WO2015011770A1 - 糸製造装置 - Google Patents

糸製造装置 Download PDF

Info

Publication number
WO2015011770A1
WO2015011770A1 PCT/JP2013/069815 JP2013069815W WO2015011770A1 WO 2015011770 A1 WO2015011770 A1 WO 2015011770A1 JP 2013069815 W JP2013069815 W JP 2013069815W WO 2015011770 A1 WO2015011770 A1 WO 2015011770A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
shaft
traverse
yarn
rotary shaft
Prior art date
Application number
PCT/JP2013/069815
Other languages
English (en)
French (fr)
Inventor
弘樹 高嶌
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to PCT/JP2013/069815 priority Critical patent/WO2015011770A1/ja
Priority to TW103124548A priority patent/TW201516202A/zh
Publication of WO2015011770A1 publication Critical patent/WO2015011770A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/015Gathering a plurality of forwarding filamentary materials into a bundle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2893Superposed traversing, i.e. traversing or other movement superposed on a traversing movement
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Definitions

  • the present invention relates to a yarn manufacturing apparatus for manufacturing a yarn from the fiber group while running the fiber group.
  • FIG. 8 of Patent Document 1 shows a twist driving mechanism for manufacturing carbon nanotube yarn by twisting a carbon nanotube fiber group, and a winding for winding a carbon nanotube yarn around a winding tube.
  • An apparatus is described that includes a take-up drive mechanism and a traverse drive mechanism that traverses carbon nanotube yarns in a take-up tube.
  • an object of the present invention is to provide a yarn manufacturing apparatus capable of manufacturing a yarn efficiently and stably.
  • the yarn manufacturing apparatus of the present invention is a yarn manufacturing apparatus that manufactures a yarn from the fiber group while traveling the fiber group, and rotates a winding shaft to which a winding tube is attached around its winding center line.
  • the winding drive mechanism that winds the yarn around the winding tube, and the winding tube is rotated with a predetermined line along the traveling path of the fiber group or yarn guided to the winding tube by the guide portion as a rotation center line.
  • a winding drive mechanism for producing a yarn by twisting the fiber group, and a winding tube is moved reciprocally along the winding center line of the winding shaft with respect to the guide portion.
  • a traverse drive mechanism that traverses the yarn in the tube, and a frame that supports the winding drive mechanism, the twisting drive mechanism, and the traverse drive mechanism, the winding drive mechanism includes a winding drive source fixed to the frame; The winding shaft is driven by the driving force of the winding drive source.
  • a winding power transmission mechanism that rotates around the winding center line, and the twist driving mechanism rotates a predetermined line by a twist driving source fixed to the frame and the driving force of the twist driving source.
  • a traverse drive mechanism that rotates the take-up tube as a center line, and the traverse drive mechanism is wound around the guide portion by the traverse drive source fixed to the frame and the drive force of the traverse drive source.
  • a traverse power transmission mechanism that relatively reciprocates the tube along the winding center line of the winding shaft.
  • a winding drive source, a twist driving source, and a traverse drive source are fixed to a frame that supports the winding drive mechanism, the twist driving mechanism, and the traverse driving mechanism. Therefore, the apparatus balance can be suitably maintained while speeding up the production of the yarn. Therefore, according to this yarn manufacturing apparatus, the yarn can be manufactured efficiently and stably.
  • the fiber group may be a carbon nanotube fiber group
  • the yarn may be a carbon nanotube yarn. Even when a carbon nanotube fiber group having a relatively low load resistance and a relatively small mass is targeted, according to the configuration described above, stable performance can be obtained in the manufactured carbon nanotube yarn.
  • the yarn manufacturing apparatus of the present invention may further include a substrate support portion that supports the carbon nanotube-formed substrate from which the carbon nanotube fiber group is drawn. According to this, the carbon nanotube fiber group can be stably supplied.
  • the winding tube is attached to the winding shaft so as to rotate together with the winding shaft and move in the winding center line direction with respect to the winding shaft.
  • the power transmission mechanism includes a twist rotating shaft that is rotated by a twist driving source, and a support that is attached to the twist rotating shaft and supports the winding shaft so as to be rotatable around the winding center line.
  • the take-up power transmission mechanism includes a take-up rotary shaft that is rotated by a take-up drive source, and a take-up operation conversion mechanism that converts the rotation operation of the take-up rotary shaft into the rotation operation of the take-up shaft,
  • the transmission mechanism includes a traverse rotating shaft that is rotated by a traverse driving source, a holding member that holds the winding tube and reciprocates in the direction of the winding center line with respect to the winding shaft, and a rotating operation of the traverse rotating shaft.
  • Traverser that converts the reciprocating movement of the holding member A motion conversion mechanism may include. According to this, the configuration that can suitably perform each of the winding operation, the twisting operation and the traverse operation by the respective driving forces of the winding drive source, the twist driving source and the traverse driving source fixed to the frame, It can be realized easily.
  • the twisting rotary shaft is arranged with a predetermined line as the rotation center line, and a support is attached to one end of the twisting rotary shaft, and the other end of the twisting rotary shaft
  • a winding drive source is connected to the part, and the winding rotary shaft is disposed inside the cylindrical twisting rotary shaft with a predetermined line as a rotation center line, and one end and the other end of the winding rotary shaft
  • the part protrudes from one end and the other end of the twisting rotary shaft, and a winding operation conversion mechanism is provided between the one end of the winding rotary shaft and the winding shaft via a support.
  • a winding drive source is connected to the other end of the winding rotary shaft, and the traverse rotary shaft is disposed inside the cylindrical winding rotary shaft with a predetermined line as a rotation center line.
  • One end portion and the other end portion of the winding protrude from the one end portion and the other end portion of the winding rotary shaft, respectively, and one end of the traverse rotary shaft
  • the traverse motion conversion mechanism is provided through the support, the other end portion of the traverse rotary shaft, the traverse drive source may be connected.
  • the yarn manufacturing apparatus of the present invention further includes a control unit that controls the twist drive source, the winding drive source, and the traverse drive source, and the control unit is configured to control the winding rotary shaft based on the rotational speed of the twist rotary shaft.
  • the drive source and the traverse drive source may be controlled. According to this, in the structure mentioned above, each of winding operation
  • the twist driving mechanism is configured so that the distance between the predetermined line and the center line of the winding tube is not less than the minimum winding radius and not more than the maximum winding radius of the winding tube.
  • the winding tube may be rotated using the line as the rotation center line. According to this, since the fluctuation of the traveling path of the fiber group or the yarn guided by the guide portion to the winding tube is further suppressed, the aggregation state of the yarn becomes more stable.
  • the minimum winding radius means the winding radius (corresponding to half the outer diameter of the winding tube) when no yarn is wound around the winding tube
  • the maximum winding radius means the winding radius. This means the winding radius when the maximum amount of yarn is wound on the take-up tube (corresponding to half the outer diameter of the yarn layer when the maximum amount of yarn is wound on the take-up tube).
  • FIG. 1 It is a top view of the yarn manufacturing apparatus of one embodiment of the present invention. It is a partial cross section figure of the twist winding apparatus of the yarn manufacturing apparatus of FIG. It is the figure which looked at the winding tube of the twist winding apparatus of FIG. 2 from the direction parallel to a predetermined line. It is a graph which shows the relationship of the rotational speed of each rotating shaft in the twist winding apparatus of FIG.
  • the yarn manufacturing apparatus 1 travels a carbon nanotube fiber group (hereinafter referred to as “CNT fiber group”) F while running the carbon nanotube fiber group (hereinafter referred to as “CNT yarn”) from the CNT fiber group F. )
  • a device for producing Y includes a substrate support unit 2, a twist winding device 6, and a control unit 10.
  • the substrate support part 2 and the twisting winding device 6 are arranged on a straight predetermined line L, and the CNT fiber group F follows the predetermined line L from the substrate support part 2 toward the twisting winding device 6. Can be run.
  • the control unit 10 controls the operation of the twist winding device 6.
  • the CNT fiber group F is a collection of a plurality of filaments (fibers) made of carbon nanotubes.
  • the CNT yarn Y is obtained by twisting the CNT fiber group F (actual twist or false twist).
  • upstream side in the traveling direction of the CNT fiber group F
  • downstream side in the traveling direction of the CNT fiber group F
  • the substrate support unit 2 supports a carbon nanotube-formed substrate (hereinafter referred to as “CNT-formed substrate”) S from which the CNT fiber group F is drawn out.
  • the CNT-forming substrate S is referred to as a carbon nanotube forest or a vertically aligned structure of carbon nanotubes, etc., and carbon with high density and high orientation on the substrate by a chemical vapor deposition method or the like.
  • Nanotubes for example, single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, etc.
  • the substrate for example, a glass substrate, a silicon substrate, a metal substrate, or the like is used.
  • the CNT fiber group F can be pulled out from the CNT-formed substrate S using a jig called a microdrill when the manufacture of the CNT yarn Y is started or when the CNT-formed substrate S is replaced. Further, the CNT fiber group F can be pulled out from the CNT-formed substrate S using a suction device, an adhesive tape, or the like instead of the micro drill.
  • the twisting winding device 6 winds the produced CNT yarn Y around a winding tube while twisting the CNT fiber group F drawn from the CNT-forming substrate S. More specifically, as shown in FIG. 2, the twist winding device 6 includes a winding drive mechanism 50 for winding the CNT yarn Y around the winding tube T, and a CNT fiber group F by twisting the CNT fiber group F. A twist driving mechanism 60 for producing the yarn Y and a traverse driving mechanism 70 for traversing the CNT yarn Y in the winding tube T are provided. Further, the twisting winding device 6 includes a frame 6 a that supports the winding driving mechanism 50, the twisting driving mechanism 60, and the traverse driving mechanism 70.
  • the twist drive mechanism 60 includes a twist drive motor (twist drive source) 61 fixed to the frame 6a, a twist power transmission mechanism 62 that rotates the winding tube T by the driving force of the twist drive motor 61, have.
  • the twisting power transmission mechanism 62 rotates the winding tube T with a predetermined line L along the traveling path of the CNT fiber group F to the CNT yarn Y guided by the guide portion 63 to the winding tube T as a rotation center line.
  • the winding tube T rotates with the winding shaft 53 of the winding drive mechanism 50 while being held by the holding member 73 of the traverse driving mechanism 70 and moves in the winding center line direction with respect to the winding shaft 53. As shown, it is attached to the take-up shaft 53.
  • the twisting power transmission mechanism 62 includes a twisting rotating shaft 64 rotated by a twisting drive motor 61, and a support body 65 that supports the winding shaft 53 so as to be rotatable around the winding center line. .
  • the twisting rotary shaft 64 is disposed with the predetermined line L as the rotation center line, and is pivotally supported by the frame 6a via a bearing.
  • a support body 65 is attached to a tip end portion (one end portion) 64 a that is an upstream end portion of the twisting rotary shaft 64.
  • the above-described guide portion 63 is attached to the support body 65.
  • a drive shaft 61a of a twist drive motor 61 is connected to a base end portion (other end portion) 64b which is a downstream end portion of the twist rotary shaft 64 via a plurality of spur gears 66.
  • the above-described twist driving mechanism 60 rotates the winding tube T around the predetermined line L along the traveling path of the CNT fiber group F to the CNT yarn Y guided by the guide portion 63 to the winding tube T. As a result, the CNT fiber group F is twisted to produce the CNT yarn Y.
  • the CNT fiber group F to the CNT yarn Y mean a state in which the CNT fiber group F remains, a state in which the CNT fiber group is twisted to become the CNT yarn Y, and an intermediate state thereof.
  • the twist driving mechanism 60 has a distance d between the predetermined line L and the center line CL of the winding tube T (that is, the winding center line of the winding shaft 53).
  • the take-up tube T is rotated with the predetermined line L as the rotation center line so that the take-up tube T has a minimum take-up radius R1 and a maximum take-up radius R2.
  • the minimum winding radius R1 means a winding radius (corresponding to half the outer diameter of the winding tube T) when the CNT yarn Y is not wound around the winding tube T, and the maximum winding radius R1.
  • the radius R2 is a winding radius when the maximum amount of CNT yarn Y is wound on the winding tube T (corresponding to half the outer diameter of the yarn layer when the maximum amount of yarn is wound on the winding tube T). Mean).
  • the predetermined line L comes into contact with the surface of the winding tube T or the surface of the yarn layer wound around the winding tube T.
  • the take-up drive mechanism 50 has a take-up drive motor (winding drive source) 51 fixed to the frame 6 a and a take-up shaft 53 wound by the driving force of the take-up drive motor 51.
  • a take-up power transmission mechanism 52 that rotates around the take-up center line.
  • the winding shaft 53 has a winding center line orthogonal to the predetermined line L.
  • the take-up power transmission mechanism 52 includes a take-up rotary shaft 54 that is rotated by a take-up drive motor 51, a take-up operation conversion mechanism 55 that converts a rotation operation of the take-up rotary shaft 54 into a rotation operation of the take-up shaft 53, and , Including.
  • the winding rotary shaft 54 is disposed inside the cylindrical twisted rotary shaft 64 with the predetermined line L as the rotation center line, and is pivotally supported by the frame 6a via a bearing.
  • a front end portion (one end portion) 54 a that is an upstream end portion of the winding rotary shaft 54 protrudes from a front end portion 64 a of the twist rotary shaft 64.
  • a drive shaft 51 a of a winding drive motor 51 is connected to the base end portion 54 b of the winding rotary shaft 54 via a plurality of spur gears 58.
  • a winding operation conversion mechanism 55 is provided between the front end portion 54 a of the winding rotary shaft 54 and the winding shaft 53 via a support 65. More specifically, the support body 65 rotatably supports the rotation shaft 56.
  • the rotating shaft 56 has a center line orthogonal to the predetermined line L and parallel to the winding center line of the winding shaft 53.
  • the winding rotary shaft 54 and the rotary shaft 56 are connected to each other by a bevel gear 55a and a bevel gear 55b that are respectively attached to the winding rotary shaft 54 and the rotary shaft 56 and mesh with each other.
  • the rotating shaft 56 and the winding shaft 53 are connected to each other by a plurality of spur gears 57 that are respectively attached to the rotating shaft 56 and the winding shaft 53 and mesh with each other.
  • the bevel gear 55 a, the bevel gear 55 b, the rotation shaft 56, and the spur gear 57 function as a winding operation conversion mechanism 55 that converts the rotation operation of the winding rotation shaft 54 into the rotation operation of the winding shaft 53.
  • the above-described winding drive mechanism 50 winds the CNT yarn Y around the winding tube T by rotating the winding shaft 53 to which the winding tube T is attached around the winding center line.
  • the traverse drive mechanism 70 has a traverse drive motor (traverse drive source) 71 fixed to the frame 6 a and the winding force of the take-up shaft 53 with respect to the guide portion 63 by the driving force of the traverse drive motor 71. And a traverse power transmission mechanism 72 that reciprocates along the center line.
  • a traverse drive motor traverse drive source
  • the guide portion 63 is reciprocated along the winding center line of the winding shaft 53 with respect to the winding tube T.
  • the winding tube T only needs to be reciprocally moved along the winding center line of the winding shaft 53.
  • the traverse power transmission mechanism 72 converts a traverse rotation shaft 74 rotated by a traverse drive motor 71, a holding member 73 that holds the winding tube T, and a rotation operation of the traverse rotation shaft 74 into a reciprocating movement operation of the holding member 73. And a traverse motion conversion mechanism 75.
  • the traverse rotation shaft 74 is disposed inside the cylindrical winding rotation shaft 54 with the predetermined line L as the rotation center line, and is supported by the frame 6a via a bearing.
  • a distal end portion (one end portion) 74 a that is an upstream end portion of the traverse rotating shaft 74 protrudes from the distal end portion 54 a of the winding rotating shaft 54.
  • a drive shaft 71 a of a traverse drive motor 71 is connected to a base end portion 74 b of the traverse rotation shaft 74 via a plurality of spur gears 79.
  • the holding member 73 is attached to the winding shaft 53 so as to reciprocate in the winding center line direction with respect to the winding shaft 53 while holding the winding tube T.
  • the winding shaft 53 is rotatable with respect to the holding member 73.
  • the winding tube T is detachable from the winding shaft 53 and the holding member 73.
  • a traverse motion conversion mechanism 75 is provided between the front end portion 74 a of the traverse rotation shaft 74 and the holding member 73 via a support 65. More specifically, the support body 65 rotatably supports the rotating shaft 76 and the ball screw shaft 77a. The rotating shaft 76 and the ball screw shaft 77 a have center lines that are orthogonal to the predetermined line L and parallel to the winding center line of the winding shaft 53. The traverse rotation shaft 74 and the rotation shaft 76 are connected to each other by a bevel gear 75a and a bevel gear 75b that are attached to the traverse rotation shaft 74 and the rotation shaft 76 and mesh with each other.
  • the rotating shaft 76 and the ball screw shaft 77a are connected to each other by a plurality of spur gears 78 that are respectively attached to the rotating shaft 76 and the ball screw shaft 77a and mesh with each other.
  • the holding member 73 is provided with a ball screw nut 77b that is screwed with the ball screw shaft 77a.
  • the bevel gear 75a, the bevel gear 75b, the rotation shaft 76, the spur gear 78, the ball screw shaft 77a, and the ball screw nut 77b are traverse operations for converting the rotation operation of the traverse rotation shaft 74 into the reciprocating movement operation of the holding member 73. It functions as a conversion mechanism 75.
  • the traverse drive mechanism 70 described above traverses the CNT yarn Y in the winding tube T by reciprocating the winding tube T relative to the guide portion 63 along the winding center line of the winding shaft 53.
  • a torque limiter is provided between the ball screw shaft 77a and the spur gear 78 attached thereto.
  • control of the twist drive motor 61, the winding drive motor 51, and the traverse drive motor 71 by the control unit 10 will be described.
  • the control unit 10 starts driving the twist drive motor 61, the take-up drive motor 51, and the traverse drive motor 71 to become a steady state (after time t1).
  • the rotational speed of the winding rotary shaft 54 is higher than the rotational speed of the twist rotary shaft 64 and the rotational speed of the traverse rotary shaft 74 is based on the rotational speed of the twin rotary shaft 64.
  • the twist drive motor 61, the take-up drive motor 51, and the traverse drive motor 71 are controlled so as to periodically become higher and lower speeds than the rotational speed.
  • the winding drive motor 51, the twist drive motor 61, and the traverse drive motor are mounted on the frame 6a that supports the winding drive mechanism 50, the twist drive mechanism 60, and the traverse drive mechanism 70. 71 is fixed. Therefore, the apparatus balance can be suitably maintained while increasing the production speed of the CNT yarn Y. Therefore, according to the yarn manufacturing apparatus 1, the CNT yarn Y can be manufactured efficiently and stably.
  • the structure of the power wiring can be simplified, and the power to the motors 51, 61, 71 can be simplified. Can be facilitated. Further, power consumption in each motor 51, 61, 71 can be reduced. Further, the pair of guide pins 63a of the guide part 63 rotate around the predetermined line L in a state where the pair of guide pins 63a are opposed to each other with the predetermined line L interposed therebetween. Therefore, a force that unnecessarily aggregates the CNT fiber group F is generated. CNT fiber group F can be suitably twisted.
  • the twisting power transmission mechanism 62 includes the twisting rotation shaft 64 and the support 65
  • the winding power transmission mechanism 52 includes the winding rotation shaft 54 and the winding operation conversion mechanism.
  • the traverse power transmission mechanism 72 includes a traverse rotating shaft 74, a holding member 73, and a traverse motion conversion mechanism 75.
  • the rotational speed of the winding rotary shaft 54 is higher than the rotational speed of the twinned rotary shaft 64 and the rotational speed of the traverse rotary shaft 74 based on the rotational speed of the twined rotary shaft 64.
  • the control unit 10 controls the twist drive motor 61, the winding drive motor 51, and the traverse drive motor 71 so that the rotation speed is periodically higher and lower than the rotation speed of the twist rotation shaft 64.
  • the yarn manufacturing apparatus 1 is provided with a substrate support portion 2 that supports the CNT-formed substrate S from which the CNT fiber group F is drawn. Thereby, the CNT fiber group F can be supplied stably.
  • the twist driving mechanism 60 has a distance d between the predetermined line L and the center line CL of the winding tube T that is equal to or greater than the minimum winding radius R1 of the winding tube T and the maximum winding radius R2.
  • the winding tube T is rotated with the predetermined line L as the rotation center line so as to be as follows. Thereby, for example, the distance d between the predetermined line L and the center line CL of the winding tube T becomes 0 (that is, the predetermined line L and the center line CL of the winding tube T intersect).
  • this invention is not limited to the said embodiment.
  • a supply source of the CNT fiber group F an apparatus that continuously synthesizes carbon nanotubes and supplies the CNT fiber group F instead of the CNT-forming substrate S may be used.
  • an agglomeration part such as a thin tube for aggregating the CNT fiber group F within a range in which the CNT fiber group F can be twisted in the twist winding device 6 is arranged upstream of the twist winding device 6.
  • the present invention can be applied to fiber groups other than carbon nanotube fiber groups and yarns other than carbon nanotube yarns.
  • the winding drive source and the twist drive source may not be separate drive sources, but may be a common drive source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

 糸製造装置1は、CNT(カーボンナノチューブ)繊維群Fを走行させつつ当該CNT繊維群FからCNT糸Yを製造する装置であって、巻取管Tが取り付けられた巻取軸53をその巻取中心線周りに回転させる巻取駆動機構50と、ガイド部63によって巻取管Tに案内されるCNT繊維群F乃至CNT糸Yの走行経路に沿った所定線Lを回転中心線として巻取管Tを回転させる撚掛駆動機構60と、ガイド部63に対して巻取管Tを巻取軸53の巻取中心線に沿って相対的に往復移動させるトラバース駆動機構70と、を備える。巻取駆動モータ51、撚掛駆動モータ61及びトラバース駆動モータ71は、巻取駆動機構50、撚掛駆動機構60及びトラバース駆動機構70を支持するフレーム6aに固定されている。

Description

糸製造装置
 本発明は、繊維群を走行させつつ当該繊維群から糸を製造する糸製造装置に関する。
 上述したような糸製造装置として、特許文献1の図8には、カーボンナノチューブ繊維群に撚りを掛けてカーボンナノチューブ糸を製造する撚掛駆動機構と、巻取管にカーボンナノチューブ糸を巻き取る巻取駆動機構と、巻取管においてカーボンナノチューブ糸をトラバースさせるトラバース駆動機構と、を備える装置が記載されている。
特開2010-65339号公報
 しかしながら、特許文献1の図8記載の装置は、重量物である巻取駆動モータ及びトラバース駆動モータが撚掛駆動モータによって回転させられるように構成されているため、巻取駆動モータ及びトラバース駆動モータに対する電力の供給が困難であるばかりか、糸の製造の高速化及び装置バランスの維持に問題が生じるおそれがある。
 そこで、本発明は、効率良く且つ安定的に糸を製造することができる糸製造装置を提供することを目的とする。
 本発明の糸製造装置は、繊維群を走行させつつ当該繊維群から糸を製造する糸製造装置であって、巻取管が取り付けられた巻取軸をその巻取中心線周りに回転させることにより、巻取管に糸を巻き取る巻取駆動機構と、ガイド部によって巻取管に案内される繊維群乃至糸の走行経路に沿った所定線を回転中心線として巻取管を回転させることにより、繊維群に撚りを掛けて糸を製造する撚掛駆動機構と、ガイド部に対して巻取管を巻取軸の巻取中心線に沿って相対的に往復移動させることにより、巻取管において糸をトラバースさせるトラバース駆動機構と、巻取駆動機構、撚掛駆動機構及びトラバース駆動機構を支持するフレームと、を備え、巻取駆動機構は、フレームに固定された巻取駆動源と、巻取駆動源の駆動力によって巻取軸をその巻取中心線周りに回転させる巻取動力伝達機構と、を有し、撚掛駆動機構は、フレームに固定された撚掛駆動源と、撚掛駆動源の駆動力によって、所定線を回転中心線として巻取管を回転させる撚掛動力伝達機構と、を有し、トラバース駆動機構は、フレームに固定されたトラバース駆動源と、トラバース駆動源の駆動力によって、ガイド部に対して巻取管を巻取軸の巻取中心線に沿って相対的に往復移動させるトラバース動力伝達機構と、を有する。
 この糸製造装置では、巻取駆動機構、撚掛駆動機構及びトラバース駆動機構を支持するフレームに、巻取駆動源、撚掛駆動源及びトラバース駆動源が固定されている。したがって、糸の製造の高速化を図りつつも、装置バランスを好適に維持することができる。よって、この糸製造装置によれば、効率良く且つ安定的に糸を製造することができる。
 本発明の糸製造装置においては、繊維群は、カーボンナノチューブ繊維群であり、糸は、カーボンナノチューブ糸であってもよい。耐荷重値が比較的低く且つ質量が比較的小さいカーボンナノチューブ繊維群が対象となる場合であっても、上述した構成によれば、製造されたカーボンナノチューブ糸において安定した性能を得ることができる。
 本発明の糸製造装置は、カーボンナノチューブ繊維群が引き出されるカーボンナノチューブ形成基板を支持する基板支持部を更に備えてもよい。これによれば、カーボンナノチューブ繊維群を安定して供給することができる。
 本発明の糸製造装置においては、巻取管は、巻取軸と共に回転し且つ巻取軸に対してその巻取中心線方向に移動するように、巻取軸に取り付けられており、撚掛動力伝達機構は、撚掛駆動源によって回転させられる撚掛回転軸と、撚掛回転軸に取り付けられ、巻取軸をその巻取中心線周りに回転可能に支持する支持体と、を含み、巻取動力伝達機構は、巻取駆動源によって回転させられる巻取回転軸と、巻取回転軸の回転動作を巻取軸の回転動作に変換する巻取動作変換機構と、を含み、トラバース動力伝達機構は、トラバース駆動源によって回転させられるトラバース回転軸と、巻取管を保持し、巻取軸に対してその巻取中心線方向に往復移動する保持部材と、トラバース回転軸の回転動作を保持部材の往復移動動作に変換するトラバース動作変換機構と、を含んでもよい。これによれば、フレームに固定された巻取駆動源、撚掛駆動源及びトラバース駆動源のそれぞれの駆動力によって巻取動作、撚掛動作及びトラバース動作のそれぞれを好適に実施し得る構成を、簡易に実現することができる。
 本発明の糸製造装置においては、撚掛回転軸は、所定線を回転中心線として配置されており、撚掛回転軸の一端部には、支持体が取り付けられ、撚掛回転軸の他端部には、撚掛駆動源が連結されており、巻取回転軸は、所定線を回転中心線として筒状の撚掛回転軸の内側に配置され、巻取回転軸の一端部及び他端部は、撚掛回転軸の一端部及び他端部からそれぞれ突出しており、巻取回転軸の一端部と巻取軸との間には、支持体を介して巻取動作変換機構が設けられ、巻取回転軸の他端部には、巻取駆動源が連結されており、トラバース回転軸は、所定線を回転中心線として筒状の巻取回転軸の内側に配置され、トラバース回転軸の一端部及び他端部は、巻取回転軸の一端部及び他端部からそれぞれ突出しており、トラバース回転軸の一端部と保持部材との間には、支持体を介してトラバース動作変換機構が設けられ、トラバース回転軸の他端部には、トラバース駆動源が連結されていてもよい。これによれば、フレームに固定された巻取駆動源、撚掛駆動源及びトラバース駆動源のそれぞれの駆動力によって巻取動作、撚掛動作及びトラバース動作のそれぞれを好適に実施し得る構成を、簡易に実現することができる。
 本発明の糸製造装置は、撚掛駆動源、巻取駆動源及びトラバース駆動源を制御する制御部を更に備え、制御部は、撚掛回転軸の回転速度を基準として、巻取回転軸の回転速度が撚掛回転軸の回転速度よりも高速となり、且つトラバース回転軸の回転速度が撚掛回転軸の回転速度よりも周期的に高速及び低速となるように、撚掛駆動源、巻取駆動源及びトラバース駆動源を制御してもよい。これによれば、上述した構成において、巻取動作、撚掛動作及びトラバース動作のそれぞれを好適に実施することができる。
 本発明の糸製造装置においては、撚掛駆動機構は、所定線と巻取管の中心線との距離が、巻取管の最小巻取半径以上、最大巻取半径以下となるように、所定線を回転中心線として巻取管を回転させてもよい。これによれば、ガイド部によって巻取管に案内される繊維群乃至糸の走行経路の変動がより一層抑制されるので、糸の凝集状態がより一層安定したものとなる。なお、最小巻取半径とは、巻取管に糸が巻き取られていない場合における巻取半径(巻取管の外径の半分に相当する)を意味し、最大巻取半径とは、巻取管に糸が最大量巻き取られた場合における巻取半径(巻取管に糸が最大量巻き取られた場合における糸層の外径の半分に相当する)を意味する。
 本発明によれば、効率良く且つ安定的に糸を製造することができる糸製造装置を提供することが可能となる。
本発明の一実施形態の糸製造装置の平面図である。 図1の糸製造装置の撚掛巻取装置の一部断面図である。 図2の撚掛巻取装置の巻取管を所定線に平行な方向から見た図である。 図2の撚掛巻取装置における各回転軸の回転速度の関係を示すグラフである。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1に示されるように、糸製造装置1は、カーボンナノチューブ繊維群(以下、「CNT繊維群」という)Fを走行させつつ当該CNT繊維群Fからカーボンナノチューブ糸(以下、「CNT糸」という)Yを製造する装置である。糸製造装置1は、基板支持部2と、撚掛巻取装置6と、制御部10と、を備えている。基板支持部2及び撚掛巻取装置6は、直線の所定線L上に配置されており、CNT繊維群Fは、基板支持部2から撚掛巻取装置6に向かって所定線Lに沿って走行させられる。制御部10は、撚掛巻取装置6の動作を制御する。なお、CNT繊維群Fは、カーボンナノチューブからなる糸条体(繊維)が複数集合したものである。CNT糸Yは、CNT繊維群Fに撚り(実撚り又は仮撚り)が掛けられたものである。以下、CNT繊維群Fの走行方向における上流側を単に「上流側」といい、CNT繊維群Fの走行方向における下流側を単に「下流側」という。
 基板支持部2は、CNT繊維群Fが引き出されるカーボンナノチューブ形成基板(以下、「CNT形成基板」という)Sを保持した状態で支持する。CNT形成基板Sは、カーボンナノチューブフォレスト(carbon nanotube forest)、或いは、カーボンナノチューブの垂直配向構造体等と称されるものであり、化学気相成長法等によって基板上に高密度且つ高配向にカーボンナノチューブ(例えば、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ等)が形成されたものである。基板としては、例えば、ガラス基板、シリコン基板、金属基板等が用いられる。なお、CNT糸Yの製造開始時、CNT形成基板Sの交換時等には、マイクロドリルと称される治具を用いて、CNT形成基板SからCNT繊維群Fを引き出すことができる。また、マイクロドリルに代えて、吸引装置、粘着テープ等を用いて、CNT形成基板SからCNT繊維群Fを引き出すことができる。
 撚掛巻取装置6は、CNT形成基板Sから引き出されたCNT繊維群Fに撚りを掛けつつ、製造されたCNT糸Yを巻取管に巻き取る。より具体的には、図2に示されるように、撚掛巻取装置6は、巻取管TにCNT糸Yを巻き取る巻取駆動機構50と、CNT繊維群Fに撚りを掛けてCNT糸Yを製造する撚掛駆動機構60と、巻取管TにおいてCNT糸Yをトラバースさせるトラバース駆動機構70と、を備えている。更に、撚掛巻取装置6は、巻取駆動機構50、撚掛駆動機構60及びトラバース駆動機構70を支持するフレーム6aを備えている。
 撚掛駆動機構60は、フレーム6aに固定された撚掛駆動モータ(撚掛駆動源)61と、撚掛駆動モータ61の駆動力によって巻取管Tを回転させる撚掛動力伝達機構62と、を有している。撚掛動力伝達機構62は、ガイド部63によって巻取管Tに案内されるCNT繊維群F乃至CNT糸Yの走行経路に沿った所定線Lを回転中心線として巻取管Tを回転させる。巻取管Tは、トラバース駆動機構70の保持部材73に保持された状態で、巻取駆動機構50の巻取軸53と共に回転し且つ巻取軸53に対してその巻取中心線方向に移動するように、巻取軸53に取り付けられている。
 撚掛動力伝達機構62は、撚掛駆動モータ61によって回転させられる撚掛回転軸64と、巻取軸53をその巻取中心線周りに回転可能に支持する支持体65と、を含んでいる。撚掛回転軸64は、所定線Lを回転中心線として配置されており、ベアリングを介してフレーム6aに軸支されている。撚掛回転軸64の上流側端部である先端部(一端部)64aには、支持体65が取り付けられている。支持体65には、上述したガイド部63が取り付けられている。これにより、ガイド部63の一対のガイドピン63aは、所定線Lを挟んで対向した状態で、所定線L周りに回転させられる。撚掛回転軸64の下流側端部である基端部(他端部)64bには、複数の平歯車66を介して撚掛駆動モータ61の駆動軸61aが連結されている。
 以上の撚掛駆動機構60は、ガイド部63によって巻取管Tに案内されるCNT繊維群F乃至CNT糸Yの走行経路に沿った所定線Lを回転中心線として巻取管Tを回転させることにより、CNT繊維群Fに撚りを掛けてCNT糸Yを製造する。なお、CNT繊維群F乃至CNT糸Yとは、CNT繊維群Fのままの状態、撚りが掛けられてCNT糸Yとなった状態、及びそれらの中間の状態を含む意味である。
 本実施形態では、図3に示されるように、撚掛駆動機構60は、所定線Lと巻取管Tの中心線CL(すなわち、巻取軸53の巻取中心線)との距離dが、巻取管Tの最小巻取半径R1以上、最大巻取半径R2以下となるように、所定線Lを回転中心線として巻取管Tを回転させる。なお、最小巻取半径R1とは、巻取管TにCNT糸Yが巻き取られていない場合における巻取半径(巻取管Tの外径の半分に相当する)を意味し、最大巻取半径R2とは、巻取管TにCNT糸Yが最大量巻き取られた場合における巻取半径(巻取管Tに糸が最大量巻き取られた場合における糸層の外径の半分に相当する)を意味する。これにより、所定線Lは、巻取管Tの表面、乃至、巻取管Tに巻き取られた糸層の表面に接することになる。
 図2に示されるように、巻取駆動機構50は、フレーム6aに固定された巻取駆動モータ(巻取駆動源)51と、巻取駆動モータ51の駆動力によって巻取軸53をその巻取中心線周りに回転させる巻取動力伝達機構52と、を有している。巻取軸53は、所定線Lと直交する巻取中心線を有している。
 巻取動力伝達機構52は、巻取駆動モータ51によって回転させられる巻取回転軸54と、巻取回転軸54の回転動作を巻取軸53の回転動作に変換する巻取動作変換機構55と、を含んでいる。巻取回転軸54は、所定線Lを回転中心線として筒状の撚掛回転軸64の内側に配置されており、ベアリングを介してフレーム6aに軸支されている。巻取回転軸54の上流側端部である先端部(一端部)54aは、撚掛回転軸64の先端部64aから突出している。巻取回転軸54の下流側端部である基端部(他端部)54bは、撚掛回転軸64の基端部64bから突出している。巻取回転軸54の基端部54bには、複数の平歯車58を介して巻取駆動モータ51の駆動軸51aが連結されている。
 巻取回転軸54の先端部54aと巻取軸53との間には、支持体65を介して巻取動作変換機構55が設けられている。より具体的には、支持体65は、回転軸56を回転可能に軸支している。回転軸56は、所定線Lと直交し且つ巻取軸53の巻取中心線に平行な中心線を有している。巻取回転軸54と回転軸56とは、巻取回転軸54及び回転軸56にそれぞれ取り付けられ且つ互いに噛み合う傘歯車55a及び傘歯車55bによって連結されている。回転軸56と巻取軸53とは、回転軸56及び巻取軸53にそれぞれ取り付けられ且つ互いに噛み合う複数の平歯車57によって連結されている。これにより、傘歯車55a、傘歯車55b、回転軸56及び平歯車57は、巻取回転軸54の回転動作を巻取軸53の回転動作に変換する巻取動作変換機構55として機能する。
 以上の巻取駆動機構50は、巻取管Tが取り付けられた巻取軸53をその巻取中心線周りに回転させることにより、巻取管TにCNT糸Yを巻き取る。
 トラバース駆動機構70は、フレーム6aに固定されたトラバース駆動モータ(トラバース駆動源)71と、トラバース駆動モータ71の駆動力によって、ガイド部63に対して巻取管Tを巻取軸53の巻取中心線に沿って往復移動させるトラバース動力伝達機構72と、を有している。なお、巻取管TにおいてCNT糸Yをトラバースさせる際には、例えば巻取管Tに対してガイド部63を巻取軸53の巻取中心線に沿って往復移動させるなど、ガイド部63に対して巻取管Tを巻取軸53の巻取中心線に沿って相対的に往復移動させることができればよい。
 トラバース動力伝達機構72は、トラバース駆動モータ71によって回転させられるトラバース回転軸74と、巻取管Tを保持する保持部材73と、トラバース回転軸74の回転動作を保持部材73の往復移動動作に変換するトラバース動作変換機構75と、を含んでいる。トラバース回転軸74は、所定線Lを回転中心線として筒状の巻取回転軸54の内側に配置されており、ベアリングを介してフレーム6aに軸支されている。トラバース回転軸74の上流側端部である先端部(一端部)74aは、巻取回転軸54の先端部54aから突出している。トラバース回転軸74の下流側端部である基端部(他端部)74bは、巻取回転軸54の基端部54bから突出している。トラバース回転軸74の基端部74bには、複数の平歯車79を介してトラバース駆動モータ71の駆動軸71aが連結されている。
 保持部材73は、巻取管Tを保持した状態で、巻取軸53に対してその巻取中心線方向に往復移動するように、巻取軸53に取り付けられている。巻取軸53は、保持部材73に対して回転可能となっている。巻取管Tは、巻取軸53及び保持部材73に対して着脱可能となっている。
 トラバース回転軸74の先端部74aと保持部材73との間には、支持体65を介してトラバース動作変換機構75が設けられている。より具体的には、支持体65は、回転軸76及びボールねじ軸77aを回転可能に軸支している。回転軸76及びボールねじ軸77aは、所定線Lと直交し且つ巻取軸53の巻取中心線に平行な中心線をそれぞれ有している。トラバース回転軸74と回転軸76とは、トラバース回転軸74及び回転軸76にそれぞれ取り付けられ且つ互いに噛み合う傘歯車75a及び傘歯車75bによって連結されている。回転軸76とボールねじ軸77aとは、回転軸76及びボールねじ軸77aにそれぞれ取り付けられ且つ互いに噛み合う複数の平歯車78によって連結されている。保持部材73には、ボールねじ軸77aと螺合するボールねじナット77bが設けられている。これにより、傘歯車75a、傘歯車75b、回転軸76、平歯車78、ボールねじ軸77a及びボールねじナット77bは、トラバース回転軸74の回転動作を保持部材73の往復移動動作に変換するトラバース動作変換機構75として機能する。
 以上のトラバース駆動機構70は、ガイド部63に対して巻取管Tを巻取軸53の巻取中心線に沿って相対的に往復移動させることにより、巻取管TにおいてCNT糸Yをトラバースさせる。なお、ボールねじ軸77aとそれに取り付けられた平歯車78との間には、トルクリミッタが設けられている。これにより、制御エラー等で万が一、保持部材73が支持体65等に接触した際にも、巻取回転軸54からの回転力の伝達が遮断されるので、各部品の損傷が防止される。
 次に、制御部10による撚掛駆動モータ61、巻取駆動モータ51及びトラバース駆動モータ71の制御について説明する。図4の(a)に示されるように、制御部10は、撚掛駆動モータ61、巻取駆動モータ51及びトラバース駆動モータ71の駆動を開始させ、定常状態となった後(時刻t1以降)は、撚掛回転軸64の回転速度を基準として、巻取回転軸54の回転速度が撚掛回転軸64の回転速度よりも高速となり、且つトラバース回転軸74の回転速度が撚掛回転軸64の回転速度よりも周期的に高速及び低速となるように、撚掛駆動モータ61、巻取駆動モータ51及びトラバース駆動モータ71を制御する。撚掛回転軸64上から、撚掛回転軸64、巻取回転軸54及びトラバース回転軸74の回転速度を捉えると、図4の(b)に示されるようになる。これにより、巻取管Tは、撚掛回転軸64の回転速度と巻取回転軸54の回転速度との差分に相当する差分回転速度で、巻取軸53の巻取中心線周りに回転させられることになる。同時に、巻取管Tは、ガイド部63に対して巻取軸53の巻取中心線に沿って往復移動させられることになる。なお、図4において、撚掛回転軸64、巻取回転軸54及びトラバース回転軸74のギア比は、同一であるものとする。
 以上説明したように、糸製造装置1では、巻取駆動機構50、撚掛駆動機構60及びトラバース駆動機構70を支持するフレーム6aに、巻取駆動モータ51、撚掛駆動モータ61及びトラバース駆動モータ71が固定されている。したがって、CNT糸Yの製造の高速化を図りつつも、装置バランスを好適に維持することができる。よって、糸製造装置1によれば、効率良く且つ安定的にCNT糸Yを製造することができる。
 このように、巻取駆動モータ51、撚掛駆動モータ61及びトラバース駆動モータ71をフレーム6aに固定することで、電力配線の構造を簡易化することができ、各モータ51,61,71に対する電力の供給を容易化することができる。また、各モータ51,61,71における電力の消費を低減することができる。更に、ガイド部63の一対のガイドピン63aが、所定線Lを挟んで対向した状態で、所定線L周りに回転するため、CNT繊維群Fを無用に凝集させるような力がCNT繊維群Fに作用することを防止し、CNT繊維群Fに好適に撚りを掛けることができる。
 また、糸製造装置1では、撚掛動力伝達機構62が、撚掛回転軸64及び支持体65を含んで構成され、巻取動力伝達機構52が、巻取回転軸54及び巻取動作変換機構55を含んで構成され、更に、トラバース動力伝達機構72が、トラバース回転軸74、保持部材73及びトラバース動作変換機構75を含んで構成されている。これにより、フレーム6aに固定された巻取駆動モータ51、撚掛駆動モータ61及びトラバース駆動モータ71のそれぞれの駆動力によって巻取動作、撚掛動作及びトラバース動作のそれぞれを好適に実施し得る構成を、簡易に実現することができる。
 また、糸製造装置1では、撚掛回転軸64の回転速度を基準として、巻取回転軸54の回転速度が撚掛回転軸64の回転速度よりも高速となり、且つトラバース回転軸74の回転速度が撚掛回転軸64の回転速度よりも周期的に高速及び低速となるように、制御部10が、撚掛駆動モータ61、巻取駆動モータ51及びトラバース駆動モータ71を制御する。これにより、上述した構成において、巻取動作、撚掛動作及びトラバース動作のそれぞれを好適に実施することができる。
 また、糸製造装置1には、CNT繊維群Fが引き出されるCNT形成基板Sを支持する基板支持部2が設けられている。これにより、CNT繊維群Fを安定して供給することができる。
 また、糸製造装置1では、撚掛駆動機構60が、所定線Lと巻取管Tの中心線CLとの距離dが、巻取管Tの最小巻取半径R1以上、最大巻取半径R2以下となるように、所定線Lを回転中心線として巻取管Tを回転させる。これにより、例えば、所定線Lと巻取管Tの中心線CLとの距離dが0となるように(すなわち、所定線Lと巻取管Tの中心線CLとが交差するように)、所定線Lを回転中心線として巻取管Tを回転させる場合に比べ、ガイド部63によって巻取管Tに案内されるCNT繊維群F乃至CNT糸Yの走行経路の変動がより一層抑制されるので、CNT糸Yの凝集状態がより一層安定したものとなる。
 以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。例えば、CNT繊維群Fの供給源として、CNT形成基板Sに替えて、カーボンナノチューブを連続的に合成してCNT繊維群Fを供給する装置等を用いてもよい。また、撚掛巻取装置6においてCNT繊維群Fに撚りを掛けられる程度の範囲内でCNT繊維群Fを凝集させる細管等の凝集部を、撚掛巻取装置6の上流側に配置してもよい。また、本発明は、カーボンナノチューブ繊維群以外の繊維群、及びカーボンナノチューブ糸以外の糸を対象とすることができる。また、本発明では、巻取駆動源と撚掛駆動源とを別々の駆動源とせず、共通の駆動源としてもよい。
 本発明によれば、効率良く且つ安定的に糸を製造することができる糸製造装置を提供することが可能となる。
 1…糸製造装置、2…基板支持部、6a…フレーム、10…制御部、50…巻取駆動機構、51…巻取駆動モータ(巻取駆動源)、52…巻取動力伝達機構、53…巻取軸、54…巻取回転軸、54a…先端部(一端部)、54b…基端部(他端部)、55…巻取動作変換機構、60…撚掛駆動機構、61…撚掛駆動モータ(撚掛駆動源)、62…撚掛動力伝達機構、63…ガイド部、64…撚掛回転軸、64a…先端部(一端部)、64b…基端部(他端部)、65…支持体、70…トラバース駆動機構、71…トラバース駆動モータ(トラバース駆動源)、72…トラバース動力伝達機構、73…保持部材、74…トラバース回転軸、74a…先端部(一端部)、74b…基端部(他端部)、75…トラバース動作変換機構。

Claims (7)

  1.  繊維群を走行させつつ当該繊維群から糸を製造する糸製造装置であって、
     巻取管が取り付けられた巻取軸をその巻取中心線周りに回転させることにより、前記巻取管に前記糸を巻き取る巻取駆動機構と、
     ガイド部によって前記巻取管に案内される前記繊維群乃至前記糸の走行経路に沿った所定線を回転中心線として前記巻取管を回転させることにより、前記繊維群に撚りを掛けて前記糸を製造する撚掛駆動機構と、
     前記ガイド部に対して前記巻取管を前記巻取軸の前記巻取中心線に沿って相対的に往復移動させることにより、前記巻取管において前記糸をトラバースさせるトラバース駆動機構と、
     前記巻取駆動機構、前記撚掛駆動機構及びトラバース駆動機構を支持するフレームと、を備え、
     前記巻取駆動機構は、
     前記フレームに固定された巻取駆動源と、
     前記巻取駆動源の駆動力によって前記巻取軸をその前記巻取中心線周りに回転させる巻取動力伝達機構と、を有し、
     前記撚掛駆動機構は、
     前記フレームに固定された撚掛駆動源と、
     前記撚掛駆動源の駆動力によって、前記所定線を前記回転中心線として前記巻取管を回転させる撚掛動力伝達機構と、を有し、
     前記トラバース駆動機構は、
     前記フレームに固定されたトラバース駆動源と、
     前記トラバース駆動源の駆動力によって、前記ガイド部に対して前記巻取管を前記巻取軸の前記巻取中心線に沿って相対的に往復移動させるトラバース動力伝達機構と、を有する、糸製造装置。
  2.  前記繊維群は、カーボンナノチューブ繊維群であり、前記糸は、カーボンナノチューブ糸である、請求項1記載の糸製造装置。
  3.  前記カーボンナノチューブ繊維群が引き出されるカーボンナノチューブ形成基板を支持する基板支持部を更に備える、請求項2記載の糸製造装置。
  4.  前記巻取管は、前記巻取軸と共に回転し且つ前記巻取軸に対してその前記巻取中心線方向に移動するように、前記巻取軸に取り付けられており、
     前記撚掛動力伝達機構は、
     前記撚掛駆動源によって回転させられる撚掛回転軸と、
     前記撚掛回転軸に取り付けられ、前記巻取軸をその前記巻取中心線周りに回転可能に支持する支持体と、を含み、
     前記巻取動力伝達機構は、
     前記巻取駆動源によって回転させられる巻取回転軸と、
     前記巻取回転軸の回転動作を前記巻取軸の回転動作に変換する巻取動作変換機構と、を含み、
     前記トラバース動力伝達機構は、
     前記トラバース駆動源によって回転させられるトラバース回転軸と、
     前記巻取管を保持し、前記巻取軸に対してその前記巻取中心線方向に往復移動する保持部材と、
     前記トラバース回転軸の回転動作を前記保持部材の往復移動動作に変換するトラバース動作変換機構と、を含む、請求項1~3のいずれか一項記載の糸製造装置。
  5.  前記撚掛回転軸は、前記所定線を前記回転中心線として配置されており、
     前記撚掛回転軸の一端部には、前記支持体が取り付けられ、前記撚掛回転軸の他端部には、前記撚掛駆動源が連結されており、
     前記巻取回転軸は、前記所定線を前記回転中心線として筒状の前記撚掛回転軸の内側に配置され、前記巻取回転軸の一端部及び他端部は、前記撚掛回転軸の前記一端部及び前記他端部からそれぞれ突出しており、
     前記巻取回転軸の前記一端部と前記巻取軸との間には、前記支持体を介して前記巻取動作変換機構が設けられ、前記巻取回転軸の前記他端部には、前記巻取駆動源が連結されており、
     前記トラバース回転軸は、前記所定線を前記回転中心線として筒状の前記巻取回転軸の内側に配置され、前記トラバース回転軸の一端部及び他端部は、前記巻取回転軸の前記一端部及び前記他端部からそれぞれ突出しており、
     前記トラバース回転軸の前記一端部と前記保持部材との間には、前記支持体を介して前記トラバース動作変換機構が設けられ、前記トラバース回転軸の前記他端部には、前記トラバース駆動源が連結されている、請求項4記載の糸製造装置。
  6.  前記撚掛駆動源、前記巻取駆動源及び前記トラバース駆動源を制御する制御部を更に備え、
     前記制御部は、前記撚掛回転軸の回転速度を基準として、前記巻取回転軸の回転速度が前記撚掛回転軸の前記回転速度よりも高速となり、且つ前記トラバース回転軸の回転速度が前記撚掛回転軸の前記回転速度よりも周期的に高速及び低速となるように、前記撚掛駆動源、前記巻取駆動源及び前記トラバース駆動源を制御する、請求項4又は5記載の糸製造装置。
  7.  前記撚掛駆動機構は、前記所定線と前記巻取管の中心線との距離が、前記巻取管の最小巻取半径以上、最大巻取半径以下となるように、前記所定線を前記回転中心線として前記巻取管を回転させる、請求項1~6のいずれか一項記載の糸製造装置。
PCT/JP2013/069815 2013-07-22 2013-07-22 糸製造装置 WO2015011770A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/069815 WO2015011770A1 (ja) 2013-07-22 2013-07-22 糸製造装置
TW103124548A TW201516202A (zh) 2013-07-22 2014-07-17 線製造裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069815 WO2015011770A1 (ja) 2013-07-22 2013-07-22 糸製造装置

Publications (1)

Publication Number Publication Date
WO2015011770A1 true WO2015011770A1 (ja) 2015-01-29

Family

ID=52392853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069815 WO2015011770A1 (ja) 2013-07-22 2013-07-22 糸製造装置

Country Status (2)

Country Link
TW (1) TW201516202A (ja)
WO (1) WO2015011770A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119747A1 (ja) * 2006-04-13 2007-10-25 Toyo Boseki Kabushiki Kaisha 微細炭素繊維撚糸を連続的に製造する方法、装置、及び該方法によって製造された微細炭素繊維撚糸
JP2010065339A (ja) * 2008-09-10 2010-03-25 Toray Ind Inc カーボンナノチューブ連続繊維の製造方法および製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246746A (en) * 1979-01-31 1981-01-27 Standard Oil Company (Indiana) Method and apparatus for winding and twisting yarn
NL1024504C2 (nl) * 2003-10-10 2005-04-12 Ten Cate Thiolon Bv Inrichting voor het opwikkelen van een langgerekt, draadvormig lichaam op een wikkellichaam.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119747A1 (ja) * 2006-04-13 2007-10-25 Toyo Boseki Kabushiki Kaisha 微細炭素繊維撚糸を連続的に製造する方法、装置、及び該方法によって製造された微細炭素繊維撚糸
JP2010065339A (ja) * 2008-09-10 2010-03-25 Toray Ind Inc カーボンナノチューブ連続繊維の製造方法および製造装置

Also Published As

Publication number Publication date
TWI561695B (ja) 2016-12-11
TW201516202A (zh) 2015-05-01

Similar Documents

Publication Publication Date Title
JP5954496B2 (ja) 糸製造装置
TWI551743B (zh) Line manufacturing device and agglomeration part
JP5943149B2 (ja) 糸製造装置
US20100126134A1 (en) Nanofibre yarns
JP2009074219A (ja) 糸条巻取機、及び仮撚加工機
JP2005255414A (ja) 連続繊維束のガイド装置、同ガイド装置を備えた連続繊維束の巻取機と同機による製造方法、及び同製造方法により得られる炭素繊維ボビン
JP4983950B2 (ja) 繊維束の綾振り装置、繊維束パッケージの製造装置および製造方法
EP2662322B1 (en) Yarn winding apparatus
KR20210060565A (ko) 필라멘트 와인딩 장치
WO2015011770A1 (ja) 糸製造装置
WO2015011767A1 (ja) 糸製造装置
CN210594643U (zh) 一种精密交错卷绕机
JP2008037650A (ja) 繊維束の巻取装置および繊維束パッケージの製造方法
WO2019093003A1 (ja) フィラメントワインディング装置
CN110950163A (zh) 纺织纱线的无槽排线装置
JP2022092651A (ja) 繊維巻取装置
CN102418173B (zh) 纺纱机械
JP2000159434A (ja) 糸条巻取機
JPH11181641A (ja) 交互撚糸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP