WO2015012102A1 - 無線基地局、ユーザ端末及び無線通信方法 - Google Patents

無線基地局、ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2015012102A1
WO2015012102A1 PCT/JP2014/068218 JP2014068218W WO2015012102A1 WO 2015012102 A1 WO2015012102 A1 WO 2015012102A1 JP 2014068218 W JP2014068218 W JP 2014068218W WO 2015012102 A1 WO2015012102 A1 WO 2015012102A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
synchronization
cell
radio
small
Prior art date
Application number
PCT/JP2014/068218
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
真平 安川
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP14829722.9A priority Critical patent/EP3026966B1/en
Priority to US14/906,053 priority patent/US9820249B2/en
Publication of WO2015012102A1 publication Critical patent/WO2015012102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to a radio base station, a user terminal, and a radio communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • LTE-A LTE advanced or LTE enhancement
  • a small cell eg, a pico cell, a femto cell, etc.
  • a macro cell having a wide coverage area with a radius of several kilometers.
  • Heterogeneous Network is being studied (for example, Non-Patent Document 2).
  • HetNet use of carriers in different frequency bands as well as in the same frequency band between a macro cell and a small cell is being studied.
  • 3GPP TS 36.300 “Evolved UTRA and Evolved UTRAN Overall description”
  • 3GPP TR 36.814 E-UTRA further advancements for E-UTRA physical layer aspects”
  • HetNet it is assumed that a large number of small cells are arranged in a macro cell.
  • a configuration is assumed in which small cells are locally arranged in a place with a large amount of traffic to achieve an offload effect between the cells. That is, when a user terminal can be connected to a plurality of small cells, it is conceivable to change the small cell to which the user terminal is connected according to the traffic status of each small cell.
  • timing synchronization between the small cells By timing synchronization between the small cells, interference between the small cells can be appropriately controlled, and the user terminal can efficiently discover a connected small cell (Discovery).
  • a synchronization method (synchronization by a radio interface) that detects timing based on a downlink (DL) signal transmitted by another cell.
  • a small cell to be newly synchronized performs wireless synchronization using a DL signal transmitted from a macro cell synchronized with GPS or the like or a small cell synchronized with the macro cell.
  • a small cell arranged at a cell edge of a macro cell receives not only a macro cell to which it belongs, but also a small cell belonging to the same macro cell, an adjacent macro cell, and a DL signal transmitted from a small cell belonging to an adjacent macro cell.
  • adjacent macro cells macro base stations
  • NW asynchronous network
  • the present invention has been made in view of such points, and even when different cells are synchronized by a radio interface in an asynchronous NW, a radio base station, a user terminal, and a radio communication capable of appropriately performing synchronization It aims to provide a method.
  • a radio base station of the present invention is a radio base station that performs radio synchronization using a downlink signal transmitted from a radio base station of another cell, and the radio base station of another cell via an inter-base station interface
  • a synchronization information control unit that acquires synchronization information notified from radio base stations of other cells, and a determination that determines a radio base station that performs radio synchronization based on the acquired synchronization information
  • Synchronization information acquired from the radio base station of another cell by the synchronization information control unit includes information indicating a synchronization state, a synchronization layer level, and a synchronization group of the radio base station of the other cell.
  • HetNet It is a conceptual diagram of HetNet. It is a figure explaining an example of radio
  • NW network
  • FIG. 1 shows Rel. It is a conceptual diagram of HetNet assumed in 12 or later.
  • HetNet is a wireless communication system in which at least a part of a macro cell and a small cell is geographically overlapped.
  • HetNet is a radio base station that forms a macro cell (hereinafter referred to as a macro base station), a radio base station that forms a small cell (hereinafter referred to as a small base station), and a user terminal that communicates with the macro base station and the small base station. It is comprised including.
  • the user distribution and traffic are not uniform, but vary with time or location. For this reason, when a large number of small cells are arranged in a macro cell, it is assumed that the small cells are arranged in different forms (Sparse and Dense) depending on the location as shown in FIG. . For example, in stations and shopping malls where many user terminals are gathered, increase the density of small cells (Dense small cell), and in places where user terminals do not gather, reduce the density of small cells (Sparse small cells). Can be considered.
  • the macro cell shows a case where a carrier having a relatively low frequency band (hereinafter referred to as a low frequency band carrier) such as 800 MHz or 2 GHz (2 GHz in FIG. 1) is used.
  • a low frequency band carrier such as 800 MHz or 2 GHz (2 GHz in FIG. 1
  • the macro cell can easily have a wide coverage and can be operated at a frequency to which existing (Rel. 8 to 11) user terminals can be connected.
  • a macro cell can cover a wide area as a cell to which all user terminals are always connected.
  • a carrier of a relatively high frequency band such as 3.5 GHz (hereinafter referred to as a high frequency band carrier) is used is shown. Since a small cell can use a wide band by using a high frequency band carrier, data can be efficiently offloaded in a best effort type. Therefore, a small cell is locally arrange
  • a macro cell (macro base station) and a small cell (small base station) are connected via a backhaul link.
  • the macro base station and the small base station cooperate with each other through a backhaul, and the macro base station assists the small base station (an operation in which the macro base station subordinates the small base station).
  • the operation in which the macro base station assists the small base station is that the macro base station notifies the user terminal of the detection information and control information of the small base station, or the macro base station is small to the terminal connected to the macro cell.
  • Carrying out carrier aggregation (in the case of different frequencies) and Coordinated multi-point communication (in the case of the same frequency) to add a small cell of the base station can be mentioned.
  • connection between the macro base station and the small base station or between the small base stations may be performed by a wired connection such as an optical fiber or a non-optical fiber (X2 interface).
  • the small base stations be synchronized with each other in timing (hereinafter also simply referred to as “synchronization”).
  • synchronization By synchronizing each small base station mutually, it becomes possible to perform appropriately the interference control between small cells, and the detection (Discovery) of the small base station in a user terminal.
  • interference between the cells may increase.
  • interference can be reduced by inter-cell interference control, cooperative communication, or the like (see FIG. 2A).
  • TDD time division duplexing
  • the DL and UL exchange timing is shifted between adjacent cells, significant interference occurs between radio base stations and between user terminals, and thus synchronization between cells is important.
  • a small base station to which a user terminal is connected is detected based on a detection signal (Discovery signal) transmitted from the small base station (see FIG. 2B).
  • a detection signal (Discovery signal) transmitted from the small base station (see FIG. 2B).
  • a detection signal (Discovery signal) transmitted from the small base station (see FIG. 2B).
  • the small base stations are synchronized, a plurality of small base stations can transmit detection signals all at once within a short time interval. What is necessary is just to perform the detection operation of a base station. Accordingly, each user terminal can suppress power consumption related to the detection operation of the small base station, and can efficiently detect (Discover) the small base station.
  • Synchronization by a radio interface is a method in which a small base station performs synchronization by receiving a DL signal transmitted from a radio base station of another cell and detecting timing.
  • Examples of DL signals include reference signals (cell-specific reference signal (CRS), terminal-specific reference signal (DM-RS), channel information measurement reference signal (CSI-RS)), and synchronization signals (P-SS, S- SS) or the like can be used.
  • the inventors apply synchronization by a radio interface that can be synchronized by the operator's own resource without depending on an external system as a method of synchronizing the small cell (small base station) in the HetNet of FIG. I found out.
  • the synchronization of the small base station by the external interface is because the receiver can be realized at a lower cost than a GPS receiver or an IEEE 1588v2 synchronization system.
  • LTE Rel. 9, backhaul signaling for realizing radio interface synchronization is defined for TDD HeNB (Home eNodeB) (see FIG. 3A).
  • synchronization information (Time Synchronization Info) can be exchanged between radio base stations via backhaul signaling.
  • the synchronization information includes a synchronization state (either sync or asynchronous) of each radio base station, and a synchronization hierarchy level (Stratum level) when synchronized.
  • the synchronization layer level (hereinafter also referred to as “Stratum LV”) indicates a layer level based on a radio base station (for example, a macro cell) that performs synchronization by GPS (see FIG. 3B).
  • a radio base station for example, a macro cell
  • each small base station when the small base station is synchronized by the wireless interface, it is possible to grasp the synchronization state and the synchronization layer level of the wireless base station of another cell that is a synchronization destination candidate through the backhaul signaling. Thereby, each small base station can grasp
  • the small base station can grasp the Stratum LV of another cell that can receive the DL signal, the base station to be synchronized Can be determined.
  • a small base station that newly performs wireless synchronization is (1) a DL signal of a macro base station to which it belongs, (2) a DL signal of a small base station that belongs to the same macro base station, and (3) an adjacent macro base station.
  • a DL signal receives a DL signal and (4) a DL signal of a small base station belonging to an adjacent macro base station (see FIG. 4).
  • the reception SNR of a DL signal transmitted from another small base station can be improved.
  • the number of hops required for synchronization increases (as Stratum LV decreases)
  • synchronization errors accumulate and the synchronization accuracy may decrease.
  • the small base station X acquires the synchronization information (synchronization state and Stratum LV) of the radio base station that is a connection candidate, it cannot determine which radio base station to synchronize with. Moreover, there is a possibility that the macro base station A to which the small base station X is synchronized cannot know which macro base station (NW constituted by).
  • the present inventors use backhaul signaling between radio base stations, and use cell groups (NW and synchronization group) that constitute a synchronous stratum (synchronization topology).
  • NW and synchronization group cell groups that constitute a synchronous stratum (synchronization topology).
  • the idea of exchanging information between wireless base stations was conceived.
  • the present inventors pay attention to the fact that, among a plurality of small base stations, there are cases where different NWs (macro base stations) to which they belong and NWs (macro base stations) that synchronize wirelessly occur.
  • the inventor has conceived a method in which a user terminal appropriately detects a connected small base station. Specifically, the macro base station instructs the subordinate small base station about a synchronization group (cell group) to be wirelessly synchronized, and the received small base station is included in the synchronization group, and the Stratum It has been found that control is performed so as to synchronize with a radio base station having the highest LV.
  • the user terminal is notified of a list of small base stations (small cells) belonging to the macro base station (macro cell) and a list of small base stations synchronized with the macro base station, and the user is based on the list. It was found that the terminal detects a connected small cell.
  • FIG. 6 shows a cell group A and a cell group B that constitute different synchronization layers (stratums).
  • an identifier for example, “Sync-NW ID” is assigned to each cell group (synchronization group) constituting the synchronization stratum.
  • “Sync-NW ID1” is assigned to cell group A
  • “Sync-NW ID2” is assigned to cell group B.
  • the small base station that performs synchronization synchronizes with the synchronization state (sync or async) and the hierarchy level (Stratum LV) of the radio base station (radio base station that is a synchronization candidate) of another cell via backhaul signaling.
  • Synchronization information including information indicating a group (here, Sync-NW ID) is acquired.
  • the small base station performs radio synchronization by determining a cell (radio base station) to be synchronized based on the synchronization information of the radio base station of another cell. After that, based on the “Stratum LV” and “Sync-NW ID” of the synchronized radio base station, it grasps and holds its “Stratum LV” and “Sync-NW ID”.
  • the macro base station and / or the small base station located around the small base station X transmits a synchronization information request (Time sync info request) to the small base station X.
  • a synchronization information request (Time sync info request)
  • the synchronization information (“sync or async”, “Stratum LV”, “Sync-NW ID”) of the small base station X can be acquired.
  • the operation procedure in the first aspect will be specifically described below.
  • the small base station X that newly performs radio synchronization detects a radio base station of another cell that can perform radio synchronization through a search for neighboring cells and measurement.
  • the small base station X transmits a synchronization information request (Time sync info request) via the backhaul to the radio base station determined to be capable of radio synchronization.
  • the macro base station and / or the small base station that has received the synchronization information request feeds back the synchronization information (“sync or async”, “Stratum LV”, “Sync-NW ID”).
  • the small base station X that has received the synchronization information of the other cell from the radio base station of the other cell determines a cell (target base station) to be wirelessly synchronized based on the received synchronization information.
  • the small base station X grasps its “Stratum LV” and “Sync-NW ID” based on the synchronization information of the radio base station that performs radio synchronization.
  • the macro base station transmits a synchronization information request (Time sync info request) to the subordinate small base station, so that each small base station is synchronized with the macro base station or is asynchronous. It becomes possible to grasp.
  • a synchronization information request (Time sync info request)
  • the small base station grasps the synchronization destination of the synchronization candidate radio base station and appropriately selects the cell group to be synchronized. Can be determined.
  • the small base station X to be newly synchronized determines a radio base station to be synchronized with priority on the Sync-NW ID of the associated macro base station based on the synchronization information acquired from the radio base stations of other cells.
  • the macro base station and the small base station when giving priority to the Sync-NW ID corresponding to the affiliated macro base station, the macro base station and the small base station have a one-to-one relationship between the macro base station and the small base station, and the synchronization / master-slave relationship and the synchronization relationship are one-to-one.
  • the user terminal can efficiently detect a detection signal (Discovery signal) transmitted from the small base station, and the macro base station can efficiently perform scheduling for the small base station.
  • the user terminal can appropriately connect (Dual connectivity) to both the macro base station and the small base station.
  • the small base station X to be newly synchronized may prioritize the radio base station having a high synchronization layer level (Stratum LV) and determine the radio base station to be synchronized, as in the case of TDD described above.
  • the synchronization NW is configured in an autonomous and distributed manner so that the synchronization accuracy is increased. Therefore, it is not necessary to arrange the small cells in a planned manner, and it is possible to arrange them flexibly.
  • the index to be prioritized may be determined based on a predetermined index, or from the macro base station It may be a configuration that can be appropriately changed by signaling.
  • the macro base station of Stratum LV 0 transmits a synchronization information request (Time sync info request) to the subordinate small base station, so that the subordinate destination of the subordinate small base station (the macro concerned) (Synchronous or asynchronous) to the base station.
  • a synchronization information request (Time sync info request)
  • the macro base station grasps the synchronization destination of the subordinate small base station the operation method can be appropriately changed and controlled between the synchronous small base station and the asynchronous small base station.
  • the macro base station transmits a resource efficient detection signal (Discovery signal) transmission instruction (simultaneous transmission instruction in a predetermined period) to the synchronous small base station, dual connectivity to the user terminal, and the synchronous small base station Interference control (eICIC) is performed.
  • Discovery signal resource efficient detection signal
  • eICIC synchronous small base station Interference control
  • cell detection by PSS / SSS and interference control (eICIC) with a small base station belonging to an adjacent macro base station are performed on an asynchronous small base station.
  • Sync-NW ID is used as the information (identifier) indicating the cell group constituting each synchronization Stratum
  • the present embodiment is not limited to this.
  • a small cell that newly performs synchronization can determine the synchronization NW. It becomes.
  • information indicating a cell group that constitutes a synchronous Stratum it may be information of “whether it is synchronized with other than the belonging macro cell”. For example, when the small base station X attempts radio synchronization, there may be a case where the probability of detecting three or more asynchronous NWs is low. In this case, it is possible to determine that the state of wireless synchronization other than the assigned macro base station is wirelessly synchronized with the adjacent macro base station. Thereby, compared with the case where Sync-NW ID or cell ID is used, the additional bit of backhaul signaling can be reduced (suppressed to 1 bit).
  • the small base station X that performs radio synchronization selects a synchronization destination NW (macro base station) based on the DL signal transmitted from the radio base station of the neighboring cell.
  • NW macro base station
  • NW used as a synchronous destination with reference to the UL signal which a user terminal transmits.
  • NW used as a synchronous destination with reference to the UL signal which a user terminal transmits.
  • NW used as a synchronous destination with reference to the UL signal which a user terminal transmits
  • the user terminal A1 connected to the macro base station A and the user terminal A2 connected to the small base station synchronized with the macro base station A are synchronized.
  • the user terminal B1 connected to the macro base station B and the user terminal B2 connected to the small base station synchronized with the macro base station B are synchronized.
  • the NW (macro base station) to which the small base station belongs refers to a cell group that performs macro-assisted operation (macro cooperation) for the small base station.
  • Macro-assisted operation includes, for example, a macro base station notifying detection information and control information of a small base station to a user terminal, or a small base station small mobile station connected to a macro cell.
  • Carrier aggregation (in case of different frequency) to add cells, coordinated multi-point communication (in case of same frequency), etc. may be performed.
  • NW (macro base station) with which a small base station synchronizes refers to a cell group with which the small base station performs timing synchronization.
  • the small base station X is under the control of the macro base station A of the cell group A, but is wirelessly synchronized with the macro base station B of the cell group B.
  • the small base station X is located at the cell end of the macro base station A and is connected to the macro base station A of the cell group A and is in a cooperative relationship.
  • the case of performing with B is shown.
  • the information indicating the synchronization group newly added as the synchronization information includes “a norm for selecting a synchronization destination by a small base station” and “a macro base station grasps a synchronization destination of the small base station”.
  • the synchronization NW instructs the small base station to indicate information indicating the synchronization destination cell group (for example, Sync-NW ID).
  • the macro base station A of the cell group A notifies the small base station X of Sync-NW ID1 (see FIG. 9).
  • the instruction to the small base station X can be performed via the backhaul link.
  • the cell ID of the macro cell included in the synchronization group may be used instead of the Sync-NW ID.
  • the small base station X that has received the instruction of the synchronization destination transmits a synchronization information request (Time sync info request) to the radio base stations of the surrounding cells, and acquires the synchronization information (Stratum LV, Sync-NW ID) of other cells. To do. Then, the small base station X synchronizes with the small base station having the designated Sync-NW ID1 and having the highest Stratum LV from the acquired synchronization information. In addition, the small base station X updates the synchronization information (Time sync info) of the small base station X after synchronizing with the radio base station of another cell.
  • a synchronization information request (Time sync info request) to the radio base stations of the surrounding cells, and acquires the synchronization information (Stratum LV, Sync-NW ID) of other cells. To do. Then, the small base station X synchronizes with the small base station having the designated Sync-NW ID1 and having the highest Stratum LV from the acquired synchronization
  • the NW macro base station
  • the NW macro base station to which it belongs notifies the small base station of information indicating the cell group of the synchronization destination, and controls the synchronization destination of the small base station.
  • the synchronization / asynchronization of the small base station is changed, and the interference to the user terminal and the efficient detection signal Transmission of (Discovery signal) can be realized.
  • the macro base station synchronizes the small base station at the cell edge with the cell group corresponding to the adjacent macro base station and applies interference control (eICIC) in a time zone when the traffic of the adjacent macro base station is large.
  • eICIC interference control
  • the small base station at the cell edge is synchronized with the cell group corresponding to the macro base station, and detection signals from a plurality of synchronous small base stations are transmitted within a predetermined period. Send all at once. Thereby, the number of small cells that can be discovered by the user terminal in a short time can be increased.
  • the small base station X synchronizes with the synchronization group corresponding to the adjacent macro base station B in the asynchronous NW, there are cases where the synchronous small cell and the asynchronous small cell are mixed in the macro cell (see FIG. 10).
  • a user terminal connected to the macro base station A of the cell group A can discover a plurality of synchronous small base stations in a short time interval, but the asynchronous small base station X has the same mechanism (identical May not be detected in the time interval.
  • the user terminal since even the asynchronous small base station X can be an offload destination according to the traffic situation, it is desirable that the user terminal has a mechanism that can also discover the asynchronous small base station X.
  • list A information (hereinafter also referred to as “list A”) of small base stations (small base stations under the macro base station) that can be assisted by the macro base station, and a synchronization layer formed by the macro base station Information of the small base station synchronized with (Stratum) (hereinafter also referred to as “list B”) is notified to the user terminal.
  • the small base station (small cell) information included in each list includes the carrier frequency and bandwidth of the small cell operated by the small base station, the small cell ID (Physical cell ID), and the series of small cell detection signals. And time / frequency resource information of the detection signal, bandwidth of the detection signal, and the like.
  • the list may include information indicating whether the carrier has a backward compatibility (Backward compatible carrier) or not (New carrier type). Since the detection operation suitable for the user terminal is different depending on whether or not there is backward compatibility, the user terminal can perform an appropriate detection operation for each carrier by including such information in the list. In other words, unnecessary power consumption can be reduced by omitting an extra detection operation. Moreover, you may notify virtual cell ID (Virtual cell ID) instead of cell ID. Since the virtual cell ID can be assigned more flexibly than the cell ID, for example, the same virtual cell ID is assigned between the small cells, and the user terminal is detected as one cell, so that an operation for searching a large number of cell candidates is performed. Can be omitted.
  • the small base station included in the list A refers to a small base station that can be connected to and linked with a macro base station regardless of synchronous or asynchronous. For example, it corresponds to the cell group A that performs macro-assisted operation (macro cooperation) in FIG.
  • the small base station included in the list B refers to a small base station in which an asynchronous small base station is excluded from the list A and a small base station that is subordinate to the surrounding macro base station and synchronized with the own macro base station is added. In FIG. 8, it corresponds to a wireless synchronization group.
  • the NW corresponding to the macro base station A in the NW corresponding to the macro base station A, three small base stations that can be assisted by the macro base station A are included in the list A and are synchronized with the macro base station B of the adjacent cell. Two small cells obtained by removing the station X from the list A are included in the list B (see FIG. 11).
  • the NW corresponding to the macro base station B three small base stations that can be assisted by the macro base station B are included in the list A.
  • the macro base station Four small base stations to which the small base station X synchronized with B is added are included in the list B (see FIG. 11).
  • the user terminal discovers a small base station based on the list A and the list B (Discover). Specifically, the user terminal first performs synchronous discovery of connectable small base stations based on the list B. Further, when a connected small base station is not found within a predetermined period, asynchronous discovery is executed based on the list A.
  • the purpose of the synchronous discovery is to detect a DL signal for discovery transmitted from a small base station that synchronizes timing with the macro base station, and the user terminal performs a short time interval (short time window) indicated by the macro base station A. Attempts to discover small base stations through observations. If the small base station is synchronized with the macro base station A, the DL signal for Discovery can be transmitted synchronously, so that the user terminal can efficiently find a plurality of small cells by the synchronous Discovery.
  • asynchronous discovery is to detect a DL signal for discovery transmitted from a small base station X that does not necessarily synchronize with the macro base station A.
  • the user terminal can detect a small base station in a long time interval (for example, several ms). It is necessary to try to find X. Even when the user terminal finds the asynchronous small base station X, it is asynchronous with the macro base station A to be connected, and therefore it is necessary to synchronize between the small base station X and the user terminal.
  • the user terminal detects the small base station by the first synchronous discovery by performing the detection operation with priority on the small base stations (list B) included in the synchronization group corresponding to the macro base station to be connected. If it is possible, it is not necessary to perform asynchronous discovery. As a result, the user terminal can suppress power consumption required for asynchronous discovery and power consumption required for synchronization of the user terminal with respect to the asynchronous small base station X.
  • FIG. 12 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the radio communication system 1 includes a macro base station 11 that forms a macro cell C1, and small base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1.
  • the user terminal 20 is configured to be able to wirelessly communicate with at least one of the macro base station 11 and the small base stations 12a and 12b (hereinafter collectively referred to as the small base station 12).
  • the numbers of macro base stations 11 and small base stations 12 are not limited to the numbers shown in FIG.
  • the same frequency band may be used, or different frequency bands may be used.
  • the macro base station 11 and each small base station 12 are connected to each other via an inter-base station interface (for example, an optical fiber or an X2 interface).
  • the macro base station 11 and each small base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the macro base station 11 is a radio base station having a relatively wide coverage, and may be referred to as an eNodeB (eNB), a radio base station, a transmission point, or the like.
  • the small base station 12 is a radio base station having local coverage, and is called an RRH (Remote Radio Head), a pico base station, a femto base station, a HeNB (Home eNodeB), a transmission point, an eNodeB (eNB), or the like. May be.
  • the user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the wireless communication system 1 assumes a case where the networks formed for each macro cell are asynchronous (asynchronous operation).
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a downlink control channel (PDCCH: Physical Downlink Control Channel), and EPDCCH: Enhanced Physical. Downlink Control Channel), PCFICH, PHICH, broadcast channel (PBCH), etc.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical. Downlink Control Channel
  • PCFICH Physical FICH
  • PHICH Physical Downlink Control Channel
  • PBCH broadcast channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20 and an uplink control channel (PUCCH: Physical Uplink Control Channel) are used as uplink communication channels. It is done. User data and higher layer control information are transmitted by PUSCH. Also, downlink radio quality information (CQI: Channel Quality Indicator), delivery confirmation information (ACK / NACK), and the like are transmitted by PUCCH.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • radio base station 10 when the macro base station 11 and the small base station 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • FIG. 13 is an overall configuration diagram of the radio base station 10 according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and an interface unit 106. .
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the interface unit 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse
  • Each transmitting / receiving unit 103 converts the downlink signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
  • the data is transferred to the higher station apparatus 30 via the interface unit 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • the interface unit 106 transmits / receives a signal (backhaul signaling) to / from an adjacent radio base station via an inter-base station interface (for example, an optical fiber or an X2 interface). Alternatively, the interface unit 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • a signal backhaul signaling
  • an inter-base station interface for example, an optical fiber or an X2 interface.
  • the interface unit 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • FIG. 14 is a functional configuration diagram of the radio base station 12 (small base station) according to the present embodiment.
  • the following functional configuration is configured by the baseband signal processing unit 104 included in the radio base station 12 and the like.
  • the radio base station 12 includes a synchronization information control unit 301, a radio synchronization cell determination unit 302, a radio synchronization control unit 303, a scheduler 304, and a DL signal generation unit 305.
  • the synchronization information control unit 301 performs signal transmission / reception (backhaul signaling) with a radio base station of another cell via the interface unit 106. Specifically, the synchronization information control unit 301 transmits a synchronization information request (Time sync info request) to the radio base station determined to be capable of radio synchronization via the backhaul. Also, the synchronization information control unit 301 receives synchronization information fed back from the macro base station and / or the small base station that has received the synchronization information request.
  • the synchronization information includes a synchronization state (sync or async), a synchronization hierarchy level (Stratum LV), and information indicating a synchronization destination cell group (for example, Sync-NW ID). Note that the synchronization information control unit 301 can determine a radio base station that can perform radio synchronization by searching for neighboring cells and performing measurement.
  • the radio synchronization cell determination unit 302 determines a cell (synchronization destination radio base station) to perform radio synchronization based on the synchronization information of the other cell received from the radio base station of the other cell. For example, when the synchronization information is received from the radio base stations of a plurality of other cells, the radio synchronization cell determination unit 302 is information indicating a synchronization layer level (a radio base station having a high Stratum LV) or a synchronization destination cell group (for example, , Sync-NW ID) is given priority, and a radio base station that performs radio synchronization is determined.
  • a synchronization layer level a radio base station having a high Stratum LV
  • a synchronization destination cell group for example, , Sync-NW ID
  • the synchronization information control unit 301 determines its own “Stratum LV” and “Sync” based on the synchronization information of the radio base station that performs the radio synchronization. -Holds “NW ID”. Note that a storage unit for holding “Stratum LV” and “Sync-NW ID” may be provided separately.
  • the radio synchronization control unit 303 performs timing synchronization using the DL signal transmitted from the synchronization-destination radio base station determined by the radio synchronization cell determination unit 302.
  • Examples of DL signals applicable to timing synchronization include reference signals (cell-specific reference signal (CRS), terminal-specific reference signal (DM-RS), channel information measurement reference signal (CSI-RS)), synchronization signal ( P-SS, S-SS) and the like.
  • the scheduler 304 performs allocation (scheduling) of radio resources for DL signals to be transmitted to the user terminal 20. For example, when a detection signal (Discovery signal) is transmitted to the user terminal 20, control is performed so that the detection signal is transmitted during a predetermined period. Further, when the small base station 12 is synchronized with other small base stations, control is performed such that detection signals are simultaneously transmitted from a plurality of small base stations within a predetermined period.
  • Discovery signal detection signal
  • control is performed such that detection signals are simultaneously transmitted from a plurality of small base stations within a predetermined period.
  • the DL signal generation unit 305 generates a DL signal based on an instruction from the scheduler 304. For example, the DL signal generation unit 305 generates a control signal, a data signal, a reference signal, and the like. In addition, the user terminal 20 generates a detection signal (Discovery signal) for discovering the small base station. The signal generated by the DL signal generation unit 305 is transmitted to the user terminal 20 and the radio base station of another cell via the transmission / reception unit 103.
  • Discovery signal detection signal
  • FIG. 15 is a functional configuration diagram of the radio base station 11 (macro base station) according to the present embodiment.
  • the following functional configuration is configured by the baseband signal processing unit 104 included in the radio base station 11 and the like.
  • the radio base station 11 includes a synchronization information control unit 311, a radio synchronization cell instruction unit 312, a cell list generation unit 313, a scheduler 304, and a DL signal generation unit 305.
  • the synchronization information control unit 311 performs signal transmission / reception (backhaul signaling) with the small base station 12 via the interface unit 106. Specifically, the synchronization information control unit 311 transmits a synchronization information request (Time sync info request) to the subordinate small base station 12 via the backhaul, and is fed back from the subordinate small base station. Receive.
  • the synchronization information includes a synchronization state (sync or async), a synchronization hierarchy level (Stratum LV), and information indicating a synchronization destination cell group (for example, Sync-NW ID).
  • the synchronization information control unit 311 determines the synchronization destination (synchronous or asynchronous with respect to the macro base station) of the subordinate small base station based on the acquired synchronization information. As described above, when the macro base station grasps the synchronization destination of the subordinate small base station, the scheduler 304 can be controlled by appropriately changing the operation method between the synchronous small base station and the asynchronous small base station. .
  • the wireless synchronization cell instruction unit 312 instructs the subordinate small base station 11 on the synchronization destination. For example, as shown in FIG. 8, information indicating cell groups to be synchronized with respect to small base stations having different NWs (macro base stations) to which they belong and NWs (macro base stations) to be wirelessly synchronized (for example, The Sync-NW ID) corresponding to the subordinate macro base station is instructed (see FIG. 9 above).
  • the cell list generation unit 313 includes information on the small base station that can be assisted by the macro base station 11 (list A) and information on the small base station that is synchronized with the wireless synchronization group corresponding to the macro base station 11 (list B). (See FIG. 11 above).
  • the list generated by the cell list generation unit 313 is transmitted to the user terminal 20 using higher layer signaling (for example, RRC signaling, broadcast signal, etc.) and downlink control information.
  • higher layer signaling for example, RRC signaling, broadcast signal, etc.
  • FIG. 16 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, and an application unit 205.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • transmission processing for retransmission control H-ARQ (Hybrid ARQ)
  • channel coding precoding
  • DFT processing IFFT processing
  • the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • FIG. 17 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20.
  • the baseband signal processing unit 204 included in the user terminal 20 includes at least a DL signal decoding unit 401, a small cell detection unit 402, a control unit 403, and a UL signal generation unit 404.
  • the DL signal decoding unit 401 decodes the DL signals transmitted from the radio base stations 11 and 12. For example, when information (lists A and B) regarding small base stations is transmitted from the macro base station 11 (see FIG. 11 above), the information on the list is output to the small cell detection unit 402.
  • the small cell detection unit 402 detects a small base station to be connected based on a detection signal (Discovery signal) transmitted from the small base station 12.
  • a detection signal Discovery signal
  • a predetermined small base station is selected based on reception quality or the like.
  • information (lists A and B) related to the small base station transmitted from the macro base station 11 is received, the small base station is detected based on the list.
  • the control unit 403 controls the allocation of the uplink control signal (feedback signal) and the uplink data signal to the radio resource based on the downlink control signal (UL grant) transmitted from the radio base station.
  • the UL signal generation unit 404 generates an uplink control signal (feedback signal such as a delivery confirmation signal or channel state information (CSI)) based on an instruction from the control unit 403. Further, the UL signal generation unit 404 generates an uplink data signal based on an instruction from the control unit 403.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

 非同期NWにおいて異なるセル間を無線インタフェースにより同期する場合であっても、同期を適切に行うこと。他セルの無線基地局から送信される下りリンク信号を利用して無線同期を行う無線基地局であって、基地局間インタフェースを介して、他セルの無線基地局に対して同期情報リクエストを通知すると共に、他セルの無線基地局から通知される同期情報を取得する同期情報制御部と、取得した同期情報に基づいて無線同期を行う無線基地局を決定する決定部と、を有し、同期情報制御部が他セルの無線基地局から取得する同期情報に、当該他セルの無線基地局の同期状態、同期階層レベル及び同期グループを示す情報を含める。

Description

無線基地局、ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおける無線基地局、ユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。LTEではマルチアクセス方式として、下り回線(下りリンク)にOFDMA(Orthogonal Frequency Division Multiple Access)をベースとした方式を用い、上り回線(上りリンク)にSC-FDMA(Single Carrier Frequency Division Multiple Access)をベースとした方式を用いている。
 また、LTEからのさらなる広帯域化及び高速化を目的として、LTEの後継システムも検討されてきた(例えば、LTEアドバンスト又はLTEエンハンスメントと呼ぶこともある(以下、「LTE-A」という))。LTE-Aシステムでは、半径数キロメートル程度の広範囲のカバレッジエリアを有するマクロセル内に、半径数十メートル程度の局所的なカバレッジエリアを有するスモールセル(例えば、ピコセル、フェムトセルなど)が形成されるHetNet(Heterogeneous Network)が検討されている(例えば、非特許文献2)。また、HetNetでは、マクロセルとスモールセル間で同一周波数帯だけでなく、異なる周波数帯のキャリアを用いることも検討されている。
 上述のHetNetでは、マクロセル内に多数のスモールセルを配置することが想定される。この場合、トラフィックの大きい場所にスモールセルを局所的に配置し、セル間でのオフロード効果を図る構成が想定される。つまり、ユーザ端末が複数のスモールセルに接続可能である場合、各スモールセルのトラフィック状況等に応じてユーザ端末が接続するスモールセルを変更することが考えられる。
 また、マクロセル内に多数のスモールセルが配置される場合、各スモールセル間は互いにタイミング同期していることが望ましい。各スモールセル間が互いにタイミング同期することにより、スモールセル間の干渉を適切に制御することや、ユーザ端末が効率的に接続スモールセルを発見(Discovery)することが可能となる。
 異なるセル(無線基地局)間のタイミング同期法として、他セルが送信する下りリンク(DL)信号に基づいてタイミングを検出する同期方法(無線インタフェースによる同期)がある。例えば、新たに同期を行うスモールセルは、GPS等に同期したマクロセル又は当該マクロセルに同期したスモールセルから送信されるDL信号を用いて、無線同期を行う。
 一方で、マクロセルのセル端等に配置されるスモールセルは、所属するマクロセルだけでなく、同一マクロセルに所属するスモールセル、隣接マクロセル、隣接マクロセルに所属するスモールセルから送信されるDL信号を受信する場合がある。また、隣接するマクロセル(マクロ基地局)間が互いに非同期で運用される場合(例えば、FDDにおける非同期ネットワーク(NW))も想定される。
 非同期NWにおいて無線インタフェースにより無線基地局間の同期を行う場合、各スモールセルの同期対象(同期先)セルをどのように決定するかが問題となる。また、マクロ基地局は、配下のスモールセルの同期先NWを把握できなくなるおそれがある。
 本発明は、かかる点に鑑みてなされたものであり、非同期NWにおいて異なるセル間を無線インタフェースにより同期する場合であっても、同期を適切に行うことができる無線基地局、ユーザ端末及び無線通信方法を提供することを目的とする。
 本発明の無線基地局は、他セルの無線基地局から送信される下りリンク信号を利用して無線同期を行う無線基地局であって、基地局間インタフェースを介して、他セルの無線基地局に対して同期情報リクエストを通知すると共に、他セルの無線基地局から通知される同期情報を取得する同期情報制御部と、取得した同期情報に基づいて無線同期を行う無線基地局を決定する決定部と、を有し、前記同期情報制御部が他セルの無線基地局から取得する同期情報は、当該他セルの無線基地局の同期状態、同期階層レベル及び同期グループを示す情報を含むことを特徴とする。
 本発明によれば、非同期NWにおいて異なるセル間を無線インタフェースにより同期する場合であっても、同期を適切に行うことができる。
HetNetの概念図である。 異なるセル(無線基地局)間をタイミング同期した場合の無線通信制御の一例を説明する図である。 互いに同期する無線基地局の階層レベル(Stratum LV)を説明する図である。 隣接するマクロ基地局間が非同期運用(非同期NW)の場合における各スモールセルの同期状態の一例を示す図である。 隣接するマクロ基地局間が非同期運用(非同期NW)の場合における各スモールセルの階層レベルの一例を示す図である。 非同期で運用される各ネットワーク(NW)に対して、同期Stratumを構成するセルグループを示す情報を割当てる場合の一例を示す図である。 同期先とするNW(マクロ基地局)の選択時にUL信号を参照する構成を説明する図である。 非同期NWにおいて、無線同期グループとマクロ連携を行うセルグループとの関係を示す図である。 非同期NWにおいて、マクロ基地局が配下のスモールセルに対して同期指示を与える方法の一例を示す図である。 マクロセル内に、同期スモールセルと非同期スモールセルが混在する場合の一例を示す図である。 マクロセルが、ユーザ端末にリストを通知する場合の一例を示す図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係るスモール基地局の機能構成の説明図である。 本実施の形態に係るマクロ基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 図1は、Rel.12以降で想定されるHetNetの概念図である。図1に示すように、HetNetは、マクロセル(Macro cell)とスモールセル(Small cell)との少なくとも一部が地理的に重複して配置される無線通信システムである。HetNetは、マクロセルを形成する無線基地局(以下、マクロ基地局という)と、スモールセルを形成する無線基地局(以下、スモール基地局という)と、マクロ基地局とスモール基地局と通信するユーザ端末とを含んで構成される。
 一般にユーザ分布やトラフィックは均一でなく、時間的、あるいは、場所的に変動する。そのため、マクロセル内に多数のスモールセルを配置する場合、上記図1に示すように、場所に応じて密度や環境の異なる形態(Sparse and Dense)で、スモールセルが配置されることが想定される。例えば、ユーザ端末が多く集まる駅やショッピングモール等では、スモールセルの配置密度を高くし(Dense small cell)、ユーザ端末が集まらない場所では、スモールセルの配置密度を低くする(Sparse small cell)ことが考えられる。
 このようにトラフィックの大きい場所にスモールセルを密に、かつ局所的に(クラスタ状に)配置することにより、セル間でのオフロード効果を得ることが可能となる。また、全てのエリア(マクロセルのカバレッジエリア)をスモールセルでカバーする必要がないため、コスト等を考慮してスモールセルの配置場所や配置するスモールセル数を制御することが可能となる。
 図1に示すHetNetにおいて、マクロセルでは、例えば、800MHzや2GHz(図1では、2GHz)など、相対的に低い周波数帯のキャリア(以下、低周波数帯キャリアという)が用いられる場合を示している。低周波数帯キャリアを利用することにより、マクロセルは広いカバレッジを取りやすく、既存(Rel.8~11)のユーザ端末も接続可能な周波数で運用することができる。これにより、マクロセルは、全てのユーザ端末が常時接続するセルとして広範囲のエリアをカバーすることができる。
 一方、複数のスモールセルでは、例えば、3.5GHzなど、相対的に高い周波数帯のキャリア(以下、高周波数帯キャリアという)が用いられる場合を示している。高周波数帯キャリアを利用することによりスモールセルは広帯域を利用できるため、ベストエフォート型においてデータの高効率なオフロードが可能となる。そのため、スモールセルは、高トラフィック領域のユーザ端末をオフロードするセルとして局所的に配置される。
 また、図1に示すHetNetにおいて、マクロセル(マクロ基地局)とスモールセル(スモール基地局)間は、バックホールリンクを介して接続される。具体的に、マクロ基地局とスモール基地局間をバックホールを通じて連携し、マクロ基地局がスモール基地局をアシストする運用(マクロ基地局がスモール基地局を従属させる運用)が想定されている。マクロ基地局がスモール基地局をアシストする運用とは、マクロ基地局がスモール基地局の検出情報や制御情報をユーザ端末に通知したり、マクロ基地局がマクロセルに接続している端末に対してスモール基地局のスモールセルを追加するCarrier aggregation(異周波の場合)やCoordinated multi-point通信(同周波の場合)を行ったりすること等が挙げられる。
 また、複数のスモール基地局間についても、バックホールリンクを介して接続することが想定されている。マクロ基地局とスモール基地局間、あるいはスモール基地局間の接続は、光ファイバ(Optical fiber)や非光ファイバ(X2インタフェース)等の有線接続で行うことが考えられる。
 上記図1に示すようにマクロセル内に多数のスモールセルを配置する構成においては、各スモール基地局間が互いにタイミング同期(以下、単に「同期」とも記す)していることが望ましい。各スモール基地局間が互いに同期することにより、スモールセル間の干渉制御や、ユーザ端末におけるスモール基地局の検出(Discovery)を適切に行うことが可能となる。
 例えば、複数のスモールセル(ここでは、セルA、セルB)が不均一かつ高密度で配置される場合、互いのセル間の干渉が大きくなるおそれがある。この場合、セル(基地局)間を同期させることにより、セル間干渉制御や協調通信等により干渉を低減することができる(図2A参照)。特に、TDDを利用する場合には、隣接セル間でDLとULの入れ替えタイミングがずれると、無線基地局間やユーザ端末間で大きな干渉となるため、セル間の同期が重要となる。
 また、スモール基地局から送信される検出用信号(Discovery信号)に基づいて、ユーザ端末が接続するスモール基地局を検出する場合を想定する(図2B参照)。この場合、スモール基地局間で同期していれば、複数のスモール基地局は短い時間区間内で一斉に検出用信号を送信できるため、ユーザ端末は当該時間区間(時間窓)に選択的にスモール基地局の検出動作を行えばよい。これにより、各ユーザ端末は、スモール基地局の検出動作に係る消費電力を抑制すると共に、スモール基地局を効率的に検出(Discover)することが可能となる。
 スモール基地局のタイミング同期法としては、(1)GPSによる時刻同期、(2)バックホールでのセル間通信による同期(例えば、IEEE1588v2等)、(3)無線インタフェースによる同期が考えられる。無線インタフェースによる同期(以下、「無線同期」とも記す)は、スモール基地局が他セルの無線基地局から送信されるDL信号を受信してタイミングを検出することにより同期する方法である。DL信号としては、例えば、参照信号(セル固有参照信号(CRS)、端末固有参照信号(DM-RS)、チャネル情報測定用参照信号(CSI-RS))、同期信号(P―SS、S-SS)等を利用することができる。
 本発明者等は、上記図1のHetNetにおけるスモールセル(スモール基地局)の同期法として、外部システムに依存せず、オペレータ自身のリソースで同期が可能な無線インタフェースによる同期を適用することが望ましいことを見出した。外部インタフェースによるスモール基地局の同期は、GPS受信機やIEEE1588v2の同期システムと比較して、受信機を安価に実現できるためである。また、無線インタフェースによる同期を、既存の同期法と補完的に用いることにより、より幅広い環境でのスモール基地局間のタイミング同期を実現することが可能となるためである。
 ところで、LTE Rel.9では、TDDのHeNB(Home eNodeB)向けに無線インタフェース同期を実現するバックホールシグナリングが規定されている(図3A参照)。具体的には、バックホールシグナリングを介して無線基地局間で、同期情報(Time Synchronization Info)のやり取りが可能となっている。同期情報には、各無線基地局の同期状態(同期(sync)又は非同期(async)の何れか)、同期している場合の同期階層レベル(Stratum level)が含まれる。
 同期階層レベル(以下、「Stratum LV」とも記す)は、GPSによる同期を行う無線基地局(例えば、マクロセル)を基準とした階層レベルを示している(図3B参照)。例えば、GPSによる同期を行うマクロ基地局をStratum LV=0とした場合に、当該無線基地局からのDL信号を用いて同期するスモール基地局は1レベル低いStratum LV=1となる。つまり、同期する無線基地局のStratum LVより1レベル下がる。
 このように、無線インタフェースによりスモール基地局の同期を行う場合に、バックホールシグナリングを介して、同期先の候補となる他セルの無線基地局の同期状態や同期階層レベルを把握することができる。これにより、各スモール基地局は、新たに同期を行う場合に他セルの無線基地局からの同期情報に基づいて、自身の同期階層レベルを把握することができる。
 このように、隣接マクロ基地局同士が同期して運用されるネットワーク(同期NW)では、スモール基地局がDL信号を受信できる他セルのStratum LVを把握することが出来れば同期対象となる基地局を決定することが出来る。この場合、Stratum LVが0の無線基地局はGPS同期しているため、新規に同期を行うスモール基地局は、DL信号を受信可能な周辺基地局の内、Stratum LVが最も高い無線基地局(例えば、Stratum LV=0)に同期すれば、高い同期精度を得ることが出来る。仮に、自身が所属するマクロ基地局に隣接するマクロ基地局から送信されるDL信号を用いて無線同期する場合であっても、マクロ基地局同士が同期している場合には、結果的に所属するマクロ基地局とも同期することができる。
 しかし、本発明者等は、隣接するマクロセル(マクロ基地局)間が互いに非同期で運用される場合(例えば、FDDにおける非同期NW)、上述したように無線同期を行うと、スモール基地局がどのNWに無線同期したのか把握できなくなるおそれがあることを見出した。
 例えば、新規に無線同期を行うスモール基地局は、(1)所属するマクロ基地局のDL信号、(2)同一マクロ基地局に所属するスモール基地局のDL信号、(3)隣接マクロ基地局のDL信号、(4)隣接マクロ基地局に所属するスモール基地局のDL信号、を受信する可能性がある(図4参照)。
 この場合、マクロ基地局間が非同期で運用される場合、他のマクロ基地局及び/又はスモール基地局から送信されるDL信号間も非同期となる可能性も考えられる。例えば、無線同期を試みるスモール基地局が、隣接セルのDL信号の影響により所属するマクロ基地局からのDL信号を受信できない場合、DL信号を用いたタイミング検出が困難となるおそれがある。このような場合、当該スモール基地局は、同一マクロ基地局に所属する他のスモール基地局からのDL信号を用いて同期することが必要となる。
 一般的に、スモールセルではマクロセルと比較してパスロスが小さいため、他のスモール基地局から送信されるDL信号の受信SNRを改善することができる。しかし、同期に要するホップ数が増えるほど(Stratum LVが低くなるほど)同期誤差が蓄積し、同期精度が低下するおそれがある。
 また、同期を試みるスモール基地局が、所属マクロ基地局及び当該マクロ基地局配下のスモール基地局のいずれからもDL信号を受信できない可能性も考えられる。このような場合、当該スモール基地局が所属マクロ基地局に同期することは不可能となる。
 このように、隣接マクロ基地局間が非同期で運用されるネットワーク(非同期NW)では、同期NWと異なり、周辺基地局のStratum LVを把握できたとしても、必ずしも所属マクロ基地局への同期は出来ないおそれがある。例えば、図5に示すように、マクロ基地局Aの配下のスモール基地局Xが、マクロ基地局Aと非同期で運用される隣接マクロ基地局B(Stratum LV=0)と、所属マクロ基地局Aと同期するスモール基地局A(Stratum LV=1)からDL信号を受信した場合を想定する。
 この場合、スモール基地局Xは、接続候補となる無線基地局の同期情報(同期状態及びStratum LV)を取得したとしても、いずれの無線基地局に同期すべきか判断することが出来ない。また、当該スモール基地局Xがいずれのマクロ基地局(により構成されるNW)に同期したのかを、所属先のマクロ基地局Aは把握することができないおそれがある。
 そこで、本発明者等は、非同期NWにおける無線インタフェース同期を適用する場合に、無線基地局間のバックホールシグナリングを利用して、同期Stratum(同期トポロジ)を構成するセルグループ(NW、同期グループともいう)を示す情報を無線基地局間でやり取りすることを着想した。
 また、本発明者等は、複数のスモール基地局の中で、所属するNW(マクロ基地局)と、無線同期するNW(マクロ基地局)と、が異なるケースが生じることに着目し、かかる場合に、ユーザ端末が接続スモール基地局を適切に検出する方法を着想した。具体的には、マクロ基地局が、配下のスモール基地局に対して、無線同期すべき同期グループ(セルグループ)を指示し、指示を受けたスモール基地局が当該同期グループに含まれ、かつStratum LVが最も高い無線基地局に同期するように制御することを見出した。また、ユーザ端末に対して、マクロ基地局(マクロセル)に所属するスモール基地局(スモールセル)のリストと、当該マクロ基地局に同期するスモール基地局のリストを通知し、当該リストに基づいてユーザ端末が接続スモールセルを検出することを見出した。
 以下に、本実施の形態について添付図面を参照して詳細に説明する。なお、以下の第1の態様~第3の態様で示す内容は適宜組み合わせて適用することができる。
(第1の態様)
 第1の態様では、非同期NWにおいて、無線インタフェースを用いて各スモール基地局の同期を行う場合に、基地局間のバックホールシグナリングを介して、同期グループを示す情報をやり取りする場合について説明する。
 図6は、それぞれ異なる同期階層(Stratum)を構成するセルグループAと、セルグループBを示している。セルグループA、Bは、それぞれStratum LV=0のマクロ基地局と、Stratum LV=1、2のスモール基地局とから構成される。また、セルグループAのマクロ基地局と、セルグループBのマクロ基地局は非同期で運用される場合を想定する。
 図6では、新規に同期を行うスモール基地局Xが、セルグループAに所属するスモール基地局(Stratum LV=1)と、セルグループBに所属するマクロ基地局(Stratum LV=0)からDL信号を受信する場合を想定している。
 本実施の形態では、同期Stratumを構成するセルグループ(同期グループ)毎に識別子(例えば、「Sync-NW ID」)を割り振る。例えば、セルグループAに対して「Sync-NW ID1」を割当て、セルグループBに対して「Sync-NW ID2」を割当てる。同期を行うスモール基地局は、バックホールシグナリングを介して、他セルの無線基地局(同期候補となる無線基地局)の同期状態(sync又はasync)と階層レベル(Stratum LV)に加えて、同期グループを示す情報(ここでは、Sync-NW ID)を含む同期情報を取得する。
 スモール基地局は、他セルの無線基地局の同期情報に基づいて同期するセル(無線基地局)を決定して無線同期する。その後、同期した無線基地局の「Stratum LV」と「Sync-NW ID」に基づいて、自身の「Stratum LV」と「Sync-NW ID」を把握して保持する。
 図6において、新たに同期を行うスモール基地局Xが、セルグループA(Sync-NW ID1)のスモール基地局(Stratum LV=1)に同期した場合、自身がStratum LV=2かつSync-NW ID=1と判断する。一方で、セルグループB(Sync-NW ID2)のマクロ基地局(Stratum LV=0)に同期した場合、自身がStratum LV=1かつSync-NW ID=2と判断する。
 また、スモール基地局Xの周囲に位置するマクロ基地局及び/又はスモール基地局は、当該スモール基地局Xに対して同期情報リクエスト(Time sync info request)を送信する。これにより、当該スモール基地局Xの同期情報(「sync又はasync」、「Stratum LV」、「Sync-NW ID」)を取得することができる。以下に、第1の態様における動作手順について具体的に説明する。
 まず、新規に無線同期を行うスモール基地局Xは、周辺セルのサーチ及びMeasurementにより、無線同期可能な他セルの無線基地局を検出する。図6では、セルグループA(Sync-NW ID1)のスモール基地局(Stratum LV=1)と、セルグループB(Sync-NW ID2)のマクロ基地局(Stratum LV=0)を検出した場合を示している。
 続いて、スモール基地局Xは、無線同期可能と判断した無線基地局に対して、バックホールを介して同期情報リクエスト(Time sync info request)を送信する。同期情報リクエストを受信したマクロ基地局及び/又はスモール基地局は、同期情報(「sync又はasync」、「Stratum LV」、「Sync-NW ID」)をフィードバックする。
 他セルの無線基地局から当該他セルの同期情報を受信したスモール基地局Xは、受信した同期情報に基づいて、無線同期するセル(対象基地局)を決定する。スモール基地局Xは、無線同期を行う無線基地局の同期情報に基づいて、自身の「Stratum LV」と「Sync-NW ID」を把握する。
 また、マクロ基地局は、配下のスモール基地局に対して、同期情報リクエスト(Time sync info request)を送信することにより、各スモール基地局が当該マクロ基地局に同期であるか、又は非同期であるかを把握することが可能となる。
 このように、無線基地局間で同期グループを示す情報をやり取りすることにより、非同期NWにおいても、スモール基地局が同期候補の無線基地局の同期先を把握して、同期するセルグループを適切に決定することができる。例えば、新たに同期するスモール基地局Xは、他セルの無線基地局から取得した同期情報に基づいて、所属マクロ基地局のSync-NW IDを優先して同期する無線基地局を決定する。図6に示す場合、スモール基地局Xは、セルグループA(Sync-NW ID1)のスモール基地局(Stratum LV=1)に同期する。
 このように、所属マクロ基地局に対応するSync-NW IDを優先する場合、マクロ基地局とスモール基地局の連携・主従関係と、同期関係が一対一となるため、マクロ基地局とスモール基地局間の協調を効果的に行うことができる。例えば、ユーザ端末がスモール基地局から送信される検出用信号(Discovery信号)を効率的に検出すると共に、マクロ基地局がスモール基地局に対するスケジューリングを効率的に行うことができる。また、マクロ基地局とスモール基地局に双方に対してユーザ端末が適切に接続(Dual connectivity)することが可能となる。
 あるいは、新たに同期するスモール基地局Xは、上述したTDDの場合と同様に、同期階層レベル(Stratum LV)が高い無線基地局を優先して、同期する無線基地局を決定してもよい。図6に示す場合、スモール基地局Xは、セルグループB(Sync-NW ID2)のマクロ基地局(Stratum LV=0)に同期する。
 このように、Stratum LVを優先して同期先を決定する場合、同期精度が高くなるように同期NWが自律分散的に構成される。そのため、スモールセルを計画的に配置する必要がなく、柔軟に配置することが可能となる。
 なお、スモール基地局が同期する無線基地局を決定する際に、優先すべき指標(同期情報の優先度付け)は、あらかじめ定められた指標に基づいて決定してもよいし、マクロ基地局からのシグナリングで適宜変更できる構成であってもよい。
 また、本実施の形態では、Stratum LV=0のマクロ基地局が、配下のスモール基地局に同期情報リクエスト(Time sync info request)を送信することにより、配下のスモール基地局の同期先(当該マクロ基地局に対する同期又は非同期)を判断することができる。このように、マクロ基地局が配下のスモール基地局の同期先を把握することにより、同期スモール基地局と非同期スモール基地局とで、運用方法を適宜変更して制御することができる。
 例えば、マクロ基地局は、同期スモール基地局に対して、リソース効率の良い検出用信号(Discovery信号)の送信指示(所定期間における一斉送信指示)、ユーザ端末に対するDual connectivity、同期スモール基地局間の干渉制御(eICIC)を行う。一方で、非同期スモール基地局に対して、PSS/SSSによるセル検出、隣接マクロ基地局に所属するスモール基地局との干渉制御(eICIC)を行う。
<変形例>
 なお、上記説明において、各同期Stratumを構成するセルグループを示す情報(識別子)として、Sync-NW IDを用いる場合を示したが、本実施の形態はこれに限られない。例えば、セルグループを示す情報として、各セルグループにおけるStratum LV=0のセルID(例えば、マクロのセルID)を用いてもよい。これにより、新規IDを導入せずに、Stratum LV=0のセルIDを「Sync-NW ID」の代わりに通知しても、新たに同期を行うスモールセルは、同期NWを判別することが可能となる。
 他にも、同期Stratumを構成するセルグループを示す情報として、「所属マクロセル以外に同期しているか否か」の情報としてもよい。例えば、スモール基地局Xが無線同期を試みる際に、3つ以上の非同期NWを検出する確率が低い場合も考えられる。この場合には、所属マクロ基地局以外に無線同期している状態を、隣接マクロ基地局に無線同期していると判断することができる。これにより、Sync-NW IDやセルIDを利用する場合と比較して、バックホールシグナリングの追加ビットを低減(1ビットに抑制)することができる。
 また、上記説明では、無線同期を行うスモール基地局Xが、同期先のNW(マクロ基地局)を選択する場合に、周辺セルの無線基地局から送信されるDL信号に基づいて行う場合を示したが、これに限られない。例えば、ユーザ端末が送信するUL信号を参照して同期先となるNWを選択してもよい(図7参照)。なお、非同期NWの場合、マクロ基地局Aに接続するユーザ端末A1と、マクロ基地局Aに同期するスモール基地局に接続するユーザ端末A2間は同期している。同様に、マクロ基地局Bに接続するユーザ端末B1と、マクロ基地局Bに同期するスモール基地局に接続するユーザ端末B2間は同期している。一方で、異なるセルグループ(同期NW)に接続するユーザ端末A1、A2と、ユーザ端末B1、B2と、の間は非同期となる。
(第2の態様)
 第2の態様では、非同期NWにおいて無線インタフェース同期を適用する場合に、スモール基地局に対して同期先(同期グループ)を指示して制御する方法について説明する。以下の説明では、所属するNW(マクロセル)と、無線同期するNW(マクロセル)と、が異なるスモール基地局に対して、同期先を指示する場合について示す。
 上述したように、スモール基地局が、非同期NWで隣接マクロ基地局に同期する場合、所属NW(マクロ基地局)と、無線同期するNW(マクロ基地局)が異なる。なお、スモール基地局が所属するNW(マクロ基地局)とは、当該スモール基地局に対してマクロ・アシストな運用(マクロ連携)をするセルグループを指す。マクロ・アシストな運用としては、例えば、マクロ基地局がスモール基地局の検出情報や制御情報をユーザ端末に通知したり、マクロ基地局がマクロセルに接続している端末に対してスモール基地局のスモールセルを追加するCarrier aggregation(異周波の場合)やCoordinated multi-point通信(同周波の場合)を行ったりすること等がある。一方で、スモール基地局が同期するNW(マクロ基地局)とは、当該スモール基地局がタイミング同期を行うセルグループを指す。
 例えば、図8に示す場合、スモール基地局Xは、セルグループAのマクロ基地局Aの配下にあるが、セルグループBのマクロ基地局Bと無線同期している。なお、ここでは、スモール基地局Xがマクロ基地局Aのセル端に位置し、セルグループAのマクロ基地局Aに接続されて連携関係にある一方で、無線同期はセルグループBの無線基地局Bと行う場合を示している。
 また、上記第1の態様において、新たに同期情報として追加した同期グループを示す情報は、「スモール基地局が同期先を選択する規範」かつ「マクロ基地局がスモール基地局の同期先を把握する情報」である。そのため、スモール基地局は、設置場所や、同期する無線基地局を決定する際に適用する同期情報(Sync-NW ID、又は同期階層レベル)の優先度に応じて、自律して同期先を選択してしまう。
 そこで、第2の態様では、同期NW(マクロ基地局)が、スモール基地局に対して同期先のセルグループを示す情報(例えば、Sync-NW ID)を指示する。例えば、上記図8において、セルグループAのマクロ基地局Aがスモール基地局Xに対して、Sync-NW ID1を通知する(図9参照)。スモール基地局Xに対する指示は、バックホールリンクを介して行うことができる。また、第1の態様の変形例で説明したように、Sync-NW IDの代わりに、同期グループに含まれるマクロセルのセルIDを用いてもよい。
 同期先の指示を受けたスモール基地局Xは、周囲のセルの無線基地局に同期情報リクエスト(Time sync info request)を送信し、他セルの同期情報(Stratum LV、Sync-NW ID)を取得する。そして、スモール基地局Xは、取得した同期情報の中から、指定されたSync-NW ID1を有し、かつStratum LVが最も高いスモール基地局に同期する。また、スモール基地局Xは、他セルの無線基地局に同期した後に、当該スモール基地局Xの同期情報(Time sync info)を更新する。
 このように、第2の態様では、所属するNW(マクロ基地局)がスモール基地局に対して同期先のセルグループを示す情報を通知して、当該スモール基地局の同期先を制御する。これにより、当該マクロ基地局や周辺マクロ基地局のトラフィックや干渉レベル、スモール基地局の運用に応じて、スモール基地局の同期・非同期を変更して、ユーザ端末に対する干渉や効率的な検出用信号(Discovery信号)の送信を実現することができる。
 例えば、マクロ基地局は、隣接マクロ基地局のトラフィックが大きい時間帯では、セル端のスモール基地局を隣接マクロ基地局に対応するセルグループに同期させ、干渉制御(eICIC)を適用する。また、当該マクロ基地局のトラフィックが大きい時間帯では、セル端のスモール基地局を当該マクロ基地局に対応するセルグループに同期させて、複数の同期スモール基地局から検出用信号を所定期間内に一斉送信させる。これにより、ユーザ端末が短時間で発見(Discover)可能なスモールセル数を増やすことができる。
(第3の態様)
 第3の態様では、マクロセル内に同期スモールセルと非同期スモールセルとが混在する場合であっても、ユーザ端末が接続するスモールセル基地局を効率的に検出する方法について説明する。
 上述したように、非同期NWにおいてスモール基地局Xが隣接マクロ基地局Bに対応する同期グループに同期する場合、マクロセル内に同期スモールセルと非同期スモールセルが混在する場合が生じる(図10参照)。図10において、セルグループAのマクロ基地局Aに接続するユーザ端末は、短い時間区間で複数の同期スモール基地局を発見(Discover)することができるが、非同期スモール基地局Xは同じ仕組み(同一の時間区間)では発見できないおそれがある。一方で、非同期スモール基地局Xであっても、トラフィック状況に応じてオフロード先とすることができるため、ユーザ端末は非同期スモール基地局Xも発見できる仕組みとすることが望ましい。
 そこで、第3の態様では、マクロ基地局がアシストできるスモール基地局(マクロ基地局配下のスモール基地局)の情報(以下、「リストA」とも記す)と、当該マクロ基地局が形成する同期層(Stratum)に同期するスモール基地局の情報(以下、「リストB」とも記す)をユーザ端末に通知する。各リストに含まれるスモール基地局(スモールセル)の情報としては、スモール基地局が運用するスモールセルの搬送波周波数および帯域幅、スモールセルのセルID(Physical cell ID)、スモールセル検出用信号の系列および検出用信号の時間・周波数リソース情報、検出用信号の帯域幅等が挙げられる。
 ここで、リストには後方互換性を有するキャリア(Backward compatible carrier)かそうでないか(New carrier type)かの情報が含まれていてもよい。後方互換性の有り無しでユーザ端末にとって適する検出動作が異なるため、かかる情報をリストに含めることでユーザ端末はキャリアごとに適切な検出動作を行うことができる。言い換えれば、余分な検出動作を省いて無駄な電力消費を低減できる。また、セルIDの代わりに仮想セルID(Virtual cell ID)を通知してもよい。仮想セルIDはセルIDよりも柔軟に割り当てできるため、例えばスモールセル間に同じ仮想セルIDを割り当てておき、ユーザ端末には1つのセルとして検出させることで、多数のセル候補をサーチする動作を省略することができる。
 リストAに含まれるスモール基地局とは、同期・非同期とは無関係にマクロ基地局と接続して連携できるスモール基地局を指す。例えば、上記図8における、マクロ・アシストな運用(マクロ連携)をするセルグループAに相当する。
 リストBに含まれるスモール基地局とは、リストAから非同期スモール基地局を除き、周辺マクロ基地局の配下であって自身のマクロ基地局に同期するスモール基地局を追加したスモール基地局を指す。上記図8において、無線同期グループに相当する。
 例えば、図10に示す態様では、マクロ基地局Aに対応するNWにおいて、マクロ基地局Aがアシストできる3つのスモール基地局がリストAに含まれ、隣接セルのマクロ基地局Bと同期するスモール基地局XをリストAから除いた2つのスモールセルがリストBに含まれる(図11参照)。一方で、マクロ基地局Bに対応するNWでは、マクロ基地局Bがアシストできる3つのスモール基地局がリストAに含まれ、隣接セルのマクロ基地局Aのスモール基地局の中で、マクロ基地局Bと同期するスモール基地局Xを追加した4つのスモール基地局がリストBに含まれる(図11参照)。
 ユーザ端末は、リストA及びリストBに基づいて、スモール基地局を発見(Discover)する。具体的に、ユーザ端末は、まずリストBに基づいて接続可能なスモール基地局の同期Discoveryを実行する。また、所定期間内に接続スモール基地局が見つからない場合には、リストAに基づいて非同期Discoveryを実行する。
 同期Discoveryは、マクロ基地局とタイミング同期するスモール基地局から送信されるDiscovery用のDL信号の検出が目的であり、ユーザ端末は、マクロ基地局Aにより指示された短い時間区間(短時間窓)の観測でスモール基地局の発見を試みる。マクロ基地局Aと同期しているスモール基地局であれば、Discovery用のDL信号を同期送信できるため、ユーザ端末は同期Discoveryにより複数のスモールセルを効率的に発見することが可能となる。
 非同期Discoveryは、マクロ基地局Aと必ずしもタイミング同期しないスモール基地局Xから送信されるDiscovery用のDL信号の検出が目的であり、ユーザ端末は、長い時間区間(例えば、数ms)でスモール基地局Xの発見を試みる必要がある。また、ユーザ端末が非同期スモール基地局Xを発見した場合であっても、接続するマクロ基地局Aと非同期であるため、当該スモール基地局Xとユーザ端末間で同期する必要がある。
 このように、ユーザ端末は、接続するマクロ基地局に対応する同期グループに含まれるスモール基地局(リストB)を優先して検出動作を行うことにより、最初に行う同期Discoveryでスモール基地局を検出できた場合には、非同期Discoveryを行わずにすむ。その結果、ユーザ端末は、非同期Discoveryに要する電力消費や、非同期のスモール基地局Xに対してユーザ端末が同期に要する消費電力を抑制することが可能となる。
 また、ユーザ端末は、同期Discoveryでスモール基地局を発見できない場合であっても、最終的にはリストAに含まれる全てのスモール基地局に対して検出動作を試みることができる。これにより、スモール基地局の同期・非同期によらず、スモール基地局数に応じたオフローディング効果を得ることが可能となる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記第1の態様~第3の態様に係る無線通信方法が適用される。なお、上記第1の態様~第3の態様に係る無線通信方法は、それぞれ単独で適用してもよいし、組み合わせて適用してもよい。
 図12は、本実施の形態に係る無線通信システムの概略構成図である。図12に示すように、無線通信システム1は、マクロセルC1を形成するマクロ基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成するスモール基地局12a及び12bとを備えている。ユーザ端末20は、マクロ基地局11、スモール基地局12a及び12b(以下、総称してスモール基地局12という)の少なくとも一つと無線通信可能に構成されている。なお、マクロ基地局11、スモール基地局12の数は、図12に示す数に限られない。
 マクロセルC1及びスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、マクロ基地局11及び各スモール基地局12は、基地局間インタフェース(例えば、光ファイバ、X2インタフェース)を介して互いに接続される。マクロ基地局11及び各スモール基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 なお、マクロ基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB(eNB)、無線基地局、送信ポイント(transmission point)などと呼ばれてもよい。スモール基地局12は、局所的なカバレッジを有する無線基地局であり、RRH(Remote Radio Head)、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、送信ポイント、eNodeB(eNB)などと呼ばれてもよい。ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 無線通信システム1では、マクロセル毎に形成されるネットワーク間が非同期となる場合(非同期運用)を想定している。また、無線通信システム1では、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。
 無線通信システム1では、下りリンクの通信チャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)と、下り制御チャネル(PDCCH:Physical Downlink Control Channel)、EPDCCH:Enhanced Physical Downlink Control Channel)、PCFICH、PHICH、報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
 また、無線通信システム1では、上りリンクの通信チャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)と、上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)や、送達確認情報(ACK/NACK)等が伝送される。
 以下、マクロ基地局11及びスモール基地局12を区別しない場合、無線基地局10と総称する。
 図13は、本実施の形態に係る無線基地局10の全体構成図である。無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、インタフェース部106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30からインタフェース部106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、インタフェース部106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 インタフェース部106は、基地局間インタフェース(例えば、光ファイバ、X2インタフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)する。あるいは、インタフェース部106は、所定のインタフェースを介して、上位局装置30と信号を送受信する。
 図14は、本実施の形態に係る無線基地局12(スモール基地局)の機能構成図である。なお、以下の機能構成は、無線基地局12が有するベースバンド信号処理部104などによって構成される。
 図14に示すように、無線基地局12は、同期情報制御部301、無線同期セル決定部302、無線同期制御部303、スケジューラ304、DL信号生成部305を具備する。
 同期情報制御部301は、インタフェース部106を介して他セルの無線基地局と信号の送受信(バックホールシグナリング)を行う。具体的に、同期情報制御部301は、無線同期可能と判断した無線基地局に対して、バックホールを介して同期情報リクエスト(Time sync info request)を送信する。また、同期情報制御部301は、同期情報リクエストを受信したマクロ基地局及び/又はスモール基地局からフィードバックされる同期情報を受信する。同期情報には、同期状態(sync又はasync)、同期階層レベル(Stratum LV)、同期先のセルグループを示す情報(例えば、Sync-NW ID)が含まれる。なお、同期情報制御部301は、周辺セルのサーチ及びMeasurementにより無線同期可能となる無線基地局を判断することができる。
 無線同期セル決定部302は、他セルの無線基地局から受信した当該他セルの同期情報に基づいて、無線同期するセル(同期先の無線基地局)を決定する。例えば、無線同期セル決定部302は、複数の他セルの無線基地局から同期情報を受信した場合に、同期階層レベル(Stratum LVが高い無線基地局)又は同期先のセルグループを示す情報(例えば、Sync-NW ID)の何れかを優先して、無線同期を行う無線基地局を決定する。
 同期情報制御部301は、無線同期セル決定部302において無線同期を行う無線基地局を決定した場合、当該無線同期を行う無線基地局の同期情報に基づいて、自身の「Stratum LV」と「Sync-NW ID」を保持する。なお、「Stratum LV」と「Sync-NW ID」を保持する記憶部を別途設けてもよい。
 無線同期制御部303は、無線同期セル決定部302で決定した同期先の無線基地局から送信されるDL信号を用いて、タイミング同期を行う。タイミング同期に適用可能なDL信号としては、例えば、参照信号(セル固有参照信号(CRS)、端末固有参照信号(DM-RS)、チャネル情報測定用参照信号(CSI-RS))、同期信号(P―SS、S-SS)等が挙げられる。
 スケジューラ304は、ユーザ端末20に送信するDL信号用の無線リソースの割当て(スケジューリング)を行う。例えば、ユーザ端末20に検出用信号(Discovery信号)を送信する場合、所定期間に検出用信号を送信するように制御する。また、当該スモール基地局12が、他のスモール基地局と同期している場合には、所定期間内に複数のスモール基地局から検出用信号が一斉に送信されるように制御される。
 DL信号生成部305は、スケジューラ304からの指示に基づいてDL信号を生成する。例えば、DL信号生成部305は、制御信号、データ信号、参照信号等を生成する。また、ユーザ端末20が当該スモール基地局を発見するための検出用信号(Discovery信号)を生成する。DL信号生成部305で生成された信号は、送受信部103を介してユーザ端末20や他セルの無線基地局に送信される。
 図15は、本実施の形態に係る無線基地局11(マクロ基地局)の機能構成図である。なお、以下の機能構成は、無線基地局11が有するベースバンド信号処理部104などによって構成される。
 図15に示すように、無線基地局11は、同期情報制御部311、無線同期セル指示部312、セルリスト生成部313、スケジューラ304、DL信号生成部305を具備する。
 同期情報制御部311は、インタフェース部106を介してスモール基地局12と信号の送受信(バックホールシグナリング)を行う。具体的に、同期情報制御部311は、配下のスモール基地局12に対して、バックホールを介して同期情報リクエスト(Time sync info request)を送信し、配下のスモール基地局からフィードバックされる同期情報を受信する。同期情報には、同期状態(sync又はasync)、同期階層レベル(Stratum LV)、同期先のセルグループを示す情報(例えば、Sync-NW ID)が含まれる。同期情報制御部311は、取得した同期情報に基づいて配下のスモール基地局の同期先(当該マクロ基地局に対する同期又は非同期)を判断する。このように、マクロ基地局が配下のスモール基地局の同期先を把握することにより、スケジューラ304において、同期スモール基地局と非同期スモール基地局とで、運用方法を適宜変更して制御することができる。
 また、無線同期セル指示部312は、配下のスモール基地局11に対して同期先を指示する。例えば、上記図8で示したように、所属するNW(マクロ基地局)と、無線同期するNW(マクロ基地局)と、が異なるスモール基地局に対して、同期するセルグループを示す情報(例えば、配下のマクロ基地局に対応するSync-NW ID)を指示する(上記図9参照)。
 セルリスト生成部313は、当該マクロ基地局11がアシストできるスモール基地局の情報(リストA)と、当該マクロ基地局11に対応する無線同期グループに同期するスモール基地局の情報(リストB)を生成する(上記図11参照)。セルリスト生成部313で生成されたリストは、上位レイヤシグナリング(例えば、RRCシグナリング、報知信号等)や下り制御情報を用いてユーザ端末20に送信される。
 図16は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ (Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 図17は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図17に示すように、ユーザ端末20が有するベースバンド信号処理部204は、DL信号復号部401、スモールセル検出部402、制御部403、UL信号生成部404を少なくとも有している。
 DL信号復号部401は、無線基地局11、12から送信されたDL信号を復号する。例えば、マクロ基地局11からスモール基地局に関する情報(リストA、B)が送信された場合(上記図11参照)には、当該リストの情報をスモールセル検出部402に出力する。
 スモールセル検出部402は、スモール基地局12から送信される検出用信号(Discovery信号)に基づいて、接続するスモール基地局を検出する。複数のスモール基地局を検出した場合には、受信品質等に基づいて所定のスモール基地局を選択する。また、マクロ基地局11から送信されたスモール基地局に関する情報(リストA、B)を受信した場合には、当該リストに基づいて、スモール基地局の検出を行う。
 制御部403は、無線基地局から送信された下り制御信号(UL grant)に基づいて、無線リソースに対する上り制御信号(フィードバック信号)と上りデータ信号の割当てを制御する。UL信号生成部404は、制御部403からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。また、UL信号生成部404は、制御部403からの指示に基づいて上りデータ信号を生成する。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。また、各実施の態様は適宜組み合わせて適用することが可能である。
 本出願は、2013年7月23日出願の特願2013-152670に基づく。この内容は、全てここに含めておく。
 

Claims (10)

  1.  他セルの無線基地局から送信される下りリンク信号を利用して無線同期を行う無線基地局であって、
     基地局間インタフェースを介して、他セルの無線基地局に対して同期情報リクエストを通知すると共に、他セルの無線基地局から通知される同期情報を取得する同期情報制御部と、
     取得した同期情報に基づいて無線同期を行う無線基地局を決定する決定部と、を有し、
     前記同期情報制御部が他セルの無線基地局から取得する同期情報は、当該他セルの無線基地局の同期状態、同期階層レベル及び同期グループを示す情報を含むことを特徴とする無線基地局。
  2.  前記同期グループを示す情報は、互いに同期するセルで構成されるセルグループ毎に割当てられたID、又は互いに同期するセルで構成されるセルグループにおいて同期階層レベルが最も高いセルのセルIDであることを特徴とする請求項1に記載の無線基地局。
  3.  前記同期情報制御部は、無線同期する他セルの無線基地局から通知された同期情報に基づいて、自身の同期階層レベル及び同期グループを示す情報を保持することを特徴とする請求項1又は請求項2に記載の無線基地局。
  4.  前記決定部は、複数の他セルの無線基地局から同期情報を受信した場合に、同期階層レベル又は同期グループを示す情報のいずれかを優先して、無線同期を行う無線基地局を決定することを特徴とする請求項1又は請求項2に記載の無線基地局。
  5.  前記同期情報制御部は、所属するネットワークから通知される無線同期すべき同期グループを示す情報を取得し、前記決定部は、通知された同期グループに含まれ、かつ同期階層レベルが最も高い無線基地局を無線同期する無線基地局として決定することを特徴とする請求項1又は請求項2に記載の無線基地局。
  6.  他セルの無線基地局から送信される下りリンク信号を利用して無線同期を行う複数のスモール基地局を配下に有する無線基地局であって、
     配下のスモール基地局に関する情報が規定された第1のリストと、同期するスモール基地局に関する情報が規定された第2のリストを生成するリスト生成部と、
     前記第1のリスト及び前記第2のリストをユーザ端末に通知する送信部と、を有することを特徴とする無線基地局。
  7.  基地局間インタフェースを介して、他セルの無線基地局に対して同期情報リクエストを通知すると共に、他セルの無線基地局から通知される同期情報を受信する同期情報制御部をさらに有し、
     前記リスト生成部は、他セルの無線基地局から通知される同期情報に基づいて前記第1のリスト及び前記第2のリストを生成することを特徴とする請求項6に記載の無線基地局。
  8.  マクロ基地局と、前記マクロ基地局配下の複数のスモール基地局とから送信される下りリンク信号を受信可能なユーザ端末であって、
     前記マクロ基地局配下のスモール基地局に関する情報が規定された第1のリストと、前記マクロ基地局に同期するスモール基地局に関する情報が規定された第2のリストを前記マクロ基地局から受信する受信部と、
     前記第1のリスト及び前記第2のリストを用いて、接続するスモール基地局の検出を行う検出部と、を有することを特徴とするユーザ端末。
  9.  前記検出部は、前記第2のリストを優先的に用いてスモール基地局を検出し、所定期間内にスモール基地局を検出できない場合に、前記第1のリストを用いてスモール基地局の検出を行うことを特徴とする請求項8に記載のユーザ端末。
  10.  他セルの無線基地局から送信される下りリンク信号を利用して無線同期を行う無線基地局の無線通信方法であって、
     基地局間インタフェースを介して、他セルの無線基地局に対して同期情報リクエストを通知すると共に、他セルの無線基地局から通知される同期情報を取得する工程と、
     取得した同期情報に基づいて無線同期を行う無線基地局を決定する工程と、を有し、
     他セルの無線基地局から取得する同期情報は、当該他セルの無線基地局の同期状態、同期階層レベル及び同期グループを示す情報を含むことを特徴とする無線通信方法。
     
PCT/JP2014/068218 2013-07-23 2014-07-08 無線基地局、ユーザ端末及び無線通信方法 WO2015012102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14829722.9A EP3026966B1 (en) 2013-07-23 2014-07-08 Wireless base station, user terminal, and wireless communication method
US14/906,053 US9820249B2 (en) 2013-07-23 2014-07-08 Radio base stations and user terminal for synchronization in an asynchronous network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-152670 2013-07-23
JP2013152670A JP6204100B2 (ja) 2013-07-23 2013-07-23 無線基地局及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2015012102A1 true WO2015012102A1 (ja) 2015-01-29

Family

ID=52393150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068218 WO2015012102A1 (ja) 2013-07-23 2014-07-08 無線基地局、ユーザ端末及び無線通信方法

Country Status (4)

Country Link
US (1) US9820249B2 (ja)
EP (1) EP3026966B1 (ja)
JP (1) JP6204100B2 (ja)
WO (1) WO2015012102A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136446A1 (en) * 2016-02-02 2017-08-10 Qualcomm Incorporated Timing synchronization coordination on a shared communication medium
CN110603873A (zh) * 2017-04-27 2019-12-20 夏普株式会社 基站装置、终端装置、通信方法以及集成电路

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3240212A1 (en) 2013-01-18 2017-11-01 Nokia Technologies Oy Controlled synchronization group selection
EP3175571B1 (en) * 2014-07-29 2020-06-17 Telefonaktiebolaget LM Ericsson (publ) Methods for adapting over-the-air synchronization to radio conditions
US11071074B2 (en) * 2017-06-08 2021-07-20 Qualcomm Incorporated Techniques and apparatuses for configuring resources for synchronization in a wireless backhaul network
JP6490748B2 (ja) * 2017-06-14 2019-03-27 ノキア テクノロジーズ オーユー 制御された同期グループの選択
US10849085B2 (en) 2017-10-09 2020-11-24 Qualcomm Incorporated Timing and frame structure in an integrated access backhaul (IAB) network
WO2019117764A1 (en) * 2017-12-11 2019-06-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for providing synchronization within a subnetwork comprising a plurality of nodes
US11228919B2 (en) * 2019-07-15 2022-01-18 Samsung Electronics Co., Ltd. Network synchronization for shared spectrum systems
CN110730498B (zh) * 2019-10-23 2022-09-30 深圳市慧宇系统有限公司 一种导航定位授时同步系统及其同步方法
CN114269011B (zh) * 2020-09-15 2023-06-27 Oppo广东移动通信有限公司 时钟同步方法及相关装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043413A1 (ja) * 2009-10-07 2011-04-14 住友電気工業株式会社 基地局装置
JP2012523767A (ja) * 2009-04-08 2012-10-04 クゥアルコム・インコーポレイテッド 同期ストラタム情報を搬送すること

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844289B2 (en) * 2006-03-06 2010-11-30 Intel Corporation Method and apparatus for synchronization of base stations in a broadband wireless access system
JP4828372B2 (ja) * 2006-10-27 2011-11-30 京セラ株式会社 無線通信端末及び基地局選択方法
US7793002B2 (en) * 2008-06-06 2010-09-07 Fisher-Rosemount Systems, Inc. Methods and apparatus for implementing a sequential synchronization hierarchy among networked devices
US20100054237A1 (en) * 2008-09-04 2010-03-04 Motorola, Inc. Synchronization for femto-cell base stations
US8614975B2 (en) * 2008-09-19 2013-12-24 Qualcomm Incorporated Synchronizing a base station in a wireless communication system
MX2012004863A (es) * 2009-10-30 2012-06-27 Nokia Siemens Networks Oy Deteccion ciega de henb para configuracion de jerarquia.
WO2011097770A1 (en) * 2010-02-15 2011-08-18 Nokia Siemens Networks Oy Synchronisation in a communication system
US20130122917A1 (en) * 2011-05-13 2013-05-16 Qualcomm Incorporated Method and apparatus for time and frequency tracking in clustered femtocell deployments
EP2742748A4 (en) * 2011-08-12 2015-08-26 Intel Corp SYSTEM AND METHOD FOR UPLINK POWER CONTROL IN A WIRELESS COMMUNICATION SYSTEM
EP3240212A1 (en) * 2013-01-18 2017-11-01 Nokia Technologies Oy Controlled synchronization group selection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523767A (ja) * 2009-04-08 2012-10-04 クゥアルコム・インコーポレイテッド 同期ストラタム情報を搬送すること
WO2011043413A1 (ja) * 2009-10-07 2011-04-14 住友電気工業株式会社 基地局装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"9.2.3.34 Time Synchronization Info", 3GPP TS 36.413 V11.4.0, June 2013 (2013-06-01), pages 146, XP050711885 *
"E-UTRA Further Advancements for E-UTRA Physical Layer Aspects", 3GPP TR 36.814
"Evolved UTRA and Evolved UTRAN Overall Description", 3GPP TS 36.300
ALCATEL-LUCENT ET AL.: "Discussion of small cell synchronization methods", 3GPP TSG-RAN WG1#73 R1-132061, 12 May 2013 (2013-05-12), XP050698337 *
CMCC: "Discussion on air-interface based synchronization for small cell enhancement", 3GPP TSG-RAN WG1#73 R1-132548, 11 May 2013 (2013-05-11), XP050698266 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136446A1 (en) * 2016-02-02 2017-08-10 Qualcomm Incorporated Timing synchronization coordination on a shared communication medium
CN108605302A (zh) * 2016-02-02 2018-09-28 高通股份有限公司 共享通信介质上的定时同步协调
US10219235B2 (en) 2016-02-02 2019-02-26 Qualcomm Incorporated Timing synchronization coordination on a shared communication medium
US10264541B2 (en) 2016-02-02 2019-04-16 Qualcomm Incorporated Operating mode coordination on a shared communication medium
CN108605302B (zh) * 2016-02-02 2021-01-19 高通股份有限公司 共享通信介质上的定时同步协调
CN110603873A (zh) * 2017-04-27 2019-12-20 夏普株式会社 基站装置、终端装置、通信方法以及集成电路
JPWO2018199162A1 (ja) * 2017-04-27 2020-03-12 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
JP7201587B2 (ja) 2017-04-27 2023-01-10 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
CN110603873B (zh) * 2017-04-27 2024-04-05 夏普株式会社 基站装置、终端装置、通信方法以及集成电路

Also Published As

Publication number Publication date
EP3026966A4 (en) 2017-03-22
EP3026966B1 (en) 2018-06-20
EP3026966A1 (en) 2016-06-01
US9820249B2 (en) 2017-11-14
JP6204100B2 (ja) 2017-09-27
US20160157197A1 (en) 2016-06-02
JP2015023541A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
JP6204100B2 (ja) 無線基地局及び無線通信方法
JP6093736B2 (ja) ユーザ端末、無線基地局、無線通信方法及び無線通信システム
JP6359815B2 (ja) ユーザ端末、無線基地局及び異周波測定方法
WO2019138500A1 (ja) ユーザ端末及び無線通信方法
WO2013024574A1 (ja) ハンドオーバ制御方法、無線通信端末及び無線通信装置
JP6161347B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2015174328A1 (ja) 無線基地局、ユーザ端末及び無線通信方法
JP6289818B2 (ja) ユーザ端末及び無線通信方法
US20200187104A1 (en) Terminal, radio communication method, and base station
JP6290554B2 (ja) 無線基地局および無線通信方法
JP6442140B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6239299B2 (ja) 無線基地局、ユーザ端末および無線通信方法
WO2020031324A1 (ja) ユーザ端末及び無線通信方法
EP4042762A1 (en) Methods for determining a muting pattern of ssb transmission for iab node measurement
JP6180844B2 (ja) 基地局及び無線通信制御方法
JP2015070300A (ja) 通信制御方法、基地局、及びユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14906053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014829722

Country of ref document: EP