WO2015010768A1 - Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore - Google Patents

Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore Download PDF

Info

Publication number
WO2015010768A1
WO2015010768A1 PCT/EP2014/001832 EP2014001832W WO2015010768A1 WO 2015010768 A1 WO2015010768 A1 WO 2015010768A1 EP 2014001832 W EP2014001832 W EP 2014001832W WO 2015010768 A1 WO2015010768 A1 WO 2015010768A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
content
boron
weight
copper
Prior art date
Application number
PCT/EP2014/001832
Other languages
German (de)
English (en)
Inventor
Michael Scharf
Jochen Aufrecht
Original Assignee
Wieland-Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51063400&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015010768(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wieland-Werke Ag filed Critical Wieland-Werke Ag
Priority to EP14735475.7A priority Critical patent/EP3024956B1/fr
Priority to EP17001201.7A priority patent/EP3260561B1/fr
Publication of WO2015010768A1 publication Critical patent/WO2015010768A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising

Definitions

  • the invention relates to a copper casting alloy.
  • the invention relates to a copper-zinc-silicon alloy in which boron and iron and optionally nickel are added.
  • molded parts made of copper alloys are produced as castings.
  • molded parts are fittings, elbows, tees for media-carrying piping systems, components for pumps and valves as well as structural parts in mechanical and plant engineering and in vehicle construction.
  • silicon-containing brasses are used as material for this purpose.
  • the homogeneity of the structure is achieved by forming.
  • the material In order to achieve a homogeneous structure without forming steps, the material must already have a fine-grained structure in the cast state. After casting, the molding is in many cases by machining, grinding or polishing, such as sealing surfaces, reworked. For this purpose, the material must be free from voids and hard particles. Furthermore, a coarse dendritic microstructure has a negative effect on the corrosion resistance of the material. In the production of castings, the material is usually melted and poured twice: the first time the alloy is melted, the alloy composition is roughly adjusted.
  • the alloy is poured into ingots.
  • the ingots are melted down and the alloy is cast into moldings.
  • a change in the alloy composition during this second reflow and pouring operation is undesirable but unavoidable due to the burning of some elements such as Zn, Zr or P.
  • the casting condition after the second casting is crucial.
  • EP 1 777 305 A1 proposes to add 0.0005 to 0.04% zircon for grain refining to a copper-zinc-silicon alloy.
  • a disadvantage of zirconium is its burning during melting and casting. In the production of castings, it is therefore difficult to ensure the desired zirconium content in the finished component.
  • EP 1 817 438 B1 it is proposed to add 0.05 to 2% by weight of manganese to a copper-zinc-silicon alloy in order to improve the microstructure. It is also proposed to add to the alloy additionally 0.01 to 0.05 wt .-% zirconium as grain refining agent. This is consistent with studies showing that the addition of manganese without zirconium does not cause grain refining.
  • boron as a grain refining agent for copper alloys.
  • DE 10 2005 024 037 A1 proposes adding 0.00001 to 0.5% boron to a copper-zinc-silicon alloy. Boron-fines of small amounts of boron are detected by alloys containing approximately 76% copper, 21% zinc and 3% silicon.
  • the invention has for its object to provide improved copper casting alloys.
  • a grain refining of the cast structure should be able to be achieved largely independently of the zinc or copper content.
  • grain refining agents for copper contents greater than 80% by weight are particularly desirable.
  • the invention includes a copper alloy having the following composition [in% by weight]: Cu 70.0 to 97.0%,
  • the ratio of boron content and the sum of iron and nickel content is at least 0.025 and at most 0.12.
  • the invention is based on the consideration that by the simultaneous addition of boron and iron to a silicon-containing copper-zinc alloy, a grain refining of the cast structure occurs when boron content and iron content are in a certain ratio to one another. Iron can be partially replaced by nickel. The ratio of boron content and the sum of iron and nickel content is at least 0.025 and at most 0.12. The respective element contents are defined as weight aspects of the total alloy. Are boron content and the sum of iron and nickel content in the relation to each other, iron borides or nickel borides or iron-nickel Mischboride can form. These borides lead to the formation of a fine grain in the cast structure of the material.
  • the alloy may contain tin.
  • Tin improves the corrosion resistance of the material. With tin contents greater than 2.0% by weight, unwanted tin blends may occur due to the interaction of all alloy constituents.
  • the alloy may contain phosphorus.
  • phosphorus serves to deoxidize the melt. Furthermore, it can favorably influence the formation of the initial cast structure and the corrosion properties. Phosphorus increases the fluidity of the melt and reduces the susceptibility of the material to stress corrosion cracking.
  • the lead content of the alloy according to the invention is limited to a maximum of 0.25 wt .-%.
  • the lead content of the alloy may be at most
  • the alloy may contain small amounts of antimony and / or arsenic. These two elements reduce the tendency of the material for Entzinkung.
  • the ratio of boron content and the sum of iron and nickel content at least 0.05 and at most 0.075.
  • the boron content may be at least 0.005% by weight, more preferably at least 0.01% by weight and at most 0.025% by weight.
  • Boron contents of at least 0.005 wt .-%, preferably at least 0.01 wt .-%, in conjunction with iron and optionally nickel borides can form particularly rapidly. With a boron content greater than 0.025 wt .-% can lead to the formation of undesirable large borides.
  • the iron content may be at least 0.1% by weight and at most 0.5% by weight.
  • This preferred selection of iron content provides stoichiometrically particularly favorable conditions for the formation of borides in suitable frequency and size.
  • this preferred iron content is combined with a boron content of not less than 0.01% by weight and not more than 0.025 Wt .-%, already arises at the first casting of the alloy, a fine-grained structure.
  • the nickel content may amount to at most 0.3 wt .-%.
  • nickel can at least partially replace the iron.
  • the sum of iron and nickel content at least 0.1 wt .-% and at most 0.5 wt .-% amount.
  • the iron content of the alloy may be more than 80% by weight, preferably at least 81% by weight. Copper contents of more than 80% by weight make the alloy particularly corrosion-resistant and therefore suitable for use in fluid-carrying piping systems, such as drinking water pipes.
  • the silicon content in this copper content is typically at least 3 wt .-% and at most 4 wt .-%.
  • the zinc content is then below 16 wt .-%, and is preferably at least 8 wt .-% and at most
  • the invention further includes the use of boron and iron in combination as grain refining agents in copper-zinc-silicon alloys.
  • the ratio of boron content of the alloy [in% by weight] and iron content of the alloy [in% by weight] is at least 0.025 and at most 0, 12.
  • the copper-zinc-silicon alloy may have the following composition [in wt. -%] exhibit:
  • boron and iron in the above ratio of contents
  • grain refining of the cast structure may occur in a copper-zinc-silicon alloy.
  • the boron content is preferably at least 0.005% by weight and at most 0.025% by weight.
  • the iron content is preferably at least 0, 1 wt .-% and at most 0.5 wt .-%.
  • Grain refining of copper-zinc-silicon alloys includes all the above-described preferred embodiments of a silicon-containing copper-zinc alloy according to the invention.
  • the invention further includes the use of boron, iron and nickel in combination as grain refining agents in copper-zinc-silicon alloys.
  • the ratio of boron content of the alloy [in wt .-%] and the sum of iron and nickel content of the alloy [in wt .-%] at least 0.025 and at most 0.12, the copper-zinc-silicon alloy can have the following composition [in% by weight]:
  • grain refining of the cast structure may occur in a copper-zinc-silicon alloy.
  • the boron content is at least 0.005 wt .-% and at most 0.025 wt .-%.
  • the iron content is preferably at least 0.1% by weight and at most 0.5% by weight.
  • the nickel content is preferably at least 0.05% by weight and at most 0.3% by weight.
  • the aspect of the inventive use of boron, iron and nickel for grain refining of copper-zinc-silicon alloys includes all of the above-described preferred embodiments of a silicon-containing copper-zinc alloy according to the invention. The invention will be explained in more detail with reference to the embodiments shown in Table 1.
  • Table 1 shows the composition in% by weight of 18 test alloys.
  • the penultimate column of the table gives the ratio of boron content and the sum of iron and nickel content.
  • the alloys were melted and poured off.
  • the individual casts were melted down again and poured off a second time.
  • the samples were characterized metallographically.
  • the last column of the table indicates whether the structure after the second casting was coarse or fine grained.
  • Samples 1 to 3 contain no boron.
  • the cast structure is always coarse-grained.
  • Sample 4 and sample 1 1 contain small amounts of boron. Again, the structure is coarse-grained.
  • Samples 5 to 10 contain both boron (0.01 to 0.02 wt%) and iron (0.1 to 0.3 wt%).
  • Sample 8 additionally contains 0.4% by weight of tin.
  • a fine-grained cast structure is always to be observed after the second casting. The quotient of boron content and iron content in these samples is between 0.03 and 0.1. The addition of tin has no influence on the formation of the fine-grained casting structure.
  • samples 5, 7, 8 and 15 in contrast to the other samples after the first casting have a fine-grained structure. These samples are characterized in that the quotient of boron content and the sum of iron and nickel content is between 0.05 and 0.065. If one chooses the alloy composition so that said
  • sample 18 On the basis of sample 18, the influence of manganese on the cast structure was examined in the form of a random sample. Sample 18 contains no boron but about 0.08 wt% manganese. The manganese-containing sample always shows a coarse-grained cast structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

L'invention concerne un alliage de cuivre comprenant la composition suivante [en % en poids] : Cu 70,0 à 97,0 % ; Si 2,0 à 4,5 % ; B 0,002 à 0,03 % ; Fe 0,01 à 1,0 % ; sélectivement encore jusqu'à 2,0 % de Sn, sélectivement encore jusqu'à 0,4 % de Ni, sélectivement encore jusqu'à 0,2 % de P, sélectivement encore jusqu'à 0,25 % de Pb, sélectivement respectivement encore jusqu'à 0,15 % de As ou de Sb, le reste étant Zn ainsi que des impuretés inévitables. Selon l'invention, le rapport entre la teneur en bore et la somme de la teneur en fer et en nickel atteint au moins 0,025 et au maximum 0,12. L'invention concerne en outre l'utilisation de bore et de fer et éventuellement encore de nickel comme moyens d'affinage des grains pour des alliages de cuivre, de zinc et de silicium.
PCT/EP2014/001832 2013-07-24 2014-07-03 Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore WO2015010768A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14735475.7A EP3024956B1 (fr) 2013-07-24 2014-07-03 Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore
EP17001201.7A EP3260561B1 (fr) 2013-07-24 2014-07-03 Affinement de grains d'alliages de coulée cuivre/zinc/silicium à l'aide de fer et de bore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013012288.0 2013-07-24
DE102013012288.0A DE102013012288A1 (de) 2013-07-24 2013-07-24 Korngefeinte Kupfer-Gusslegierung

Publications (1)

Publication Number Publication Date
WO2015010768A1 true WO2015010768A1 (fr) 2015-01-29

Family

ID=51063400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/001832 WO2015010768A1 (fr) 2013-07-24 2014-07-03 Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore

Country Status (4)

Country Link
EP (2) EP3260561B1 (fr)
DE (1) DE102013012288A1 (fr)
ES (1) ES2813073T3 (fr)
WO (1) WO2015010768A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002826A1 (fr) 1989-08-18 1991-03-07 London & Scandinavian Metallurgical Co. Limited Affinage du grain d'alliages a base de cuivre
DE102005024037A1 (de) 2004-10-11 2006-04-13 Diehl Metall Stiftung & Co.Kg Kupfer-Zink-Silizium-Legierung, deren Verwendung und deren Herstellung
EP1777305A1 (fr) 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Moulage d'alliage de cuivre avec des granules de cristal raffiné
EP1817438B1 (fr) 2005-12-14 2008-10-01 Gebr. Kemper GmbH + Co. KG Metallwerke Alliage de cuivre peu sensible aux migrations
WO2009047919A1 (fr) * 2007-10-10 2009-04-16 Toto Ltd. Laiton de décolletage exempt de plomb présentant une excellente aptitude à la coulée
US20090263272A1 (en) * 2007-10-10 2009-10-22 Toru Uchida Lead-free free-machining brass having improved castability
WO2013047991A1 (fr) * 2011-09-30 2013-04-04 Poongsan Corporation Alliage de décolletage en cuivre sans plomb et son procédé de production
CN103114220A (zh) * 2013-02-01 2013-05-22 路达(厦门)工业有限公司 一种热成型性能优异的无铅易切削耐蚀黄铜合金

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115538A (ja) * 1989-09-29 1991-05-16 Tsuneaki Mikawa 粒子分散強化特殊銅合金
JPH04180531A (ja) * 1990-11-14 1992-06-26 Nikko Kyodo Co Ltd 通電材料
US5893953A (en) * 1997-09-16 1999-04-13 Waterbury Rolling Mills, Inc. Copper alloy and process for obtaining same
US20070039817A1 (en) * 2003-08-21 2007-02-22 Daniels Brian J Copper-containing pvd targets and methods for their manufacture
CN100510132C (zh) 2004-10-11 2009-07-08 迪尔金属合作两合公司 铜-锌-硅合金、其用途和其制备
US20070253858A1 (en) * 2006-04-28 2007-11-01 Maher Ababneh Copper multicomponent alloy and its use

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002826A1 (fr) 1989-08-18 1991-03-07 London & Scandinavian Metallurgical Co. Limited Affinage du grain d'alliages a base de cuivre
EP1777305A1 (fr) 2004-08-10 2007-04-25 Sanbo Shindo Kogyo Kabushiki Kaishah Moulage d'alliage de cuivre avec des granules de cristal raffiné
DE102005024037A1 (de) 2004-10-11 2006-04-13 Diehl Metall Stiftung & Co.Kg Kupfer-Zink-Silizium-Legierung, deren Verwendung und deren Herstellung
EP1817438B1 (fr) 2005-12-14 2008-10-01 Gebr. Kemper GmbH + Co. KG Metallwerke Alliage de cuivre peu sensible aux migrations
WO2009047919A1 (fr) * 2007-10-10 2009-04-16 Toto Ltd. Laiton de décolletage exempt de plomb présentant une excellente aptitude à la coulée
US20090263272A1 (en) * 2007-10-10 2009-10-22 Toru Uchida Lead-free free-machining brass having improved castability
WO2013047991A1 (fr) * 2011-09-30 2013-04-04 Poongsan Corporation Alliage de décolletage en cuivre sans plomb et son procédé de production
CN103114220A (zh) * 2013-02-01 2013-05-22 路达(厦门)工业有限公司 一种热成型性能优异的无铅易切削耐蚀黄铜合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. ROMANKIEWICZ ET AL., METALL, vol. 48, no. 11-94, pages 865 - 871

Also Published As

Publication number Publication date
DE102013012288A1 (de) 2015-01-29
ES2813073T3 (es) 2021-03-22
EP3024956B1 (fr) 2018-06-27
EP3024956A1 (fr) 2016-06-01
EP3260561A1 (fr) 2017-12-27
EP3260561B1 (fr) 2020-06-24

Similar Documents

Publication Publication Date Title
EP1840235B1 (fr) Alliage de magnésium et son procédé de fabrication
DE19937184B4 (de) Magnesiumlegierung für Hochtemperatur-Anwendungen
DE112010002575B4 (de) Recycelte Magnesiumlegierung, Verfahren zur Verbesserung der Korrosionsbeständigkeit einer recycelten Magnesiumlegierung und Magnesiumlegierung
EP2657360B1 (fr) Alliage à coulée sous pression à base d'Al-Si présentant en particulier un aluminium secondaire
DE3834460C2 (fr)
EP3235916B1 (fr) Alliage de moulage
DE102016219711B4 (de) Aluminiumlegierung zum Druckgießen und Verfahren zu ihrer Hitzebehandlung
DE112018005321T5 (de) Druckguss-aluminiumlegierung und funktionsbauteil unter verwendung dieser
EP1712648A2 (fr) Alliage cuivre-zinc et utilisation d'un tel alliage
EP2872660B1 (fr) Piéce moulée d'un alliage de cuivre résistant à la corrosion
EP3581667B1 (fr) Pièces moulées d'un alliage de cuivre résistant à la corrosion et pouvant être usiné
DE1458428B2 (de) Kupferlegierung
DE112014002690T5 (de) Kupferlegierung
DE889984C (de) Verwendung von Kupfer-Zink-Legierungen fuer spanabhebend zu bearbeitende Werkstuecke
WO1993024670A1 (fr) Alliage de laiton
EP3024956B1 (fr) Alliage de fonderie en cuivre à grains affinés comprenant du fer et du bore
EP1980633B1 (fr) Usage d'un alliage de cuivre pour un vis sans fin
EP2960350B1 (fr) Alliage de fonte au cuivre
DE3828397A1 (de) Hochfeste, leicht giessbare zinklegierung
DE202007019373U1 (de) Verwendung einer Bronzelegierung für ein Schneckenzahnrad
DE934017C (de) Magnesiumlegierungen
DE1201562C2 (de) Verfahren zur herstellung von porenarmen, warmrissunempfindlichen druckfussteilen aus almgsi-legierungen
DE102019132440A1 (de) Verfahren zur additiven Herstellung eines dreidimensionalen Objekts
AT412725B (de) Mittel zur beeinflussung der erstarrungsstruktur von magnesium und magnesiumlegierungen
DE102019106131A1 (de) Verfahren zur Herstellung von Bauteilen für medienführende Gas- oder Wasserleitungen sowie dadurch hergestelltes Bauteil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14735475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014735475

Country of ref document: EP