WO2015027573A1 - 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置 - Google Patents

利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置 Download PDF

Info

Publication number
WO2015027573A1
WO2015027573A1 PCT/CN2013/087196 CN2013087196W WO2015027573A1 WO 2015027573 A1 WO2015027573 A1 WO 2015027573A1 CN 2013087196 W CN2013087196 W CN 2013087196W WO 2015027573 A1 WO2015027573 A1 WO 2015027573A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
heat
heat exchanger
valve
circuit
Prior art date
Application number
PCT/CN2013/087196
Other languages
English (en)
French (fr)
Inventor
梁彩华
孙立镖
蒋冬梅
张小松
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2015027573A1 publication Critical patent/WO2015027573A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements

Definitions

  • Heat source tower heat pump device for realizing low pressure boiling regeneration of solution by utilizing supercooled heat
  • the invention belongs to the field of design and manufacture of refrigeration and air-conditioning systems, and relates to a heat source tower heat pump device which realizes low-pressure boiling regeneration of a solution by using subcooling heat of a refrigerant. Background technique
  • the air source heat pump is less efficient in summer cooling, and there is frosting problem in winter heating; when the chiller + boiler scheme is used for heating in winter, the chiller is idle, using boiler combustion Oil or natural gas heating, there is a lack of primary energy use efficiency; water source heat pump scheme is limited by geographical geological conditions.
  • the heat source tower heat pump scheme is a new type of building cold and heat source scheme developed for these shortcomings. It solves the needs of building summer cooling and winter heating through a single unit, and avoids many shortcomings of conventional cold and heat source schemes. , is a new type of building cold and heat source with promising prospects.
  • the heat source tower heat pump system uses the solution to exchange heat with the air in the heat source tower during the heating operation in winter, and absorbs heat, but in the process, the pressure difference between the water vapor pressure in the air and the water vapor on the surface of the solution is also present.
  • the moisture in the air will enter the solution, the concentration of the solution will become thinner, and the freezing point of the solution will rise.
  • it is necessary to discharge the water entering the solution from the air from the solution to increase the concentration of the solution.
  • Regeneration of the solution The regeneration process of the solution is a process that needs to absorb heat. How to obtain the regenerative heat source of the solution and the efficient use of the heat of the solution regeneration are of great significance for improving the performance of the heat source tower heat pump system and ensuring the safe and reliable operation of the system.
  • the object of the present invention is to provide an efficient solution to the heat source of a heat source tower heat pump system solution and Regeneration efficiency problem, improve the operation reliability of the heat source tower heat pump under various working conditions, and use the heat source tower heat pump device to realize the low pressure boiling regeneration of the solution by utilizing the supercooled heat.
  • the heat source tower heat pump device of the present invention utilizes supercooled heat to realize low pressure boiling regeneration of a solution, including a refrigerant circuit, a solution circuit, a vacuum maintenance circuit, an air circuit, a regeneration solution heating circuit, and a hot and cold water circuit.
  • the refrigerant circuit includes a compressor, a four-way valve, a first heat exchanger, a first check valve, a second check valve, a first solenoid valve, a second solenoid valve, a second heat exchanger, a reservoir, a filter, an electronic expansion valve, a third check valve and a fourth check valve, a third heat exchanger, a gas-liquid separator and related connecting pipes, wherein the first heat exchanger is also a composition of a hot and cold water circuit
  • the second heat exchanger is also a component of the regeneration solution heating circuit
  • the third heat exchanger is also a component of the solution circuit.
  • the output end of the compressor is connected to the first input end of the four-way valve
  • the first output end of the four-way valve is connected to the first input end of the first heat exchanger
  • the first output end of the first heat exchanger is simultaneously Connected to the inlet of the first one-way valve and the outlet of the third one-way valve
  • the outlet of the first one-way valve is divided into three paths, one way is connected to the input end of the liquid storage through the first electromagnetic valve, and one way is passed through the second electromagnetic valve Connected to the first input end of the second heat exchanger, the other way is connected to the outlet of the second check valve
  • the input end of the liquid reservoir is simultaneously connected with the first output end of the second heat exchanger
  • the inlet of the second check valve At the same time, it is connected with the first input end of the third heat exchanger and the outlet of the fourth check valve, and the output end of the liquid storage device is connected to the input end of the electronic expansion valve through the filter, and the output end of the electronic expansion valve is
  • the solution circuit includes a third heat exchanger, a solution boiling regenerator, a finned tube heat exchanger, a first electric regulating valve, a second electric regulating valve, a first solution pump, a heat source tower, a heat recovery device, a third electromagnetic valve, a second solution pump, a solution reservoir, a seventh solenoid valve, an eighth solenoid valve and related connecting pipes, the fin tube heat exchanger is also a component of the air circuit, and the solution boiling regenerator is also an air circuit, A component of the regeneration solution heating circuit and the vacuum maintenance circuit.
  • the output end of the heat source tower solution is connected to the inlet of the first solution pump, and the outlet of the first solution pump is divided into three paths, one way is connected to the input end of the finned tube heat exchanger solution through the first electric regulating valve, and the third connection is connected first.
  • the second input end of the heat exchanger is connected to the first input end of the heat recovery unit through a second electric regulating valve, and the output end of the fin tube heat exchanger solution is connected to the first input end of the heat source tower solution, and the third heat exchanger is The second output end is also connected to the first input end of the heat source tower solution, and the first output end of the heat recovery unit is connected to the first input end of the solution boiling regenerator, and the solution is boiled and regenerated.
  • the first output end of the device is connected to the input end of the second solution pump, the output end of the second solution pump is connected to the second input end of the heat recovery device, and the second output end of the heat recovery device is divided into two paths, and one pass through the seventh electromagnetic valve simultaneously Connecting the first input end of the heat source tower solution and the second output end of the third heat exchanger, and the other way is connected to the input end of the solution accumulator through the third electromagnetic valve, and the output end of the solution accumulator is connected to the heat source tower through the eighth electromagnetic valve a second input end of the solution, a temperature sensor is arranged at the output end of the fin-tube heat exchanger solution to measure the temperature of the outlet temperature of the fin-tube heat exchanger, and a density sensor is installed in the solution boiling regenerator to measure the solution density;
  • the vacuum maintenance circuit includes a solution boiling regenerator, a pressure regulating valve, a pressure regulator, a fourth electromagnetic valve, a vacuum pump and related connecting pipes;
  • the pressure boiling end of the solution boiling regenerator is connected to the input end of the pressure regulator through a pressure regulating valve, and the output end of the voltage regulator is connected to the input end of the vacuum pump through the fourth electromagnetic valve, and is installed in the solution boiling regenerator a pressure sensor for measuring the air pressure in the solution boiling regenerator;
  • the air circuit comprises a solution boiling regenerator, a fan, a finned tube heat exchanger and an associated connecting pipe which are sequentially connected; in the air circuit, the solution boiling regenerator, the fan and the finned tube heat exchanger are sequentially connected by a pipe, The air outlet of the finned tube heat exchanger is connected to the air inlet of the solution boiling regenerator to form a closed loop.
  • the regeneration solution heating circuit includes a second heat exchanger, a solution boiling regenerator, a water pump, and associated connecting pipes.
  • the second output end of the second heat exchanger in the heating circuit of the regeneration solution is connected to the second input end of the solution boiling regenerator, the second output end of the solution boiling regenerator is connected to the input end of the water pump, and the second output of the water pump output end and the second heat exchanger End connection.
  • the hot and cold water circuit includes a first heat exchanger and an associated connecting line with the hot water return end of the unit and the hot water supply end.
  • the second input end of the first heat exchanger in the hot and cold water circuit is connected to the hot water and hot water return end of the unit, and the second output end of the first heat exchanger is connected to the hot and cold water supply end of the unit.
  • the temperature sensor is used to sense the temperature of the outlet solution of the fin-tube heat exchanger, and the amount of solution entering the fin-tube heat exchanger is adjusted by controlling the first electric-regulating valve to realize the dehumidification amount of air in the fin-tube heat exchanger. Adjustment.
  • the density sensor is used to sense the density of the solution in the solution boiling regenerator, and it is converted into the concentration of the solution.
  • the second electric regulating valve By controlling the second electric regulating valve to adjust the flow rate of the solution entering the heat recovery device, the boiling solution regenerator can be realized.
  • the solution flow rate, temperature and concentration are controlled so that the heat source tower heat pump device maintains the optimum regeneration efficiency while maintaining the stability of the operating solution concentration.
  • the boiling regeneration temperature and the regeneration speed of the solution are controlled by adjusting the working pressure in the solution boiling regenerator by the action of the vacuum pump, the pressure regulator and the pressure regulating valve in the vacuum circuit.
  • the system solution is regenerated by the heat released by the liquid refrigerant in the second heat exchanger being supercooled.
  • the amount based on the regeneration solution heating circuit, heats the solution to boil the solution in the regenerator, boils it, and realizes solution regeneration.
  • the source of the cold which condenses moisture in the air is a low-temperature solution in the system.
  • the air outlet when the heat source tower is not working, the air outlet has a self-opening and closing function, and the air outlet automatically opens when working, and automatically shuts off when not working, preventing rainwater from entering the tower.
  • the low-temperature low-pressure refrigerant gas is sucked and compressed by the compressor from the gas-liquid separator, and then becomes high-temperature and high-pressure superheated steam, and is discharged into the third heat exchanger through the four-way valve, the refrigerant Release heat, condense into liquid, flow out of the third heat exchanger, and then pass through the second check valve, the first solenoid valve (the second solenoid valve is closed), the accumulator, the filter, the electronic expansion valve After that, it becomes a low-temperature and low-pressure gas-liquid two-phase, and then enters the first heat exchanger after passing through the third one-way valve, and the refrigerant absorbs heat in the first heat exchanger to evaporate, and the cold water is obtained, and the refrigerant completely evaporates and becomes The superheated gas exits the first heat exchanger and enters the gas-liquid separator through the four-way valve, and is then sucked into the compressor again, thereby
  • the solution circuit is filled with cooling water, and the rest of the solution circuit stops working except the heat source tower, the first solution pump, and the third heat exchanger.
  • the cooling water is taken out from the heat source tower and sucked by the first solution pump.
  • the cooling water enters the third heat exchanger (at this time, the first electric regulating valve and the second electric regulating valve are both Fully closed), the heat is absorbed in the third heat exchanger to condense the refrigerant into a liquid.
  • the heat source tower enters the heat source tower to exchange heat with the air. After the temperature of the cooling water is lowered, it flows out again from the heat source tower.
  • the chilled water in the hot and cold water circuit enters the first heat exchanger from the hot water return end of the unit, and the chilled water exchanges heat with the refrigerant, and the temperature decreases. After the first heat exchanger comes out, the unit is hot and cold water. The water supply end flows out of the unit. In this mode, the air circuit, regeneration solution heating circuit, and vacuum maintenance circuit are not working.
  • Heat source tower heat pump winter heating operation is divided into three modes, heating operation mode 1: heat source tower heat pump winter heating operation, when the humidity in the air is small or the amount of water entering the solution from the air in the heat source tower is less, that is, the solution does not need
  • heating operation mode 1 heat source tower heat pump winter heating operation, when the humidity in the air is small or the amount of water entering the solution from the air in the heat source tower is less, that is, the solution does not need
  • the low-temperature and low-pressure refrigerant gas in the gas-liquid separator is sucked by the compressor, compressed, and discharged, and enters the first heat exchanger through the four-way valve, and the refrigerant releases heat in the first heat exchanger to prepare
  • the hot water is condensed into a liquid at the same time, and then passes through the first check valve, the first electromagnetic valve (the second electromagnetic valve is closed), and then passes through the accumulator, the filter, the electronic expansion valve, and is throttled and depressurized.
  • the gas-liquid two-phase enters the third heat exchanger through the fourth one-way valve, exchanges heat with the solution in the third heat exchanger, performs evaporation heat absorption, and the refrigerant completely evaporates and flows out from the third heat exchanger.
  • the four-way valve enters the gas-liquid separator and is finally sucked in again by the compressor, thereby completing the heating cycle and producing hot water. at this time
  • the solution circuit is filled with the solution, and the rest of the solution circuit stops working except the heat source tower, the first solution pump, and the third heat exchanger.
  • the solution exits the heat source tower in the solution loop After the solution exits the heat source tower in the solution loop, it is sucked by the first solution pump, and after being pressurized by the first solution pump, enters the third heat exchanger (at this time, the first electric regulating valve and the second electric regulating valve are completely closed), In the heat exchange with the refrigerant, the heat is released to the refrigerant, and after the temperature is lowered, the third heat exchanger is discharged, and the heat source tower is exchanged with the air for heat and humidity exchange, and the temperature of the solution rises and then flows out from the heat source tower again.
  • the hot water in the hot and cold water circuit enters the first heat exchanger from the hot water return end of the unit, the hot water exchanges heat with the refrigerant therein, and the temperature rises, and the unit is hot and cold after coming out from the first heat exchanger.
  • the water supply end flows out of the unit. In this mode, the air circuit, the regeneration solution heating circuit, and the vacuum maintenance circuit do not work.
  • Heating operation mode 2 When the humidity in the air is large or the amount of moisture entering the solution from the air in the heat source tower is large, the solution needs to be regenerated, and the refrigerant circuit is compressed in the low-temperature low-pressure refrigerant gas in the gas-liquid separator.
  • the machine discharges through the four-way valve into the first heat exchanger, and the refrigerant releases heat in the first heat exchanger to obtain hot water, and simultaneously condenses itself into a liquid, and then passes through the first check valve,
  • the second solenoid valve (when the first solenoid valve is closed) enters the second heat exchanger, and the refrigerant liquid exchanges heat with the water in the second heat exchanger, the temperature of the refrigerant is lowered, and the refrigerant is subcooled, and the refrigerant is changed from the second
  • the liquid storage device, the filter and the electronic expansion valve are throttled and depressurized, and then the gas-liquid two-phase enters the third heat exchanger through the fourth one-way valve, and the solution is in the third heat exchanger.
  • the refrigerant completely evaporates from the third heat exchanger and flows through the four-way valve into the gas-liquid separator. Finally, it is sucked in by the compressor and recompressed to participate in the cycle.
  • the solution circuit is filled with the solution, and the solution enters the first solution pump after exiting the heat source tower, and is pumped out from the first solution into three paths, and the solution passes through the first electric regulating valve to enter the finned tube heat exchanger, in the wing.
  • the heat exchange in the tube heat exchanger is carried out, and the temperature of the solution rises.
  • the solution After the solution exits the finned tube heat exchanger, it flows from the first input end of the heat source tower solution to the heat source tower, and the solution enters the third heat exchanger. The heat exchange with the refrigerant, the heat is released, and the temperature is lowered. After the solution exits the third heat exchanger, it flows from the first input end of the heat source tower solution to the heat source tower, and the other solution enters the heat recovery device through the second electric regulating valve. The heat recovery device exchanges heat with the solution flowing from the solution boiling regenerator into the heat recovery device, and the temperature of the solution rises. The solution exits the heat recovery device and enters the solution boiling regenerator, where the solution is heated and boiled.
  • the water in the solution evaporates, and after the concentration of the solution is increased, it flows out from the first output end of the solution boiling regenerator, and then passes through the second solution pump to pressurize and enters the heat recovery device. Heat is evolved, the temperature decreases, the solution coming out from the heat recovery through the seventh solenoid valve (third solenoid valve at this time, the eighth solenoid valve is closed) can flow back from the first heat-source-column column heat input solution.
  • the water exchanges heat with the refrigerant in the second heat exchanger, the water temperature rises, and the water comes out of the second heat exchanger and enters the solution boiling regenerator, in which heat is exchanged with the solution, water
  • the solution flows out after the temperature is lowered
  • the boiling regenerator is sucked by the water pump, pressurized, and then enters the second heat exchanger again, thus circulating.
  • the vacuum pump In the vacuum maintenance circuit, the vacuum pump is used to evacuate the pressure regulator to keep the pressure regulator within the set pressure range. When the pressure in the pressure regulator is lower than the set pressure value, the vacuum pump does not work, and the fourth electromagnetic valve is closed. When the pressure in the pressure regulator is higher than the set pressure value, the vacuum pump operates, and the fourth solenoid valve is opened; the working pressure in the air circuit is adjusted by the pressure regulator and the pressure regulating valve, and the working pressure in the solution boiling regenerator is controlled. , so that the solution in the solution boiling regenerator is always in a boiling state, achieving high-speed regeneration of the solution. When the air circuit is working, the internal pressure is lower than the atmospheric pressure, and the solution is heated. In the solution boiling regenerator, the solution is heated.
  • Air high-humidity air flows out of the solution boiling regenerator, is sucked in by the fan, pressurized, and then enters the finned tube heat exchanger to exchange heat with the low temperature solution from the heat source tower in the finned tube heat exchanger.
  • the high-humidity air temperature is lowered below its dew point temperature, the water vapor condenses in the air, and the moisture content decreases.
  • the fifth solenoid valve is opened, the sixth solenoid valve is closed, and the water storage tank is in the state of receiving water.
  • the fifth electromagnetic valve is closed, the sixth electromagnetic valve is opened, and the water in the water storage tank is drained.
  • the sixth solenoid valve is closed again, and the fifth solenoid valve is opened.
  • the hot water in the hot and cold water circuit enters the first heat exchanger from the hot water return end of the unit, and the hot water exchanges heat with the refrigerant therein, and the temperature rises, and the unit is cooled after coming out of the first heat exchanger.
  • the hot water supply end flows out of the unit.
  • the system heating operation mode 3 the solution is highly concentrated mode: the other circuit operation is the same as the mode 2, only in the solution circuit, the third solenoid valve is opened, the seventh electromagnetic The valve and the eighth solenoid valve are closed, and the solution flowing from the second output end of the heat recovery unit will flow into the solution reservoir through the third solenoid valve and will not flow into the heat source tower.
  • the unit is heating up again in winter, when the solution in the solution reservoir needs to flow into the heat source tower, close the third solenoid valve and open the eighth solenoid valve.
  • the solution does not need to be regenerated, and the efficient operation of the system is ensured while the solution regeneration is not enabled.
  • the heat source tower heat pump device proposed by the invention realizes low-pressure boiling regeneration of the solution by using the supercooled heat, fully utilizes the characteristic of the boiling point decrease of the solution under vacuum to carry out solution regeneration, and adopts the system liquid without affecting the heating operation of the heat pump system.
  • the heat released by the refrigerant supercooled is used as the solution to regenerate the heat, which completely solves the solution regeneration problem of the heat source tower heat pump system, improves the reliability of the heat source tower heat pump system in the winter heating operation, and realizes the comprehensive and efficient system.
  • FIG. 1 is a schematic view of a heat source tower heat pump apparatus for realizing low pressure boiling regeneration of a solution using supercooled heat.
  • the figure includes: compressor 1; four-way valve 2; four-way valve first input end 2a; four-way valve first output end 2b; four-way valve second input end 2c ; four-way valve second output end 2d; First heat exchanger 3; first heat exchanger first input end 3a; first heat exchanger first output end 3b; first heat exchanger second input end 3c; first heat exchanger second output end 3d First check valve 4; second check valve 5; first solenoid valve 6; second solenoid valve 7; second heat exchanger 8; second heat exchanger first input end 8a ; second heat exchanger a first output end 8b ; a second heat exchanger second input end 8c ; a second heat exchanger second output end 8d; a reservoir 9; a filter 10; an electronic expansion valve 11; a third check valve 12; a four-way valve
  • the invention provides a heat source tower heat pump device for utilizing supercooled heat to realize low pressure boiling regeneration of a solution, comprising a refrigerant circuit, a solution circuit, a vacuum maintenance circuit, an air circuit, a regeneration solution heating circuit and a hot and cold water circuit.
  • the specific connection method is:
  • the output end of the compressor 1 is connected to the first input end 2a of the four-way valve, the first output end 2b of the four-way valve is connected to the first input end 3a of the first heat exchanger, and the first output end 3b of the first heat exchanger is simultaneously Connected to the inlet of the first check valve 4 and the outlet of the third check valve 12, the outlet of the first check valve 4 is divided into three paths, one way is connected to the input end of the accumulator 9 through the first solenoid valve 6, one way Connected to the first input end 8a of the second heat exchanger via the second solenoid valve 7, and the other end is connected to the outlet of the second check valve 5, the input end of the accumulator 9 and the first output end of the second heat exchanger 8b is connected, the inlet of the second one-way valve 5 is simultaneously connected to the outlets of the third heat exchanger first input end 14a and the fourth one-way valve 13, and the output end of the accumulator 9 passes through the filter 10 and the electronic expansion valve 11 The input end is connected, the
  • the heat source tower solution output end 23b of the solution circuit is connected to the inlet of the first solution pump 22, and the outlet of the first solution pump 22 is divided into three paths, and the first electric control valve 20 is connected to the fin tube heat exchanger solution input end 19a.
  • One way is connected to the second heat exchanger second input end 14c, and the other way is connected to the heat recovery device first input end 24a through the second electric regulating valve 21, the finned tube heat exchanger solution output end 19b and the heat source tower solution first input end 23a is connected, the third heat exchanger second output end 14d is also connected to the heat source tower solution first input end 23a, and the heat recovery unit first output end 24b is connected with the solution boiling regenerator first input end 16a, the solution boiling regenerator An output end 16b is connected to the input end of the second solution pump 26, an output end of the second solution pump 26 is connected to the second input end 24c of the heat recovery device, and the second output end 24d of the heat recovery unit is divided into two paths, one through the seventh The solenoid valve
  • solution reservoir 28 The output end is connected to the second input end 23c of the heat source tower solution through the eighth electromagnetic valve 39, and the temperature sensor 29 is installed at the fin tube heat exchanger solution output end 19b to measure the temperature of the outlet solution of the fin tube heat exchanger 19, and the solution is boiled and regenerated.
  • the density sensor 37 is installed in the device 16 to measure the solution density; in the vacuum maintenance circuit, the solution boiling regenerator regulating end 16e is connected to the input end of the voltage regulator 31 through the pressure regulating valve 30, and the output end of the voltage regulator 31 passes the fourth electromagnetic Valve 32 is connected to the input of vacuum pump 33, boiling in solution
  • the regenerator 16 is provided with a pressure sensor 17 for measuring the air pressure in the solution boiling regenerator 16; in the air circuit, the solution boiling regenerator (16), the air outlet connecting the air inlet of the fan (18), the fan (18) The air outlet is connected to the air inlet of the finned tube heat exchanger (19), and the air inlet of the finned tube heat exchanger (19) is connected to the air inlet of the solution boiling regenerator (16) to form a closed loop.
  • the second output end 8d of the second heat exchanger in the regeneration solution heating circuit is connected to the second input end 16c of the solution boiling regenerator, the second output end 16d of the solution boiling regenerator is connected to the input end of the water pump 25, and the output end of the water pump 25 is replaced by the second one.
  • the heater second input 8c is connected.
  • the second input end 3c of the first heat exchanger in the hot and cold water circuit is connected to the hot water return end of the unit, and the second output end 3d of the first heat exchanger is connected to the hot and cold water supply end of the unit.
  • the low-temperature low-pressure refrigerant gas is sucked and compressed by the compressor 1 from the gas-liquid separator 15 to be discharged into the high-temperature high-pressure superheated vapor, and enters the third heat exchanger 14 through the four-way valve 2.
  • the refrigerant releases heat, condenses into a liquid, flows out of the third heat exchanger 14, and sequentially passes through the second check valve 5, the first solenoid valve 6 (when the second solenoid valve 7 is closed), and the liquid storage
  • the filter 9, the filter 10, and the electronic expansion valve 11 become a low-temperature low-pressure gas-liquid two-phase, and then enter the first heat exchanger 3 after passing through the third check valve 12, and the refrigerant is sucked in the first heat exchanger 3.
  • the heat is evaporated to obtain cold water. After the refrigerant is completely evaporated, the superheated gas is discharged from the first heat exchanger 3 through the four-way valve 2 into the gas-liquid separator 15, and then sucked into the compressor 1 again, thereby completing the refrigeration cycle.
  • the solution circuit is filled with cooling water, and the rest of the solution circuit is stopped except for the heat source tower 23, the first solution pump 22, and the third heat exchanger 14.
  • the cooling water in the solution circuit is taken out from the heat source tower 23 and sucked by the first solution pump 22, and after being pressurized by the first solution pump 22, the cooling water enters the third heat exchanger 14 (at this time, the first electric regulating valve 20, The two electric regulating valves 21 are completely closed.
  • the third heat exchanger 14 absorbs heat to condense the refrigerant into a liquid. After the temperature rises, the heat source tower 23 enters the heat source tower 23 to exchange heat with the air, and the temperature of the cooling water is lowered again. The heat source tower 23 flows out.
  • the chilled water in the hot and cold water circuit enters the first heat exchanger 3 from the hot water return end of the unit, and the chilled water exchanges heat with the refrigerant therein, and the temperature is lowered, and the unit is cooled from the first heat exchanger 3
  • the hot water supply end flows out of the unit. In this mode, the air circuit, regeneration solution heating circuit, and vacuum maintenance circuit are not working.
  • the heat source tower heat pump is divided into three modes in the winter heating operation.
  • the heating operation mode 1 the heat source tower heat pump performs the heating operation in winter, when the humidity in the air is small or the amount of moisture entering the solution from the air in the heat source tower 23 is less, that is, the solution
  • the low-temperature low-pressure refrigerant gas in the gas-liquid separator 15 is sucked by the compressor 1, compressed, and discharged, and enters the first heat exchanger 3 through the four-way valve 2, and the refrigerant is in the first heat exchanger 3.
  • the solution circuit is filled with the solution, and the rest of the solution circuit is stopped except for the heat source tower 23, the first solution pump 22, and the third heat exchanger 14.
  • the solution exits the heat source tower 23 in the solution circuit, it is sucked by the first solution pump 22, pressurized by the first solution pump 22, and then enters the third heat exchanger 14 (at this time, the first electric regulating valve 20 and the second electric regulating valve) 21 is completely closed), in which heat is exchanged with the refrigerant, heat is released to the refrigerant, the temperature of the self is lowered, and then flows out of the third heat exchanger 14, enters the heat source tower 23 and exchanges heat with the air, and the temperature of the solution rises again.
  • the heat source tower 23 flows out.
  • the hot water in the hot and cold water circuit enters the first heat exchanger 3 from the hot water return end of the unit, in which the hot water exchanges heat with the refrigerant, and the temperature rises, and the unit is discharged from the first heat exchanger 3
  • the hot and cold water supply end flows out of the unit. In this mode, the air circuit, the regeneration solution heating circuit, and the vacuum maintenance circuit do not work.
  • Heating operation mode 2 When the humidity in the air is large or the amount of moisture entering the solution from the air in the heat source tower 23 is large, the solution needs to be regenerated, and the refrigerant circuit is a low-temperature low-pressure refrigerant gas in the gas-liquid separator 15
  • the compressor 1 is sucked, compressed, and discharged through the four-way valve 2 into the first heat exchanger 3, and the refrigerant releases heat in the first heat exchanger 3 to obtain hot water, and at the same time condenses itself into a liquid, and then passes through the first a check valve 4, a second solenoid valve 7 (when the first solenoid valve 6 is closed) enters the second heat exchanger 8, and the refrigerant liquid exchanges heat with the water in the second heat exchanger 8, and the temperature of the refrigerant is lowered.
  • the accumulator 9, the filter 10, and the electronic expansion valve 11 are throttled and depressurized, and then the gas and liquid two phases pass through the fourth check valve 13 to enter.
  • the third heat exchanger 14 heat exchange with the solution in the third heat exchanger 14 is performed, and the refrigerant absorbs heat, and the refrigerant completely evaporates and then flows out of the third heat exchanger 14 through the four-way valve 2 to enter the gas-liquid separator. 15, finally inhaled by the compressor 1 again, recompressed to participate in the cycle.
  • the solution circuit is filled with the solution, and the solution exits the heat source tower 23 and enters the first solution pump 22, and is separated from the first solution pump 22 into three paths, and the first solution passes through the first electric regulating valve 20 to enter the fin tube heat exchanger.
  • the finned tube heat exchanger 19 heat is exchanged with the air, the temperature of the solution rises, and the solution flows out of the finned tube heat exchanger 19 and flows back to the heat source tower 23 from the first input end 23a of the heat source tower solution. All the way of solution enters the third heat exchanger 14, exchanges heat with the refrigerant, releases heat, and the temperature decreases.
  • the solution exits the third heat exchanger 14 After the solution exits the third heat exchanger 14, it also flows back from the first input end 23a of the heat source tower solution to the heat source tower 23, and The all-way solution enters the heat recovery unit 24 through the second electric regulating valve 21, and is carried out in the heat recovery unit 24 with the solution flowing from the solution boiling regenerator 16 into the heat recovery unit 24.
  • the end 16b flows out, is pressurized by the second solution pump 26, and then enters the heat recovery unit 24, heat is released in the heat recovery unit 24, the temperature is lowered, and the solution passes through the heat recovery unit 24 and passes through the seventh electromagnetic valve 38 (at this time The three solenoid valves 27 and the eighth solenoid valve 39 are closed) and also flow back to the heat source tower 23 from the first input end 23a of the heat source tower solution.
  • the water exchanges heat with the refrigerant, the water temperature rises, and the water exits the second heat exchanger 8 and enters the solution boiling regenerator 16 where it exchanges heat with the solution. After the temperature of the water is lowered, the outflow solution boiling regenerator 16 is sucked by the water pump 25, pressurized, and then enters the second heat exchanger 8 again, and thus circulated.
  • the pressure regulator 31 is evacuated by the vacuum pump 33, and the pressure regulator 31 is kept at the set pressure range.
  • the vacuum pump 33 does not work, and the vacuum is turned off.
  • the fourth solenoid valve 32 when the pressure in the pressure regulator 31 is higher than the set pressure value, the vacuum pump 33 is operated, and the fourth electromagnetic valve 32 is opened; the pressure in the air circuit is adjusted by the pressure regulator 31 and the pressure regulating valve 30
  • the working pressure in the solution boiling regenerator 16 is controlled so that the solution in the solution boiling regenerator 16 is always in a boiling state to achieve high-speed regeneration of the solution.
  • the air circuit is working, the internal pressure is lower than the atmospheric pressure, and the solution is heated.
  • the solution boiling regenerator 16 In the solution boiling regenerator 16, the solution is heated. Under the working pressure of the air circuit vacuum, the solution will boil, and the water vapor enters the air circuit to form a high.
  • the wet air, the high-humidity air flows out of the solution boiling regenerator 16 and is sucked and pressurized by the blower 18, and then enters the fin-and-tube heat exchanger 19, in the fin-and-tube heat exchanger 19 and from the heat source tower 23.
  • the low temperature solution exchanges heat, the high humidity air temperature drops below its dew point temperature, the water vapor condenses out in the air, the moisture content decreases, and the air flows out of the fin tube heat exchanger 19 and enters the solution boiling regenerator 16 cycle.
  • the fifth electromagnetic valve 34 is opened, the sixth electromagnetic valve 36 is closed, and the water storage tank 35 is in a state of receiving water.
  • the fifth electromagnetic valve 34 is closed, and the sixth electromagnetic valve 36 is opened to store water.
  • the sixth solenoid valve 36 is closed again, and the fifth solenoid valve 34 is opened.
  • the hot water in the hot and cold water circuit enters the first heat exchanger 3 from the hot water return end of the unit, in which the hot water exchanges heat with the refrigerant, and the temperature rises, and the unit is discharged from the first heat exchanger 3
  • the hot and cold water supply ends out of the unit.
  • the system heating operation mode is in the high concentration mode of the solution.
  • the other circuit operation is the same as the mode 2, only in the solution circuit, the third solenoid valve 27 is opened, the seventh electromagnetic The valve 38 and the eighth solenoid valve 39 are closed, and the solution flowing out of the heat recovery device second output terminal 24d will flow into the solution reservoir storage 28 through the third solenoid valve 27 without flowing into the heat source tower 23.
  • the third solenoid valve 27 is closed, and the eighth solenoid valve is opened. 39.
  • the solution does not need to be regenerated, and the efficient operation of the system is ensured while the solution regeneration is not enabled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

一种利用过冷热量实现溶液再生的热源塔热泵装置,包括制冷剂回路、溶液回路、真空维持回路、空气回路、再生溶液加热回路和冷热水回路。该热泵装置充分利用了在真空下溶液沸点降低的特性进行溶液再生,在不影响热泵系统制热运行的前提下,采用系统液体制冷剂过冷放出的热量作为溶液再生热量,彻底解决了热源塔热泵系统的溶液再生问题,提高了热源塔热泵系统在冬季制热运行的可靠性,并实现了系统的综合高效。

Description

利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置 技术领域
本发明属于制冷空调系统设计和制造领域, 涉及一种利用制冷剂过冷热量实现溶 液低压沸腾再生的热源塔热泵装置。 背景技术
近年来, 南方供暖问题受到越来越多的关注, 已经成为关乎社会民生的热点议题。 随着人们生活水平的提高, 我国夏热冬冷地区, 冬季对供暖时长和舒适性方面的要求 都越来越高, 冬季采暖能耗迅速增加。
建筑现有的常规空调冷热源方案中, 空气源热泵在夏季制冷时效率较低, 冬季制 热时存在结霜问题; 冷水机组 +锅炉方案在冬季供热时, 冷水机组闲置, 采用锅炉燃烧 油或天然气供热, 存在一次能源利用效率低等不足; 水地源热泵方案受地理地质条件 的限制。 热源塔热泵方案是针对这些不足所发展出的一种新型建筑冷热源方案, 它通 过一套机组同时解决建筑物夏季制冷、 冬季供暖的需求, 并可避免建筑常规冷热源方 案的诸多不足, 是一种具有发展前景的新型建筑冷热源方案。
热源塔热泵系统在冬季制热运行时, 利用溶液在热源塔中与空气进行换热, 吸收 热量, 但这过程中也因空气中水蒸汽分压力与溶液表面的水蒸汽分压力差的存在, 空 气中的水分将进入溶液, 使溶液的浓度变稀, 溶液的冰点将上升, 为了保证系统运行 的安全可靠, 需要将从空气中进入溶液的水分从溶液中排出, 提高溶液的浓度, 即实 现溶液的再生。 溶液的再生过程是一个需要吸收热量的过程, 如何获得溶液的再生热 源, 及其实现溶液再生热量的高效利用, 对提高热源塔热泵系统性能, 保证系统安全 可靠运行具有重要意义。
因此, 如何解决热源塔热泵系统的溶液再生热源和溶液再生热量的高效利用, 实 现热源塔热泵系统的综合高效等问题, 设计出一种新型高效的热源塔热泵系统成为本 领域技术人员迫切需要解决的技术难题。 发明内容
技术问题: 本发明的目的是提供一种高效解决热源塔热泵系统溶液再生热源及其 再生效率问题, 提高热源塔热泵在各种工况下的运行可靠性的利用过冷热量实现溶液 低压沸腾再生的热源塔热泵装置。
技术方案: 本发明的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置, 包 括制冷剂回路、 溶液回路、 真空维持回路、 空气回路、 再生溶液加热回路和冷热水回 路。 制冷剂回路包括压縮机、 四通阀、 第一换热器、 第一单向阀、 第二单向阀、 第一 电磁阀、 第二电磁阀、 第二换热器、 储液器、 过滤器、 电子膨胀阀、 第三单向阀和第 四单向阀、 第三换热器、 气液分离器及其相关连接管道, 所述第一换热器同时也是冷 热水回路的构成部件, 第二换热器同时也是再生溶液加热回路的构成部件, 第三换热 器同时也是溶液回路的构成部件。
制冷剂回路中, 压縮机的输出端与四通阀第一输入端连接, 四通阀第一输出端与 第一换热器第一输入端连接, 第一换热器第一输出端同时与第一单向阀的入口和第三 单向阀的出口连接, 第一单向阀的出口分成三路, 一路通过第一电磁阀与储液器的输 入端连接, 一路通过第二电磁阀与第二换热器第一输入端连接, 另外一路与第二单向 阀的出口连接, 储液器的输入端同时与第二换热器第一输出端连接, 第二单向阀的入 口同时与第三换热器第一输入端和第四单向阀的出口连接, 储液器的输出端通过过滤 器与电子膨胀阀的输入端连接, 电子膨胀阀的输出端分成两路, 一路连接第三单向阀 的入口, 另外一路连接第四单向阀的入口, 第三换热器第一输出端与四通阀第二输入 端连接, 四通阀第二输出端与气液分离器的输入端连接, 气液分离器的输出端与压縮 机的输入端连接。
溶液回路包括第三换热器、 溶液沸腾再生器、 翅片管换热器、 第一电动调节阀、 第二电动调节阀、 第一溶液泵、 热源塔、 热回收器、 第三电磁阀、 第二溶液泵、 溶液 储液器、 第七电磁阀、 第八电磁阀及其相关连接管道, 所述翅片管换热器同时也是空 气回路的构成部件, 溶液沸腾再生器同时也是空气回路、 再生溶液加热回路、 真空维 持回路的构成部件。
溶液回路中, 热源塔溶液输出端与第一溶液泵的入口连接, 第一溶液泵的出口分 三路, 一路通过第一电动调节阀连接翅片管换热器溶液输入端, 一路连接第三换热器 第二输入端, 另一路通过第二电动调节阀连接热回收器第一输入端, 翅片管换热器溶 液输出端与热源塔溶液第一输入端连接, 第三换热器第二输出端也与热源塔溶液第一 输入端连接, 热回收器第一输出端与溶液沸腾再生器第一输入端连接, 溶液沸腾再生 器第一输出端与第二溶液泵的输入端相连, 第二溶液泵的输出端接热回收器第二输入 端, 热回收器第二输出端分为两路, 一路通过第七电磁阀同时连接热源塔溶液第一输 入端和第三换热器第二输出端, 另一路通过第三电磁阀连接溶液储液器的输入端, 溶 液储液器的输出端通过第八电磁阀连接热源塔溶液第二输入端, 在翅片管换热器溶液 输出端装有温度传感器测量翅片管换热器出口溶液温度, 溶液沸腾再生器中装有密度 传感器测量溶液密度;
真空维持回路包括溶液沸腾再生器、 调压阀、 调压器、 第四电磁阀、 真空泵及其 相关连接管道;
真空维持回路中, 溶液沸腾再生器调压端通过调压阀连接调压器的输入端, 调压 器的输出端通过第四电磁阀与真空泵的输入端连接, 在溶液沸腾再生器中装有压力传 感器, 用以测量溶液沸腾再生器中的空气压力;
空气回路包括依次相接的溶液沸腾再生器、风机、翅片管换热器及相关连接管道; 在所述空气回路中, 溶液沸腾再生器、 风机和翅片管换热器通过管道依次连接, 翅片 管换热器的空气出口与溶液沸腾再生器的空气入口连接, 构成一个闭合循环回路。
再生溶液加热回路包括第二换热器、 溶液沸腾再生器、 水泵及相关连接管道。 再 生溶液加热回路中第二换热器第二输出端连接溶液沸腾再生器第二输入端, 溶液沸腾 再生器第二输出端与水泵输入端相连, 水泵输出端与第二换热器第二输入端连接。
冷热水回路包括第一换热器及其与机组冷热水回水端和冷热水供水端之间的相关 连接管路。 冷热水回路中第一换热器第二输入端接机组冷热水回水端, 第一换热器第 二输出端接机组冷热水供水端。
本发明中, 利用温度传感器感知翅片管换热器的出口溶液温度, 通过控制第一电 动调节阀调节进入翅片管换热器的溶液流量,实现翅片管换热器中空气的除湿量调节。
本发明中, 利用密度传感器感知溶液沸腾再生器中溶液的密度, 将其转化为溶液 的浓度, 通过控制第二电动调节阀调节进入热回收器的溶液流量, 可实现对沸腾溶液 再生器中的溶液流量、 温度和浓度进行控制, 使得热源塔热泵装置在获得最佳的再生 效率的同时, 保持运行溶液浓度的稳定。
本发明中, 利用真空回路中的真空泵、 调压器和调压阀的共同作用调节溶液沸腾 再生器中的工作压力, 来控制溶液的沸腾再生温度和再生速度。
本发明中, 系统溶液再生利用的是所述第二换热器中液体制冷剂过冷所放出的热 量, 基于再生溶液加热回路, 加热溶液沸腾再生器中的溶液, 使之沸腾, 实现溶液再 生。
本发明中, 空气回路中的翅片管换热器中, 实现空气中水分凝结的冷量来源为系 统中的低温溶液。
本发明中, 热源塔在不工作时, 出风口具有自开闭功能, 工作时出风口自动打开, 不工作时自动关闭, 防止雨水进入塔内。
热源塔热泵夏季制冷运行时, 低温低压的制冷剂气体从气液分离器中被压縮机吸 入压縮后变成高温高压过热蒸气排出, 经过四通阀进入第三换热器中, 制冷剂放出热 量, 冷凝变成液体, 从第三换热器中流出, 再依次经过第二单向阀、 第一电磁阀 (此 时第二电磁阀关闭)、 储液器、 过滤器、 电子膨胀阀后变成低温低压的气液两相, 再经 过第三单向阀后进入第一换热器, 制冷剂在第一换热器中吸热蒸发, 制取冷水, 制冷 剂完全蒸发后变成过热气体从第一换热器出来经过四通阀进入气液分离器, 然后再次 被吸入压縮机, 从而完成制冷循环, 制取冷冻水。 此时溶液回路中充灌着冷却水, 溶 液回路中除热源塔、 第一溶液泵、 第三换热器工作外, 其余部分都停止工作。 在溶液 回路中冷却水从热源塔出来后被第一溶液泵吸入, 经过第一溶液泵加压后, 冷却水进 入第三换热器(此时第一电动调节阀、 第二电动调节阀都完全关闭), 在第三换热器中 吸收热量将制冷剂冷凝成液体, 自身温度升高后进入热源塔与空气进行热湿交换, 冷 却水温度降低后再次从热源塔流出。 冷热水回路中冷冻水从机组的冷热水回水端进入 第一换热器中, 冷冻水在其中与制冷剂换热, 温度降低, 从第一换热器出来后由机组 冷热水供水端流出机组。 此模式下空气回路、 再生溶液加热回路、 真空维持回路都不 工作。
热源塔热泵冬季制热运行分三种模式, 制热运行模式一: 热源塔热泵冬季制热运 行, 当空气中湿度较小或在热源塔中由空气进入溶液中的水分较少, 即溶液无需再生 时, 气液分离器中低温低压的制冷剂气体被压縮机吸入、 压縮后排出, 通过四通阀进 入第一换热器, 制冷剂在第一换热器中放出热量, 制取热水, 同时自身冷凝成液体, 然后通过第一单向阀、 第一电磁阀 (此时第二电磁阀关闭) 后依次经过储液器、 过滤 器、 电子膨胀阀, 被节流降压后以气液两相通过第四单向阀进入第三换热器中, 在第 三换热器中与溶液换热, 进行蒸发吸热, 制冷剂完全蒸发后从第三换热器出来流经四 通阀进入气液分离器, 最后再次被压縮机吸入, 从而完成制热循环, 制取热水。 此时 溶液回路中充灌着溶液, 溶液回路中除热源塔、 第一溶液泵、 第三换热器工作外, 其 余部分都停止工作。 在溶液回路中溶液从热源塔出来后被第一溶液泵吸入, 经过第一 溶液泵加压后进入第三换热器 (此时第一电动调节阀、 第二电动调节阀都完全关闭), 在其中与制冷剂换热, 放出热量给制冷剂, 自身温度降低后流出第三换热器, 进入热 源塔与空气进行热湿交换, 溶液温度升高后再次从热源塔流出。 冷热水回路中热水从 机组的冷热水回水端进入第一换热器中, 热水在其中与制冷剂换热, 温度升高, 从第 一换热器出来后由机组冷热水供水端流出机组。 此模式下空气回路、 再生溶液加热回 路、 真空维持回路都不工作。
制热运行模式二: 当空气中湿度较大或在热源塔中由空气进入溶液中的水分较多 时, 溶液需要进行再生, 制冷剂回路为气液分离器中低温低压的制冷剂气体被压縮机 吸入、 压縮后排出通过四通阀进入第一换热器, 制冷剂在第一换热器中放出热量, 制 取热水, 同时自身冷凝成液体, 然后通过第一单向阀、 第二电磁阀 (此时第一电磁阀 关闭)进入第二换热器, 制冷剂液体在第二换热器中与水进行换热, 制冷剂温度降低, 实现过冷, 制冷剂从第二换热器出来后依次储液器、 过滤器、 电子膨胀阀, 被节流降 压后以气液两相经过第四单向阀进入第三换热器中, 在第三换热器中与溶液换热, 进 行蒸发吸热, 制冷剂完全蒸发后从第三换热器出来流经四通阀进入气液分离器, 最后 再次被压縮机吸入, 重新被压縮参与循环。 此时溶液回路中充灌着溶液, 溶液从热源 塔出来后进入第一溶液泵, 从第一溶液泵出来分成三路, 一路溶液通过第一电动调节 阀进入翅片管换热器, 在翅片管换热器中与空气进行换热, 溶液温度升高, 溶液从翅 片管换热器出来后从热源塔溶液第一输入端流回到热源塔,一路溶液进入第三换热器, 与制冷剂换热, 放出热量, 温度降低, 溶液从第三换热器出来后也从热源塔溶液第一 输入端流回到热源塔, 另外一路溶液通过第二电动调节阀进入热回收器, 在热回收器 中与从溶液沸腾再生器中流进热回收器的溶液进行换热, 溶液温度升高, 溶液从热回 收器中出来后进入溶液沸腾再生器, 溶液在其中被加热、 沸腾, 溶液中水分蒸发, 溶 液浓度提高后, 从溶液沸腾再生器的第一输出端流出, 再经过第二溶液泵加压后进入 热回收器, 在热回收器中放出热量, 温度降低, 溶液从热回收器出来后经过第七电磁 阀 (此时第三电磁阀、 第八电磁阀关闭) 也从热源塔溶液第一输入端流回热源塔。
再生溶液加热回路中, 在第二换热器中水与制冷剂换热, 水温升高, 水从第二换 热器出来后进入溶液沸腾再生器, 在其中与溶液进行换热, 水的温度降低后流出溶液 沸腾再生器被水泵吸入, 加压后再次进入第二换热器, 如此循环。
真空维持回路中, 利用真空泵对调压器抽真空, 保持调压器在设定的压力范围, 当调压器中压力低于设定压力值时, 真空泵不工作, 关闭第四电磁阀, 当调压器中压 力高于设定压力值时, 真空泵工作, 第四电磁阀打开; 利用调压器和调压阀对空气回 路中的工作压力进行调节, 既控制溶液沸腾再生器中的工作压力, 使得溶液沸腾再生 器中溶液一直处于沸腾状态, 实现溶液的高速再生。 空气回路工作时, 其内部的压力 低于大气压力, 处于真空状态, 在溶液沸腾再生器中溶液被加热, 在空气回路真空的 工作压力下, 溶液将沸腾, 水蒸汽进入空气回路中形成高湿的空气, 高湿的空气从溶 液沸腾再生器流出后被风机吸入、 加压, 然后进入翅片管换热器, 在翅片管换热器中 与从热源塔来的低温溶液进行换热, 高湿的空气温度降低至其露点温度以下, 空气中 水蒸汽凝出, 含湿量下降, 空气从翅片管换热器流出后, 进入溶液沸腾再生器, 如此 循环。 此时第五电磁阀打开, 第六电磁阀关闭, 储水罐处于接水的状态, 当水位到达 一定高度时, 关闭第五电磁阀, 打开第六电磁阀, 将储水罐中的水排空后重新关闭第 六电磁阀, 打开第五电磁阀。 冷热水回路中热水从机组的冷热水回水端进入第一换热 器中, 热水在其中与制冷剂换热, 温度升高, 从第一换热器出来后由机组的冷热水供 水端流出机组。
当热源塔热泵冬季供热即将结束,系统制热运行模式三——溶液高度浓縮模式时: 其他回路运行情况与模式二一致, 只有在溶液回路中, 第三电磁阀打开, 第七电磁阀 和第八电磁阀关闭, 从热回收器第二输出端流出的溶液将经过第三电磁阀流入溶液储 液器储存, 而不再流入热源塔。 当机组冬季再次制热运行, 需要将溶液储液器中的溶 液流入热源塔时, 关闭第三电磁阀, 打开第八电磁阀。
在系统制热运行模式一过程中, 溶液无需再生, 在不启用溶液再生的同时, 保证 系统的高效运行。
在系统制热运行模式二过程中, 1 )通过控制第一电动调节阀, 调节进入翅片管换 热器的溶液流量, 实现翅片管换热器中空气的除湿量调节; 2)溶液再生利用的是液体 制冷剂过冷所放出的热量, 通过控制第二电动调节阀, 调节进入热回收器的溶液流量, 实现对溶液沸腾再生器中的溶液流量、温度和浓度进行控制; 3)利用真空维持回路中 真空泵、 调压器和调压阀的共同作用, 实现空气回路工作压力即溶液沸腾再生器中压 力的调节, 确保溶液沸腾再生器中的溶液在此压力下能够被再生溶液加热回路中的水 加热至沸腾, 同时, 实现密闭空气回路中各部分运行温度的调节, 使得系统获得最佳 的再生效率的同时, 保持运行溶液浓度的稳定。
有益效果: 本发明与现有技术相比, 具有以下优点:
本发明提出的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置, 充分利用 了在真空下溶液沸点降低的特性进行溶液再生,在不影响热泵系统制热运行的前提下, 采用系统液体制冷剂过冷放出的热量作为溶液再生热量, 彻底解决了热源塔热泵系统 的溶液再生问题, 提高了热源塔热泵系统在冬季制热运行的可靠性, 并实现了系统的 综合高效。 附图说明
图 1是本发明利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置的示意图。 图中有: 压縮机 1 ; 四通阀 2; 四通阀第一输入端 2a; 四通阀第一输出端 2b; 四 通阀第二输入端 2c; 四通阀第二输出端 2d;第一换热器 3;第一换热器第一输入端 3a; 第一换热器第一输出端 3b; 第一换热器第二输入端 3c; 第一换热器第二输出端 3d; 第 一单向阀 4; 第二单向阀 5; 第一电磁阀 6; 第二电磁阀 7; 第二换热器 8; 第二换热 器第一输入端 8a; 第二换热器第一输出端 8b; 第二换热器第二输入端 8c; 第二换热器 第二输出端 8d; 储液器 9; 过滤器 10; 电子膨胀阀 11 ; 第三单向阀 12; 第四单向阀 13; 第三换热器 14; 第三换热器第一输入端 14a; 第三换热器第一输出端 14b; 第三换 热器第二输入端 14c; 第三换热器第二输出端 14d; 气液分离器 15; 溶液沸腾再生器 16; 溶液沸腾再生器第一输入端 16a; 溶液沸腾再生器第二输出端 16b; 溶液沸腾再生 器第二输入端 16c; 溶液沸腾再生器第二输出端 16d; 溶液沸腾再生器调压端 16e; 压 力传感器 17; 风机 18; 翅片管换热器 19; 翅片管换热器溶液输入端 19a; 翅片管换热 器溶液输出端 19b; 第一电动调节阀 20; 第二电动调节阀 21 ; 第一溶液泵 22; 热源塔 23; 热源塔溶液第一输入端 23a; 热源塔溶液输出端 23b; 热源塔溶液第二输入端 23c; 热回收器 24; 热回收器第一输入端 24a; 热回收器第一输出端 24b; 热回收器第二输入 端 24c; 热回收器第二输出端 24d; 水泵 25; 第二溶液泵 26; 第三电磁阀 27; 溶液储 液器 28; 温度传感器 29; 调压阀 30; 调压器 31 ; 第四电磁阀 32; 真空泵 33; 第五电 磁阀 34; 储水器 35; 第六电磁阀 36; 密度传感器 37; 第七电磁阀 38; 第八电磁阀 39。 具体实施方式
下面结合图 1和具体实施例来进一步说明本发明。
本发明利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置,包括制冷剂回路、 溶液回路、 真空维持回路、 空气回路、 再生溶液加热回路和冷热水回路。 具体的连接 方法是:
压縮机 1的输出端与四通阀第一输入端 2a连接, 四通阀第一输出端 2b与第一换 热器第一输入端 3a连接, 第一换热器第一输出端 3b同时与第一单向阀 4的入口和第 三单向阀 12的出口连接, 第一单向阀 4的出口分成三路, 一路通过第一电磁阀 6与储 液器 9的输入端连接, 一路通过第二电磁阀 7与第二换热器第一输入端 8a连接, 另外 一路与第二单向阀 5的出口连接, 储液器 9的输入端同时与第二换热器第一输出端 8b 连接,第二单向阀 5的入口同时与第三换热器第一输入端 14a和第四单向阀 13的出口 连接, 储液器 9的输出端通过过滤器 10与电子膨胀阀 11的输入端连接, 电子膨胀阀 11的输出端分成两路, 一路连接第三单向阀 12的入口, 另外一路连接第四单向阀 13 的入口, 第三换热器第一输出端 14b与四通阀第二输入端 2c连接, 四通阀第二输出端 2d与气液分离器 15的输入端连接,气液分离器 15的输出端与压縮机 1的输入端连接。
溶液回路中热源塔溶液输出端 23b与第一溶液泵 22的入口连接, 第一溶液泵 22 的出口分三路, 一路通过第一电动调节阀 20连接翅片管换热器溶液输入端 19a, 一路 连接第三换热器第二输入端 14c, 另一路通过第二电动调节阀 21连接热回收器第一输 入端 24a,翅片管换热器溶液输出端 19b与热源塔溶液第一输入端 23a连接,第三换热 器第二输出端 14d也与热源塔溶液第一输入端 23a连接, 热回收器第一输出端 24b与 溶液沸腾再生器第一输入端 16a连接, 溶液沸腾再生器第一输出端 16b与第二溶液泵 26的输入端相连, 第二溶液泵 26的输出端接热回收器第二输入端 24c, 热回收器第二 输出端 24d分为两路, 一路通过第七电磁阀 38连接热源塔溶液第一输入端 23a, 同时 也通过第七电磁阀 38连接第三换热器第二输出端 14d, 另一路通过第三电磁阀 27连 接溶液储液器 28的输入端,溶液储液器 28的输出端通过第八电磁阀 39连接热源塔溶 液第二输入端 23c, 在翅片管换热器溶液输出端 19b装有温度传感器 29测量翅片管换 热器 19出口溶液温度, 溶液沸腾再生器 16中装有密度传感器 37测量溶液密度; 真空维持回路中, 溶液沸腾再生器调压端 16e通过调压阀 30连接调压器 31的输 入端, 调压器 31的输出端通过第四电磁阀 32与真空泵 33的输入端连接, 在溶液沸腾 再生器 16中装有压力传感器 17, 用以测量溶液沸腾再生器 16中的空气压力; 在空气回路中溶液沸腾再生器 (16 ) 空气出口连接风机 (18 ) 的空气入口, 风机 ( 18 ) 的空气出口连接翅片管换热器 (19) 的空气入口, 翅片管换热器 (19) 的空气 出口连接溶液沸腾再生器 (16) 的空气入口构成一个闭合循环回路。
再生溶液加热回路中第二换热器第二输出端 8d连接溶液沸腾再生器第二输入端 16c, 溶液沸腾再生器第二输出端 16d与水泵 25输入端相连, 水泵 25输出端与第二换 热器第二输入端 8c连接。
冷热水回路中第一换热器第二输入端 3c接机组冷热水回水端,第一换热器第二输 出端 3d接机组冷热水供水端。
热源塔热泵夏季制冷运行时,低温低压的制冷剂气体从气液分离器 15中被压縮机 1吸入压縮后变成高温高压过热蒸气排出, 经过四通阀 2进入第三换热器 14中, 制冷 剂放出热量, 冷凝变成液体, 从第三换热器 14中流出, 再依次经过第二单向阀 5、 第 一电磁阀 6 (此时第二电磁阀 7关闭)、 储液器 9、 过滤器 10、 电子膨胀阀 11后变成 低温低压的气液两相, 再经过第三单向阀 12后进入第一换热器 3, 制冷剂在第一换热 器 3中吸热蒸发, 制取冷水, 制冷剂完全蒸发后变成过热气体从第一换热器 3出来经 过四通阀 2进入气液分离器 15, 然后再次被吸入压縮机 1, 从而完成制冷循环, 制取 冷冻水。 此时溶液回路中充灌着冷却水, 溶液回路中除热源塔 23、 第一溶液泵 22、 第 三换热器 14工作外, 其余部分都停止工作。 在溶液回路中冷却水从热源塔 23出来后 被第一溶液泵 22吸入, 经过第一溶液泵 22加压后, 冷却水进入第三换热器 14 (此时 第一电动调节阀 20、 第二电动调节阀 21都完全关闭), 在第三换热器 14中吸收热量 将制冷剂冷凝成液体, 自身温度升高后进入热源塔 23与空气进行热湿交换, 冷却水温 度降低后再次从热源塔 23流出。冷热水回路中冷冻水从机组的冷热水回水端进入第一 换热器 3中, 冷冻水在其中与制冷剂换热, 温度降低, 从第一换热器 3出来后由机组 冷热水供水端流出机组。 此模式下空气回路、 再生溶液加热回路、 真空维持回路都不 工作。
热源塔热泵冬季制热运行分三种模式, 制热运行模式一: 热源塔热泵冬季制热运 行, 当空气中湿度较小或在热源塔 23中由空气进入溶液中的水分较少, 即溶液无需再 生时, 气液分离器 15中低温低压的制冷剂气体被压縮机 1吸入、 压縮后排出, 通过四 通阀 2进入第一换热器 3, 制冷剂在第一换热器 3中放出热量, 制取热水, 同时自身 冷凝成液体, 然后通过第一单向阀 4、 第一电磁阀 6 (此时第二电磁阀 7关闭)后依次 经过储液器 9、 过滤器 10、 电子膨胀阀 11, 被节流降压后以气液两相通过第四单向阀 13进入第三换热器 14中, 在第三换热器 14中与溶液换热, 进行蒸发吸热, 制冷剂完 全蒸发后从第三换热器 14出来流经四通阀 2进入气液分离器 15,最后再次被压縮机 1 吸入, 从而完成制热循环, 制取热水。 此时溶液回路中充灌着溶液, 溶液回路中除热 源塔 23、 第一溶液泵 22、 第三换热器 14工作外, 其余部分都停止工作。 在溶液回路 中溶液从热源塔 23出来后被第一溶液泵 22吸入,经过第一溶液泵 22加压后进入第三 换热器 14 (此时第一电动调节阀 20、 第二电动调节阀 21都完全关闭), 在其中与制冷 剂换热, 放出热量给制冷剂, 自身温度降低后流出第三换热器 14, 进入热源塔 23与 空气进行热湿交换, 溶液温度升高后再次从热源塔 23流出。冷热水回路中热水从机组 的冷热水回水端进入第一换热器 3中, 热水在其中与制冷剂换热, 温度升高, 从第一 换热器 3出来后由机组冷热水供水端流出机组。 此模式下空气回路、 再生溶液加热回 路、 真空维持回路都不工作。
制热运行模式二: 当空气中湿度较大或在热源塔 23中由空气进入溶液中的水分较 多时, 溶液需要进行再生, 制冷剂回路为气液分离器 15中低温低压的制冷剂气体被压 縮机 1吸入、 压縮后排出通过四通阀 2进入第一换热器 3, 制冷剂在第一换热器 3中 放出热量, 制取热水, 同时自身冷凝成液体, 然后通过第一单向阀 4、 第二电磁阀 7 (此时第一电磁阀 6关闭) 进入第二换热器 8, 制冷剂液体在第二换热器 8中与水进 行换热, 制冷剂温度降低, 实现过冷, 制冷剂从第二换热器 8 出来后依次储液器 9、 过滤器 10、 电子膨胀阀 11, 被节流降压后以气液两相经过第四单向阀 13进入第三换 热器 14中, 在第三换热器 14中与溶液换热, 进行蒸发吸热, 制冷剂完全蒸发后从第 三换热器 14出来流经四通阀 2进入气液分离器 15, 最后再次被压縮机 1吸入, 重新 被压縮参与循环。此时溶液回路中充灌着溶液, 溶液从热源塔 23出来后进入第一溶液 泵 22, 从第一溶液泵 22出来分成三路, 一路溶液通过第一电动调节阀 20进入翅片管 换热器 19, 在翅片管换热器 19中与空气进行换热, 溶液温度升高, 溶液从翅片管换 热器 19出来后从热源塔溶液第一输入端 23a流回到热源塔 23,一路溶液进入第三换热 器 14, 与制冷剂换热, 放出热量, 温度降低, 溶液从第三换热器 14出来后也从热源 塔溶液第一输入端 23a流回到热源塔 23,另外一路溶液通过第二电动调节阀 21进入热 回收器 24, 在热回收器 24中与从溶液沸腾再生器 16中流进热回收器 24的溶液进行 换热, 溶液温度升高, 溶液从热回收器 24中出来后进入溶液沸腾再生器 16, 溶液在 其中被加热、 沸腾, 溶液中水分蒸发, 溶液浓度提高后, 从溶液沸腾再生器第一输出 端 16b流出, 再经过第二溶液泵 26加压后进入热回收器 24, 在热回收器 24中放出热 量, 温度降低, 溶液从热回收器 24出来后经过第七电磁阀 38 (此时第三电磁阀 27、 第八电磁阀 39关闭) 也从热源塔溶液第一输入端 23a流回热源塔 23。
再生溶液加热回路中, 在第二换热器 8中水与制冷剂换热, 水温升高, 水从第二 换热器 8出来后进入溶液沸腾再生器 16, 在其中与溶液进行换热, 水的温度降低后流 出溶液沸腾再生器 16被水泵 25吸入, 加压后再次进入第二换热器 8, 如此循环。
真空维持回路中, 利用真空泵 33对调压器 31抽真空, 保持调压器 31在设定的压 力范围, 当调压器 31中压力低于设定压力值时, 真空泵 33不工作, 关闭第四电磁阀 32, 当调压器 31中压力高于设定压力值时, 真空泵 33工作, 第四电磁阀 32打开; 利 用调压器 31和调压阀 30对空气回路中的工作压力进行调节, 既控制溶液沸腾再生器 16中的工作压力, 使得溶液沸腾再生器 16中溶液一直处于沸腾状态, 实现溶液的高 速再生。 空气回路工作时, 其内部的压力低于大气压力, 处于真空状态, 在溶液沸腾 再生器 16中溶液被加热, 在空气回路真空的工作压力下, 溶液将沸腾, 水蒸汽进入空 气回路中形成高湿的空气, 高湿的空气从溶液沸腾再生器 16流出后被风机 18吸入、 加压, 然后进入翅片管换热器 19, 在翅片管换热器 19中与从热源塔 23来的低温溶液 进行换热, 高湿的空气温度降低至其露点温度以下, 空气中水蒸汽凝出, 含湿量下降, 空气从翅片管换热器 19流出后, 进入溶液沸腾再生器 16, 如此循环。 此时第五电磁 阀 34打开,第六电磁阀 36关闭,储水罐 35处于接水的状态,当水位到达一定高度时, 关闭第五电磁阀 34, 打开第六电磁阀 36, 将储水罐 35中的水排空后重新关闭第六电 磁阀 36, 打开第五电磁阀 34。冷热水回路中热水从机组的冷热水回水端进入第一换热 器 3中, 热水在其中与制冷剂换热, 温度升高, 从第一换热器 3出来后由机组的冷热 水供水端流出机组。
当热源塔热泵冬季供热即将结束,系统制热运行模式三一溶液高度浓縮模式时: 其他回路运行情况与模式二一致, 只有在溶液回路中, 第三电磁阀 27打开, 第七电磁 阀 38和第八电磁阀 39关闭, 从热回收器第二输出端 24d流出的溶液将经过第三电磁 阀 27流入溶液储液器储存 28, 而不再流入热源塔 23。 当机组冬季再次制热运行, 需 要将溶液储液器 28中的溶液流入热源塔 23时, 关闭第三电磁阀 27, 打开第八电磁阀 39。
在系统制热运行模式一过程中, 溶液无需再生, 在不启用溶液再生的同时, 保证 系统的高效运行。
在系统制热运行模式二过程中, 1 ) 通过控制第一电动调节阀 20, 调节进入翅片 管换热器 19的溶液流量, 实现翅片管换热器 19中空气的除湿量调节; 2)溶液再生利 用的是液体制冷剂过冷所放出的热量, 通过控制第二电动调节阀 21, 调节进入热回收 器 24的溶液流量,实现对溶液沸腾再生器 16中的溶液流量、温度和浓度进行控制; 3) 利用真空维持回路中真空泵 33、 调压器 31和调压阀 30的共同作用, 实现空气回路工 作压力即溶液沸腾再生器中压力的调节,确保溶液沸腾再生器 16中的溶液在此压力下 能够被再生溶液加热回路中的水加热至沸腾, 同时, 实现密闭空气回路中各部分运行 温度的调节, 使得系统获得最佳的再生效率的同时, 保持运行溶液浓度的稳定。

Claims

权利要求书
1. 一种利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置, 其特征在于, 该 装置包括制冷剂回路、 溶液回路、 真空维持回路、 空气回路、 再生溶液加热回路和冷 热水回路;
所述制冷剂回路包括压縮机 (1)、 四通阀 (2)、 第一换热器 (3)、 第一单向阀 (4)、 第二单向阀 (5)、 第一电磁阀 (6)、 第二电磁阀 (7)、 第二换热器 (8)、 储液 器 (9)、 过滤器 (10)、 电子膨胀阀 (11)、 第三单向阀 (12)、 第四单向阀 (13)、 第 三换热器 (14)、 气液分离器 (15) 及其相关连接管道, 所述第一换热器 (3) 同时也 是冷热水回路的构成部件, 第二换热器 (8) 同时也是再生溶液加热回路的构成部件, 第三换热器 (14) 同时也是溶液回路的构成部件;
所述制冷剂回路中, 压縮机 (1) 的输出端与四通阀第一输入端 (2a) 连接, 四通 阀第一输出端 (2b) 与第一换热器第一输入端 (3a) 连接, 第一换热器第一输出端 (3b) 同时与第一单向阀 (4) 的入口和第三单向阀 (12) 的出口连接, 第一单向阀
(4) 的出口分成三路, 一路通过第一电磁阀 (6) 与储液器 (9) 的输入端连接, 一路 通过第二电磁阀 (7) 与第二换热器第一输入端 (8a) 连接, 另外一路与第二单向阀
(5) 的出口连接, 储液器 (9) 的输入端同时与第二换热器第一输出端 (8b) 连接, 第二单向阀 (5) 的入口同时与第三换热器第一输入端 (14a) 和第四单向阀 (13) 的 出口连接, 储液器 (9) 的输出端通过过滤器 (10) 与电子膨胀阀 (11) 的输入端连 接, 电子膨胀阀 (11) 的输出端分成两路, 一路连接第三单向阀 (12) 的入口, 另外 一路连接第四单向阀 (13) 的入口, 第三换热器第一输出端 (14b) 与四通阀第二输入 端 (2c) 连接, 四通阀第二输出端 (2d) 与气液分离器 (15) 的输入端连接, 气液分 离器 (15) 的输出端与压縮机 (1) 的输入端连接;
所述溶液回路包括第三换热器 (14)、 溶液沸腾再生器 (16)、 翅片管换热器 (19)、 第一电动调节阀 (20)、 第二电动调节阀 (21)、 第一溶液泵 (22)、 热源塔 (23)、 热回收器 (24)、 第三电磁阀 (27)、 第二溶液泵 (26)、 溶液储液器 (28)、 第 七电磁阀 (38)、 第八电磁阀 (39) 及其相关连接管道, 所述翅片管换热器 (19) 同时 也是空气回路的构成部件, 溶液沸腾再生器 (16) 同时也是空气回路、 再生溶液加热 回路、 真空维持回路的构成部件;
所述溶液回路中, 热源塔溶液输出端 (23b) 与第一溶液泵 (22) 的入口连接, 第 一溶液泵 (22) 的出口分三路, 一路通过第一电动调节阀 (20) 连接翅片管换热器溶 液输入端 (19a), 一路连接第三换热器第二输入端 (14c), 另一路通过第二电动调节阀 (21) 连接热回收器第一输入端 (24a), 翅片管换热器溶液输出端 (19b) 与热源塔溶 液第一输入端 (23a) 连接, 第三换热器第二输出端 (14d) 也与热源塔溶液第一输入 端 (23a) 连接, 热回收器第一输出端 (24b) 与溶液沸腾再生器第一输入端 (16a) 连 接, 溶液沸腾再生器第一输出端 (16b) 与第二溶液泵 (26) 的输入端相连, 第二溶液 泵 (26) 的输出端接热回收器第二输入端 (24c), 热回收器第二输出端 (24d) 分为两 路, 一路通过第七电磁阀 (38) 同时连接热源塔溶液第一输入端 (23a) 和第三换热器 第二输出端 (14d), 另一路通过第三电磁阀 (27) 连接溶液储液器 (28) 的输入端, 溶液储液器 (28) 的输出端通过第八电磁阀 (39) 连接热源塔溶液第二输入端 (23c), 在翅片管换热器溶液输出端 (19b) 装有温度传感器 (29) 测量翅片管换热器 (19) 出口溶液温度, 溶液沸腾再生器 (16) 中装有密度传感器 (37) 测量溶液密 度;
所述真空维持回路包括溶液沸腾再生器 (16)、 调压阀 (30)、 调压器 (31)、 第四 电磁阀 (32)、 真空泵 (33) 及其相关连接管道; 所述真空维持回路中, 溶液沸腾再生 器调压端 (16e) 通过调压阀 (30) 连接调压器 (31) 的输入端, 调压器 (31) 的输出 端通过第四电磁阀 (32) 与真空泵 (33) 的输入端连接, 在溶液沸腾再生器 (16) 中 装有压力传感器 (17), 用以测量溶液沸腾再生器 (16) 中的空气压力;
所述空气回路包括依次相接的溶液沸腾再生器 (16)、 风机 (18)、 翅片管换热器 (19) 及相关连接管道; 在所述空气回路中, 溶液沸腾再生器 (16)、 风机 (18) 和翅 片管换热器 (19) 通过管道依次连接, 翅片管换热器 (19) 的空气出口与溶液沸腾再 生器 (16) 的空气入口连接, 构成一个闭合循环回路;
所述再生溶液加热回路包括第二换热器 (8)、 溶液沸腾再生器 (16)、 水泵 (25) 及相关连接管道; 所述再生溶液加热回路中, 第二换热器第二输出端 (8d) 连接溶液 沸腾再生器第二输入端 (16c), 溶液沸腾再生器第二输出端 (16d) 与水泵 (25) 的输 入端相连, 水泵 (25) 的输出端与第二换热器第二输入端 (8c) 连接;
所述冷热水回路包括第一换热器 (3) 及其与机组冷热水回水端和冷热水供水端之 间的相关连接管路; 所述冷热水回路中, 第一换热器第二输入端 (3c) 连接机组冷热 水回水端, 第一换热器第二输出端 (3d) 连接机组冷热水供水端。
2. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 利用温度传感器 (29) 测量翅片管换热器 (19) 的出口溶液温度, 通过控制第一电动调节阀 (20 ) 来调节进入翅片管换热器 (19) 的溶液流量, 实现对 翅片管换热器 (19) 中空气除湿量的调节。
3. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 利用密度传感器 (37 ) 测量溶液沸腾再生器 (16 ) 中溶液的密度, 将其转化为溶液的浓度, 通过控制第二电动调节阀 (21 ) 来调节进入热回收器 (24) 的溶液流量, 实现对沸腾溶液再生器 (16) 中溶液流量、 温度和浓度的控制, 使得热 源塔热泵装置在获得最佳的再生效率的同时, 保持运行溶液浓度的稳定。
4. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 利用真空回路中的真空泵 (33)、 调压器 (31 ) 和调压阀 (30) 的共 同作用调节溶液沸腾再生器 (16) 中的工作压力, 来控制溶液的沸腾再生温度和再生 速度。
5. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 系统溶液再生利用的是所述第二换热器 (8 ) 中液体制冷剂过冷所放 出的热量, 基于再生溶液加热回路, 加热溶液沸腾再生器 (16 ) 中的溶液, 使之沸 腾, 实现溶液再生。
6. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 所述空气回路中的翅片管换热器 (19), 将空气中水分凝结的冷量来 源作为系统中的低温溶液。
7. 根据权利要求 1 所述的利用过冷热量实现溶液低压沸腾再生的热源塔热泵装 置, 其特征在于, 所述热源塔 (23 ) 的出风口具有自开闭功能, 工作时出风口自动打 开, 不工作时自动关闭, 防止雨水进入塔内。
PCT/CN2013/087196 2013-08-30 2013-11-15 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置 WO2015027573A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310384848.4A CN103411352B (zh) 2013-08-30 2013-08-30 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置
CN201310384848.4 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015027573A1 true WO2015027573A1 (zh) 2015-03-05

Family

ID=49604381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087196 WO2015027573A1 (zh) 2013-08-30 2013-11-15 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置

Country Status (2)

Country Link
CN (1) CN103411352B (zh)
WO (1) WO2015027573A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839492A (zh) * 2015-12-03 2017-06-13 李衡 一种低成本高效能新型空气源热泵三联供系统
CN107576522A (zh) * 2017-10-30 2018-01-12 南京工业大学 换热器沸腾换热能效测试平台以及测试方法
CN108775729A (zh) * 2018-08-13 2018-11-09 瀚润联合高科技发展(北京)有限公司 蒸发冷热泵机组
CN109813008A (zh) * 2019-03-14 2019-05-28 王立华 一种增焓型冷热全能效回收热泵

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5967171B2 (ja) * 2014-10-27 2016-08-10 トヨタ自動車株式会社 沸騰冷却装置
CN106766429B (zh) * 2017-03-09 2024-05-03 贵州电网有限责任公司电力科学研究院 一种热泵防结霜溶液再生装置
CN106989540B (zh) * 2017-05-11 2023-06-30 南京工程学院 具有溶液再生功能的双机热源塔热泵系统及溶液再生方法
CN109084443B (zh) * 2018-07-26 2021-06-22 四川长虹空调有限公司 一种空调室外机冷凝器结霜抑制方法及空调
CN109724289B (zh) * 2018-12-29 2021-04-09 浙江理工大学 多效再生无霜热泵系统装置及方法
CN110878974B (zh) * 2019-11-29 2022-01-07 北京金茂绿建科技有限公司 一种热源塔系统控制方法
CN111189130A (zh) * 2020-02-07 2020-05-22 北京华创瑞风空调科技有限公司 溶液再生装置及具有其的空气除湿装置
CN111947444B (zh) * 2020-07-24 2022-03-01 浙江工业大学 一种基于开式吸收式热泵的闭路循环干燥系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016657A (en) * 1971-07-14 1977-04-12 Passey Now By Change Of Name C Heat pump freeze drying system
CN101776353A (zh) * 2010-02-10 2010-07-14 东南大学 基于冷却塔的溶液型冷热水机组
CN103267325A (zh) * 2013-05-31 2013-08-28 东南大学 基于综合利用的一体化热源塔热泵装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200945A (ja) * 1982-05-17 1983-11-22 Toshiba Corp 水熱源ヒ−トポンプ式空気調和ユニツトの熱源装置
JPS6213945A (ja) * 1985-07-12 1987-01-22 Mitsui Eng & Shipbuild Co Ltd 冷暖房装置
CN100533003C (zh) * 2008-10-15 2009-08-26 东南大学 基于反渗透膜溶液再生的空气源溶液热泵装置
CN203478695U (zh) * 2013-08-30 2014-03-12 东南大学 一种利用过冷热量实现溶液再生的热源塔热泵装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016657A (en) * 1971-07-14 1977-04-12 Passey Now By Change Of Name C Heat pump freeze drying system
CN101776353A (zh) * 2010-02-10 2010-07-14 东南大学 基于冷却塔的溶液型冷热水机组
CN103267325A (zh) * 2013-05-31 2013-08-28 东南大学 基于综合利用的一体化热源塔热泵装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839492A (zh) * 2015-12-03 2017-06-13 李衡 一种低成本高效能新型空气源热泵三联供系统
CN107576522A (zh) * 2017-10-30 2018-01-12 南京工业大学 换热器沸腾换热能效测试平台以及测试方法
CN108775729A (zh) * 2018-08-13 2018-11-09 瀚润联合高科技发展(北京)有限公司 蒸发冷热泵机组
CN108775729B (zh) * 2018-08-13 2023-12-19 瀚润联合高科技发展(北京)有限公司 蒸发冷热泵机组
CN109813008A (zh) * 2019-03-14 2019-05-28 王立华 一种增焓型冷热全能效回收热泵

Also Published As

Publication number Publication date
CN103411352B (zh) 2015-05-13
CN103411352A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
WO2015027573A1 (zh) 利用过冷热量实现溶液低压沸腾再生的热源塔热泵装置
CN107062698B (zh) 一种高效直膨式太阳能热泵与水源热泵耦合供热系统
US9671143B2 (en) Heat pump of heat source tower for realizing solution regeneration and heat reutilization based on vacuum boiling
CN103900310B (zh) 溶液除湿预防空气源热泵热水器结霜的系统及方法
CN106642789B (zh) 实现太阳能综合利用与土壤跨季节储能的热源塔热泵系统
WO2015027570A1 (zh) 复式一体化热源塔热泵装置
CN105783278B (zh) 一种氟泵与热泵复合蓄热型直膨式太阳能热水系统
WO2015014043A1 (zh) 基于空气实现再生热量高效利用的热源塔热泵装置
CN101776353A (zh) 基于冷却塔的溶液型冷热水机组
CN203586629U (zh) 一种多换热器切换的空气源热泵空调机组
CN102901167B (zh) 实现太阳能综合利用的热源塔热泵装置
CN104697227A (zh) 带深度过冷装置的蒸发冷凝高效螺杆冷水机组
CN203478691U (zh) 一种基于溶液低压沸腾再生的热源塔热泵系统
CN103438614B (zh) 基于真空沸腾并实现凝结可控的溶液再生装置
CN105222448A (zh) 太阳能吸附式接触法制取冰浆装置
CN203478695U (zh) 一种利用过冷热量实现溶液再生的热源塔热泵装置
CN104390300B (zh) 实现夏季供冷与冬季溶液再生的热源塔热泵溶液再生装置
CN106322810B (zh) 基于调湿与蒸发冷却的无霜空气源热泵系统
CN109724289B (zh) 多效再生无霜热泵系统装置及方法
CN203478696U (zh) 一种凝结可控的溶液再生装置
CN203572022U (zh) 一种空气能热泵
CN205783497U (zh) 一种水蓄能设备
CN202350305U (zh) 超低能耗空气能热泵热水器
CN201637017U (zh) 一种热泵型冷热水供给装置
CN205245634U (zh) 太阳能吸附式接触法制取冰浆装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WA Withdrawal of international application