WO2015010740A1 - Agencement d'étanchéité pour turbomachine - Google Patents

Agencement d'étanchéité pour turbomachine Download PDF

Info

Publication number
WO2015010740A1
WO2015010740A1 PCT/EP2013/065681 EP2013065681W WO2015010740A1 WO 2015010740 A1 WO2015010740 A1 WO 2015010740A1 EP 2013065681 W EP2013065681 W EP 2013065681W WO 2015010740 A1 WO2015010740 A1 WO 2015010740A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing strip
sealing
lower casing
casing
turbomachine
Prior art date
Application number
PCT/EP2013/065681
Other languages
English (en)
Inventor
Paramdeep Singh
Ranvijay Singh
Prarthana GULATI
Gaurav Kumar
Ajit kumar MEHTO
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP13748277.4A priority Critical patent/EP3008294A1/fr
Priority to CN201380078399.9A priority patent/CN105531444A/zh
Priority to PCT/EP2013/065681 priority patent/WO2015010740A1/fr
Publication of WO2015010740A1 publication Critical patent/WO2015010740A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements

Definitions

  • the present invention relates to sealing arrangement for a turbomachine and more particularly to a sealing arrangement at a parting plane between an upper casing and a lower casing of the turbomachine .
  • a turbomachine such as a steam turbine, includes a casing usually embodied in two parts, namely an upper casing and a lower casing. The two part embodiment of the casing facilitates assembly of a rotor.
  • the upper casing and the lower casing are joined to one another in the assembled state by way of joining areas.
  • the upper casing and the lower casing form a joint, and a plane formed between the upper casing and the lower casing is referred to as a parting plane.
  • the upper casing and the lower casing are joined together by means of joint flange and joint screws or bolts.
  • a sealing arrangement for a turbo- machine for providing a sealing at a parting plane between an upper casing and a lower casing of the turbomachine.
  • the sealing arrangement comprises a sealing strip comprising a first portion and a second portion forming a groove therebetween, wherein the first portion the second portion and the groove extend from a first end to a second end of the sealing strip and wherein the sealing strip is mechanically coupled to the lower casing such that the second portion is in contact with the lower casing.
  • the sealing strip By having the sealing strip with the first portion and the second portion with the second portion in contact with the lower casing and a groove formed between the first portion and the second portion, the sealing strip enables an improved sealing preventing leakage of steam by having a sealing at a line of contact with the lower casing and the outer casing. Furthermore, the sealing arrangement is flexible and can provide sealing even during wear and tear.
  • the sealing strip is mechanically coupled to the lower casing along the groove which enables contact of the second portion with the lower casing and the first portion with the upper casing at respective contact points.
  • the first portion of the sealing strip is in contact with the upper casing of the turbomachine. Such an arrangement prevents leakage of steam from the parting plane towards the upper casing side of the turbomachine.
  • the sealing strip is formed from a metallic material.
  • Use of metallic material is cost-effective since the strip can be easily manufactured and fastened to the wall of the casing. Additionally, sealing strip made of metallic material is capable of withstanding high temperatures and pressure.
  • the sealing strip is formed from a non-metallic material. Sealing strip made of non-metallic material is impervious to external or internal corrosion and may be used at locations which are not subjected to high tem- peratures.
  • a plurality of seals are disposed perpendicularly on the sealing strip at the first end and the second end, this prevents leakage through a space formed be- tween the groove and the first portion and the second portion of the sealing strip and further preventing leakage of the fluid from the ends of the sealing strip.
  • the seals are labyrinth seals which enable in reduction of energy of the fluid entering from the ends of the sealing strip, since the labyrinth seal creates a complicated path for the fluid to pass through thereby reducing the energy of the fluid.
  • the upper casing and the lower casing apply a force on the first portion and the second portion respectively of the sealing strip in a radial direction thereby ensuring enhanced sealing at the respective points of contact .
  • the sealing strip is coupled to the lower casing using bolt or screws.
  • Bolting or screwing can be embodied easily and provides for durable and reliable coupling of the sealing strip to the inner wall of the casing.
  • FIG. 1 is a schematic representation of a three dimensional section of a casing of a turbomachine
  • FIG. 2 is a schematic representation depicting a radial section of the casing of the turbomachine
  • FIG. 3 is a schematic diagram depicting an exemplary sealing strip
  • FIG. 4 is a schematic diagram depicting the sealing strip alongwith seals disposed perpendicularly in the sealing strip
  • FIG. 5 is a schematic diagram depicting an assembly of the sealing strip to the casing
  • FIG. 6 is a flow diagram depicting a method for sealing arrangement for the turbomachine, in accordance with aspects of the present technique.
  • Embodiments of the present invention generally relate to a turbomachine, such as a gas turbine, a steam turbine, a turbo fan, a turbo compressor and the like and more particularly to a sealing arrangement for preventing leakage of a fluid in the turbomachine.
  • a turbomachine such as a gas turbine, a steam turbine, a turbo fan, a turbo compressor and the like
  • a sealing arrangement for preventing leakage of a fluid in the turbomachine may be used in any pressurized vessel for preventing leakage.
  • FIG. 1 depicts a three dimensional cut section of a casing 1 of a turbomachine such as but not limited to a steam turbine.
  • the casing 1 includes a lower casing 2 and an upper casing 3.
  • the upper casing 3 and the lower casing 2 are joined to one another in an assembled state. Joints between the upper cas- ing and the lower casing are formed on a plane 6, which is referred to as a parting plane between the upper casing 3 and the lower casing 2. More particularly, the parting plane 6 is the plane between the two parts that is the upper casing 3 and the lower casing 2 of the turbomachine .
  • the upper casing 3 and the lower casing 2 are coupled to each other. More particularly, the upper casing 3 and the lower casing 2 are fixedly screwed or bolted to one another. To enable this, the lower casing 2 and the upper casing 3 include joint flanges 4, 5 which may be screwed tightly against one another.
  • a sealing strip 10 is mechanically coupled to the casing 1. More particularly, the sealing strip 10 is mechanically coupled to the lower casing 2 at the parting plane 6 such that at least a part of the sealing strip 10 is above the parting plane 6. In accordance with aspects of the present technique, the part of the sealing strip above the parting plane 6 forms a contact with the upper casing 3 during the assembly.
  • the sealing strip 10 may be placed along the entire extent of the parting plane 6, or alternatively, the sealing strip 10 may be placed at locations along the parting plane 6 where the probability of leakage of the fluid is high.
  • the sealing strip 10 is coupled to an inner wall 7 of the lower casing 2. It may be noted that the coupling of the sealing strip 10 is done prior to the assembly of the upper casing 3 with the lower casing 2. Referring now to FIG. 2 a radial section of the casing 1 of the turbomachine is depicted.
  • the sealing arrangement including the sealing strip 10 is coupled to the inner wall 7 of the casing 1 at the joints formed at the parting plane 6 be- tween the lower casing 2 and the upper casing 3.
  • the sealing strip 10 includes a plurality of holes 12 for bolting or screwing to the inner wall 7 of the lower casing 2. Additionally, the sealing arrangement also includes a plurality of seals (not shown in FIG.
  • the sealing strip 10 includes a first side 16 and a second side 14 opposing each other and a first end 17 and a second end 18 defining the length of the sealing strip 10. Furthermore, the sealing strip 10 includes a first portion 19 and a second portion 20 forming a groove 22 therebetween, such that the first portion 19, the second portion 20 and the groove 22 extends from the first end 17 to the second end 18 of the sealing strip 10.
  • the groove 22 further includes a protrusion 23 extending from the first end 17 to the second end 18 of the sealing strip 10.
  • the sealing strip 10 is mechanically coupled to the lower casing 2. Specifically, the sealing strip 10 is mechanically coupled to the inner wall 7 of the lower casing 2 such that the second portion 20 is in contact with the lower casing 2.
  • the sealing strip 10 is coupled to the lower casing 2 through bolts and/or screws. More particularly, the coupling of the sealing strip 10 is achieved by bolting or screwing along the protrusion 23 at the groove 22 of the sealing strip. Alternatively, the sealing strip 10 may also be attached to the lower casing 2 through welding. In accordance with aspects of the present technique, the sealing strip 10 may be formed from a metallic material or an alloy, such as but not limited to a nickel based alloy.
  • the sealing strip 10 may also be formed from a non-metallic material, such as but not limited to rubber or a polymer. It may further be noted that the choice of material for sealing strip 10 is dependent on the location of the sealing strip and exposure of the sealing strip 10 to the environment inside the turbomachine .
  • the sealing strip 10 has the first portion 19 and the second portion 20 on the first side 16.
  • the first portion 19 and the second portion 20 are typically curved in shape thereby forming a respective line of contact with the upper casing 3 and the lower casing 2 respectively.
  • the first portion 19 and the second portion 20 form a typical semi -circular shape and extend from the first end 17 to the second end 18.
  • the second portion 20 of the sealing strip 10 is coupled to the lower casing 2.
  • the arrangement is such that the first portion 19 of the sealing strip 10 comes in contact with the upper casing 3 and specifically to the inner wall of the upper casing 3 forming a sealing at the contact points.
  • the sealing strip 10 includes a plurality of slots 24, 25 at the first end 17 and the second end 18 respectively.
  • the slots 24, 25 extend in a region from the first portion 19 to the second portion 20 for accommodating seals, which are disposed perpendicularly along the length of the sealing strip 10.
  • FIG.4 is a schematic diagram of the sealing strip 10 along- with seals 30, 32 disposed perpendicularly in the sealing strip 10. As depicted the plurality of seals 30, 32 are disposed in slots 24, 25 in the sealing strip 10 at the first end 17 and the second end 18. The seals 30, 32 are disposed in a perpendicular direction along the length of the sealing strip 10. The seals 30, 32 are labyrinth seals which prevent the leakage of the fluid entering from the ends 17, 18 of the sealing strip 10.
  • the sealing strip 10 includes the groove 22 between the first portion 19 and the second portion 20.
  • Fluid may enter through a space formed by the groove 22 from the first end 17 or the second end 18 and may leak therefrom.
  • the seals 30, 32 are disposed perpendicularly along the length of the sealing strip 10 to prevent leakage.
  • Seals 30, 32 may be formed from a metallic or a non-metallic material based on the operating conditions and thermodynamic parameters.
  • the length of the seals 30, 32 is dependent on the thermodynamical parameters of the fluid such as, but not limited to pressure and temperature. Energy of the fluid passing through the seals 30, 32 is lowered due to the structure of the seals preventing leakage from the joints.
  • the space between the first seal 30 and the second seal 32 in the sealing strip 10 may be connected to a low pressure region inside the turbomachine enabling the fluid to be passed to the low pressure region.
  • FIG. 5 is a schematic diagram depicting an assembly of the sealing strip to the casing of the turbomachine.
  • Reference numeral 34 depicting the first position shows a side view of the sealing strip 10 having the first portion 19, the second portion 20 and the groove 22 therebetween.
  • the groove 22 includes a protrusion 23 which extends along the length of the sealing strip 10.
  • the protrusion 23 is designed such that a difference between a width 39 of the sealing strip 10 at the contact points 43, 45 and a width 40 of the sealing strip 10 at the protrusion 23 is "X" mm, as depicted in FIG. 5. It may be noted that "X” may be from about 1 mm to about 2 mm. However, in other cases "X”, which is the gap between the two widths, may vary from a distance greater than 0 mm to about 5 mm depending on the design requirements and placement of the sealing strip.
  • Reference numeral 36 depicts the coupling of the sealing strip 10 through a bolt 42 along the groove 22 between the first portion 19 and the second portion 20.
  • the sealing strip 10 is coupled to the inner wall 7 of the lower casing 2 along the protrusion 23 in the groove 22 which results in the second portion 20 forming the sealing with the lower casing 2 at the contact point 45.
  • the first portion 19 of the sealing strip 10 is not deformed and extends to a distance "X" further from the inner wall 7 of the lower casing 2, as depicted.
  • Reference numeral 38 depicts the upper casing 3 placed over the lower casing 2, such that the upper casing 3 forms a contact with the first portion 19 of the sealing strip 10 at the contact point 43.
  • FIG. 6 is a flow diagram depicting an exemplary method 50 for providing the sealing arrangement, in accordance with aspects of the present technique.
  • the sealing arrangement provides a sealing at a parting plane 6 between the upper casing 3 and the lower casing 2 of a turbomachine . More particularly, the sealing arrangement provides a sealing at the joints in the parting plane between the lower casing 2 and the upper casing 3.
  • the sealing arrangement includes the sealing strip 10 and the plurality of seals 30, 32 disposed perpendicularly along the length of the sealing strip 10.
  • the sealing strip 10 includes the first portion 19 and the second portion 20 forming the groove 22 therebetween, such that the first portion 19, the second portion 20 and the groove 22 extend along the length of the sealing strip 10 that is from the first end 17 to the second end 18.
  • the sealing strip 10 is positioned close to the lower casing 2 of the turbomachine such that, the second portion 20 of the sealing strip 10 is contact with the inner wall 7 of the lower casing 2 and the first portion 19 is above the parting plane 6.
  • the sealing strip 10 is mechanically coupled to the lower casing 2. More particularly, the sealing strip 10 is mechanically coupled to the inner wall 7 of the lower cas- ing 2 along the groove 22. This ensures a tight sealing between the second portion 20 of the sealing strip 10 and the lower casing 2 at the contact point 45. However, due to tightening of the sealing strip 10 with the lower casing 2, along the protrusion 23 in the groove 22, the second portion 20 of the sealing strip 10 is deformed.
  • the upper casing 3 is assembled by placing it over the lower casing 2, the upper casing 3 forms a contact with the first portion 19 of the sealing strip 10 providing sealing at the contact point 43 with the first portion 19.
  • the upper casing 3 includes the chamfer 46 on the edge for providing a smooth fit without damaging the sealing strip 10, the upper casing 3 also deforms the first portion 19 of the sealing.
  • the deformation of the first portion 19 and the second portion 20 by the upper casing 3 and the lower casing 2 respectively creates a preload for sealing.
  • the deformation in the first portion 19 and the second portion 20 of the sealing strip 10 is due to the radial force exerted by the upper casing 3 and the lower casing 2 respectively providing a tight sealing.
  • the upper casing 3 and the lower casing 2 are bolted and/or screwed at the joint flanges 4, 5. By screwing or bolting the two parts 2, 3 of the casing, the casing is securely sealed. Additionally, during operation the pressure inside the casing 1 further compresses the sealing strip 10 in a radial direction further ensuring the sealing at the point of contact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un agencement d'étanchéité pour turbomachine et son procédé. Un agencement d'étanchéité pour turbomachine destiné à créer une étanchéité au niveau d'un plan de séparation (6) entre un corps supérieur (3) et un corps inférieur (2) de la turbomachine est présenté. L'agencement d'étanchéité comprend une bande d'étanchéité (10) comprenant une première partie (19) et une seconde partie (20) formant une rainure (22) entre elles, la première partie (19), la seconde partie (20) et la rainure (22) s'étendant d'une première extrémité (17) à une seconde extrémité (18) de la bande d'étanchéité (10) et la bande d'étanchéité (10) étant mécaniquement accouplée au corps inférieur (2) de sorte que la seconde partie (20) soit en contact avec le corps inférieur (2), la bande d'étanchéité (10) étant mécaniquement accouplée au corps inférieur (2) le long de la rainure (22).
PCT/EP2013/065681 2013-07-25 2013-07-25 Agencement d'étanchéité pour turbomachine WO2015010740A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13748277.4A EP3008294A1 (fr) 2013-07-25 2013-07-25 Agencement d'étanchéité pour turbomachine
CN201380078399.9A CN105531444A (zh) 2013-07-25 2013-07-25 用于涡轮机的密封装置
PCT/EP2013/065681 WO2015010740A1 (fr) 2013-07-25 2013-07-25 Agencement d'étanchéité pour turbomachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/065681 WO2015010740A1 (fr) 2013-07-25 2013-07-25 Agencement d'étanchéité pour turbomachine

Publications (1)

Publication Number Publication Date
WO2015010740A1 true WO2015010740A1 (fr) 2015-01-29

Family

ID=48985728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/065681 WO2015010740A1 (fr) 2013-07-25 2013-07-25 Agencement d'étanchéité pour turbomachine

Country Status (3)

Country Link
EP (1) EP3008294A1 (fr)
CN (1) CN105531444A (fr)
WO (1) WO2015010740A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393026B2 (en) 2016-03-01 2019-08-27 Rolls-Royce Plc Intercomponent seal for a gas turbine engine
US10844738B2 (en) 2016-03-01 2020-11-24 Rolls-Royce Plc Intercomponent seal for a gas turbine engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113503190B (zh) * 2021-09-13 2022-02-15 中国航发上海商用航空发动机制造有限责任公司 航空发动机静子叶片缘板封严条,静子叶片及封严结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB510505A (en) * 1938-01-27 1939-08-02 British Thomson Houston Co Ltd Improvements in casings for elastic fluid turbines
US2991045A (en) * 1958-07-10 1961-07-04 Westinghouse Electric Corp Sealing arrangement for a divided tubular casing
CA874251A (en) * 1969-03-21 1971-06-29 Canadian Westinghouse Company Limited Housing structure for an elastic fluid utilizing machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10159503A (ja) * 1996-12-03 1998-06-16 Mitsubishi Heavy Ind Ltd 車室シール装置
JP3631901B2 (ja) * 1998-05-14 2005-03-23 三菱重工業株式会社 車室シール装置
JP4015284B2 (ja) * 1998-06-09 2007-11-28 三菱重工業株式会社 蒸気タービンケーシングのフランジ冷却構造
JP2011169246A (ja) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd ガスタービンケーシング構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB510505A (en) * 1938-01-27 1939-08-02 British Thomson Houston Co Ltd Improvements in casings for elastic fluid turbines
US2991045A (en) * 1958-07-10 1961-07-04 Westinghouse Electric Corp Sealing arrangement for a divided tubular casing
CA874251A (en) * 1969-03-21 1971-06-29 Canadian Westinghouse Company Limited Housing structure for an elastic fluid utilizing machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10393026B2 (en) 2016-03-01 2019-08-27 Rolls-Royce Plc Intercomponent seal for a gas turbine engine
US10844738B2 (en) 2016-03-01 2020-11-24 Rolls-Royce Plc Intercomponent seal for a gas turbine engine

Also Published As

Publication number Publication date
EP3008294A1 (fr) 2016-04-20
CN105531444A (zh) 2016-04-27

Similar Documents

Publication Publication Date Title
KR100681560B1 (ko) 가스 터빈
US8157511B2 (en) Turbine shroud gas path duct interface
US8118551B2 (en) Casing and fluid machine
JP4015284B2 (ja) 蒸気タービンケーシングのフランジ冷却構造
JP6240307B2 (ja) 板金タービンハウジング
JP2012092829A (ja) シール装置
RU2601675C2 (ru) Разветвитель потока, ступень разветвителя потока и сопловой аппарат паровой турбины
US20170211421A1 (en) Vane, gas turbine, ring segment, remodeling method for vane, and remodeling method for ring segment
KR20130058688A (ko) 배기가스 터보차저
JP2005320965A (ja) ガスタービン用の静止リングアセンブリ
US20140044529A1 (en) Sealing of the flow channel of a turbomachine
KR20150065596A (ko) 터보 기계류 장치용 l 브러시 시일
JP6381624B2 (ja) ガスケットアセンブリ
EP2889454B1 (fr) Installation de turbine à vapeur
JP2007120340A (ja) ガスタービンの燃焼器尾筒シール構造
WO2014070438A1 (fr) Joint d'étanchéité à bande ventrale avec extrémités à chevauchement par en dessous
WO2015010740A1 (fr) Agencement d'étanchéité pour turbomachine
EP3032149B1 (fr) Dispositif d'étanchéité, machine rotative et procédé de fabrication d'un dispositif d'étanchéité
US6719295B2 (en) Supplemental seal for the chordal hinge seals in a gas turbine
US7845649B2 (en) Methods and apparatus to facilitate sealing high pressure joints
US8176740B2 (en) Method of refurbishing a seal land on a turbomachine transition piece and a refurbished transition piece
JPH11117707A (ja) ガスタービン静翼のダブルクロスシール装置
US20170067366A1 (en) Device for bounding a flow channel of a turbomachine
JP2004060658A (ja) 蒸気タービンパッキンケーシングの水平方向接合部のシール及びそのシールを形成する方法
US6742988B2 (en) Composite tubular woven seal for steam turbine diaphragm horizontal joint interfaces

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078399.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748277

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013748277

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013748277

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE