒸发的冷浓缩系统 |
CN111023227B (zh) * | 2019-11-21 | 2021-06-25 | 东南大学 | 一种适用于寒冷地区的双级压缩热源塔热泵系统 |
CN112797662B (zh) * | 2021-01-07 | 2022-11-22 | 青岛海尔空调电子有限公司 | 热源塔热泵系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233475A (ja) * | 2004-02-18 | 2005-09-02 | Ebara Refrigeration Equipment & Systems Co Ltd | ヒートポンプシステム |
CN101776353A (zh) * | 2010-02-10 | 2010-07-14 | 东南大学 | 基于冷却塔的溶液型冷热水机组 |
CN102901167A (zh) * | 2012-09-28 | 2013-01-30 | 东南大学 | 实现太阳能综合利用的热源塔热泵装置 |
JP2013019591A (ja) * | 2011-07-11 | 2013-01-31 | Yanmar Co Ltd | パッケージ式室外機及び室外機システム |
CN103353189A (zh) * | 2013-07-30 | 2013-10-16 | 东南大学 | 基于空气实现再生热量高效利用的热源塔热泵装置 |
CN203478477U (zh) * | 2013-07-30 | 2014-03-12 | 东南大学 | 一种再生热量高效回收的热源塔热泵系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5227027A (en) * | 1990-08-23 | 1993-07-13 | Topper Robert T | High efficiency water distillation apparatus using a heat pump system and process for use thereof |
JPH09159300A (ja) * | 1995-12-11 | 1997-06-20 | Katsura Seiki Seisakusho:Kk | アンモニア−水系吸収サイクルを用いた空冷式吸収ヒートポンプチラー |
JP2968232B2 (ja) * | 1997-04-11 | 1999-10-25 | 株式会社荏原製作所 | 空調システム及びその運転方法 |
CN101871700A (zh) * | 2009-04-22 | 2010-10-27 | 钱伟民 | 双源并阶式热泵热水空调系统 |
CN201764752U (zh) * | 2010-08-31 | 2011-03-16 | 中国科学院广州能源研究所 | 太阳能空调和地源热泵耦合冷热联供系统 |
CN102679624B (zh) * | 2012-06-08 | 2014-07-16 | 湖南大学 | 一种太阳能与热源塔热泵复合式三联供空调系统 |
-
2013
- 2013-07-30 CN CN201310322427.9A patent/CN103353189B/zh active Active
- 2013-11-15 WO PCT/CN2013/087181 patent/WO2015014043A1/zh not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005233475A (ja) * | 2004-02-18 | 2005-09-02 | Ebara Refrigeration Equipment & Systems Co Ltd | ヒートポンプシステム |
CN101776353A (zh) * | 2010-02-10 | 2010-07-14 | 东南大学 | 基于冷却塔的溶液型冷热水机组 |
JP2013019591A (ja) * | 2011-07-11 | 2013-01-31 | Yanmar Co Ltd | パッケージ式室外機及び室外機システム |
CN102901167A (zh) * | 2012-09-28 | 2013-01-30 | 东南大学 | 实现太阳能综合利用的热源塔热泵装置 |
CN103353189A (zh) * | 2013-07-30 | 2013-10-16 | 东南大学 | 基于空气实现再生热量高效利用的热源塔热泵装置 |
CN203478477U (zh) * | 2013-07-30 | 2014-03-12 | 东南大学 | 一种再生热量高效回收的热源塔热泵系统 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111811143A (zh) * | 2020-08-20 | 2020-10-23 | 广东瑞星新能源科技有限公司 | 一种带低温储物箱的一体式热泵热水器 |
CN115076758A (zh) * | 2022-06-09 | 2022-09-20 | 重庆清研理工智能控制技术研究院有限公司 | 一种节水型喷淋除霜一体化闭式热源塔 |
CN116037625A (zh) * | 2022-12-26 | 2023-05-02 | 江苏辛普森新能源有限公司 | 一种热泵型厨余垃圾处理设备 |
Also Published As
Publication number | Publication date |
---|---|
CN103353189A (zh) | 2013-10-16 |
CN103353189B (zh) | 2015-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015014043A1 (zh) | 基于空气实现再生热量高效利用的热源塔热泵装置 | |
WO2015027573A1 (zh) | 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置 | |
CN103900184B (zh) | 水冷媒三管制空调系统 | |
WO2015024312A1 (zh) | 基于真空沸腾实现溶液再生及其热量再利用的热源塔热泵 | |
CN106016771A (zh) | 太阳能空气源热泵三联供系统及其控制方法 | |
WO2015027570A1 (zh) | 复式一体化热源塔热泵装置 | |
CN103900310B (zh) | 溶液除湿预防空气源热泵热水器结霜的系统及方法 | |
CN104374117A (zh) | 冷水机组及控制方法 | |
CN104697227A (zh) | 带深度过冷装置的蒸发冷凝高效螺杆冷水机组 | |
JP2021508024A (ja) | 空調機システム | |
CN204329397U (zh) | 冷水机组 | |
JP2024529776A (ja) | 冷暖房が同時に運転可能なマルチ型中央空気調和システム | |
CN106123396A (zh) | 一种太阳能集热/蒸发器与翅片式蒸发器结合的热泵 | |
CN103423815A (zh) | 一种溶液辅助储能型家用空调器 | |
JP6982692B2 (ja) | 空調機システム | |
CN101799223B (zh) | 全年候空气源热泵三用机组及其运行方法 | |
CN203478477U (zh) | 一种再生热量高效回收的热源塔热泵系统 | |
KR101045512B1 (ko) | 2단 저온수 흡수식 냉동기 | |
CN104567073B (zh) | 空调循环系统 | |
CN203413886U (zh) | 热管辅助动力节能空调 | |
CN205939816U (zh) | 一种太阳能集热/蒸发器与翅片式蒸发器结合的热泵 | |
CN102305496B (zh) | 一种风冷热泵机组 | |
EP2406551A1 (en) | Plant for heat-regulating a first fluid and a second fluid used for air-conditioning premises | |
CN105698303A (zh) | 一种用于老化房的冷却系统 | |
KR100946381B1 (ko) | 하이브리드 히트펌프식 냉난방장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13890777 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WA | Withdrawal of international application |